IDENTIFYING FEEDFORWARD AND FEEDBACK CONTROLLABLE SUBSPACES OF NEURAL POPULATION DYNAMICS

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009

010 011

012

013

014

016

017

018

019

021

023

024

025

026

027

028

029

031

034

037

040

041

042

043

044

046

047

051

052

ABSTRACT

There is overwhelming evidence that cognition, perception, and action rely on feedback control. In neuroscience control is traditionally considered in the context of the brain controlling the body (i.e., the plant) dynamics, here we propose that neural population dynamics themselves should be controllable by, e.g., the activity of other brain areas. However, if and how neural population dynamics are amenable to different control strategies is poorly understood, in large part because machine learning methods to directly assess controllability in neural population dynamics are lacking. To address this gap, we developed a novel dimensionality reduction method, Feedback Controllability Components Analysis (FCCA), that identifies subspaces of linear dynamical systems that are most feedback controllable based on a new measure of feedback controllability. We further show that PCA identifies subspaces of linear dynamical systems that maximize a measure of feedforward controllability. As such, FCCA and PCA are data-driven methods to identify subspaces of neural population data (approximated as linear dynamical systems) that are most feedback and feedforward controllable respectively, and are thus natural contrasts for hypothesis testing. We developed new theory proving that non-normality of underlying dynamics determines the divergence between FCCA and PCA solutions, and confirmed this in numerical simulations of diverse linear and non-linear dynamical systems. To evaluate the degree to which different control strategies extract unsupervised subspaces relevant for task variables, we applied FCCA to diverse neural population recordings, and find that feedback controllable dynamics are geometrically distinct from PCA subspaces and are better predictors of animal behavior. These methods provide a novel approach towards analyzing neural population dynamics from a control theoretic perspective, and indicate that feedback controllable subspaces are important for behavior, providing insight into principles of neural computation.

1 Introduction

Feedback control has long been recognized to be central to brain function (Wiener, 1948; Conant & Ashby, 1970). Prior work has established that, at the behavioral level, motor coordination (Todorov & Jordan, 2002), speech production (Houde & Nagarajan, 2011), perception (Rao & Ballard, 1999), and navigation (Pezzulo & Cisek, 2016; Friston et al., 2012) can be accounted for by models of optimal feedback control. Advances in the ability to simultaneously record from large number of neurons have further revealed that the brain performs computations and produces behavior through low-dimensional population dynamics (Vyas et al., 2020). Together, these two facts indicate that neural population dynamics should both be able to implement the computations required to exert feedback control Friedrich et al. (2021), and be internally steerable by feedback control themselves (e.g., other brain areas controlling motor cortex to produce target dynamics). Nonetheless, methods to assess these hypotheses directly from recordings of neural population activity are absent.

The cost incurred in controlling a dynamical system is referred to as its controllability. Controllability is an intrinsic feature of the dynamical system itself, and may be estimated from measurements of system dynamics without reference to the specific inputs to the system (Pasqualetti et al., 2013; Kashima, 2016). Control theory distinguishes between systems that utilize estimates of the plant to synthesize regulator signals (i.e., closed-loop/ feedback control) and those that do not (i.e., open-loop/feedforward control). Existing measures of controllability center around the energy that must be expended to steer the system state. These measures are calculated from the controllabil-

 ity Gramian of the (linearized) system dynamics and focus on feedforward controllability. Network controllability analyses have delivered insights into the organization of proteomic networks (Vinayagam et al., 2016), human functional and structural brain networks (Medaglia et al., 2018; Tang & Bassett, 2018; Kim et al., 2018; Gu et al., 2015), and the connectome of *C Elegans* (Yan et al., 2017). However, prior work in network controllability has exclusively focused open loop, or feedforward, controllability in the context of extracted networks, and not measures of closed loop, or feedback, controllability in the context of observed dynamics of data. Indeed, methods to asses feedback controllability from observations of the dynamics of neural populations are nascent.

Here, we developed dimensionality reduction methods that can be applied to neural population data that maximize the feedforward and feedback controllability of extracted latent population dynamics. We first identify a correspondence between Principal Components Analysis (PCA) and the volume of state space reachable by feedforward control in linear dynamical systems (Pasqualetti et al., 2013)—this provides a control-theoretic interpretation to PCA extracted subspaces. We then present Feedback Controllable Components Analysis (FCCA), a linear dimensionality reduction method to identify feedback controllable subspaces of high dimensional dynamical systems based on a novel measure of feedback controllability.

Our focus on linear models of dynamics is a computational necessity; nonlinear measures of controllability require nonlinear systems identification and involve partial differential equations that are intractable to solve in high dimensions Scherpen (1993a); Nakamura-Zimmerer et al. (2021); Kramer et al. (2024). In contrast, a key advantage of FCCA is its applicability to data using only the second order statistics of the observed data itself, bypassing the need for prior system identification and making the method easily applicable to large scale neural population recordings. Furthermore, in contrast to existing approaches towards dimensionality reduction in computational neuroscience Yu et al. (2009); Pandarinath et al. (2018), FCCA does not attempt to reconstruct the neural data with a lower dimensional subspace, but rather identifies a subspace in which dynamics optimize a functional measure (feedback controllability). Together with a functional, control theoretic interpretation of PCA, this permits direct comparison of the neural population dynamics underlying distinct control strategies from observed neural population data. The goal of our work is provide insight into underlying principles of neural computation. This is a critical endeavor in neuroscience that is related to, but distinct from, neural decoding. As such, the goal of the empirical validation in neural datasets is not to present state of the art results for neural decoding, but to evaluate the degree to which different control strategies extract unsupervised subspaces relevant for task variables.

Through theory and numerical simulations, we show that the degree of non-normality of the underlying dynamical system (Trefethen & Embree, 2020) determines the degree of divergence between PCA and FCCA solutions. In the brain, the postsynaptic effect of every neuron is constrained to be either excitatory or inhibitory by Dale's Law. This structure implies that linearized dynamics within cortical circuits are necessarily non-normal (Murphy & Miller, 2009). Prior work has highlighted the capacity of non-normal dynamical systems to retain memory of inputs (Ganguli et al., 2008) and transmit information (Baggio & Zampieri, 2021). Our results show that non-normality also plays a fundamental role in shaping the controllability of neural systems. Finally, we applied FCCA to diverse neural recordings and demonstrate that those subspaces are better predictors of behavior than PCA subspaces (despite both being linear), and that the two subspaces are geometrically distinct. This suggests that feedback controllable subspaces (FCCA) are more relevant for behavior than feedforward controllable subspaces (PCA).

2 Controllable subspaces of linear dynamical systems

We first discuss the natural cost function to measure feedforward controllability (eq. 4) and highlight its correspondence to PCA. Next, we present the analogous measure for feedback controllability (eq. 9), and how it may be estimated *implicitly* (i.e., without explicit model fitting, eq. 13). This cost function measures the complexity of the feedback controller required to regulate observed dynamics.

We consider linear dynamical systems of the form:

$$\dot{x}(t) = Ax(t) + Bu(t) \quad y(t) = Cx(t) \tag{1}$$

where $x(t) \in \mathbb{R}^N$ is the neural state (i.e., the vector of neuronal activity, not a latent variable) and u(t) is an external control input. $A \in \mathbb{R}^{N \times N}$ is the dynamics matrix encoding the effective first order dynamics between neurons. $B \in \mathbb{R}^{N \times p}$ describes how inputs drive the neural state, and $C \in \mathbb{R}^{N \times p}$

 $\mathbb{R}^{d\times N}, d << N$ is a readout matrix projecting the neural dynamics to a lower dimensional space. The input-output behavior (i.e., the mapping from u(t) to y(t)) can equivalently be represented in the Laplace domain using the transfer function $G(s) = C(sI - A)^{-1}B$ Kailath (1980).

Consider an invertible linear transformation of the state variable $x \to Tx$. Under such a state-space transformation, the input-output behavior of the system eq.1 is left unchanged as the state space matrices transform as $(A,B,C) \to (TAT^{-1},TB,CT^{-1})$. This implies that there are many possible choices of (A,B,C) matrices, referred to as realizations, that give rise to the same transfer function G(s). A minimal realization contains the fewest number of state variables (i.e., A has the smallest dimension) amongst all realizations. Measures of controllabity that are *intrinsic* to the dynamical system should be invariant across all realizations. We will show that our measures of feedforward and feedback controllability exhibit this property.

Throughout, we will assume that the observed data (x(t)) and the projection of the observed data (y(t)) obey the following underlying state dynamics:

$$\dot{x}(t) = Ax(t) + Bdw(t); \quad dw(t) \sim \mathcal{N}(0, I); \quad y(t) = Cx(t) + \gamma dv(t); \quad dv(t) \sim \mathcal{N}(0, I) \quad (2)$$

Compared to eq. 1, u(t) has been replaced by temporally white noise dw(t), a reasonable assumption given that input signals are unmeasured in neural recordings. Further, we allow for the presence of observational noise in the readout, dv(t), whose strength is scaled by a constant γ which we assume to be small ($\gamma << 1$), for technical correctness of what follows. Our metrics of controllability rely only on observing the linear dynamics under this latent, stochastic excitation.

2.1 PRINCIPAL COMPONENTS ANALYSIS EIGENVALUES MEASURE FEEDFORWARD CONTROLLABILITY

A categorical definition of controllability for a dynamical system is that for any desired trajectory from initial state to final state, there exists a control signal u(t) that could be applied to the system to guide it through this trajectory. For a (stable) linear dynamical system, a necessary and sufficient condition for this to hold is that the controllability Gramian, Π , has full rank. Π is obtained from the state space parameters through the solution of the Lyapunov equation:

$$A\Pi + \Pi A^{\top} = -BB^{\top} \quad \Pi = \int_0^{\infty} dt \ e^{At} BB^{\top} e^{A^{\top} t}$$
 (3)

The rank condition on Π as a definition of controllability (Kailath, 1980) is a binary designation; either all directions in state space can be reached by control signals, or they cannot. Furthermore, this definition does not consider the energy required to achieve the desired transition, and the energy required to push the system in certain directions may be prohibitive.

Thus, given that the system is controllable, we can ask a more refined question: what is the energetic effort required to control different directions of state space? The energy required for control is measured by the norm of the input signal u(t). It can be shown (Pasqualetti et al., 2013) that to reach states that lie along the eigenvectors of Π , the minimal energy is proportional to the inverse of the eigenvalues of Π . Directions of state space that have large projections along eigenvectors of Π with small eigenvalues are harder to control. For a unit-norm input signal, the volume of reachable state space is proportional to the determinant of Π (Summers et al., 2016).

This can be encoded into the objective function of a dimensionality reduction problem: for a fixed-norm input signal, find C that maximizes the reachable volume (determinant of $C\Pi C^{\top}$) within the subspace. Identifying subspaces of maximum feedforward controllability is then posed as the following optimization problem:

$$\operatorname{argmax}_{C} \log \det C \Pi C^{\top} \mid C \in \mathbb{R}^{d \times N}, C C^{\top} = I_{d}$$
 (4)

Observe that under state space transformations, Π maps to $T\Pi T^{\top}$, whereas C maps to CT^{-1} . Hence, as desired, eq. 4 is invariant to state space transformations and thus an intrinsic property of the dynamical system. We include the constraint $CC^{\top} = I_d$ to ensure the optimization problem is well-posed. Without it, one could, for example, multiply C by an overall constant and increase the objective function. We can assess this objective function from data generated by eq. 2, as in this case the observed covariance of the data will coincide with the controllability Gramian (Mitra, 1969; Kashima, 2016). Then the solution of problem 4 coincides with that of PCA, as the optimal C

of fixed dimensionality d has rows given by the top d eigenvectors of Π (the data covariance matrix) (see Theorem 2 on pg. 7 and Lemma 1 in the Appendix). Thus, PCA extracts subspaces of maximal feedforward controllability.

2.2 Linear Quadratic Gaussian Singular Values Measure Feedback Controllability

The primary distinction between feedforward control and feedback control is that the latter utilizes observations of the state to synthesize subsequent control signals. Feedback control therefore involves two functional stages: filtering (i.e., estimation) of the underlying dynamical state (x(t)) from the available observations (y(t)) and construction of appropriate regulation (i.e., control) signals. For a linear dynamical system, state estimation is optimally accomplished by the Kalman filter, whereas state regulation is canonically achieved via linear quadratic regulation (LQR). These two functional stages optimally solve the following cost functions:

Kalman Filter:
$$\min_{p(x_0|y_{-T:0})} \lim_{T \to \infty} \operatorname{Tr}\left(\mathbb{E}\left[\left(\mathbb{E}(x_0|y_{-T:0}) - x_0\right) \left(\mathbb{E}(x_0|y_{-T:0}) - x_0\right)^{\top}\right]\right) \tag{5}$$

$$LQR: \min_{u \in L^{2}[0,\infty)} \lim_{T \to \infty} \mathbb{E}\left[\frac{1}{T} \int_{0}^{T} x^{\top} S x + u^{\top} R u \ dt\right]$$
 (6)

where $y_{-T:0}$ denotes observations over the interval [-T,0], and R>0, $S\geq 0$ are general, positive definite and positive semi-definite weightings of the control and state variables. The minima of these cost functions are obtained from the solutions of dual Riccati equations:

$$AQ + QA^{\top} + BB^{\top} - \gamma^{-2}QC^{\top}CQ = 0 \tag{7}$$

$$A^{\top}P + PA + S - PBR^{-1}B^{\top}P = 0 \tag{8}$$

Here, Q is the covariance matrix of the estimation error, whereas P encodes the regulation cost incurred for varying initial conditions of x(t). w

Crucially, the solutions of the Riccati equations are not invariant under the invertible state transformation $x\mapsto Tx$. The filtering Riccati equation will transform as $Q\mapsto TQT^{\top}$ whereas P will transform as $(T^{-1})^{\top}PT^{-1}$. As such, simply by defining new coordinates via T we can shape the difficulty of filtering and regulating various directions of the state space. Therefore Tr(Q) and Tr(P) on their own are not suitable cost functions for measuring feedback controllability. However, the product PQ undergoes a similarity transformation $PQ \to (T^{\top})^{-1}QPT^{\top}$. Hence, the eigenvalues of PQ are invariant under similarity transformations, and define an intrinsic measure of the feedback controllability of a system. Additionally, there exists a particular T that diagonalizes PQ. Following Jonckheere & Silverman (1983), we refer to the corresponding eigenvalues as the LQG (Linear Quadratic Gaussian) singular values. In this basis, the cost of filtering each direction of the state space equals the cost of regulating it. From Jonckheere & Silverman (1983):

Theorem 1 Let (A,B,C) be a minimal realization of G(s). Then, the eigenvalues of PQ are similarity invariant. Further, these eigenvalues are real and strictly positive. If $\mu_1^2 \ge \mu_2^2 \ge \mu_N^2 > 0$ denote the eigenvalues of PQ in decreasing order, then there exists a state space transformation T, $(A,B,C) \to (TAT^{-1},TB,CT^{-1}) \equiv (\tilde{A},\tilde{B},\tilde{C})$ such that:

$$Q = P = diag(\mu_1, \mu_2, ..., \mu_N)$$

The realization $(\tilde{A}, \tilde{B}, \tilde{C})$ will be called the closed-loop balanced realization.

Proof. Let $Q = LL^{\top}$ be the Cholesky decomposition of Q and let $L^{\top}PL$ have Singular Value Decomposition $U\Sigma^2U^{\top}$. Then, one can check $T = \Sigma^{1/2}U^{\top}L^{-1}$ provides the desired transformation.

Therefore, the sum of the LQG singular values μ_i^2 , i.e., the ensemble cost to filter and regulate each direction of the neural state space is an intrinsic measure of feedback controllability:

$$Tr(PQ)$$
 (9)

2.3 THE FEEDBACK CONTROLLABILITY COMPONENTS ANALYSIS METHOD.

We developed a novel dimensionality reduction method, Feedback Controllability Components Analysis (FCCA), that can be readily applied to observed data from typical systems neuroscience experiments. We construct estimators of the LQG singular values, and hence ${\rm Tr}(PQ)$, directly from the autocorrelations of observed neural firing rates. The FCCA objective function arises from the observation that causal and acausal Kalman filtering are also related via dual Riccati equations. We show that through an appropriate variable transformation, we obtain a state variable, $x_a(t)$, whose dynamics unfold backwards in time via the transpose of the dynamics matrix (A) which evolves x(t) (the observed neural state) forwards in time. Once established, this enables us to use the error covariance matrix of Kalman filtering $x_a(t)$ as a stand-in for the cost of regulating x(t) for a particular choice of S and R in eq. 6.

In particular, given the state space realization of the forward time stochastic linear system in eq. 2, the joint statistics of (x(t),y(t)) can equivalently be parameterized by a Markov model that evolves backwards in time (L. Ljung & T. Kailath, 1976):

$$-\dot{x}_b(t) = A_b x_b(t) + B dw(t); \quad y = C x_b(t) + \gamma dv(t) \tag{10}$$

where $A_b = \Pi A^{\top} \Pi^{-1}$ and $\Pi = \mathbb{E}[x(t)x(t)^{\top}]$ is the solution of the Lyapunov equation (eq. 3). Consider now state space transformation $x_b(t) \to \Pi^{-1} x_b(t) \equiv x_a(t)$ under which the state space matrices (A_b, B, C) map to $(A^{\top}, \Pi^{-1}B, C\Pi)$. The equation governing the dynamics of $x_a(t)$ reads:

$$-\dot{x}_a(t) = A^{\top} x_a(t) + \Pi^{-1} B dw(t)$$

The Riccati equation associated with acausal Kalman filtering of $x_a(t)$ from observations $y_a(t) = C\Pi x_a(t) + \gamma dv(t) = Cx_b(t) + \gamma dv(t)$, whose solution we denote \tilde{P} , takes on the form:

$$A^{\mathsf{T}}\tilde{P} + \tilde{P}A + \Pi^{-1}BB^{\mathsf{T}}\Pi^{-1} - \gamma^{-2}\tilde{P}\Pi C^{\mathsf{T}}C\Pi\tilde{P} = 0 \tag{11}$$

$$A^{\top}P + PA + S - PBR^{-1}B^{\top}P = 0 \tag{8}$$

We see that eq. 11 coincides with eq. 8 (reproduced for convenience) for an LQR with state cost weighting $S = \Pi^{-1}BB^{\top}\Pi^{-1}$, a control cost weighting $R = \gamma^2 I$, and input matrix $B = \Pi C^{\top}$. Thus, the performance of a Kalman filter operating on a transformed version of the time reversal of the observed data $(x_a(t))$ yields information about the performance of a linear quadratic regulator controlling a dynamical system which has the same dynamics (A matrix) as the observed data (x(t)), but whose inputs and outputs have been exchanged and reweighted. This enables a data driven estimation of the LQG singular values associated with the following LQR objective function:

$$\min_{u \in L^2[0,\infty)} \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \int_0^T x^\top \Pi^{-1} B B^\top \Pi^{-1} x + \gamma^2 u^\top u \, dt \right]$$
 (12)

Q and \tilde{P} are implicitly functions of C. FCCA maximizes feedback controllability by seeking to minimize $\mathrm{Tr}(\tilde{P}Q)$ over choices of C. To explicitly construct an estimator of $\mathrm{Tr}(\tilde{P}Q)$, recall the matrix Q is the error covariance of MMSE prediction of the system state x(t) given past observations y(t) over the interval (t-T,t), whereas the matrix \tilde{P} is the error covariance of MMSE prediction of the transformed system state $x_a(t)$ given future observations $y_a(t)$ over the interval (t,t+T). The choice of T is the only hyperparameter associated with FCCA. As discussed above, the Kalman Filter can be used to efficiently calculate these MMSE estimates given an explicit state space model of the dynamics. In our case, to keep system dynamics implicit, we instead directly use the formulas for the MMSE error covariance in terms of cross correlations between $x(t), x_a(t)$ and $y(t), y_a(t)$. The standard formulas for the error covariance of MMSE prediction of a Gaussian distributed variable z given v read: $\Sigma_z - \Sigma_{zv} \Sigma_v^{-1} \Sigma_{vz}^{\top}$ where $\Sigma_z = \mathbb{E}[zz^{\top}], \Sigma_v = \mathbb{E}[vv^{\top}]$ and $\Sigma_{zv} = \mathbb{E}[zv^{\top}]$. The FCCA objective function is thus:

$$\operatorname{FCCA}: \quad \operatorname{argmin}_{C} \operatorname{Tr} \left[\underbrace{\left(\Pi - \Lambda_{1:T}(C) \Sigma_{T}^{-1}(C) \Lambda_{1:T}^{\top}(C) \right)}_{\operatorname{causal MMSE covariance }(Q)} \underbrace{\left(\Pi^{-1} - \tilde{\Lambda}_{1:T}^{\top}(C) \Sigma_{T}^{-1}(C) \tilde{\Lambda}_{1:T}(C) \right)}_{\operatorname{acausal MMSE covariance }(\tilde{P})} \right]$$

$$\boldsymbol{\Lambda}_{1:T}(C) = \{\boldsymbol{\Lambda}_1 \boldsymbol{C}^\top, \boldsymbol{\Lambda}_2 \boldsymbol{C}^\top, ..., \boldsymbol{\Lambda}_T \boldsymbol{C}^\top\}, \ \tilde{\boldsymbol{\Lambda}}_{1:T}(C) = \{\tilde{\boldsymbol{\Lambda}}_1 \boldsymbol{\Pi} \boldsymbol{C}^\top, \tilde{\boldsymbol{\Lambda}}_2 \boldsymbol{\Pi} \boldsymbol{C}^\top, ..., \tilde{\boldsymbol{\Lambda}}_T \boldsymbol{\Pi} \boldsymbol{C}^\top\}$$

where for discretization timescale τ , $\Pi = \mathbb{E}[x(t)x(t)^{\top}]$ (covariance of the neural data), $\Lambda_k = \mathbb{E}[x(t+k\tau)x(t)^{\top}]$ (autocorrelation of the neural data), $\tilde{\Lambda}_k = \mathbb{E}[x_a(t+k\tau)x_a(t)^{\top}] = \mathbb{E}[\Pi^{-1}x(t+k\tau)x^{\top}(\Pi^{-1})^{\top}]$ (autocorrelations of $x_a(t)$), and $\Sigma_T(C)$ is a block-Toeplitz space by time covariance matrix of y(t) (i.e. the ij^{th} block of $\Sigma_T(C)$ is given by $C^{\top}\Lambda_{|i-j|}C$. Eq. 13 assumes that the readout y(t) does not contain observational noise. As mentioned, in our derivation we assume the observational noise term $\gamma << 1$, and confirm numerically in **Figure A1** that the solutions found by FCCA are robust to the addition of observational noise to the readout. We optimize the FCCA objective function via L-BFGS.

2.4 Control-Theoretic Intuition for FCCA

We have shown how the sum of LQG singular values is an intrinsic measure of the cost to filter/regulate a linear dynamical system which is minimized at a fixed readout dimensionality by FCCA. In order to control the system state and carry out the computations necessary to perform state estimation and control signal synthesis, the controller itself must implement its own internal state dynamics. Thus, in addition to the complexity of the system itself, we may inquire about the complexity of the controller. One intuitive measure of this complexity is given by the controller's state dimension (i.e., the McMillan degree), i.e., the number of dynamical degrees of freedom it must implement to function. In the context of brain circuits, the degrees of freedom of the controller must ultimately be implemented via networks of neurons. We therefore hypothesize that biology favors performing task relevant computations via dynamics that require low dimensional controllers to regulate. As we argue below, minimizing the sum of LQG singular values over readout matrices (C) corresponds to a relaxation of the objective of searching for a subspace that enables control via a controller of low dimension. In other words, FCCA searches for dynamics that can be regulated with controllers of low complexity (Fig.1).

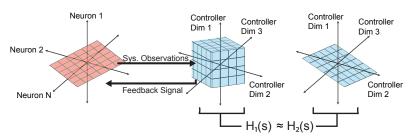


Figure 1: In principle, a controller of dimension as large as the neural state space may be required to effectively regulate dynamics within a FBC subspace $(H_1(s))$. However, subspaces optimized to minimize either the rank, or more practically, the trace of PQ will require controllers of lower dimensionality to achieve near-optimal performance $(H_2(s))$.

Recall from Theorem 1 above that there exists a linear transformation that simultaneously diagonalizes both P and Q. Let $(\tilde{A}, \tilde{B}, \tilde{C})$ be the corresponding closed-loop balanced realization. Order the LQG singular values in descending magnitude $\{\mu_1, ..., \mu_N\}$ and divide them into two sets $\{\mu_1, ..., \mu_m\}$ and $\{\mu_{m+1}, ..., \mu_N\}$. Assume the system input is of dimensionality p and the output is of dimension d (i.e., $\tilde{B} \in \mathbb{R}^{N \times p}$ and $\tilde{C} \in \mathbb{R}^{d \times N}$). Then, one can partition the state matrices $\{\tilde{A}, \tilde{B}, \tilde{C}\}$ accordingly: $\tilde{A} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$, $\tilde{B} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$, $\tilde{C} = [C_1 \quad C_2]$. Here, $A_{11} \in \mathbb{R}^{m \times m}, A_{22} \in \mathbb{R}^{N-m \times N-m}, B_1 \in \mathbb{R}^{m \times p}, B_2 \in \mathbb{R}^{N-m \times p}, C_1 \in \mathbb{R}^{d \times m}, C_2 \in \mathbb{R}^{d \times N-m}$. It can be shown that the optimal controller of dimension m is obtained from solving the Riccati equations corresponding to the truncated system (A_{11}, B_1, C_1) . If the LQG singular values $\{\mu_{m+1}, ..., \mu_N\}$ are negligible, then the controller dimension can be reduced with essentially no loss in regulation performance. We illustrate this idea schematically in Figure 1, where the controller with transfer function $H_1(s)$ is approximated by a controller with lower state dimensional controllers to regulate, one should minimize the objective function argmin $_C$ Rank $(\tilde{P}Q)$, where \tilde{P} and Q are the solutions to the Riccati equations 11 and 7, respectively. However, rank minimization is an NP-hard problem. A convex relaxation of the rank function is the nuclear norm (i.e. the sum of the singular values) (Fazel et al., 2004). Given that $\tilde{P}Q$ is a positive semi-definite matrix, a tractable objective

function that seeks subspaces of dynamics that require low complexity controllers is given by:

$$\operatorname{argmin}_{C}\operatorname{Tr}(\tilde{P}Q)$$

which is precisely what FCCA minimizes in a data-driven fashion (eq. 13).

3 PCA AND FCCA SUBSPACES DIVERGE IN NON-NORMAL DYNAMICAL

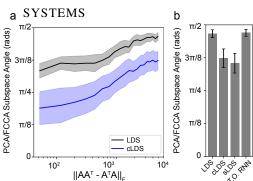


Figure 2: a. (Black) Average subspace angles between d=2 FCCA and PCA projections applied to Dale's law constrained linear dynamical systems (LDS) as a function of non-normality. (Blue) Subspace angles between d=2 FCCA and PCA projections applied to firing rates derived from spiking activity driven by Dale's Law constrained LDS. Spread indicates standard deviation over 20 random generations of A and 10 random initializations of FCCA. b. Average FCCA/PCA subspace angles at the highest degree of model nonnormality for different synthetic systems.

Having derived data driven optimization problems to identify feedforward (PCA) and feedback (FCCA) controllable subspaces, we investigated the conditions for which the solutions of PCA and FCCA are distinct. We found that the non-normality of dynamics matrix A of eq. 1 determines similarity of PCA and FCCA solutions, We first prove that when A is symmetric, and B = I, under certain conditions the critical points of PCA (eq. 13) and the FCCA objective function (eq. 9) coincide.

Theorem 2 For $B = I_N, A = A^T, A \in \mathbb{R}^{N \times N}$, with all eigenvalues of A distinct and $\max Re(\lambda(A)) < 0$, the critical points of the feedforward controllability objective function eq. 4 and the feedback controllability objective function eq. 9 for projection dimension A coincides with the eigenspace spanned by the A eigenvalues with largest real value.

The proof of the theorem is provided in the Appendix. The restriction to B=I is made within the proof, but does not apply to the general application of the method. Intuitively, in the case

of symmetric, stable A, perturbations exponentially decay in all directions, and so the maximum response variance, and hence greatest feedforward controllability, is contained in the subspace with slowest decay, which corresponds to the eigenspace spanned by the d eigenvalues with largest real value. The intuition for the slow eigenspace of A serving as a (locally) optimal projection in the feedback controllability case is given by the fact that state reconstruction from past observations, the goal of the Kalman filter, will occur optimally using observations that have maximal autocorrelations with future state dynamics. Similarly, for the LQR, for a fixed rank input, the most variance will be suppressed by regulating within the subspace with slowest relaxation dynamics.

Importantly, due to Dale's Law, brain dynamics are generated by non-normal dynamical systems. To demonstrate the effect of increasing the non-normality of A on the solutions of PCA and FCCA, we turn to numerical simulations (the optimal feedback controllable projections are not analytically tractable). We generated 200-dimensional dynamics matrices constrained to follow Dale's Law with an equal number of excitatory and inhibitory neurons, and varied the degree of non-normality (see Appendix). We applied the methods (FCCA and PCA) both directly to the cross-covariance matrices of the resulting linear dynamical systems, as well as to spiking activity driven by simulated x_t . In the latter case, spiking activity was generated as a Poisson process with rate $\lambda_t = \exp(x_t)$. Firing rates were obtained by binning spikes and applying a Gaussianizing boxcox transformation (Sakia, 1992). These rates were then used to estimate the cross-covariance matrices. This procedure mirrors that which was applied to neural data in the subsequent section.

In **Figure 2a**, we plot the average subspace angles between FCCA and PCA for d=2 projections (other choices of d shown in **Figure A2**) applied both directly to cross-covariance matrices of the linear dynamical systems (LDS, black) and cross-covariance matrices estimated from spiking activity (Count LDS, blue) as a function of the non-normality of the underlying A matrix (measured using the Henrici metric, $||A^{\top}A - AA^{\top}||_F$). In both cases, we observe a nearly monotonic increase in the angles between FCCA and PCA subspaces as non-normality is increased. We note that as we constrain A matrices to follow Dale's Law, we cannot tune them to be completely normal, and

Table 1: FCCA/PCA comparison across neural datasets

Dataset/Brain Region	N_r	θ (deg.)	Peak Percent Δ - r^2	Δ - r^2 AUC
Hippocampus	8	81.0 ± 0.8	$118\pm20\%$	3.90 ± 0.23
M1 random	35	65.5 ± 0.8	$83 \pm 13\%$	2.83 ± 0.12
S1 random	8	66.1 ± 1.6	$229 \pm 75\%$	2.15 ± 0.30
M1 maze	5	44.0 ± 1.3	$142\pm42\%$	0.99 ± 0.30

hence the subspace angles between FCCA and PCA remain bounded away from zero. We verified that the large subspace angles between FCCA and PCA also persist in more general data generation processes. We considered non-stationary dynamics arising from a sequence of switched non-normal linear dynamical systems, and nonlinear dynamics arising from an RNN obeying Dale's Law trained to reproduce muscle EMG activity in response to a low dimensional "go cue" input signal Sussillo et al. (2015). Full details of model construction and training are provided in the Appendix. In **Figure 2b**, we plot the average FCCA/PCA subspace angles at the highest degree of model non-normality for each synthetic system (full results across all levels of non-normality are provided in **Figure A3**). In all cases, FCCA and PCA subspaces are geometrically distinct. Given the generality of non-normal dynamics due to Dale's Law, this new control-theoretic result suggests that PCA and FCCA subspaces should also be geometrically distinct in neural population data.

4 FCCA SUBSPACES ARE BETTER PREDICTORS OF BEHAVIOR THAN PCA SUBSPACES

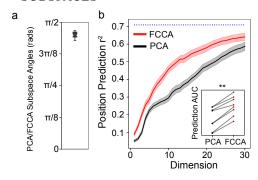


Figure 3: (a) Average subspace angles between FCCA and PCA at d=6 across recording sessions (median $\pm IQR$ indicated). (b) Five-fold cross-validated position prediction r^2 as a function of projection dimension between for FCCA (red) and PCA (black) and without dimensionality reduction (dashed blue). Mean \pm standard error across folds and recording sessions indicated. (inset) Total area under the curve (AUC) of decoding performance averaged over folds for PCA and FCCA within each recording session (**: $p < 10^{-2}, n = 8$, Wilcoxon signed rank test)

We applied FCCA to neural population recordings from the rat hippocampus made during a maze navigation task. Further details on the dataset and preprocessing steps used are provided in the Appendix. In each recording session, we fit PCA and FCCA to neural activity across a range of projection dimensions. In line with the predictions of our theory and numerical simulations, we find that subspace angles between PCA and FCCA were consistently large across recording sessions (> $3\pi/8$, Figure 3a, median and IQR indicated). As FCCA is a nonconvex optimization problem, we initialized optimization from many random semiorthogonal projection matrices and choose the final solution that yields the lowest value of the cost function 13. In Supplementary Figure **A4**, we confirm that the substantial subspace angles between FCCA and PCA are largely insensitive to the choice of T (T=3 above), the choice of projection dimensionality, and robust across initializations of FCCA. Thus, feedforward and feedback controllable subspaces are geometrically distinct.

We next assessed the extent to which feedback controllable dynamics (as identified by FCCA), as opposed to feedforward controllable dynamics (as identified by PCA) were relevant for behavior. Our goal for decoding was to evaluate the task relevance of feedback vs. feedforward controllable subspaces, not to optimize decoding accuracy *per se*. As such, we trained linear decoders of the rat position from activity projected into FCCA and PCA subspaces. We used linear decoders to emphasize the structure in the different subspaces available to a simple read-out. In **Figure 3b**, we report five-fold cross-validated prediction accuracy for PCA (black) and FCCA (red) over a range of projection dimensions (mean \pm standard error across recording sessions and folds indicated). We found activity within FCCA subspaces to be more predictive of behavior than PCA subspaces across all dimensions, with a peak improvement of 118% at d=12. This superior decoding performance held consistently across each recording session individually. In the inset of **Fig. 3b**, we plot the total

area under prediction r^2 curves shown for each recording session (FCCA significantly higher than PCA, **: $p < 10^{-2}$, n = 8, Wilcoxon signed rank test). In **Figure A5**, we verify that the superior decoding performance of FCCA subspaces hold consistently across each initialization.

To validate the robustness of these results, we repeated this analyses in three other datasets: recordings from macaque primary motor (M1 random) and primary somatosensory (S1 random) cortices during a self paced reaching task (O'Doherty et al. (2018)), and recordings from macaque primary motor cortex during a delayed reaching task (M1 maze, Churchland et al. (2012)). Further details on data preprocessing are provided in the Appendix. In **Table 1**, we report the number of recording sessions (N_r) , mean: average (\pm standard error) subspace angle between FCCA and PCA subspaces at d=6 (θ), peak percent improvement of behavioral prediction from FCCA subspaces over PCA subspaces (Δ - r^2), and difference in the area under the behavioral prediction curves between PCA and FCCA. In all cases, standard errors are taken across the recording sessions, and analogously to **Figure 3**, behavioral decoding was performed from d=1 to d=30. Importantly, in all datasets, FCCA enabled better behavioral prediction, and the subspace angles between FCCA and PCA were substantially different from zero. Feedback controllable subspaces therefore better capture behaviorally relevant dynamics than feedforward controllable subspaces.

5 DISCUSSION

We developed FCCA, a novel dimensionality reduction method that identifies feedback controllable subspaces of neural population dynamics. Further, the correspondence between PCA and feedforward controllability, long known in the control theory community (Moore, 1981), but unrecognized in the neuroscience community, adds additional interpretative value to these subspaces. Importantly, to the best of our knowledge, FCCA is the first method to encode functional measures of dynamics (in this case, controllability) into the objective of a dimensionality reduction method. As such, it is not designed to optimally reconstruct the neural data (in fact, FCCA captures significantly less variance in the data than PCA, see Supplementary Figure A6) or maximize behavioral decoding. Rather, it aims to provide insight into the specific computations different components of neural activity are optimized for. This renders it distinct from prior latent variable analysis methods in neuroscience (e.g., GPFA Yu et al. (2009), LFADS Pandarinath et al. (2018)), and motivates the development of other methods for neural data analysis that reduce neural activity on the basis of normative, functional measures. Indeed, the goal of the empirical validation in neural datasets was not to present state of the art results for neural decoding. Rather, it was to assess the degree to which the two differing notions of controllability derived from first principles (feedforward and feedback), identified distinct subspaces of neural activity and could account for task relevant information in neural population data.

We demonstrated that feedforward and feedback controllable subspaces are geometrically distinct in non-normal dynamical systems, a fact of fundamental importance to the analysis of neural dynamics from cortex, where Dale's Law necessitates non-normality. In electrophysiology recordings from across the brain, we found large angles between FCCA and PCA subspaces. Generalizing analytic results and further exploring the relationship between non-normality and controllability is an important direction of future work. Furthermore, we found that FCCA subspaces were better predictors of behavior than PCA subspaces. This suggests that targeting feedback controllable subspaces in the design of brain machine interfaces may be fruitful.

Several extensions to FCCA are possible. While performing dimensionality reduction on the basis of nonlinear measures of controllability remains computationally infeasible due to the need to solve high dimensional PDEs within the inner optimization loop ((Scherpen, 1993b)), FCCA could be augmented with a nonlinear encoder. In FCCA, we rely on estimation of the regulator cost through acausal filtering (eq. 11 and estimate the filtering error through the Gaussian MMSE formula (eq. 13) to keep the model of the data implicit. These correspondences only hold for linear systems under a particular choice of the LQR cost function (eq. 12). While this makes the method computationally efficient, it restricts the form of weight matrices in the LQR objective functions that can be considered. The objective function in eq. 9 could alternatively be applied to *post-hoc* analysis of linear state space models fit to neural recordings (Gao et al., 2015), as these models explicitly yield the system matrices required to solve the Riccati equations 7 and 8. This analysis could be combined with techniques from inverse linear optimal control (Priess et al., 2014) to provide a more refined picture of the controllability of population dynamics.

REFERENCES

- Giacomo Baggio and Sandro Zampieri. Non-normality improves information transmission performance of network systems. *IEEE Transactions on Control of Network Systems*, 8(4):1846–1858, 2021. Publisher: IEEE.
- R.S. Bucy and E. Jonckheere. Singular filtering problems. *Systems Control Letters*, 13(4):339–344, 1989. ISSN 0167-6911. doi: https://doi.org/10.1016/0167-6911(89)90122-9. URL https://www.sciencedirect.com/science/article/pii/0167691189901229.
- Mark M Churchland, John P Cunningham, Matthew T Kaufman, Justin D Foster, Paul Nuyujukian, Stephen I Ryu, and Krishna V Shenoy. Neural population dynamics during reaching. *Nature*, 487 (7405):51–56, 2012.
- Roger C Conant and W R Ashby. Every good regulator of a system must be a model of that system. *International journal of systems science*, 1(2):89–97, 1970.
- Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with orthogonality constraints. *SIAM journal on Matrix Analysis and Applications*, 20(2):303–353, 1998.
- M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system theory. In *Proceedings of the 2004 American Control Conference*, volume 4, pp. 3273–3278 vol.4, 2004. doi: 10.23919/ACC.2004.1384521.
- Johannes Friedrich, Siavash Golkar, Shiva Farashahi, Alexander Genkin, Anirvan Sengupta, and Dmitri Chklovskii. Neural optimal feedback control with local learning rules. *Advances in Neural Information Processing Systems*, 34:16358–16370, 2021.
- Karl Friston, Spyridon Samothrakis, and Read Montague. Active inference and agency: optimal control without cost functions. *Biological cybernetics*, 106:523–541, 2012.
- Surya Ganguli, Dongsung Huh, and Haim Sompolinsky. Memory traces in dynamical systems. *Proceedings of the National Academy of Sciences*, 105(48):18970–18975, 2008.
- Yuanjun Gao, Lars Busing, Krishna V Shenoy, and John P Cunningham. High-dimensional neural spike train analysis with generalized count linear dynamical systems. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/9996535e07258a7bbfd8b132435c5962-Paper.pdf.
- Shi Gu, Fabio Pasqualetti, Matthew Cieslak, Qawi K. Telesford, Alfred B. Yu, Ari E. Kahn, John D. Medaglia, Jean M. Vettel, Michael B. Miller, Scott T. Grafton, and Danielle S. Bassett. Controllability of structural brain networks. *Nature Communications*, 6(1):8414, October 2015. ISSN 2041-1723. doi: 10.1038/ncomms9414. URL https://doi.org/10.1038/ncomms9414.
- Guillaume Hennequin, Tim P Vogels, and Wulfram Gerstner. Optimal control of transient dynamics in balanced networks supports generation of complex movements. *Neuron*, 82(6):1394–1406, 2014.
- John Houde and Srikantan Nagarajan. Speech Production as State Feedback Control. Frontiers in Human Neuroscience, 5, 2011. ISSN 1662-5161. URL https://www.frontiersin.org/articles/10.3389/fnhum.2011.00082.
- E. Jonckheere and L. Silverman. A new set of invariants for linear systems—Application to reduced order compensator design. *IEEE Transactions on Automatic Control*, 28(10):953–964, 1983. doi: 10.1109/TAC.1983.1103159.
- Thomas Kailath. Linear systems, volume 156. Prentice-Hall Englewood Cliffs, NJ, 1980.
- Kenji Kashima. Noise Response Data Reveal Novel Controllability Gramian for Nonlinear Network Dynamics. *Scientific Reports*, 6(1):27300, June 2016. ISSN 2045-2322. doi: 10.1038/srep27300. URL https://doi.org/10.1038/srep27300.

- Jason Z Kim, Jonathan M Soffer, Ari E Kahn, Jean M Vettel, Fabio Pasqualetti, and Danielle S
 Bassett. Role of graph architecture in controlling dynamical networks with applications to neural
 systems. *Nature physics*, 14(1):91–98, 2018.
 - D. Kleinman. On an iterative technique for Riccati equation computations. *IEEE Transactions on Automatic Control*, 13(1):114–115, 1968. doi: 10.1109/TAC.1968.1098829.
 - Boris Kramer, Serkan Gugercin, Jeff Borggaard, and Linus Balicki. Scalable computation of energy functions for nonlinear balanced truncation. *Computer Methods in Applied Mechanics and Engineering*, 427:117011, 2024.
 - L. Ljung and T. Kailath. Backwards Markovian models for second-order stochastic processes (Corresp.). *IEEE Transactions on Information Theory*, 22(4):488–491, July 1976. ISSN 1557-9654. doi: 10.1109/TIT.1976.1055570.
 - Scott W Linderman, Andrew C Miller, Ryan P Adams, David M Blei, Liam Paninski, and Matthew J Johnson. Recurrent switching linear dynamical systems. *arXiv preprint arXiv:1610.08466*, 2016.
 - Jan R Magnus and Heinz Neudecker. *Matrix differential calculus with applications in statistics and econometrics*. John Wiley & Sons, 2019.
 - John D. Medaglia, Denise Y. Harvey, Nicole White, Apoorva Kelkar, Jared Zimmerman, Danielle S. Bassett, and Roy H. Hamilton. Network Controllability in the Inferior Frontal Gyrus Relates to Controlled Language Variability and Susceptibility to TMS. *The Journal of Neuroscience*, 38(28): 6399, July 2018. doi: 10.1523/JNEUROSCI.0092-17.2018. URL http://www.jneurosci.org/content/38/28/6399.abstract.
 - D Mitra. Wmatrix and the geometry of model equivalence and reduction. In *Proceedings of the Institution of Electrical Engineers*, volume 116, pp. 1101–1106. IET, 1969. Issue: 6.
 - Bruce Moore. Principal component analysis in linear systems: Controllability, observability, and model reduction. *IEEE transactions on automatic control*, 26(1):17–32, 1981. Publisher: IEEE.
 - Brendan K Murphy and Kenneth D Miller. Balanced amplification: a new mechanism of selective amplification of neural activity patterns. *Neuron*, 61(4):635–648, 2009.
 - Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. Adaptive deep learning for high-dimensional hamilton–jacobi–bellman equations. *SIAM Journal on Scientific Computing*, 43(2):A1221–A1247, 2021.
 - Joseph E. O'Doherty, Mariana M. B. Cardoso, Joseph G. Makin, and Philip N. Sabes. Nonhuman primate reaching with multichannel sensorimotor cortex electrophysiology, Nov 2018. URL https://doi.org/10.5281/zenodo.1473704.
 - Chethan Pandarinath, Daniel J O'Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky, Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg, et al. Inferring single-trial neural population dynamics using sequential auto-encoders. *Nature methods*, 15(10):805–815, 2018.
 - Fabio Pasqualetti, Sandro Zampieri, and Francesco Bullo. Controllability Metrics, Limitations and Algorithms for Complex Networks. *arXiv:1308.1201*, 2013. URL http://arXiv.org/abs/1308.1201.
 - Giovanni Pezzulo and Paul Cisek. Navigating the Affordance Landscape: Feedback Control as a Process Model of Behavior and Cognition. *Trends in Cognitive Sciences*, 20(6):414–424, 2016. ISSN 1364-6613. doi: https://doi.org/10.1016/j.tics.2016.03.013. URL https://www.sciencedirect.com/science/article/pii/S1364661316300067.
 - M Cody Priess, Richard Conway, Jongeun Choi, John M Popovich, and Clark Radcliffe. Solutions to the inverse lqr problem with application to biological systems analysis. *IEEE Transactions on control systems technology*, 23(2):770–777, 2014.
 - Kanaka Rajan and Larry F Abbott. Eigenvalue spectra of random matrices for neural networks. *Physical review letters*, 97(18):188104, 2006.

- Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. *Nature Neuroscience*, 2(1):79–87, January 1999. ISSN 1546-1726. doi: 10.1038/4580. URL https://doi.org/10.1038/4580.
 - Walter Rudin and others. *Principles of mathematical analysis*, volume 3. McGraw-hill New York, 1976.
 - Remi M Sakia. The box-cox transformation technique: a review. *Journal of the Royal Statistical Society Series D: The Statistician*, 41(2):169–178, 1992.
 - Jacqueline Maria Aleida Scherpen. Balancing for nonlinear systems. *Systems & Control Letters*, 21 (2):143–153, 1993a.
 - Jacqueline Maria Aleida Scherpen. Balancing for nonlinear systems. *Systems & Control Letters*, 21 (2):143–153, 1993b.
 - Tyler H. Summers, Fabrizio L. Cortesi, and John Lygeros. On Submodularity and Controllability in Complex Dynamical Networks. *IEEE Transactions on Control of Network Systems*, 3(1):91–101, 2016. doi: 10.1109/TCNS.2015.2453711.
 - David Sussillo, Mark M Churchland, Matthew T Kaufman, and Krishna V Shenoy. A neural network that finds a naturalistic solution for the production of muscle activity. *Nature Neuroscience*, 18(7): 1025–1033, July 2015. ISSN 1546-1726. doi: 10.1038/nn.4042. URL https://doi.org/10.1038/nn.4042.
 - Evelyn Tang and Danielle S. Bassett. Colloquium: Control of dynamics in brain networks. *Rev. Mod. Phys.*, 90(3):031003, August 2018. doi: 10.1103/RevModPhys.90.031003. URL https://link.aps.org/doi/10.1103/RevModPhys.90.031003.
 - Emanuel Todorov and Michael I. Jordan. Optimal feedback control as a theory of motor coordination. *Nature neuroscience*, 5(11):1226–1235, November 2002. ISSN 1097-6256. doi: 10.1038/nn963.
 - Lloyd N Trefethen and Mark Embree. Spectra and pseudospectra. Princeton university press, 2020.
 - Arunachalam Vinayagam, Travis E Gibson, Ho-Joon Lee, Bahar Yilmazel, Charles Roesel, Yanhui Hu, Young Kwon, Amitabh Sharma, Yang-Yu Liu, Norbert Perrimon, and others. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. *Proceedings of the National Academy of Sciences*, 113(18):4976–4981, 2016.
 - Saurabh Vyas, Matthew D. Golub, David Sussillo, and Krishna V. Shenoy. Computation Through Neural Population Dynamics. *Annual Review of Neuroscience*, 43(1):249–275, July 2020. ISSN 0147-006X. doi: 10.1146/annurev-neuro-092619-094115. URL https://doi.org/10.1146/annurev-neuro-092619-094115.
 - Norbert Wiener. Cybernetics. Scientific American, 179(5):14–19, 1948.
 - Gang Yan, Petra E. Vértes, Emma K. Towlson, Yee Lian Chew, Denise S. Walker, William R. Schafer, and Albert-László Barabási. Network control principles predict neuron function in the Caenorhabditis elegans connectome. *Nature*, 550(7677):519–523, October 2017. ISSN 1476-4687. doi: 10.1038/nature24056. URL https://doi.org/10.1038/nature24056.
 - Byron M. Yu, John P. Cunningham, Gopal Santhanam, Stephen I. Ryu, Krishna V. Shenoy, and Maneesh Sahani. Gaussian-Process Factor Analysis for Low-Dimensional Single-Trial Analysis of Neural Population Activity. *Journal of Neurophysiology*, 102(1):614–635, July 2009. ISSN 0022-3077. doi: 10.1152/jn.90941.2008. URL https://doi.org/10.1152/jn.90941.2008.

A APPENDIX

B DETAILS OF SWITCHING LDS AND RNN TRAINING

To simulate A matrices associated with Dale LDS, neurons were connected randomly with a uniform connection probability of 0.25. To tune the non-normality of the system, we varied the strength of synaptic weights in the neuronal connectivity matrix. The strength of synaptic weights determines the spectral radius of the corresponding matrices (Rajan & Abbott, 2006). Leaving the excitatory weights fixed, we then optimized the inhibitory weights as detailed in (Hennequin et al., 2014) to ensure system stability. The resulting matrices had enhanced non-normality, with the degree of resulting non-normality having, empirically, a monotonic relationship with the starting spectral radius.

For results associated with the switching LDS (sLDS, (Linderman et al., 2016)) in **Figure 2b**, we simulated data from a system that switched between a sequence of three A matrices (still constrained to follow Dale's law) in eq. 2 with roughly equivalent degree of non-normality.

The task optimized RNN (T.O. RNN) was comprised of 300 hidden units with ReLU nonlinearities. The recurrent connectivity was initialized in the same manner as the LDS and count LDS systems described in the results associated with **Figure 2**. Thus, these networks had sparse connectivity, and were constrained to follow Dale's Law. We enforced Dale's law and the initial sparsity pattern throughout network training. The RNNs were trained to produce muscle electromyography (EMG) activity recorded from a macaque monkey performing a reaching task, as described in Churchland et al. (2012); Sussillo et al. (2015). Briefly, the dataset consisted of 216 unique task conditions and an 8 dimensional target EMG time series for each condition. Following Sussillo et al. (2015), the RNNs were provided with a sixteen dimensional square wave pulse input to represent an experimental "go" cue. We optimized the RNN input matrix, output matrix, weight matrix, and input and state biases using Adam over five different initializations of the weight (A) matrix. The trained networks exhibited a close fit to the target EMG activity ($r^2 = 0.99$). To fit FCCA and PCA, we concatenated the time series of hidden activations across all conditions together, mirroring the structure of the M1/S1 random dataset.

C DETAILS OF NEURAL DATASETS

Data from the hippocampus contained recordings from a single rodent. There were a total of 8 recording sessions lasting approximately 20 minutes each with between 98-120 identified single units within each recording session. We performed our analyses on neural activity while the rat was in motion (velocity > 4 cm/s).

The M1/S1 random dataset contained a total of 35 recording sessions from 2 monkeys (28 within monkey 1, 7 within monkey 2) spanning 17309 total reaches (13149 from monkey 1, 4160 from monkey 2). Of the 35 recording sessions, 8 included activity from S1. The number of single units in each recording session varied between 96-200 units in M1, and 86-187 in S1. The maze dataset contained 5 recording sessions recorded from 2 different monkeys comprising 10829 total reaches (8682 in monkey 3, 2147 in monkey 4). Each recording session contained 96 single units. Both datasets mapped the monkey hand location to a cursor location on the 2D task plane. For the M1/S1 random dataset, we decoded cursor velocity, whereas for the maze dataset, we decoded cursor position.

We binned spikes within the hippocampal data at 25 ms, and the M1/S1 random and M1 maze datasets at 50 ms. We then applied a boxcox transformation to binned firing rates to Gaussianize the data. A single fit of FCCA on the activity from a single recording session in the datasets considered using a desktop computer equipped with an 8 core CPU and 64 GB of memory requires < 5 seconds.

For the hippocampal data, we used a window of 300 ms of neural activity centered around each time point to predict the corresponding binned position variable using linear regression. In the M1/S1 random and M1 maze datasets, we utilized a Kalman filter to predict behavioral variables from projected neural activity.

D PROOF OF THEOREM 2

In this section, we prove the equivalence of the solutions of the FFC (eq. 4) and FBC objective functions (eq. 9) when system dynamics are stable and symmetric. We reproduce these objective functions for convenience:

 $\begin{aligned} C_{\text{FFC}} : & & \operatorname{argmax}_{C} \log \det C \Pi C^{\top} \\ C_{\text{FBC}} : & & & \operatorname{argmin}_{C} \operatorname{Tr}(PQ) \end{aligned}$

We prove this theorem when the matrix P in the FBC objective function arises from the canonical LQR loss function with S and R equal to the identity. We further work under the assumption that the input matrix B to the open loop system is equal to the identity, and $\gamma=1$. The open loop dynamics of x(t) are then given by:

$$\dot{x} = Ax(t) + u(t) \tag{14}$$

where u(t) has the same dimensionality as x(t). Recall from the discussion below eq. 11 that within the FCCA objective function, the C matrix takes on the role of the *input* matrix within the system whose cost to regulate we measure (i.e., we make the relabeling $B^{\top} \to C$ in the LQR Riccati equation). Under these set of assumptions, the equations for Q (corresponding to the Kalman Filter, eq. 7) and the equation for P (corresponding to the LQR, eq. 8) in this case take on the following form:

$$AQ + QA + I_N - QC^{\top}CQ = 0 \tag{15}$$

$$AP + PA + I_N - PCC^{\mathsf{T}}P = 0 \tag{16}$$

where I_N denotes the $N \times N$ identity matrix.

We observe that under the stated assumptions, the Riccati equations for Q and P actually coincide, and thus the FBC objective function reads $Tr(Q^2)$. We will show that both FFC and FBC objective functions achieve local optima for some fixed projection dimension d when the projection matrix C coincides with a projection onto the eigenspace spanned by the d eigenvalues of A with largest real part, which we denote as V_d . In fact, in the case of the FFC objective function, the eigenspace corresponds to a global optimum. For the FBC objective function, we are able to establish global optimality rigorously only for the $2D \to 1D$ dimension reduction.

We briefly outline the proof strategy. First, we will prove the optimality of V_d for the FFC objective function by showing that (i) V_d is an eigenvector of Π in the case when A is symmetric and (ii) relying on the Poincare Separation Theorem. Then, we will prove that V_d is a critical point of the FBC objective function. The proof relies on an iterative technique to solve the Riccati equation. These iterates form a recursively defined sequence that provide increasingly more accurate approximations to the FBC objective function that converge in the limit. Treating these iterative approximations of the FBC objective function as a function of C, we show that V_d is a critical point of all iterates, and thus in the limit, V_d is a critical point of the FBC objective function.

FFC Objective Function

Lemma 1 For $\gamma = 1, B = I_N, A = A^T, A \in \mathbb{R}^{N \times N}$, and with all eigenvalues of A distinct and $\max Re(\lambda(A)) < 0$, the optimal solution for the feedforward controllability objective function for projection dimension d coincides with V_d , the matrix whose rows are formed by the eigenvectors corresponding to the d eigenvalues of A with largest real value.

Proof

The FFC objective function reads:

$$\operatorname{argmax}_{C} \log \det C \Pi C^{\top} \mid C \in \mathbb{R}^{d \times N}, C C^{\top} = I_{d}$$
 (17)

We first re-write Π :

$$\Pi = \int_0^\infty dt \ e^{At} B B^\top e^{A^\top t} = \int_0^\infty dt \ e^{2At}$$

Let $A = V\Lambda V^{\top}$ denote the eigenvalue decomposition of A. Recall that since $A = A^{\top}$, V is orthogonal. Then we can write:

$$\Pi = V \int_0^\infty dt e^{2\Lambda t} V^\top$$
$$= \frac{1}{2} V D V^\top$$

where D is a diagonal matrix with diagonal entries $\{\frac{1}{-\lambda_1}, \frac{1}{-\lambda_2}, ..., \frac{1}{-\lambda_N}\}$ being the eigenvalues of Π . We conclude that the matrix Π has the same eigenbasis as A. Also, since all λ_j are real and negative, the ordering of the eigenvalues is preserved $(\lambda_i > \lambda_j \text{ implies } -\frac{1}{\lambda_i} > -\frac{1}{\lambda_i})$.

That V_d solves 17 follows from the Poincare separation theorem, which we restate for convenience:

Proposition 1 Poincare Separation Theorem (Magnus & Neudecker (2019), 11.10)

Let M be any square, symmetric matrix, and let $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_N$ be its eigenvalues. Let $C \in$ $\mathbb{R}^{d\times N}$ be a semi-orthogonal matrix (i.e., $CC^{\top}=I_d$). Then, the eigenvalues $\eta_1\geq \eta_2\geq \ldots \geq \eta_d$ of CMC^{\top} satisfy:

$$\mu_i \ge \eta_i \ge \mu_{N-d+i}$$

In particular, Proposition 1 implies that $\det CMC^{\top} = \prod_{i=1}^d \eta_i \leq \prod_{i=1}^d \mu_i$, and hence $\log \det CMC^{\top} \leq \sum_{i=1}^{d} \log \mu_i$ We now show that this inequality is satisfied with equality when $C = V_d$. Consider the optimization problem

$$\operatorname{argmax}_{C} \log \det CMC^{\top} \mid C \in \mathbb{R}^{d \times N}, CC^{\top} = I_{d}$$
(18)

Let $M = V \Gamma V^{\top}$ be the eigendecomposition of M. We can equivalently parameterize the optimization problem as:

$$\operatorname{argmax}_{\tilde{C}} \log \det \tilde{C} \Gamma \tilde{C}^{\top} \mid \tilde{C} \in \mathbb{R}^{d \times N}, \tilde{C} \tilde{C}^{\top} = I_d$$
 (19)

The solution to the original problem, eq. 18, can be recovered from setting $C = \hat{C}V^{\top}$. Now, assume (without loss of generality) that we have arranged the values of Γ so that the largest d eigenvalues, $\mu_1, ..., \mu_d$, occur first. We observe that the choice of $\tilde{C} = [I_d; \mathbf{0}_{N-d,N-d}] \equiv \tilde{C}_*$, which picks out these first d elements of the diagonal of Γ , yields $\log \det \tilde{C}_*^{\top} \Gamma \tilde{C}_* = \sum_{i=1}^d \log \mu_i$, and hence solves the desired optimization problem. It follows that $C_* = \tilde{C}_* V^\top = V_d$

To complete the proof of Lemma 1, we substitute M with Π , and the eigenvalues μ_i with $-1/\lambda_i$ (the eigenvalues of Π , expressed in terms of the eigenvalues of A). \square

FBC Objective Function

For the case of the FBC objective function, we show that projection matrices of rank d that align with the d slowest eigenmodes of A constitute local minima of the objective function. We rely on two simplifying features of the problem. First, the FBC objective function is invariant to

the choice of basis in the state space. We therefore work within the eigenbasis of A, as within this basis, the system defined by eq. 14 decouples into n non-interacting scalar dynamical systems. Additionally, we rely on the fact that the FBC objective function is also invariant to coordinate transformations within the projected space. In other words, the choice of coordinates in which we express y also makes no difference. Without loss of generality then, we may treat the problem in a basis where A is diagonal with entries given by its eigenvalues and C is a semi-orthogonal projection matrix (i.e. $CC^{\top} = I_d$). A restatement of the latter condition is that C belongs to the Steifel manifold of $N \times d$ matrices: $\Omega \equiv \{C \in \mathbb{R}^{N \times d} | CC^{\top} = I_d\}$.

Lemma 2 For $B = I_N$, $A = A^{\top}$, $A^{N \times N}$, with all eigenvalues of A distinct and $\max Re(\lambda(A)) < 0$, the projection matrix onto the eigenspace spanned by the d eigenvalues of A with largest real value constitutes a critical point of the LQG trace objective function on Ω

Proof Explicitly calculating the gradient of the solution of the Riccati equation is analytically intractable for n > 1, and so we we will rely on the analysis of an iterative procedure to solve the Riccati equation via Newton's method, known as the Newton-Kleinmann (NK) iterations (Kleinman, 1968). These iterations are described in the following proposition:

Proposition 2 Consider the Riccati equation $0 = AQ + QA^{T} + BB^{T} - QC^{T}CQ$. Let $Q_m, m = 1, 2, ...$ be the unique positive definite solution of the Lyapunov equation:

$$0 = A_m Q_m + Q_m A_m^{\top} + B B^{\top} + Q_{m-1} C^{\top} C Q_{m-1}$$
 (20)

where $A_m = A - C^{\top}CQ_{m-1}$, and where Q_0 is chosen such that A_1 is a stable matrix (i.e. all real parts of its eigenvalues are < 0). For two positive semidefinite matrices M, N, we denote $M \ge N$ if the difference M - N remains positive semidefinite. Then:

1.
$$Q \leq Q_{m+1} \leq Q_m \leq \ldots \leq Q_0, m = 1, 2, \ldots$$

2.
$$\lim_{m\to\infty} Q_m = Q$$

Thus the Q_m iteratively approach the solution of the Riccati equation from above. Since in our case, the Riccati equations for P and Q coincide, an identical sequence P_m can be constructed using analogous NK iterations that approaches P from above. From this, it follows that $\lim_{m\to\infty} Tr(Q_mP_m) = \lim_{m\to\infty} Tr(Q_m^2) = Tr(Q^2)$. We then use the fact that in addition to the Q_m converging to Q, the sequence $\nabla_C \operatorname{Tr}\left(Q_m^2\right)$ converges to $\nabla_C \operatorname{Tr}(Q^2)$ as $m\to\infty$, where ∇_C denotes the gradient with respect to C. This is rigorously established in the following lemma, which is the multivariate generalization of Theorem 7.17 from (Rudin & others, 1976):

Lemma 3 Suppose $\{f_m\}$ is a sequence of functions differentiable on an interval $h \subset \mathcal{H}$, where \mathcal{H} is some finite-dimensional vector space, such that $\{f_m(x_0)\}$ converges for some point $x_0 \in h$. If $\{\nabla f_m(x_0)\}$ converges uniformly in h, then $\{f_m\}$ converges uniformly on h, to a function f, and

$$\nabla f(x) = \lim_{m \to \infty} \nabla f_m(x) \quad x \in h$$

Here, the $\{f_m\}$ are the Newton-Kleinmann iterates Q_m , and x_0 corresponds to the C matrix that projects onto the slow eigenspace of A. The NK iterates are known to converge uniformly over an interval of possible C matrices (in fact any such C matrix for which there exists a L such that $A - C^T CL$ is a stable matrix) (Kleinman, 1968).

We will calculate the gradient $\nabla_C Q_m$ on Ω by explicitly calculating the directional derivatives of Q_m over a basis of the tangent space of Ω at C_{slow} . Any element Ψ belonging to the tangent space at $C \in \Omega$ can be parameterized by the following (Edelman et al., 1998):

$$\Psi = CM + (I_N - CC^\top)T$$

where M is skew symmetric and T is arbitrary. Let C_{slow} be the projection matrix onto the slow eigenspace of A of dimension d. Since we work in the eigenbasis of A, $C_{\text{slow}} = \begin{bmatrix} I_d & 0 \end{bmatrix}$. At this point, elements of the tangent space take on the particularly simple form

$$\Psi = [M \quad T]$$

where now M is a $d \times d$ skew symmetric matrix and $T \in \mathbb{R}^{d \times (N-d)}$ is arbitrary. A basis for the tangent space is provided by the set of matrices $\{M_{ij}, T_{kl}, i=2,...d, j=1,...,i-1, k=1,...,d,l=1,...,N-d\}$ where M_{ij} is a matrix with entry 1 at index (i,j) and -1 at index (j,i) and zero otherwise, and T_{kl} is the matrix with entry 1 at index (k,l) and zero otherwise. Denote by $D_{\Psi}Q_m$ the directional derivative of Q_m along the direction of Ψ , viewing Q_m as a function of C (denoted $Q_m[C]$):

$$D_{\Psi}Q_m = \lim_{\alpha \to 0} \frac{Q_m[C_{\text{slow}} + \alpha \Psi] - Q_m[C_{\text{slow}}]}{\alpha}$$
 (21)

Let $\Psi_{ij,kl}$ denote the tangent matrix $[M_{ij} \quad T_{kl}]$. Before calculating $Q_m(C_{\mathrm{slow}} + \alpha \Psi_{ij,kl})$ explicitly, we first observe that as long as the NK iterations are initialized with a diagonal Q_0 , then the diagonal nature of $C_{\mathrm{slow}}^{\top}C_{\mathrm{slow}}$ ensures that all Q_m will subsequently remain diagonal matrices. In fact, it can be shown that $\lim_{m \to \infty} Q_m = Q$ will also be diagonal, in this case. We write A in block form as $\begin{bmatrix} \Lambda_{||} & 0 \\ 0 & \Lambda_{\perp} \end{bmatrix}$, and similarly $Q_{m-1} = \begin{bmatrix} Q_{||} & 0 \\ 0 & Q_{\perp} \end{bmatrix}$, where $\Lambda_{||}$, $Q_{||}$ are $d \times d$ diagonal matrices defined on the image of C_{slow} and Λ_{\perp} , Q_{\perp} are diagonal matrices defined on the kernel of C_{slow} . We denote the individual diagonal elements of $\Lambda_{||}$, $Q_{||}$ as λ_i , Q_i , i=1,...,d and of Λ_{\perp} , Q_{\perp} as λ_i , Q_i , i=d,...,N-d. Then, equation 20 becomes:

$$\begin{pmatrix}
\begin{bmatrix} \Lambda_{||} & 0 \\ 0 & \Lambda_{\perp} \end{bmatrix} - \begin{bmatrix} (I_d - \alpha^2 M_{ij}^2) \mathcal{Q}_{||} & (\alpha T_{kl} + \alpha^2 M_{ij}^\top T_{kl}) \mathcal{Q}_{\perp} \\ (\alpha T_{kl}^\top + \alpha^2 T_{kl}^\top M_{ij}) \mathcal{Q}_{||} & \alpha^2 T_{kl}^\top T_{kl} \mathcal{Q}_{\perp} \end{bmatrix} \end{pmatrix} Q_m [C_{\text{slow}} + \Psi_{ij,kl}]
+ Q_m [C_{\text{slow}} + \Psi_{ij,kl}] \begin{pmatrix} \Lambda_{||} & 0 \\ 0 & \Lambda_{\perp} \end{bmatrix} - \begin{bmatrix} \mathcal{Q}_{||} (I_d - \alpha^2 M_{ij}^2) & \mathcal{Q}_{||} (\alpha T_{kl} + \alpha^2 M_{ij}^\top T_{kl}) \\ \mathcal{Q}_{\perp} (\alpha T_{kl}^\top + \alpha^2 T_{kl}^\top M_{ij}) & \mathcal{Q}_{\perp} \alpha^2 T_{kl}^\top T_{kl} \end{bmatrix} \end{pmatrix}
+ I_N + \begin{bmatrix} \mathcal{Q}_{||} (I_d - \alpha^2 M_{ij}^2) \mathcal{Q}_{||} & \mathcal{Q}_{||} (\alpha T_{kl} + \alpha^2 M_{ij}^\top T_{kl}) \mathcal{Q}_{\perp} \\ \mathcal{Q}_{\perp} (\alpha T_{kl}^\top + \alpha^2 T_{kl}^\top M_{ij}) \mathcal{Q}_{||} & \alpha^2 \mathcal{Q}_{\perp} T_{kl}^\top T_{kl} \mathcal{Q}_{\perp} \end{bmatrix} = 0$$
(22)

where we have used $M^{\top} = -M$. The equivalent equation for $Q_m(C_{\text{slow}})$ reads:

$$\begin{pmatrix}
\begin{bmatrix} \Lambda_{||} & 0 \\ 0 & \Lambda_{\perp} \end{bmatrix} - \begin{bmatrix} \mathcal{Q}_{||} & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} Q_{m} [C_{\text{slow}}] + Q_{m} [C_{\text{slow}}] \begin{pmatrix} \begin{bmatrix} \Lambda_{||} & 0 \\ 0 & \Lambda_{\perp} \end{bmatrix} - \begin{bmatrix} \mathcal{Q}_{||} & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} + I_{N} + (23)$$

$$\begin{bmatrix} \mathcal{Q}_{||}^{2} & 0 \\ 0 & 0 \end{bmatrix} = 0$$
(24)

This latter equation is easily solved to yield:

$$Q_{m}[C_{\text{slow}}] = \begin{bmatrix} \frac{1}{2} \left(I_{d} + \mathcal{Q}_{||}^{2} \right) \left(\mathcal{Q}_{||} - \Lambda_{||} \right)^{-1} & 0\\ 0 & -\frac{1}{2} \Lambda_{\perp}^{-1} \end{bmatrix}$$

To explicitly solve the former equation, we recall that the matrices M_{ij} and T_{kl} by definition (see paragraph above eq. 21) have only two and one nonzero terms, respectively. M_{ij}^2 contains two nonzero terms at index (i,i) and (j,j). $T_{kl}^{\top}T_{kl}$ contains one non-zero term at index (l,l). $M_{ij}^{\top}T_{kl}$ contains a single nonzero term at (i,l) or (j,l) only if k=i or k=j, respectively. Accordingly, we distinguish between where k=i or k=j (without loss of generality we may assume that k=j), and where $k\neq i$ and $k\neq j$.

In what follows, we will denote the (i, j) entry of $Q_m[C_{\text{slow}} + \alpha \Psi_{ii,kl}]$ as q_{ij} .

1. Case 1: k = j In this case, careful inspection of eq. 22 reveals that it differs from eq. 24 only within a 3×3 subsystem:

919
920
921
922 $\begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix} = 0$

Note that this matrix is symmetric, yielding 6 equations for 6 unknowns:

$$\begin{split} \mathcal{S}_{11} &= \alpha^{2} \mathcal{Q}_{i}^{2} + 2\alpha^{2} \mathcal{Q}_{d+l} q_{i,d+l} + \mathcal{Q}_{i}^{2} + 2q_{ii} \left(-\alpha^{2} \mathcal{Q}_{i} + \lambda_{i} - \mathcal{Q}_{i} \right) + 1 \\ \mathcal{S}_{12} &= \alpha^{2} \mathcal{Q}_{d+l} q_{j,d+l} - \alpha \mathcal{Q}_{d+l} q_{i,d+l} + q_{ij} \left(-\alpha^{2} \mathcal{Q}_{i} + \lambda_{i} - \mathcal{Q}_{i} \right) + q_{ij} \left(-\alpha^{2} \mathcal{Q}_{j} + \lambda_{j} - \mathcal{Q}_{j} \right) \\ \mathcal{S}_{13} &= -\alpha^{2} \mathcal{Q}_{i} \mathcal{Q}_{d+l} + \alpha^{2} \mathcal{Q}_{i} q_{ii} + \alpha^{2} \mathcal{Q}_{d+l} q_{d+l} - \alpha \mathcal{Q}_{j} q_{ij} + q_{i,d+l} \left(-\alpha^{2} \mathcal{Q}_{d+l} + \lambda_{d+l} \right) + q_{i,d+l} \left(-\alpha^{2} \mathcal{Q}_{i} + \lambda_{i} - \mathcal{Q}_{i} \right) \\ \mathcal{S}_{22} &= \alpha^{2} \mathcal{Q}_{j}^{2} - 2\alpha \mathcal{Q}_{d+l} q_{j,d+l} + \mathcal{Q}_{j}^{2} + 2q_{jj} \left(-\alpha^{2} \mathcal{Q}_{j} + \lambda_{j} - \mathcal{Q}_{j} \right) + 1 \\ \mathcal{S}_{23} &= \alpha^{2} \mathcal{Q}_{i} q_{ij} + \alpha \mathcal{Q}_{j} \mathcal{Q}_{d+l} - \alpha \mathcal{Q}_{j} q_{jj} - \alpha \mathcal{Q}_{d+l} q_{d+l,d+l} + q_{j,d+l} \left(-\alpha^{2} \mathcal{Q}_{d+l} + \lambda_{d+l} \right) + q_{j,d+l} \left(-\alpha^{2} \mathcal{Q}_{j} + \lambda_{j} - \mathcal{Q}_{j} \right) \\ \mathcal{S}_{33} &= 2\alpha^{2} \mathcal{Q}_{i} q_{i,d+l} + \alpha^{2} \mathcal{Q}_{d+l}^{2} - 2\alpha \mathcal{Q}_{j} q_{j,d+l} + 2q_{d+l,d+l} \left(-\alpha^{2} \mathcal{Q}_{d+l} + \lambda_{d+l} \right) + 1 \end{split}$$

Direct solution is still infeasible, but noting our interest is in the behavior of solutions as $\alpha \to 0$, and only terms of $O(\alpha)$ will survive in the limit in eq. 21, we consider solving these equations perturbatively. That is, we express each q_{ij} in a power series in α : $q_{ij} = q_{ij}^{(0)} + q_{ij}^{(1)} \alpha + O(\alpha^2)$. One obtains each coefficient in the expansion by plugging this form into the above matrix and setting all terms of the corresponding order in α to 0. The lowest order term, $q_{ij}^{(0)}$, coincides with the solution of the unperturbed system, eq. 24. Plugging in the expansion into the 3×3 subsystem above, as well as the solution of the unperturbed system, and collecting all coefficients proportional to α yields the following system of equations:

$$\begin{bmatrix} \mathcal{S}_{11}^{(1)} & \mathcal{S}_{12}^{(1)} & \mathcal{S}_{13}^{(1)} \\ \mathcal{S}_{21}^{(1)} & \mathcal{S}_{22}^{(2)} & \mathcal{S}_{23}^{(2)} \\ \mathcal{S}_{31}^{(1)} & \mathcal{S}_{32}^{(1)} & \mathcal{S}_{33}^{(1)} \end{bmatrix} = 0$$

$$\mathcal{S}_{11}^{(1)} = 2\lambda_{i}q_{ii}^{(1)} - 2\mathcal{Q}_{i}q_{ii}^{(1)}$$

$$\mathcal{S}_{12}^{(1)} = \lambda_{i}q_{ij}^{(1)} + \lambda_{j}q_{ij}^{(1)} - \mathcal{Q}_{i}q_{ij}^{(1)} - \mathcal{Q}_{j}q_{ij}^{(1)}$$

$$\mathcal{S}_{12}^{(1)} = \lambda_{i}q_{i,d+l}^{(1)} + \lambda_{d+l}q_{i,d+l}^{(1)} - \mathcal{Q}_{i}q_{i,d+l}^{(1)}$$

$$\mathcal{S}_{13}^{(1)} = \lambda_{i}q_{jj}^{(1)} - 2\mathcal{Q}_{j}q_{jj}^{(1)}$$

$$\mathcal{S}_{22}^{(1)} = 2\lambda_{j}q_{jj}^{(1)} - 2\mathcal{Q}_{j}q_{jj}^{(1)}$$

$$\mathcal{S}_{23}^{(1)} = \lambda_{j}q_{j,d+l}^{(1)} + \lambda_{d+l}q_{j,d+l}^{(1)} + \mathcal{Q}_{j}\mathcal{Q}_{d+l} - \mathcal{Q}_{j}q_{j,d+l}^{(1)} - \frac{\mathcal{Q}_{j}\left(\mathcal{Q}_{j}^{2}+1\right)}{-2\lambda_{j}+2\mathcal{Q}_{j}} + \frac{\mathcal{Q}_{d+l}}{2\lambda_{d+l}}$$

$$\mathcal{S}_{33}^{(1)} = 2\lambda_{d+l}q_{d+l}^{(1)}$$

Solving this system yields the following solutions for the $q_{ij}^{(1)}$:

$$\begin{split} q_{ii}^{(1)} &= 0 \\ q_{jj}^{(1)} &= 0 \\ q_{d+l,d+l}^{(1)} &= 0 \\ q_{ij}^{(1)} &= 0 \\ q_{ij}^{(1)} &= 0 \\ q_{i,d+l}^{(1)} &= 0 \\ q_{i,d+l}^{(1)} &= \frac{-2\lambda_j\lambda_{d+l}\mathcal{Q}_j\mathcal{Q}_{d+l} - \lambda_j\mathcal{Q}_{d+l} - \lambda_{d+l}\mathcal{Q}_j^3 + 2\lambda_{d+l}\mathcal{Q}_j^2\mathcal{Q}_{d+l} - \lambda_{d+l}\mathcal{Q}_j + \mathcal{Q}_j\mathcal{Q}_{d+l}}{2\lambda_j^2\lambda_{d+l} + 2\lambda_j\lambda_{d+l}^2 - 4\lambda_j\lambda_{d+l}\mathcal{Q}_j - 2\lambda_{d+l}^2\mathcal{Q}_j + 2\lambda_{d+l}\mathcal{Q}_j^2} \end{split}$$

2. Case 2: $k \neq i, k \neq j$. In this case, we must again consider the 3×3 subsystem indexed by i, j, d + l, but since $M_{ij}T_{kl}$ is a matrix of all zeros, the expression simplifies considerably:

$$\begin{bmatrix} \mathcal{S}_{11} & \mathcal{S}_{12} & \mathcal{S}_{13} \\ \mathcal{S}_{21} & \mathcal{S}_{22} & \mathcal{S}_{23} \\ \mathcal{S}_{31} & \mathcal{S}_{32} & \mathcal{S}_{33} \end{bmatrix} = 0$$

$$\mathcal{S}_{11} = \alpha^2 \mathcal{Q}_i^2 + \mathcal{Q}_i^2 + 2q_i \left(-\alpha^2 \mathcal{Q}_i + \lambda_i - \mathcal{Q}_i \right) + 1$$

$$\mathcal{S}_{12} = q_{ij} \left(-\alpha^2 \mathcal{Q}_i + \lambda_i - \mathcal{Q}_i \right) + q_{ij} \left(-\alpha^2 \mathcal{Q}_j + \lambda_j - \mathcal{Q}_j \right)$$

$$\mathcal{S}_{13} = \lambda_{d+l} q_{i,d+l} + q_{i,d+l} \left(-\alpha^2 \mathcal{Q}_i + \lambda_i - \mathcal{Q}_i \right)$$

$$\mathcal{S}_{22} \alpha^2 \mathcal{Q}_j^2 + \mathcal{Q}_j^2 + 2q_j \left(-\alpha^2 \mathcal{Q}_j + \lambda_j - \mathcal{Q}_j \right) + 1$$

$$\mathcal{S}_{23} = \lambda_{d+l} q_{j,d+l} + q_{j,d+l} \left(-\alpha^2 \mathcal{Q}_j + \lambda_j - \mathcal{Q}_j \right)$$

$$\mathcal{S}_{33} = 2\lambda_{d+l} q_{d+l} + 1$$

Plugging in the power series expansion $q_{ij} = q_{ij}^{(0)} + q_{ij}^{(1)}\alpha + O(\alpha^2)$, one finds the lowest order terms in α within this system of equations occurs at $O(\alpha^2)$, and thus to $O(\alpha)$, the solution of $Q_m[C_{\text{slow}} + \alpha \Psi_{ij,kl}]$ coincides with $Q_m[C_{\text{slow}}]$.

To complete the proof of Theorem 3, we must calculate the following quantity:

$$D_{\Psi_{ij,kl}} \operatorname{Tr} \left(Q_m^2 \right) = \lim_{\alpha \to 0} \frac{\operatorname{Tr} (Q_m [C_{\operatorname{slow}} + \alpha \Psi_{ij,kl}]^2) - \operatorname{Tr} (Q_m [C_{\operatorname{slow}}]^2)}{\alpha}$$

From the case-wise analysis above, we see that the only matrix element of Q_m that differs between $Q_m[C_{\mathrm{slow}+\alpha\Psi_{ij,kl}}]$ and $Q_m[C_{\mathrm{slow}}]$ to $O(\alpha)$ is an off-diagonal term $(q_{j,d+l}^{(1)})$. However, this term does not contribute to the trace of Q_m^2 at $O(\alpha)$. Thus, we conclude that along a complete basis for the tangent space of Ω at C_{slow} , $D_{\Psi_{ij,kl}}\mathrm{Tr}\left(Q_m^2\right)=0$. From this, we conclude that $\nabla_C\mathrm{Tr}(Q_m[C_{\mathrm{slow}}]^2)=0$ on Ω . The proof of Lemma 2 follows from application of Lemma 3. The proof of Theorem 2 then follows upon combining Lemma 1 and Lemma 2. \square

E SUPPLEMENTARY FIGURES

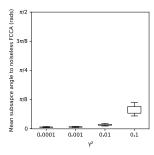


Figure A1: Plot of the median \pm IQR of average subspace angle between standard d=6 FCCA and variants of FCCA in which observational noise with variance γ^2 is added to subspace projections prior to predicting the neural state. Spread is taken across initializations of FCCA.

We comment here on the presence of observational noise in eq. 2. In practice, when we apply PCA and FCCA data, we are assuming the observational model in eq. 1 in which there is no observational noise added to y. However, we must include observational noise in 2 for the sake of technical correctness. In particular, the Riccati equations associated with Kalman filtering (eqs. 7, 11) take on a different form in the absence of observational noise Bucy & Jonckheere (1989). In particular, the correspondence between the Riccatti equation for acausal Kalman filtering (eq. 11) and the LQR

Riccati equation (eq. 8) relies on the presence of the observational noise. In our derivation, we scale the observational noise by a constant γ . When γ is small, the difference between the optimal subspace C obtained in the presence of observational noise and in its absence will be negligible. We numerically verified this fact by artificially adding observational noise to projected activity during FCCA optimization. In **Figure A1**, we plot the subspace angles between FCCA solutions obtained with observational noise added (median \pm IQR over initializations) and those without when applied to the M1 random dataset. We observed that across a wide range of values of γ , FCCA subspaces are nearly indistinguishable with and without the addition of observational noise. When γ is small, the penalty on the control cost in the LQR objective function (eq. 12) is also small. FCCA thus measures feedback controllability in the case when the cost attached to the norm of the control signal in the feedback loop is small.

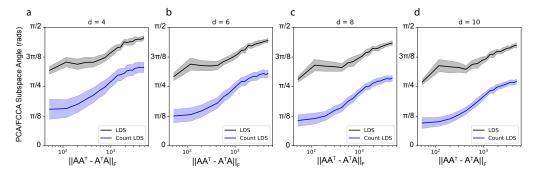


Figure A2: (Black) Average subspace angles between FCCA and PCA projections applied to Dale's law constrained linear dynamical systems (LDS) as a function of non-normality. (Blue) Subspace angles between FCCA and PCA projections applied to firing rates derived from spiking activity driven by Dale's Law constrained LDS. Spread around both curves indicates standard deviation taken over 20 random generations of A matrices and 10 random initializations of FCCA. Panels a-d report results at projection dimension d=4,6,8,10, respectively, to complement the results shown in **Figure 2** in the manuscript, demonstrating that non-normality drives the divergence between FCCA and PCA subspaces.

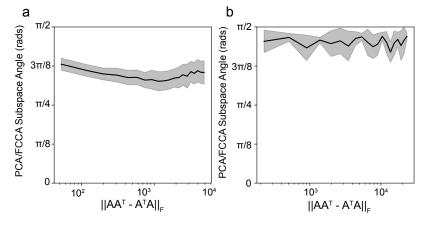


Figure A3: Average subspace angles between d=2 FCCA and PCA projections applied to (a) switching linear dynamical system sequence and (b) task optimized RNN as a function of non-normality.

We found that PCA and FCCA identify distinct subspaces in non-normal systems. To evaluate to what degree this observation is robust to non-stationarity and nonlinearity in the data generating process, we simulated data from a switching linear dynamical system and a task optimized RNN (full details found in section A.1). In **Supplementary Figure A3**, we plot FCCA/PCA subspace angles as a function of non-normality (switching LDS left, task optimized RNN right). We find subspace angles to be consistently large, with only a weak dependence on non-normality. Thus, FCCA and PCA identify distinct subspaces of dynamics in diverse dynamical systems.

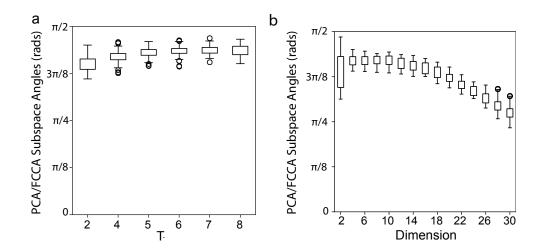


Figure A4: (a) Full range of average subspace angles at projection dimension d=2 between PCA and FCCA solutions for various T. Spread is taken over recording sessions and folds of the data within each recording session. (b) Full range of spread in average subspace angles between FCCA for T=3 and PCA taken across 20 initializations of FCCA and all recording sessions.

In **Figure A4**, we investigate the robustness of the substantial subspace angles between FCCA and PCA observed in **Figure 3a** to three sources of potential variability: (i) choice of the T parameter within FCCA, (ii) the dimensionality of projection, and (iii) different initializations of FCCA. In **Supplementary Figure A4** a, we plot the full range of average subspace angles across recording sessions at projection dimension d=2 between PCA and FCCA for various choices of T (T=3 is shown in **Figure 3a**). We observe that subspace angles remain consistently large ($>3\pi/8$ rads) across T. In **Figure A4b**, we plot the full range of average subspace angles between FCCA (using T=3) and PCA across a range of projection dimensions. The spread in boxplots is taken across both recording sessions and twenty initializations of FCCA. We observe relatively little variability in the average subspace angles for a fixed projection dimensionality. As the projection dimension is increased, we observe the average subspace angles between FCCA and PCA decrease, from $\approx 3\pi/8$ rads to $\approx \pi/4$ rads. This is to be expected, as it is in general less likely that higher dimensional subspaces will lie completely orthogonal to each other. Overall, we conclude that FCCA and PCA subspaces are geometrically distinct in the hippocampal dataset examined.

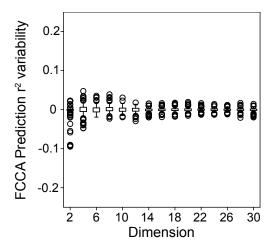


Figure A5: Full range of variation in cross-validated position r^2 from projected FCCA activity relative to the median cross-validated r^2 . Spread is taken across 20 initializations of FCCA and across all recording sessions

To evaluate the robustness of FCCA's behavioral predictions to different intializations of the algorithm, we trained linear decoders of rat position from FCCA subspaces obtained from each of twenty initializations of FCCA within each recording session. In **Figure A5**, we plot the full spread in the resulting cross-validated r^2 relative to the median cross-validated r^2 as a function of projection dimension. By d=6, the range of spread in prediction r^2 is less than the corresponding difference between FCCA and PCA r^2 . We therefore conclude that the behavioral prediction performance of FCCA is robust to the non-convexity of its objective function.

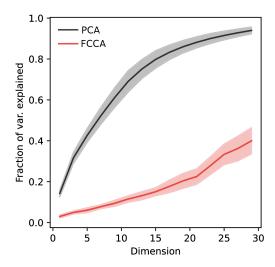


Figure A6: Variance captured within hippocampal data by PCA (black) vs. FCCA (red) as a function of projection dimension. Spread reports the standard error across recording sessions.

The objective function of FCCA is not designed to capture variance within the data, in contrast to PCA. In **Figure A6**, we plot the variance captured by the two methods in the hippocampal dataset (PCA in black, FCCA in red, mean \pm standard error across recording sessions). By d=30, PCA captures most of the variance within the data, while FCCA captures ; 40%. Despite this, FCCA's objective function is able to identify far more behaviorally relevant information (**Figure 3**.