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Abstract

Face recognition systems are used widely but are known to exhibit bias across
a range of sociodemographic dimensions, such as gender and race. An array of
works proposing pre-processing, training, and post-processing methods have failed
to close these gaps. Here, we take a very different approach to this problem,
identifying that both architectures and hyperparameters of neural networks are
instrumental in reducing bias. We first run a large-scale analysis of the impact of
architectures and training hyperparameters on several common fairness metrics
and show that the implicit convention of choosing high-accuracy architectures
may be suboptimal for fairness. Motivated by our findings, we run the first neural
architecture search for fairness, jointly with a search for hyperparameters. We
output a suite of models which Pareto-dominate all other competitive architectures
in terms of accuracy and fairness. Furthermore, we show that these models transfer
well to other face recognition datasets with similar and distinct protected attributes.
We release our code and raw result files so that researchers and practitioners can
replace our fairness metrics with a bias measure of their choice.

1 Introduction

Face recognition is regularly deployed across the world by government agencies for tasks including
surveillance, employment, and housing decisions. However, recent studies have shown that face
recognition systems exhibit disparity in accuracy based on race and gender [1, 2, 3, 4]. While
existing methods for de-biasing face recognition systems use a fixed neural network architecture and
training hyperparameters, we instead ask a fundamental question which has received little attention:
does model-bias stem from the architecture and hyperparameters? We further exploit the extensive
research in the fields of neural architecture search (NAS) [5] and hyperparameter optimization (HPO)
[6] to search for models that achieve a desired trade-off between bias and accuracy.

In this work, we take the first step towards answering these questions. To this end, we conduct the
first large-scale analysis of the relationship between hyperparameters, architectures, and bias. We
train a diverse set of 29 architectures, ranging from ResNets [7] to vision transformers [8, 9] to
Gluon Inception V3 [10] to MobileNetV3 [11] on CelebA [12], for a total of 88 493 GPU hours. We
train each of these architectures across different head, optimizer, and learning rate combinations.
Our results show that different architectures learn different inductive biases from the same dataset.
We conclude that the implicit convention of choosing the highest-accuracy architectures can be
detrimental to fairness, and suggest that architecture and hyperparameters play a significant role in
determining the fairness-accuracy tradeoff.

Next, we exploit this observation in order to design architectures with a better fairness-accuracy
tradeoff. We initiate the study of NAS for fairness; specifically, we run NAS+HPO to jointly
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optimize fairness and accuracy. To tackle this problem, we construct a search space based on the
highest-performing architecture from our analysis. We use the Sequential Model-based Algorithm
Configuration method (SMAC [13]), for multi-objective architecture and hyperparameter search. We
discover a Pareto frontier of face recognition models that outperform existing state-of-the-art models
on both accuracy and multiple fairness metrics. An overview of our methodology can be found in
Appendix A. We release all of our code and raw results at ht tps://github.com/dooleys/
FR—NAS so that users can adapt our work to any bias measure of their choice.

Our contributions. We summarize our main contributions below:

* We run a large-scale study of 29 architectures from ViT to Xception, each trained across a variety
of hyperparameters, totalling 88493 GPU hours. Our analysis shows that there is a distinct
trade-off between accuracy and popular fairness metrics, such as disparity, and simply improving
accuracy would not guarantee improvement on different fairness metrics Section 2.

* Motivated by the above observation, we conduct the first neural architecture search for fairness,
jointly with hyperparameter optimization and optimizing for accuracy — culminating in a set of
architectures which Pareto-dominate all models in a large set of modern architectures Section 3.

* We show that the architectures discovered transfer across different datasets with the same (per-
ceived gender) and different (ethnicities) protected attributes Section 3.3.1.

Background and related work. Face recognition tasks fall into two categories: verification and
identification. Verification asks whether the person in a source image is the same person as in the
target 1mage this is a one-to-one comparison. Identification instead asks whether a given person
in a source image appears within a gallery composed of many target identities and their associated
images; this is a one-to-many comparison. Novel techniques in face recognition tasks [14, 15, 16] use
deep networks to extract feature representations of faces and then compare those to match individuals
(with mechanisms called the head). We focus our analysis on identification and on examining how
close images of similar identities are in the feature space of trained models.

In this work, we focus on measuring sociodemographic disparities across neural architectures and
hyperparameter settings, and finding the Pareto frontier of face recognition performance and bias
for current and novel architectures. Our work searches for architectures and hyperparameters which
improve undesired disparities. A few works have applied hyperparameter optimization to mitigate bias
in models for tabular data. Perrone et al. [17] recently introduced a Bayesian optimization framework
to optimize accuracy while satisfying a bias constraint. The concurrent works of Schmucker et al.
[18] and Cruz et al. [19] extend Hyperband [20] to the multi-objective setting and apply it to fairness.
To the best of our knowledge, no prior work uses any AutoML technique (NAS, HPO, or joint NAS
and HPO) to design fair face recognition models, and no prior work uses NAS to design fair models
for any application. For additional related work, see Appendix B.

2 A Large-Scale Analysis of Architectures and Fairness

Experimental Setup. We use the following training pipeline — ultimately conducting 355 training
runs with different combinations of 29 architectures from the Pytorch Image Model (t imm) database
[21] and hyperparameters. For each model, we use the default learning rate and optimizer that was
published with that model. We then conduct a training run with these hyperparameters and each of
three heads, ArcFace [14], CosFace [15], and MagFace [16]. Next, we use that default learning rate
with both AdamW [22] and SGD optimizers (again with each head). Finally, we also conduct training
routines with AdamW and SGD with unifed learning rates. In total, we run a single architecture
between 9 and 13 times. All other hyperparameters were the same for each model training run.

Evaluation procedure. We evaluate performance via Error and use a common fairness metric in
face recognition, rank disparity, which is explored in the NIST FRVT [23]. To compute the rank of a
given sample, we ask how many images of a different identity are closer to it in feature space. We
define this index as the Rank of a given image. Thus, Rank(image) = 0 if and only if Error(image)
= 0; Rank(image) > 0 if and only if Error(image) = 1. We examine the rank disparity which is the
absolute difference of the average ranks for each perceived gender in a dataset D:

Results and Discussion. By plotting the performance of each run with the error on the z-axis and
rank disparity on the y-axis in Figure 1, we conclude that optimizing for error does not optimize for
fairness. A search for architectures and hyperparameters which have high performance on traditional
metrics does not translate to high performance on fairness metrics. We see that for models with
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Figure 1: Error-Rank Disparity Pareto front of the architectures with lowest error (< 0.3). Models in
the lower left corner are better. Points in blue are not pareto-optimal.

lowest error there is low correlation between error and rank disparity (p = —.113 for models with
error < 0.3). In Figure 1, we see that Pareto optimal models include DPN, TNT, ReXNet, VovNet,
and ResNets. We conclude that both architectures and hyperparameters play a significant role in
determining the accuracy and fairness trade-off, motivating their joint optimization in Section 3.

3 Joint NAS+HPO for Fairness

In this section, we employ joint NAS+HPO to find better architectures. Inspired by our findings on
the importance of architecture and hyperparameters for fairness in Section 2, we initiate the first joint
NAS+HPO study for fairness in face recognition. We start by describing our search space and search
strategy. We then present a comparison between the architectures obtained from multi-objective joint
NAS+HPO and the handcrafted image classification models studied in Section 2. We conclude that
our joint NAS+HPO indeed discovers simultaneously accurate and fair architectures.

3.1 Search Space Design

We design our search space based on our analysis in Section 2 namely Dual Path Networks [24] due
to its strong trade-off between rank disparity and accuracy as seen in Figure 1. We choose three
categories of hyperparameters for NAS+HPO: architecture head/loss, optimizer, and learning rate.

Architecture Search Space Design. Dual Path Networks [24] for image classification share common
features (ResNets [25]) while possessing the flexibility to explore new features [26] through a dual
path architecture. We replace the repeating 1x1_conv-3x3_conv-1x1l_conv block with a
simple recurring searchable block. Furthermore, we stack multiple such searched blocks to closely
follow the architecture of Dual Path Networks. We have nine possible choices for each of the three
operations in the DPN block. The choices include a vanilla convolution, a convolution with pre-
normalization and a convolution with post-normalization. To summarize, our search space consists of
a choice among 81 different architecture types, 3 different head types, 3 different optimizers (discrete
hyperparameters) and a possibly infinite number of choices for the continous learning rate.

3.2 Search Strategy

We navigate the search space defined in Section 3.1 using Black-Box-Optimization (BBO). We want
our BBO algorithm to support the following important techniques:

Multi-fidelity optimization. A single function evaluation for our use-case corresponds to training
a deep neural network on a given dataset. This is generally quite expensive for traditional deep
neural networks on moderately large datasets. Hence we would like to use cheaper approximations
to speed up the black-box algorithm with multi-fidelity optimization techniques [27, 20, 28], e.g.,



by evaluating many configurations based on short runs with few epochs and only investing more
resources into the better-performing ones.

Multi-objective optimization. We want to observe a trade-off between the accuracy of the face
recognition system and the fairness objective of choice (rank disparity). Hence, our joint NAS+HPO
algorithm needs to support multi-objective optimization [29, 30, 31]. The SMAC3 package [13]
offers a robust and flexible framework for Bayesian Optimization with few evaluations. SMAC3
offers a SMACA4MEF facade for multi-fidelity optimization to use cheaper approximations for expensive
deep learning tasks like ours. We choose ASHA [27] for cheaper approximations with the initial
and maximum fidelities set to 25 and 100 epochs, respectively, and = 2. Every architecture-
hyperparameter configuration evaluation is trained using the same training pipeline as in Section 2.
For the sake of simplicity, we use ParEGO [30] for multi-objective optimization with p set to 0.05.

3.3 Results

We follow the evaluation scheme of Section 2 to compare models discovered by joint NAS+HPO with
the handcrafted models. In Figure 2, we compare the set of models discovered by joint NAS+HPO vs.
the models on the Pareto front from Section 2. We train each model for 4 seeds to study the robustness
of error and disparity. As seen in Figure 2, we Pareto-dominate all other models with above random
accuracy on the validation set. On the test set, we still Pareto-dominate all competitive models (with
Error < 0.1), but due to differences between the two dataset splits, one of the original configurations
(DPN with Magtface) also becomes Pareto-optimal. However, the error of this architecture is 0.13,
which is significantly higher than the the best original model (0.05) and the SMAC models (0.03-0.04).
Furthermore, from Figure 2 it is also apparent that some models such as VoVNet and DenseNet show
very large standard errors across seeds. Hence, it becomes very important to also study the robustness
of the models across seeds along with the accuracy and disparity Pareto front.

MobileNet ® TNT ® ReXNet = EseVoVNet ® DenseNet ® DPN_Magface ® DPN_Cosface = SMAC
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Figure 2: Pareto front of models discovered by SMAC and rank-1 models from timm for (a)
validation and (b) test sets on CelebA averaged over 4 seeds.SMAC models Pareto-dominate top
performing t imm models (Error < 0.1).

3.3.1 Transfer across Face Recognition Datasets

Inspired by our findings on the CelebA dataset, we now study the accuracy-disparity trade-off of the
models studied in Section 2 and the searched models from Section 3 on two different datasets. The
first face recognition dataset we use is VGGFace2 [32], which is based on the same protected attribute
(perceived gender) that has served as the focus of our study. The second dataset, Racial Faces in the
Wild (RFW) [33], consists of four different racial identities: Caucasian, Indian, Asian, and African.
We compute the rank disparity within different ethnicities, i.e., a different attribute than the perceived
gender studied in previous sections. With this dataset, we aim to study the generalization of the fair
representations learned by the models across a different protected attribute. However, we caution the
reader that the labels of these datasets rely on socially constructed concepts of gender presentation
and ethnicity. The intention here is to study how the models discovered by SMAC generalize to these
datasets and compare to the other handcrafted t imm [21] architectures.
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Figure 3: Pareto front of the models on (a) the VGGFace?2 test set with perceived gender as the
protected attribute and (b) the RFW test set with perceived ethnicity as the protected attribute. The
SMAC models discovered by joint NAS+HPO Pareto-dominate the t imm models.

To evaluate our models on these datasets, we directly transfer our models to the two test sets. That
is, we use the models trained on CelebA, without re-training or fine-tuning the models on the new
datasets. As observed in Figure 3, the models discovered using joint NAS+HPO still remain Pareto-
optimal on both datasets. In the case of VGGFace2, the models found by SMAC are the only ones to
have an error below 0.5, where the next-best model has an error above 0.7. In the case of RFW, the
models found by SMAC have considerably lower rank disparity and error than the standard models
studied in Section 2. In the case of RFW, we see that the transferred models generally exhibit low
error, which is in contrast to the majority of the models on VGGFace2. We also call attention to
the fact that, on both datasets, the models found by SMAC have considerably lower error than the
standard models studied in Section 2. This might be due to the optimized architectures learning
representations that are intrinsically fairer than those of standard architectures, but it requires further
study to test this hypothesis and determine in precisely which characteristics these architectures differ.
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A Schematic for Finding Fair Architectures
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Figure 4: Overview of our methodology.

B Additional Related Work

Face Recognition. Face recognition tasks fall into two categories: verification and identification.
Verification asks whether the person in a source image is the same person as in the target image; this is
a one-to-one comparison. Identification instead asks whether a given person in a source image appears
within a gallery composed of many target identities and their associated images; this is a one-to-many
comparison. Novel techniques in face recognition tasks, such as ArcFace [14], CosFace [15], and
MagFace [16], use deep networks to extract feature representations of faces and then compare those
to match individuals (with mechanisms called the head). We focus our analysis on identification and
on examining how close images of similar identities are in the feature space of trained models.

Sociodemographic Disparities in Face Recognition. In this work, we focus on measuring the
sociodemographic disparities across neural architectures and hyperparameter settings, and finding the
Pareto frontier of face recognition performance and bias for current and novel architectures. Our work
searches for architectures and hyperparameters which improve the undesired disparities. Previous
work focuses on “fixing” unfair systems and can be split into three (or arguably four [34]) focus areas:
preprocessing [e.g., 35, 36, 37, 38], inprocessing [e.g., 39, 40, 41, 42, 43, 38, 44, 45, 46, 47], and
post-processing [e.g., 48, 49].

Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO). A few works
have applied hyperparameter optimization to mitigate bias in models for tabular datasets. Perrone
et al. [17] recently introduced a Bayesian optimization framework to optimize accuracy of models
while satisfying a bias constraint. The concurrent works of Schmucker et al. [18] and Cruz et al.
[19] extend Hyperband [20] to the multi-objective setting and show its applications to fairness. The
former was later extended to the asynchronous setting [27]. Lin et al. [50] proposes de-biasing face
recognition models through model pruning. However, they consider just two architectures and just
one set of hyperparameters. To the best of our knowledge, no prior work uses any AutoML technique
(NAS, HPO, or joint NAS and HPO) to design fair face recognition models, and no prior work uses
NAS to design fair models for any application.

B.1 Search Space Design

We design our search space based on our analysis in Section 2. In particular, our search space is
inspired by Dual Path Networks [24] due to its strong trade-off between rank disparity and accuracy
as seen in Figure 1.

Hyperparameter Search Space Design. We choose three categories of hyperparameters for
NAS+HPO: the architecture head/loss, the optimizer, and the learning rate, depicted in Table 1.

Architecture Search Space Design. Dual Path Networks [24] for image classification share
common features (ResNets [25]) while possessing the flexibility to explore new features [26] through
a dual path architecture. We replace the repeating 1x1_conv-3x3_conv—-1x1_conv block with
a simple recurring searchable block depicted in Figure 5. Furthermore, we stack multiple such
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Figure 5: DPN block (left) vs. our searchable block (right).

Table 1: Searchable hyperparameter choices.

Hyperparameter Choices
Architecture Head/Loss MagFace, ArcFace, CosFace
Optimizer Type Adam, AdamW, SGD

Learning rate (conditional) Adam/AdamW — [le — 4, 1e — 2], SGD — [0.09, 0.8]

Table 2: Operation choices and definitions.

Operation Definition

BnConvlxl Batch Normalization — Convolution with 1x1 kernel
Convlx1Bn Convolution with 1x1 kernel — Batch Normalization
Convlxl Convolution with 1x1 kernel

BnConv3x3 Batch Normalization — Convolution with 3x3 kernel
Conv3x3Bn Convolution with 3x3 kernel — Batch Normalization
Conv3x3 Convolution with 3x3 kernel

BnConv5x5 Batch Normalization — Convolution with 5x5 kernel
Conv5x5Bn  Convolution with 5x5 kernel — Batch Normalization
Conv5x5 Convolution with 5x5 kernel

searched blocks to closely follow the architecture of Dual Path Networks. We have nine possible
choices for each of the three operations in the DPN block as depicted in Table 2. The choices include a
vanilla convolution, a convolution with pre-normalization and a convolution with post-normalization.

C Further Details on Experimental Design and Results

C.1 Experimental Setup

The list of the models we study from t imm are: coat_lite_small [51], convit_base [52],
cspdarknet53 [53], d1al102x2 [54], dpnl107 [24], ese_vovnet39b [55], fbnetv3_g
[56], ghostnet_100 [57], gluon_inception_v3 [10], gluon_xception65
[58], hrnet_w64 [59], ig_resnextl01_32x8d [60], inception_resnet_v2
[61], inception_v4 [61], jx_nest_base [62], legacy_senetl54 [63],
mobilenetv3_large_100 [11], resnetrsl101 [64], rexnet_200 [65], selecsls60b
[66], swin_base_patch4_window7_224 [9], tf_efficientnet_b7_ns’ [67],
"tnt_s_patchl6_224[68], twins_svt_large [69] , vggl9 [70], vggl9_bn [70],
visformer_small [71], xception and xception65 [58].
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Table 3: Fairness Metrics Overview

Fairness Metric Equation
Disparity | Accuracy(male) — Accuracy(female)|
Rank Disparity ~ |Rank(male) — Rank(female)]
. Accuracy(male)
Ratio |1 - A}c%'curka(cy:(y;e;nale) ‘
Rank Ratio [1— 7Rank(female)|
Error Ratio || — Zrror(male) |

Error(female)

We study at most 13 configurations per model ie 1 default configuration corresponding to the original
model hyperparameters with CosFace as head. Further, we have at most 12 configs consisting of the
3 heads (CosFace, ArcFace, MagFace) x 2 learning rates(0.1,0.001) x 2 optimizers (SGD, AdamW).
All the other hyperparameters are held constant for training all the models. All model configurations
are trained with a total batch size of 64 on 8 RTX2080 GPUS for 100 epochs each.

C.2 Obtained architectures and hyperparameter configurations from
Black-Box-Optimization

In Figure 6 we present the architectures and hyperparameters discovered by SMAC. Particularly
we observe that conv 3x3 followed batch norm is a preferred operation and CosFace is the
preferred head/loss choice.

Figure 6: SMAC discovers the above building blocks with (a) corresponding to architecture with
CosFace, with SGD optimizer and learning rate of 0.2813 as hyperparamters (b) corresponding to
CosFace, with SGD as optimizer and learning rate of 0.32348 and (c) corresponding to CosFace, with
AdamW as optimizer and learning rate of 0.0006

C.3 Analysis of the Pareto-Front of different Fairness Metrics

In this section, we include additional plots that support and expand on the main paper. Primarily, we
provide further context of the Figures in the main body in two ways. First, we provide replication
plots of the figures in the main body but for all models. Recall, the plots in the main body only show
models with Error<0.3, since high performing models are the most of interest to the community.
Second, we also show figures which depict other fairness metrics used in facial recognition. The
formulas for these additional fairness metrics can be found in Table 3.

We replicate Figure 1 in Figure 8; Figure 7 in Figure 9; Figure 3 in Figure 10 and Figure 11. We add
additional metrics with Disparity being plotted in Figure 12 and Ratio being plotted in Figure 13.
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Figure 7: Depending on the fairness metric, different architectures are Pareto-optimal. On the left,
we plot the metric Ratio of Ranks which admit DPN, ReXNet, HRNet, MobileNet, EseVovNet, and
Inceptions as Pareto-optimal. On the right, we plot the metric Ratio of Errors where DPN, ReXNet,
EseVovNet, ResNet-RS, and VGG19 are Pareto-optimal.

354 .
30 * .
-
2 259 . .
= H
2 20 . L e
8 L] . L4
- . . .
2 s “. e “ )
= . .
o 101 . . e
2 " . " . . L .. @ ’ ’ ?
5 * .. .-:a. iy .?;kg w, "of . »
oo iy prA iYL Y
0 . . .
0 0.2 0.4 0.6 0.8 1
Error
EseVoVNet @ ReXNet Inception @ DPN TNT

Figure 8: Replication of Figure 1 with all data points. Error-Rank Disparity Pareto front of the
architectures with any non-trivial error. Models in the lower left corner are better. The Pareto
front is notated with a dashed line. Other points are architecture and hyperparameter combinations
which are not Pareto-dominant. DPN, ReXNet, EseVovNet, TNT, and Inception architectures are
Pareto-dominant.
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Figure 9: Replication of Figure 7 with all data points. Depending on the fairness metric, different
architectures are Pareto-optimal. On the left, we plot the metric Ratio of Ranks which admit DPN,
ReXNet, HRNet, MobileNet, EseVovNet, and Inceptions as Pareto-optimal. On the right, we plot the
metric Ratio of Errors where DPN, ReXNet, EseVovNet, ResNet-RS, and VGG19 are architectures
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Figure 10: Replication of Figure 3 for VGGFace2 with all data points. Pareto front of the models on
VGGFace? test set with perceived gender as the protected attribute. The SMAC models discovered
by joint NAS and HPO Pareto-dominate the t imm models
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Figure 11: Replication of Figure 3 for RFW with all data points. Pareto front of the models on RFW
test set with perceived ethnicity as the protected attribute. The SMAC models discovered by joint

NAS and HPO Pareto-dominate the t imm models
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Figure 12: Extension of Figure 1 with all data points with the Disparity in accuracy metric. Error-
Disparity Pareto front of the architectures with any non-trivial error. Models in the lower left
corner are better. The Pareto front is notated with a dashed line. Other points are architecture and
hyperparameter combinations which are not Pareto-dominant.
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Figure 13: Extension of Figure 1 with all data points with the Ratio in accuracy metric. Error-Ratio
Pareto front of the architectures with any non-trivial error. Models in the lower left corner are better.
The Pareto front is notated with a dashed line. Other points are architecture and hyperparameter

combinations which are not Pareto-dominant.
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