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ABSTRACT

Designing ligands that are both chemically valid and structurally compatible with
protein binding pockets is a key bottleneck in computational drug discovery. Ex-
isting approaches either ignore structural context or rely on expensive, memory-
intensive encoding that limits throughput and scalability. We present SiDGen
(Structure-informed Diffusion Generator), a protein-conditioned diffusion frame-
work that integrates masked SMILES generation with lightweight folding-derived
features for pocket awareness. To balance expressivity with efficiency, SiD-
Gen supports two conditioning pathways: a streamlined mode that pools coarse
structural signals from protein embeddings and a full mode that injects localized
pairwise biases for stronger coupling. A coarse-stride folding mechanism with
nearest-neighbor upsampling alleviates the quadratic memory costs of pair ten-
sors, enabling training on realistic sequence lengths. Learning stability is main-
tained through in-loop chemical validity checks and an invalidity penalty, while
large-scale training efficiency is restored via selective compilation, dataloader tun-
ing, and gradient accumulation. In automated benchmarks, SiDGen generates
ligands with high validity, uniqueness, and novelty, while achieving competitive
performance in docking-based evaluations and maintaining reasonable molecular
properties. These results demonstrate that SiDGen can deliver scalable, pocket-
aware molecular design, providing a practical route to conditional generation for
high-throughput drug discovery.

1 INTRODUCTION

Structure-based drug design (SBDD) aims to generate small molecules that bind specifically to target
proteins, a fundamental challenge in computational drug discovery. Traditional approaches rely
on virtual screening of large molecular libraries (Shoichet, 2004) or structure–activity relationship
modeling (Cheng et al., 2007), but these methods are limited by finite chemical space exploration
and dependence on existing molecular databases.

Recent advances in deep generative modeling have enabled de novo molecular design (Sanchez-
Lengeling et al., 2017; Popova et al., 2018; Jin et al., 2018), but most methods operate uncondition-
ally without target specificity (Brown et al., 2019; Polykovskiy et al., 2020). Protein-conditioned
approaches address this by incorporating binding pocket information (Luo et al., 2022; Guan et al.,
2023; Peng et al., 2022), but face a critical trade-off: Methods that use detailed 3D structural infor-
mation achieve high expressivity at the cost of prohibitive computational overhead due to quadratic
memory scaling with protein sequence length.

We present SiDGen-Structure-informed Diffusion Generator, a protein-conditioned diffusion frame-
work that resolves the efficiency–expressivity trade-off through several key methodological devel-
opments. Our method integrates masked SMILES generation with lightweight folding-derived fea-
tures, supporting dual conditioning pathways - a streamlined mode pooling coarse structural signals
for efficiency and a full mode injecting localized pairwise biases for maximum expressivity. The
core technical contribution is a coarse-stride folding mechanism that reduces quadratic memory
complexity from O(L2) to O

(
(L/s)2

)
through strategic down-sampling of protein features followed

by nearest-neighbor up-sampling. This provides up to 16× memory reduction for typical proteins
while preserving essential structural information. We maintain training stability through in-loop
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validity checking with invalidity penalties and curriculum learning that gradually increases de-
noising difficulty.

Our comprehensive evaluation demonstrates SiDGen’s practical effectiveness:

• High Generation Quality: 100% validity, 88.75% uniqueness, and 100% novelty on
MOSES benchmark

• Strong Binding Performance: Competitive ROC-AUC (0.819) and enrichment factors
(EF@1% = 10–13) on DUD-E virtual screening

• Accurate Affinity Prediction: Pearson correlation of 0.6948 and RMSE of 1.0745 pKd on
PDBBind dataset

• Drug-like Properties: Generated molecules exhibit reasonable molecular weight (421.57
Da), LogP (3.07), and synthetic accessibility (0.47)

• Computational Efficiency: Significant memory and compute savings enabling realistic
sequence length processing

These results demonstrate that SiDGen delivers scalable, pocket-aware molecular design with com-
petitive performance across multiple evaluation metrics, providing a practical route to conditional
generation for high-throughput drug discovery applications where both quality and efficiency are
paramount.

Figure 1: Overview of the SiDGen architecture.

2 RELATED WORK

2.1 MOLECULAR GENERATION METHODS

Early generative models for small molecules used variational autoencoders (VAEs) (Gómez-
Bombarelli et al., 2018; Kusner et al., 2017) and generative adversarial networks (GANs) (De Cao
& Kipf, 2018; Putin et al., 2018), facing challenges in chemical validity and diversity. Diffusion
models (Hoogeboom et al., 2022; Wu et al., 2022; Vignac et al., 2022) have since improved both,
treating molecule design as denoising from random noise.

TamGen (Wu et al., 2024) introduced a topology-aware graph generative approach that combines
molecular graphs with hierarchical templates to optimize both structure and activity. TargetD-
iff (Zhang et al., 2023) leveraged diffusion to condition ligand generation directly on target protein
pockets, achieving competitive affinity prediction and docking results using fine-grained 3D geomet-
ric features. REINVENT4 (Loeffler et al., 2024) employs reinforcement learning within generative
models, using structure-based objectives and constraints to drive optimization in real drug design
settings.

2.2 PROTEIN-CONDITIONED MOLECULAR GENERATION

The field of protein-conditioned molecular generation has evolved rapidly. Early approaches used
simple sequence-based conditioning (Zhavoronkov et al., 2019; Born & Manica, 2021), but lacked
structural awareness. More sophisticated methods have incorporated 3D structural information
through various mechanisms.

2
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Pocket2Mol (Luo et al., 2022) introduced a two-stage approach that first generates molecular graphs
conditioned on binding pockets, then optimizes 3D coordinates. TargetDiff (Zhang et al., 2023)
applied diffusion models to 3D molecular generation with pocket conditioning, achieving strong
performance but requiring expensive 3D coordinate processing.

DiffSBDD (Schneuing et al., 2022) and related methods (Guan et al., 2023) have explored various
architectural choices for incorporating structural information, but generally require full processing
of protein coordinates and pairwise interactions.

Recent work has also explored fragment-based approaches (Powers et al., 2023), multi-modal con-
ditioning (Chen et al., 2023), and reinforcement learning for optimization (Thomas et al., 2021).
However, most of these approaches face the fundamental trade-off between structural awareness
and computational efficiency.

2.3 STRUCTURAL CONDITIONING IN PROTEIN MODELS

The challenge of efficiently incorporating structural information is well-studied in protein modeling.
AlphaFold (Jumper et al., 2021) and related methods use various approximation strategies, including
MSA subsampling and coarse-graining techniques, to manage computational complexity.

In the context of molecular generation, some approaches have explored simplified structural rep-
resentations (Zhang et al., 2021; Liu et al., 2022), but these often sacrifice important interaction
details. Our coarse-stride mechanism is inspired by multi-scale processing techniques from com-
puter vision (Ronneberger et al., 2015; He et al., 2016) but adapted specifically for the sequential
nature of protein-ligand interactions.

3 METHODOLOGY

3.1 PROBLEM FORMULATION AND DATASET

We formulate protein-conditioned ligand generation as learning a conditional distribution p(x | c),
where x is a ligand SMILES string and c represents protein conditioning information. The condi-
tioning information includes sequence embeddings cseq from ESM-2 (Lin et al., 2023) and structural
embeddings cstruct derived from our coarse-stride folding mechanism (Sec. 3.4).

We utilize the BindingDB dataset (bin, 2024), which contains 1,154,054 ligand-protein pairs. Each
entry includes a ligand SMILES string, protein sequence, organism, PFAM structural annotation,
cluster identifier, augmentation flag, and binding label. The dataset comprises 6,098 unique protein
sequences with lengths ranging from 50 to 1,500 residues (mean length 514) and 785,740 unique
SMILES strings. Protein sequences are represented using embeddings of dimension dseq = 1280,
obtained from ESM-2 (Lin et al., 2023), and SMILES strings are tokenized with a pretrained diffu-
sion tokenizer.

For a protein sequence P = {p1, . . . , pL} of length L, we obtain sequence embeddings:

cseq = ESM-2(P ) ∈ RL×dseq . (1)

Structural features are downsampled via coarse-stride folding (Sec. 3.4) to reduce memory from
O(L2) to O((L/s)2).

3.2 MASKED DIFFUSION FOR SMILES GENERATION

We adapt masked diffusion language models (MDLMs) (Austin et al., 2021) to discrete SMILES
token space. The forward corruption process replaces tokens with [MASK] according to a noise
schedule:

q(xt | x0) =

|x0|∏
i=1

[
αt1x

(i)
t =x

(i)
0

+ (1− αt)1x
(i)
t =[MASK]

]
, (2)

where xt is the initial SMILES of the molecule which evolves over time t with αt = 1 − σ(t).
Among many possibilities, we use:
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Sigmoid-Warped: σ(t) = − log(1− sigmoid(
t− κ

τ
) + ϵ).

where κ, and τ are regularization constants and ϵ is for numeric safety.

The reverse process predicts original tokens:

pθ(x0 | xt, c) =

|xt|∏
i=1

softmax(fθ(xt, t, c)i), (3)

where fθ is a Transformer decoder conditioned on protein features c.

3.3 DECODER ARCHITECTURE

The decoder is a multi-layer Transformer that maps a concatenation of (i) a learned timestep token,
(ii) conditioning tokens, and (iii) ligand sequence embeddings into updated ligand representations.

Inputs:

1. t ∈ RB : scalar timesteps for each batch element b = 1, . . . , B.
2. S ∈ RB×L×H : ligand (SMILES) token embeddings of length L and hidden dimension H .
3. E ∈ RB×L×H : extra conditioning sequence of length L.

Timestep Embeddings: sinusoidal encodings are projected through a two-layer MLP (Multi Lay-
ered Perceptron) with SiLU activations to form the timestep token:

σ(t) = SiLU
(
W2 SiLU(W1 PE(t))

)
, σ(t) ∈ RH . (4)

Decoder Input: the final input sequence is the concatenation of the timestep token, optional condi-
tioning, and ligand embeddings:

X = [σ(t); E; S ] ∈ RN×H , N = 1 +M + L. (5)

The timestep token occupies position 0 in X.

Rotary Position Embeddings (RoPE) (Su et al., 2024):

RoPE(xm,m) = R(m)xm, R(m) =

(
cos(mθ) − sin(mθ)
sin(mθ) cos(mθ)

)
, θ = 10000−2i/d, (6)

where xm is the m-th token embedding and d = H/h the per-head dimension.

Attention: each layer performs self-attention on SMILES tokens and cross-attention with protein
embeddings:

Self-Attention: MHA(Qlig,Klig, Vlig), (7)
Cross-Attention: MHA(Qlig,Kprot, Vprot), (8)

Feed-Forward: FFN(x) = Linear(ReLU(Linear(x))). (9)

Here, Q, K, and V denote the query, key, and value projections of the input embeddings for each
attention layer. For self-attention, they are computed from the ligand sequence; for cross-attention,
the keys and values come from the protein embeddings while queries come from the ligand tokens.

Thus, timestep information is propagated bidirectionally through the sequence via attention, en-
abling the decoder to condition ligand updates on both time t and external context.

3.4 COARSE-STRIDE FOLDING OF STRUCTURAL FEATURES

To mitigate the quadratic scaling of structural features, we select a coarse subset of positions from
the protein sequence using a stride s:

I = {0, s, 2s, . . . , ⌊L/s⌋ · s}.
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The downsampled single features are sc ∈ RB×Lc×Csingle and pair features pc ∈ RB×Lc×Lc×Cpair ,
where Lc = ⌈L/s⌉.
Formally, each coarse feature is obtained by selecting the corresponding positions in I:

sc[b, k, :] = s[b, Ik, :], (10)
pc[b, k, l, :] = p[b, Ik, Il, :], (11)

for all batch indices b and coarse positions k, l ∈ {0, . . . , Lc − 1}.

Folding Operations On coarse features, we apply triangle attention and multiplication inspired
by AlphaFold:

Folding Operations On the coarse pair features pc, we apply triangle attention and triangle mul-
tiplication inspired by AlphaFold Jumper et al. (2021):

Triangle Attention:
TriAttnstart(pc) : pc[b, i, j]← Attentionk(pc[b, i, k]), (12)
TriAttnend(pc) : pc[b, i, j]← Attentionk(pc[b, k, j]). (13)

Triangle Multiplication:

TriMultout(pc) : pc[b, i, j]←
∑
k

pc[b, i, k]⊙ pc[b, j, k], (14)

TriMultin(pc) : pc[b, i, j]←
∑
k

pc[b, k, i]⊙ pc[b, k, j]. (15)

Upsampling Coarse Features Let sc ∈ RB×Lc×Csingle and pc ∈ RB×Lc×Lc×Cpair denote the down-
sampled single and pair features. We upsample them to the original sequence length L using nearest-
neighbor mapping:

sout[b, i, :] = sc[b, k, :], k =

⌊
i

s

⌋
, (16)

pout[b, i, j, :] = pc[b, k, l, :], k =

⌊
i

s

⌋
, l =

⌊
j

s

⌋
, (17)

for all batch indices b and positions i, j ∈ {0, . . . , L− 1}. This mapping ensures that each original
position receives the structural information from its corresponding coarse block, resulting in block-
wise constant features.

Complexity Analysis The coarse-stride mechanism reduces memory and compute:

• Memory: O(L2)→ O((L/s)2)

• Compute: Triangle attention/multiplication scales similarly, giving ∼ s2 speedup
• Approximation quality depends on local homogeneity of structural signals

3.5 TRAINING ENHANCEMENTS

Substitution Parameterization: masked diffusion loss with substitution scaling:

LMDLM = −
∑
i,t

log pθ(x
(i)
0 | x

(i)
t , c) · dσ/dt

exp(σ)− 1
. (18)

Curriculum Learning To gradually increase the difficulty of the denoising task, we scale the
timestep used for loss computation:

tcurriculum = min
(
max(ϵ, αepoch t), 1

)
, αepoch = min

(
1,

epoch + 1

Tcurriculum

)
, (19)

where t ∈ [0, 1] is the diffusion timestep, ϵ > 0 is a small lower bound, epoch is the current training
epoch, and Tcurriculum is the total number of curriculum epochs.
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Validity Regularization To encourage chemically valid SMILES, we add a penalty proportional
to the fraction of invalid samples generated by the model:

Ltotal = LMDLM + λvalid Ex∼pθ

[
1x invalid

]
, (20)

where λvalid controls the strength of the penalty and 1x invalid is an indicator function equal to 1 if x
is invalid and 0 otherwise.

4 RESULTS

4.1 MOLECULAR GENERATION QUALITY

Table 1 shows SiDGen’s performance on the MOSES benchmark. Our model achieves 100% valid-
ity and 88.75% uniqueness, demonstrating reliable generation of chemically valid molecules. The
internal diversity of 0.893 indicates good structural variety in generated molecules.

MOSES metrics (Validity, Uniqueness, Novelty, IntDiv) were computed on held-out generated sam-
ples using RDKit for SMILES canonicalization and validity checks. FCD (Fréchet ChemNet Dis-
tance) (Preuer et al., 2018) uses ChemNet embeddings; internal diversity and Tanimoto-based statis-
tics use Morgan fingerprints (radius=2, n Bits=2048).

Table 1: MOSES Benchmark Results
Method Validity Uniqueness Novelty FCD ↓ IntDiv ↑
Train Set 100% 100% - 0.008 0.856
CharRNN 97.5% 99.9% 84.2% 0.073 0.856
VAE 97.7% 99.8% 69.5% 0.099 0.855
JTN-VAE 100% 99.9% 91.4% 0.395 0.855
AAE 93.7% 99.7% 79.3% 0.556 0.856

SiDGen 100% 88.75% 100% 0.108 0.893

4.2 MOLECULAR PROPERTY ANALYSIS

Figure 2 shows the distribution of key molecular properties. SiDGen generates molecules with rea-
sonable drug-like properties: mean molecular weight of 421.57 Da, LogP of 3.07, and TPSA of
37.89 U. The maximum Tanimoto similarity to training molecules was computed for each generated
molecule, with a mean value of 0.27, indicating good novelty and low memorization of training data.
The synthetic accessibility score of 0.47 suggests the generated molecules are generally synthesiz-
able.

Molecular properties were computed on canonical SMILES using RDKit descriptors (MolWt for
molecular weight, LogP for LogP, TPSA for topological polar surface area). Synthetic accessibility
(SA) used the Ertl SA implementation, Ertl & Schuffenhauer (2009) and reported fingerprint-based
similarities use Morgan fingerprints (r=2, 2048 bits). These molecular properties are critical indi-
cators of drug-likeness according to established medicinal chemistry guidelines. Lipinski’s Rule of
Five Lipinski et al. (2001) suggests that orally active drugs typically have molecular weights below
500 Da, LogP values below 5.0, and TPSA values below 140 Å

2
for good membrane permeabil-

ity Veber et al. (2002). The synthetic accessibility score provides an estimate of synthetic feasibility,
with values closer to 1 indicating easier synthesis Ertl & Schuffenhauer (2009). Low Tanimoto
similarities to training data (typically below 0.4) suggest that the model generates novel chemical
structures rather than memorizing training examples Reymond & Awale (2015).

4.3 VIRTUAL SCREENING PERFORMANCE

Virtual screening metrics were computed from ranked docking scores. The ROC-AUC quantifies
overall ranking quality as the area under the receiver operating characteristic curve. The enrichment
factor at X% (EF@X%) is defined as

EF@X% =
fraction of actives in top X%

fraction of actives expected at random
.
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Figure 2: Properties of generated molecules.

Table 2: DUD-E Benchmark Comparison
Method ROC-AUC EF@1% BEDROC

Glide 0.83 – 0.29
Vina 0.6966 8.82 –
Gnina 0.6799 7.93 –

SiDGen 0.819 10.72 0.28

BEDROC applies exponential early-weighting of the rankings; in our experiments we used α =
80.5. Docking inputs, as well as active and decoy molecules, follow the DUD-E splits employed in
our benchmark.

4.4 EXPERIMENTAL RESULTS ON CROSSDOCKED2020

CrossDocked2020 evaluation. The performance of SiDGen on CrossDocked2020 and selected
baselines are reported in the Table 3 below.

Table 3: Performance of our model and benchmarks on CrossDocked2020.
Model Vina ↓ Vina Dock ↓ QED ↑ SA ↑ Diversity ↑
liGAN - -6.33 0.39 0.59 0.66
Pocket2Mol -5.14 -7.15 0.56 0.74 0.69
TargetDiff -5.47 -7.80 0.48 0.58 0.72
DecompDiff -5.67 -8.39 0.45 0.61 0.68
DecompOpt -5.87 -8.98 0.48 0.65 0.60
TransDiffSBDD -6.02 -9.37 0.48 0.75 0.81
PocketFlow - - 0.51 0.29 0.87

SiDGen -5.98 -9.74 0.55 0.47 0.89
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4.5 BINDING AFFINITY PREDICTION

PDBBind evaluation. We report PDBBind binding-affinity prediction numbers (pKd) for SiDGen
and selected baselines in Table 4 below. For PDBBind evaluation, ligands were matched by canoni-

Table 4: PDBBind binding-affinity prediction comparison (pKd).
Paper/Model Pearson R Spearman ρ RMSE (pKd) MAE (pKd)

TargetDiff 0.680 0.637 1.374 1.118
EGNN 0.648 0.598 1.445 1.141
IGN 0.698 0.641 1.433 1.169

SiDGen (this work) 0.695 0.684 1.075 0.950

cal SMILES, and per-SMILES predictions were aggregated by taking the most favorable (minimum)
docking score when multiple poses were present. Docking free energies (∆G, in kcal·mol−1) were
converted to pKd using

pKd = − ∆G

RT ln 10
,

with T = 298 K and R = 1.987×10−3 kcal·mol−1K−1. Reported Pearson R, Spearman ρ, RMSE,
and MAE were computed on paired true versus predicted pKd values.

5 DISCUSSION

5.1 METHOD ANALYSIS

SiDGen successfully addresses the computational efficiency challenge in protein-conditioned
molecular generation while maintaining competitive performance. The coarse-stride folding mech-
anism provides substantial memory and compute savings, making the approach practical for large-
scale applications. The dual conditioning pathway design allows users to choose appropriate trade-
offs between efficiency and structural awareness based on their specific requirements. For high-
throughput screening applications, streamlined mode provides rapid generation, while full mode
can be used when maximum structural fidelity is required.

5.2 LIMITATIONS

Several limitations should be acknowledged:

1. The coarse-stride approximation may miss fine-grained local interactions that are important
for some binding modes.

2. Performance varies significantly across different protein families, suggesting the need for
more robust conditioning mechanisms.

3. The model currently operates only on SMILES representations, limiting its ability to opti-
mize 3D binding poses directly.

6 CONCLUSION

We present SiDGen, a structure-informed diffusion model for protein-conditioned ligand genera-
tion that addresses the critical trade-off between structural awareness and computational efficiency.
Through our coarse-stride folding mechanism and dual conditioning pathways, SiDGen achieves
competitive molecular generation performance while requiring significantly less computational re-
sources than full structural conditioning approaches. Our comprehensive evaluation across multiple
benchmark datasets demonstrates that SiDGen generates chemically valid, diverse molecules with
reasonable drug-like properties. The variable performance across different protein targets highlights
both the potential and challenges in protein-conditioned generation, providing insights for future
method development. The computational efficiency gains make SiDGen particularly suitable for

8
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high-throughput drug discovery applications where scalability is paramount. As the field moves
toward larger-scale virtual screening and more complex protein targets, methods like SiDGen that
balance performance with practicality will become increasingly important.
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