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Abstract
Data augmentation (DA) methods tailored to spe-
cific domains generate synthetic samples by ap-
plying transformations that are appropriate for
the characteristics of the underlying data domain,
such as rotations on images and time warping on
time series data. In contrast, domain-independent
approaches, e.g. mixup, are applicable to vari-
ous data modalities, and as such they are general
and versatile. While regularizing classification
tasks via DA is a well-explored research topic,
the effect of DA on regression problems received
less attention. To bridge this gap, we study the
problem of domain-independent augmentation
for regression, and we introduce FOMA: a new
data-driven domain-independent data augmenta-
tion method. Essentially, our approach samples
new examples from the tangent planes of the train
distribution. Augmenting data in this way aligns
with the network tendency towards capturing the
dominant features of its input signals. We eval-
uate FOMA on in-distribution generalization and
out-of-distribution robustness benchmarks, and
we show that it improves the generalization of
several neural architectures. We also find that
strong baselines based on mixup are less effec-
tive in comparison to our approach. Our code is
publicly available at https://github.com/
azencot-group/FOMA

1. Introduction
Classification and regression problems primarily differ in
their output’s domain. In classification, we have a finite
set of labels, whereas in regression, the range is an infinite
set of quantities—either discrete or continuous. In classical
work (Devroye et al., 2013), classification is argued to be
“easier” than regression, but more generally, it is agreed by
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many that classification and regression problems should be
treated differently (Muthukumar et al., 2021). Particularly,
the differences between classification and regression are
actively explored in the context of regularization. Regular-
izing neural networks to improve their performance on new
samples has received a lot of attention in the past few years.
One of the main reasons for this increased interest is that
most of the recent successful neural models are overparam-
eterized. Namely, the amount of learnable parameters is
significantly larger than the number of available training
samples (Allen-Zhu et al., 2019a;b), and thus regularization
is often necessary to alleviate overfitting issues. Recent
studies on overparameterized linear models identify con-
ditions under which overfitting is “benign” in regression
(Bartlett et al., 2020), and uncover the relationship between
the choice of loss functions in classification and regression
tasks (Muthukumar et al., 2021). Still, the regularization of
deep neural regression networks is not well understood.

In this work, we focus on regularizing deep models via Data
Augmentation (DA), where data samples are artificially gen-
erated and used during training. In general, DA techniques
can be categorized into domain-dependent (DD) methods
and domain-independent (DI) approaches. The former are
specific for a certain data modality such as images or text,
whereas the latter typically do not depend on the data format.
Numerous DD- and DI-DA approaches are available for
classification tasks (Shorten & Khoshgoftaar, 2019; Shorten
et al., 2021), and many of them consistently improve over
non-augmented models. Unfortunately, DI-DA for regres-
sion problems is underexplored. Recent works on linear
models study the connection between the DA policy and
optimization (Hanin & Sun, 2021), as well as the generaliza-
tion effects of linear DA transformations (Wu et al., 2020).
We contribute to this line of work by proposing and analyz-
ing a new domain-independent data augmentation method
for nonlinear deep regression, and by testing our approach
on in-distribution generalization and out-of-distribution ro-
bustness tasks (Yao et al., 2022).

Many strong data augmentation methods were proposed
in the past few years. Particularly relevant to our study is
the family of mixup-based techniques that are commonly
used in classification applications. The original method,
mixup (Zhang et al., 2017), produces convex combina-
tions of training samples, promoting linear behavior for
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in-between samples. The method is domain-independent
and data-agnostic, i.e., it is indifferent to the given data
samples. Mixup was shown to solve the Vicinal Risk Min-
imization (VRM) problem instead of the usual Empirical
Risk Minimization (ERM) problem. In comparison, our ap-
proach can also be viewed as solving a VRM problem, and it
is domain-independent and data-driven, namely, augmenta-
tions depend on the given data distribution. In our extensive
evaluations, we will show that mixup-based methods are
less effective for regression in comparison to our approach.

Contributions. Challenged by the differences between
classification and regression and motivated by the success of
domain-independent methods such as mixup, we propose
a simple, domain-independent and data-driven DA routine,
termed First-Order Manifold Augmentation (FOMA). Let
X,Y be the input and output mini-batch tensors, respec-
tively, and let Zl = gl(X) be the hidden code at layer l. Our
method produces new training samples Zl(λ), Y (λ) from
the given ones by scaling down their small singular values
by a random λ ∈ [0, 1]. At its core, FOMA incorporates
into training the assumption that data with similar dominant
components of the train set should be treated as true sam-
ples. Our implementation of FOMA is fully differentiable,
and thus it is applicable to any layer of a given network.

We detail FOMA in Sec. 3, motivating our design choices and
illustrating its effect on data. We analyze our approach using
perturbation theory and introduce its associated vicinal risk
minimization (Sec. 4). Our experimental evaluation focuses
on in-distribution generalization (Sec. 5.1) and on out-of-
distribution robustness (Sec. 5.2), where we empirically
demonstrate the superiority of FOMA. We offer a potential
explanation to the success of our method (Sec. 3, App. B).
Finally, an ablation study is performed, justifying our design
choices (Sec. 5.3).

2. Related Work
Deep neural networks regularization is an established re-
search topic with several existing works (Goodfellow et al.,
2016). Common regularization approaches include weight
decay, dropout (Srivastava et al., 2014), batch normalization
(Ioffe & Szegedy, 2015), and data augmentation (DA). Here,
we categorize DA techniques to be either domain-dependent
or domain-independent. Domain-dependent DA was shown
to be effective for, e.g., image data (LeCun et al., 1998)
and audio signals (Park et al., 2019), among other domains.
However, adapting these methods to new data formats is typ-
ically challenging and often infeasible. While several works
focused on automatic augmentation (Lemley et al., 2017;
Cubuk et al., 2019; Lim et al., 2019; Tian et al., 2020; Cubuk
et al., 2020), there is concurrently an increased interest on
domain-independent DA methods, allowing to regularize

neural networks when only basic data assumptions are al-
lowed (Naiman et al., 2023). We focus in what follows on
domain-independent techniques that were proposed in the
context of classification and regression problems.

DA for classification. Zhang et al. (2017) proposed to
perform convex mixing of input samples as well as one-hot
output labels during training. The new training procedure,
named mixup, minimizes the Vicinal Risk Minimization
(VRM) problem instead of the typical Empirical Risk Min-
imization (ERM). Many extensions of mixup were pro-
posed, including mixing latent features (Verma et al., 2019),
same-class mixing (DeVries & Taylor, 2017), among other
extensions (Guo et al., 2019; Hendrycks et al., 2019; Yun
et al., 2019; Berthelot et al., 2019; Greenewald et al., 2021;
Lim et al., 2021). ISDA (Wang et al., 2019) formulates
a new cross-entropy loss for DA-based training using the
per-class covariance matrix.

DA for regression. Significantly less attention has been
drawn to designing domain-independent data augmentation
for regression tasks. A recent survey (Wen et al., 2020)
on DA for time series data lists a few basic augmentation
tools. Dubost et al. (2019) propose to recombine sam-
ples for regression tasks with countable outputs, and thus
their method can not be directly extended to the uncount-
able regime. RegMix (Hwang & Whang, 2021) developed
a meta learning framework based on reinforcement learn-
ing for mixing samples in their neighborhood. A recent
work (Yao et al., 2022) showed that applying vanilla mixup
with adjusted sampling probabilities based on label similar-
ity can improve generalization on regression tasks. Another
work (Schneider et al., 2023) suggests DA based on Anchor
regression (Rothenhäusler et al., 2021) which allows mix-
ing multiple samples based on their cluster that encodes a
homogeneous group of observations.

3. First-Order Manifold Augmentation
A learning task is typically described as a function which
maps inputs to outputs. In this view, a learning model is
approximating that function using e.g., a neural network,
and it is formulated via f : X → Y , denoting the input
and output domains by X and Y , respectively. A regression
problem is such that the output domain is (un)countable,
e.g., Y ⊂ Nm or Y ⊂ Rm. We consider the general setting
where X ⊂ Rn,Y ⊂ Rm. During training, the learning
model is provided with a training set D = {(xi, yi)}Ni=1,
sampled from (xi, yi) ∼ P . Our method extends D by
producing a new training distribution as we describe below.

To generate new samples, we consider the singular value
decomposition (SVD) of a matrix M ∈ Rq×r, q ≥ r which
is given by M = USV T . U, V are orthogonal, and S
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def scale(A, k, lam):
  U, s, Vt = torch.linalg.svd(A, full_matrices=False)
  lam_repeat = lam.repeat(s.shape[-1] - k)
  lam_ones = torch.ones(k)
  s = s * torch.cat((lam_ones, lam_repeat))
  A = U @ torch.diag(s) @ Vt
  return A

# X, Y are in batch x feats
for (X, Y) in loader:
  lam = beta.Beta(alpha, alpha).sample()
  A = torch.concatenate((X, Y), axis=1)
  A = scale(A, k, lam)
  X, Y = A[:, :n], A[:, n:]
  optimizer.zero_grad()
  loss(net(X), Y).backward()
  optimizer.step()
  

Data additive noise

mixup FOMA

Figure 1. We show the pseudocode for FOMA at the input level, l = 0 (left). We demonstrate the effect of a few DA methods on 2D data
whose intrinsic dimension is one (right).

is diagonal consisting of the singular values ordered by
σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. SVD is intimately related
to principal component analysis (PCA) which in turn is
heavily studied in manifold learning and dimensionality
reduction (Ma & Fu, 2012). It is well known that the best
rank k approximation of M is given by omitting the last
(r − k) singular values, i.e., Mk =

∑k
j=1 σjujv

T
j (Eckart

& Young, 1936). The matrix Mk preserves the (k) dominant
components in M , and discards the rest. Further, SVD is
also known to yield a first-order approximation of the data
manifold (Singer & Wu, 2012; Kaufman & Azencot, 2023).
Our key insight is that scaling the small singular values
produces training samples that are in close proximity to the
manifold, and thus to the true data distribution P .

In particular, based on the manifold hypothesis (Cayton
et al., 2008), we assume that the data samples D live on or
close to a manifold M ⊂ X ×Y . We denote by T (x, y) the
tangent plane of the data manifold M at the point (x, y) ∈
M. Namely, T (x, y) is the linear approximation of M at
(x, y). Below, we utilize SVD to approximate T (x, y), and
to generate artificial samples by considering pairs (x̃, ỹ) in
the tangent plane of the (x, y).

Let the input and output mini-batch tensors X ∈ Rb×n0 and
Y ∈ Rb×m, respectively, where w.l.o.g b ≥ n0 +m is the
batch size. We denote the network by f(X) = fl(gl(X)),
Zl := gl(X) where gl maps inputs to latent representa-
tions Zl ∈ Rb×nl at layer l ∈ [0, L], and fl maps latent
vectors to outputs. Let λ ∼ Beta(α, α) for α ∈ (0,∞)
and k ∈ [1, nl +m] be the index of the singular value af-
ter which we scale down. Then, the new artificial samples

Zl(λ, k), Y (λ, k) are defined via

A := [Zl, Y ] = USV T ∈ Rb×(nl+m) ,

A(λ, k) := US(λ, k)V T ∈ Rb×(nl+m) ,

Zl(λ, k) := A(λ, k)1:nl
∈ Rb×nl ,

Y (λ, k) := A(λ, k)nl+1:nl+m ∈ Rb×m ,

where [·, ·] concatenates along columns, A1:i stands for the
first i column vectors in A, and S(λ, k) is the diagonal
matrix of scaled down singular values. Namely, we compute
S(λ, k) = diag(σ1, . . . , σk | λσk+1, . . . , λσnl+m). We
propose two methods for choosing the parameter k, one is
based on the intrinsic dimension of the data, denoted by
FOMA and the second is based on the explained variance of
the data denoted by FOMAρ.

Intrinsic dimension. We set the value of k to be equal the
intrinsic dimension (ID) of A, i.e., the minimal number of
features needed to represent the data with little information
loss (Facco et al., 2017). The ID can be estimated for the
entire dataset at the input level, or alternatively, approxi-
mated per batch during the training process. Setting k to
equal the ID is motivated by our analysis below in Sec. 4,
where we show that FOMA is equivalent to sampling from
the tangent space of the manifold. In practice, we use k
dominant singular vectors to approximate the tangent space.

Explained variance. In addition to the ID, we also consider
the value k to depend on the hyper-parameter ρ ∈ [0, 1] that
represents the “amount” of signal to keep unchanged, i.e.,

k = argmax
k̃

k̃∑
j=1

σj/
∑
j

σj ≤ ρ .

Similar to mixup (Zhang et al., 2017), our method recovers
the original dataset D as α → 0, ∀k.
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Figure 2. Training stability and overfitting. (a) RMSE loss on the train set. (b) RMSE loss on the test set. (c) Generalization gap: the
difference between test error and train error

The loss function associated with FOMA is

L(f) = E(X,Y ) Eλ El cλ [(fl, 1) ◦ χ(gl(X), Y ))] ,

s.t. (X,Y ) ∼ D, λ ∼ H(σ), l ∼ [0, L] ,

where cλ : Rb×m × Rb×m → [0,∞) is a cost function,
typically mean squared error (MSE). The scale transform
χ takes a pair of tensors gl(X), Y , and it scales down by
λ the last (nl + m − k) singular values of their concate-
nation. A key attribute of FOMA is that it is fully differen-
tiable since the singular value decomposition can be back-
propagated (Ionescu et al., 2015). We provide an example
PyTorch pseudocode in Fig. 1 (left). The computational
complexity of FOMA is governed by SVD calculation which
has a complexity of O(min(qr2, rq2)) for a q × r matrix.

Design choices. For certain λ values, the new sample
Zl(λ, k), Y (λ, k) may be too far from P . With this in mind,
we explored the option of scaling down the loss function
c(·, ·) by a parameter µ(λ) in addition to modifying the
singular values. However, we tested various profiles µ(λ)
and discovered the most consistent models are obtained
when no scaling of loss occurs, see Sec. 5.3. Importantly,
this means that our approach adopts a different ansatz in
comparison to mixup-based methodologies. While mixup
incorporates uncertainty into the model training using “in-
between” samples and labels, our method uses the new
data as if it was sampled from the true distribution, since
we do not scale c. An alternative option which would be
conceptually closer to mixup is to scale the large singular

values as well as the loss term. We show in Sec. 5.3 that this
choice is usually inferior to FOMA.

Batch selection. Given a sample (x, y) ∈ X ×Y , we aim
to produce training samples that are in close proximity to
the manifold M, and thus to the true data distribution P .
However, we do not know the structure of M, and thus we
can not sample from it directly, unfortunately. To overcome
this challenge, we sample from a linear approximation of the
M at (x, y) given by the tangent plane T (x, y). In practice,
we need a set of points N(x,y) = {(xi, yi)} in the neighbor-
hood of (x, y) to estimate T (x, y) via SVD. The proximity
of the points N(x,y) to (x, y) has a direct effect on the qual-
ity of the approximation of the tangent plane. In practice,
we construct batches of points that are close to each other
as measured by the Euclidean distances between the labels
in Y . We hypothesize that better approximations should
generate samples closer to the data manifold, improving
empirical test results. To validate our claim, we tested two
batch selection methods for training 1) randomly selecting
batches (random); and 2) constructing batches using sam-
ples of points that are close to each other (close). For each
setting we trained several models and selected the model
that achieved the best performance on the validation set. In
Table 1, we report the results of batch selection methods on
the test set. It is notable that constructing batches of close
points outperforms random batch selection.

Table 1. Results for different batch selection methods FOMA.

Dataset Airfoil ↓ NO2 ↓ Exchange ↓ Electricity ↓ Echo ↓ RCF ↓ Crimes ↓ Poverty ↑ DTI ↑
FOMA- random 2.159 0.515 0.014 0.059 5.248 0.175 0.144 0.433 0.491
FOMA- close 1.646 0.521 0.013 0.058 5.215 0.171 0.132 0.492 0.496

FOMAρ - random 2.012 0.514 0.014 0.060 5.224 0.163 0.134 0.409 0.508
FOMAρ - close 1.471 0.512 0.013 0.059 5.512 0.159 0.128 0.488 0.503
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Figure 3. Evaluating a non-augmented model and a model trained with FOMA on train data whose small singular values are scaled down for
different values of λ (left). We show on the right panel the probability density function of the original data (green), and its modifications
using λ = 0 (blue), and λ = 0.5 (orange).

Stability and overfitting We trained two models on the
NO2 dataset, one without using our method (ERM) and one
with our method (FOMA) and report the results in Fig. 2.
We observe that (a) the training process of FOMA is stable
with respect to ERM, i.e., the loss is monotonically decreas-
ing with relatively small fluctuations. Furthermore, FOMA
exhibits better test performance (b) and smaller generaliza-
tion gap (c).

Computational resources The computational complexity
of FOMA is governed by SVD calculation which has a com-
plexity of O(min(qr2, rq2)) for a q × r matrix. In Table 2,
we compare the average epoch time across 50 epochs in
seconds to provide an estimate for the empirical computa-
tional cost of FOMA. The results are obtained with a single
RTX3090 GPU. Note that the runtime of FOMA is very de-
pendant on the batch size. Larger batch size results in less
SVD computations, and depending on implementation, SVD
of larger matrices can be evaluated faster.

Table 2. Training times using FOMA (in seconds).

DATASET AIRFOIL ELECTRICITY DTI

ERM 0.058 1.406 33.374
FOMA- INPUT 0.148 3.101 43.433
FOMA- LATENT 0.286 2.837 51.399
FOMA- BOTH 0.321 4.376 63.071
FOMAρ - INPUT 0.119 2.806 41.527
FOMAρ - LATENT 0.149 3.021 43.985
FOMAρ - BOTH 0.262 4.315 57.35

The effect of FOMA on data and learning. We generated
a 2D point cloud whose intrinsic dimension is one (shown
in blue, Fig. 1), and we applied different DA methods on
this data. The three panels in the figure show in orange

the augmented data when using additive noise, mixup, and
FOMA with λ = 0.5 and over the original point cloud col-
ored in light blue. Injecting noise alters each point in its
neighborhood, whereas mixup draws the points towards
the center of their convex hull. In contrast, FOMA aligns the
new samples along the dominant component of the original
data. Notably, our approach may increase the span of train-
ing data, and thus it can improve estimation in regression as
was recently shown in (Wu et al., 2020).

We argue that training on samples created with our method
encourages the inherent tendency of the network to model
the dominant parts of the data better (Naiman & Azencot,
2023). To demonstrate this phenomenon, we trained a three-
layer fully connected network with and without FOMA on
the NO2 dataset. The trained models are evaluated on the
test dataset modified using a 100 varying λ ∈ [0, 1] values,
see Fig. 3 (left). Namely, we modify the singular values
of every batch in the dataset for each λ, and feed the re-
sulting data for inference. Surprisingly, the non-augmented
model (blue curve) performs better on the unseen modi-
fied samples, yielding the minimum at λ ≈ 0.5. Further,
we note that for the majority of λ values, the test MSE is
lower than the error obtained for the original data D (i.e.,
for λ = 1). In comparison, the regularized network attains
a qualitatively similar plot in terms of the minimizing λ and
test MSE profile, however, the MSE is lower for all λ. This
example shows that the (non-augmented and augmented)
models generalize better to data projected to the manifold
M, except for a few low λ values. We conclude that deep
regression models may benefit from altering their training
procedure by using samples closer to the data manifold M.
Finally, this behavior was found to be consistent across
several architectures and datasets, see App. B.
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Table 3. Comparison of in-distribution generalization tasks. Bold values represent the best results and underlined values are second best.
We report the average RMSE and MAPE over three seeds. Full results with standard deviation can be found in App F.

Airfoil NO2 Exchange-Rate Electricity Echo
RMSE ↓ MAPE (%)↓ RMSE ↓ MAPE (%)↓ RMSE ↓ MAPE (%)↓ RMSE ↓ MAPE (%)↓ RMSE ↓ MAPE (%)↓

ERM† 2.901 1.753 0.537 13.615 0.0236 2.423 0.0581 13.861 5.402 8.700
Mixup† 3.730 2.327 0.528 13.534 0.0239 2.441 0.0585 14.306 5.393 8.838
Mani Mixup† 3.063 1.842 0.522 13.382 0.0242 2.475 0.0583 14.556 5.482 8.955
C-Mixup⋆ 2.748 1.645 0.516 13.069 0.024 2.456 0.057 13.349 5.362 8.868
ADA⋆ 2.357 1.377 0.515 13.128 0.022 2.250 0.059 13.58 - -
FOMA 1.646 0.963 0.521 13.23 0.013 1.280 0.058 14.614 5.215 8.331
FOMAρ 1.471 0.816 0.512 12.894 0.013 1.262 0.059 13.437 5.512 8.742
C-Mixup† 2.717 1.610 0.509 12.998 0.020 2.041 0.057 13.372 5.177 8.435
ADA† 2.360 1.373 0.515 13.128 0.021 2.116 0.059 13.464 - -

Inspecting the data distribution and its modifications, reveals
the differences between the data generated when select λ
values are used. The distribution of the original data (green)
shown in Fig. 3 (right) is bimodal. In comparison, the blue
curve (λ = 0) for which the small singular values change
to zeros, has a unimodal distribution. The orange curve
(λ = 0.5) for which both the non-augmented model and a
model trained with FOMA attained the minimum loss, has a
smoother transition between the major mode and the minor
mode. From the analysis above, we conclude the following.
First, the network prefers data whose distribution is simpler
(orange) than the original distribution (blue), yet not too
simple (green). Second, our regularization encourages this
tendency by providing the model with such data, leading to
improved MSE profiles. To the best of our knowledge, the
above analysis is novel on deep regression models.

Notably, while it may argued that the behavior in Fig. 3
(left) is natural and intuitive as the model “simply” performs
better on denoised signals, we argue differently. In partic-
ular, this plot somewhat contradicts our understanding of
overfitting which occurs in high probability for tiny datasets
such as NO2 (the entire dataset is composed of 500 entries)
using multiple weights network such as the fully connected
network we used with around 20k parameters. Specifically,
since the data is highly likely to be overfit by the network,
we expect the MSE value to be lowest for λ = 1, and MSE
value equal or higher for any λ < 1. Thus, we advocate
that the above analysis may reveal a characteristic feature
of regression neural networks. Our analysis is reinforced
further as other datasets and architectures follow a similar
pattern (App. B). Importantly, we are unaware of a simi-
lar experiment in the literature of deep regression neural
networks.

4. Analysis
Relation to additive noise. In what follows, we would
like to answer the following question: Does applying FOMA
is merely a variant of injecting additive noise? To this end,
we analyze FOMA from a perturbation theory viewpoint.

Specifically, we would like to understand how a random
data perturbation affects the singular values of the data
matrix A ∈ Rq×r, q ≥ r. We denote by σ1 ≥ σ2 ≥
· · · ≥ σr the singular values of A. The perturbed matrix
and its singular values set are denoted by Ã = A+ E and
{σ̃j}rj=1, respectively. We write inf2(A) and |A|2 to denote
the smallest and largest singular values of any matrix A.
The following classical result provides an estimated bound
for the perturbed singular values (Stewart, 1979; 1998).

Theorem 1. Let P be the orthogonal projection onto the
column space of A. Let P⊥ = I − P . Then

σ̃2
j = (σj + γj)

2 + η2j , j = 1. . . . , r ,

where |γj | ≤ |P E|2 and inf2(P⊥E) ≤ ηj ≤ |P⊥E|2 .

Following (Stewart, 1979), we make two observations with
respect to Thm. 1. First, if σj ≫ |E|2 then it dominates
the bound and we have σ̃j

∼= σj + γj . Second and more
important to our setting, when σj is of order |E|2, the term
ηj will tend to dominate. Indeed, in these cases the term ηj
increases the singular value σj . We conclude that random
perturbations to A tend to increase its small singular values.
In contrast, FOMA typically decreases the small singular val-
ues, while leaving the large σj unchanged. Thus, FOMA is in
effect a complementary approach to injecting additive noise,
allowing a finer control over the resulting new samples. Fi-
nally, we note that for a certain choice of hyper-parameters,
our approach can be viewed as injecting noise per the above
analysis. For example, taking λ ∼ Uniform(1.0, α) for
α > 1.0 will increase all the small singular values of A
by a factor of λ ∈ [1.0, α], where Uniform is the random
uniform distribution.

FOMA as a Vicinal Risk Minimization (VRM). Given a
cost function c : Y × Y → R+, the learning problem aims
at minimizing the expectation of the loss c(f(x), y) over
the distribution P(x, y), x ∈ X , y ∈ Y . A fundamental
challenge, shared by most real-world scenarios, is that the
true distribution of the data is unfortunately unknown. The
alternative is to minimize over the empirical distribution of
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a train set {(xi, yi)}ni=1 given by

dPemp(x, y) =
1

n

∑
i

δxi
(x)δyi

(y) .

The resulting scheme is the common training procedure of
modern neural networks, formally known as the Empirical
Risk Minimization (ERM) (Vapnik, 1991).

While Pemp provides a basic approximation of the true P ,
it was suggested (Chapelle et al., 2001) that other density
estimates dPest that take into account the vicinity of (xi, yi)
should be considered. The recent mixup approach (Guo
et al., 2019) exploits this idea by proposing a Vicinal Risk
Minimization (VRM) procedure that is based on the vicinal
distribution estimate 1

n

∑
i,j δx̃ij(λ)(x)δỹij(λ)(y), defined

using convex combinations z̃ij(λ) = λzi + (1 − λ)zj for
z ∈ {x, y} and λ ∼ Beta(α, α). In this context, the main
difference between FOMA and mixup is in the definition of
vicinity as we describe below.

We denote by T (x, y) the tangent plane of the data manifold
M at the point (x, y) ∈ M ⊂ X × Y . Namely, T (x, y)
is the linear approximation of M at (x, y). For every pair
(x, y), we define a new density distribution Ptan which con-
siders all pairs (a, b) in the tangent plane of (u, v) ∈ M.
Formally,

dPtan(x, y) =

∫
M

∫
T (u,v)

δa(x)δb(y) d abduv .

Then, FOMA approximates the latter expression by generat-
ing an estimate of the tangent plane Test via SVD, yielding
the following vicinal estimate

dPest(x, y) =
1

n

∑
i

1

ki

∑
j

δxj
(x)δyj

(y) ,

(xj , yj) ∈ Test(xi, yi) , ki = |Test(xi, yi)| .

5. Experiments
5.1. In-Distribution Generalization

In this section, we assess the effectiveness of FOMA and
compare it to previous methods in terms of its ability to
generalize within the given distribution. We utilize the
datasets used in the study conducted by Yao et al. (2022)
and closely replicate their experimental setup.

Datasets. We use the following five datasets to evaluate
the performance of in-distribution generalization. Two tabu-
lar datasets: Airfoil Self-Noise (Airfoil) (Brooks et al., 2014)
and NO2 (Aldrin, 2004). Airfoil includes the aerodynamic
and acoustic test results of airfoil blade sections and NO2
predicts the level of air pollution at specific locations. Two
time series datasets: Exchange-Rate and Electricity (Lai

et al., 2018), where Exchange-Rate provides a collection of
daily exchange rates and Electricity is utilized for predicting
the hourly electricity consumption. Finally, Echocardio-
gram Videos is designed for predicting the ejection fraction.
It consists of a collection of videos that provide visual rep-
resentations of the heart from various perspectives. See
App. C for a detailed description of the datasets.

Experimental settings. We conduct a comparative anal-
ysis between our approach, FOMA, and several existing
strong baseline methods, namely Mixup (Zhang et al., 2017),
Manifold-Mixup (Verma et al., 2019), C-Mixup (Yao et al.,
2022), Anchor Data Augmentation (ADA) (Schneider et al.,
2023), and classical expected risk minimization (ERM). Im-
portantly, we denote by C-Mixup⋆ and ADA⋆ the results for
these methods as reproduced in our environment, whereas C-
Mixup† and ADA† represent the results as reported in (Yao
et al., 2022; Schneider et al., 2023), respectively. For a
fair comparison, we compare our results with respect to the
starred models, as we were unable to reproduce the reported
results in the original papers; this observation also appeared
in (Schneider et al., 2023) regarding C-Mixup. Further, to
maintain consistency with the methodology outlined in (Yao
et al., 2022), we adopt the same model architectures, using
a fully connected three-layer network for tabular datasets,
an LST-Attn (Lai et al., 2018) for time series data, and
EchoNet-Dynamic (Ouyang et al., 2020) for predicting the
ejection fraction. We use Root Mean Square Error (RMSE)
and Mean Averaged Percentage Error (MAPE) as evalu-
ation metrics. Detailed experimental settings and hyper-
parameters are provided in App. E.

Results. We report the in-distribution generalization re-
sults in Table 3. In all settings, lower numbers are better.
Per column, we mark in bold the best available result, and
we underline the second best error measure. Table 3 shows
that both variants of FOMA improve over standard training
via ERM, often by large margins. Further, our approach
achieves new state-of-the-art error measures in comparison
to the other baseline approaches on all datasets and met-
rics, except for Electricity where we obtain on-par results to
C-Mixup. In particular, FOMAρ yields the best available re-
sults in most cases. Finally, we observe the most significant
improvement occurs on two datasets: Airfoil and Exchange-
Rate in which FOMA reduces the error of the state-of-the-art
result by approximately 37% and 38%, respectively.

5.2. Out-of-Distribution Robustness

In this section, we assess the effectiveness of FOMA and
compare it to previous methods on tasks involving out-of-
distribution robustness. To this end, we consider the datasets
used in the study (Yao et al., 2022), and we closely replicate
their experimental setup.
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Table 4. Comparison of out-of-distribution robustness problems. Bold values represent the best results and underlined values are second
best. We report the average RMSE across domains and the “worst within-domain” RMSE over three different seeds. For the DTI and
PovertyMap datasets, we report average R and “worst within-domain” R. Full results with standard deviation can be found in App F.

RCF (RMSE) Crimes (RMSE) DTI (R) PovertyMap (R)
Avg. ↓ Avg. ↓ Worst ↓ Avg. ↑ Worst ↑ Avg. ↑ Worst ↑

ERM† 0.164 0.136 0.170 0.483 0.439 0.80 0.50
Mixup† 0.159 0.134 0.168 0.459 0.424 0.81 0.46
ManiMixup† 0.157 0.128 0.155 0.474 0.431 - -
C-Mixup⋆ 0.153 0.131 0.166 0.474 0.441 0.803 0.516
ADA⋆ 0.171 1.30 0.156 - - - -

FOMA 0.171 0.132 0.164 0.496 0.430 0.776 0.492
FOMAρ 0.159 0.128 0.158 0.503 0.459 0.832 0.482

C-Mixup† 0.146 0.123 0.146 0.498 0.458 0.81 0.53
ADA† 0.175 0.130 0.156 0.493 0.448 0.794 0.522

Table 5. Ablation study of FOMA over modifying data at the input or latent levels, different loss scaling profiles µ(λ), and scaling down
the small or large singular values.

NO2 Electricity
mode µ(λ) scale RMSE ↓ MAPE ↓ RMSE ↓ MAPE ↓
input 1 small 0.52± 0.01 13.23± 0.09 5.83e−2 ± 1e−3 13.02± 0.07
input λ small 0.53± 0.01 13.23± 0.09 5.83e−2 ± 1e−3 13.02± 0.37
input λ2 small 0.54± 0.01 13.53± 0.27 5.79e−2 ± 2e−4 13.50± 0.04

input 1 large 0.79± 0.02 19.22± 0.45 5.89e−2 ± 4e−4 13.89± 0.39
input λ large 0.76± 0.02 18.61± 0.37 5.86e−2 ± 9e−4 13.15± 0.05
input λ2 large 0.74± 0.01 18.01± 0.28 5.88e−2 ± 1e−3 13.23± 0.13

latent 1 small 0.53± 0.01 13.21± 0.08 6.11e−2 ± 9e−4 15.58± 0.38
latent 1 large 0.65± 0.02 16.35± 0.56 7.16e−2 ± 1e−3 18.62± 0.70

input + latent 1 small 0.52± 0.01 13.19± 0.14 5.94e−2 ± 1e−3 14.78± 0.48
input + latent 1 large 0.65± 0.02 21.25± 0.48 7.97e−2 ± 1e−4 20.77± 0.41

Datasets. We use the following four datasets to assess the
performance of out-of-distribution robustness. 1) RCFash-
ionMNIST (RCF) (Yao et al., 2022), which is a synthetic
modification of Fashion-MNIST, modeling sub-population
shifts, where the goal is to predict the angle of rotation for
each object. 2) Communities and Crime (Crime) (Redmond,
2009) is a tabular dataset that focuses on predicting the total
number of violent crimes per 100K population, where the
objective is to develop a model that can generalize to states
that were not included in the training data. 3) Drug-Target
Interactions (DTI) (Huang et al., 2021) is aiming to predict
out-of-distribution drug-target interactions where the year is
the domain information. 4) PovertyMap (Koh et al., 2021)
is a satellite image regression dataset that has been created
with the goal of estimating asset wealth in countries that
were not included in the training set. For further details on
the various datasets, see App. C.

Experimental settings. Similarly to Sec. 5.1, we compare
FOMA to the same baseline approaches. In terms of met-
rics, we report the RMSE (lower is better) for RCF-MNIST
and Crimes. For PovertyMap and DTI, we use R (higher
is better) as the evaluation metric, originally proposed in
the respective papers (Koh et al., 2021; Huang et al., 2021).
Following Yao et al. (2022), we trained ResNet-18 for RCF-
MNIST and PovertyMap datasets, three-layer fully con-
nected networks for Crimes, and DeepDTA (Öztürk et al.,
2018) for DTI. More details regarding hyper-parameters and
the experimental setup appear in App. E.

Results. We report both the average and worst-domain
performance metrics for out-of-distribution tasks in Table 4.
Dashed cells represent cases where results are not available.
While the results for our approach are somewhat more mixed
in comparison to the in-distribution challenge, we still find
FOMA to be highly effective. In particular, FOMA improved
over ERM in almost all cases, with the exception of RCF.
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We find our technique to obtain comparable results for RCF
and Crimes with respect to the best baselines. Notably,
FOMA presents a noticeable gap in DTI and PovertyMap
in comparison to SOTA approaches such as C-Mixup and
ADA. Finally, similarly to the in-distribution setting, FOMAρ

achieves better results in comparison to FOMA.

5.3. Ablation study

FOMA is a data augmentation method that scales down sin-
gular values of the data. However, there are several design
choices to make. For example, we can choose to apply
FOMA on the input data, on the learned representations, or
apply it on both in succession. Another decision is what
singular values we should scale down: the smaller ones, cap-
turing less explained variance of the data, or the larger ones,
which may create samples that are further away from the
data manifold and thus expand the underlying distribution.
Another choice to make is how to scale the singular values
and potentially the loss function. The values λ ∼ Beta(α, α)
by which we scale the singular values vary between batches,
the higher the value of λ, the more noise is removed. By
scaling the loss function differently for each batch, we can
change the update rule of the optimizer, potentially leading
to an improved behavior of FOMA.

We detail in Table 5 the ablation results we obtained for
NO2 and Electricity datasets while exploring the parameter
spaces of the above design choices. Overall, applying our
technique at the input level, without scaling the loss, and
scaling the small singular values seems to consistently yield
good results across datasets and tasks (see also Tables 8, 9).
More specifically, we find in Table 5 that for the datasets
NO2 and Electricity, scaling down the small singular values
is preferred to scaling the larger ones and more generally,
this observation holds for all datasets (see Table 8). On
the other hand, when using FOMAρ, allowing more freedom
in selecting what singular values to scale, some datasets
achieve better results when scaling the larger singular val-
ues, e.g., Airfoil and Exchange-rate. Furthermore, we have
two observations regarding the loss scaling profiles µ(λ): 1)
the effect of decreasing µ is inversely proportional between
scaling small singular values and large singular values. For
instance, when scaling the small singular values of NO2,
smaller µ corresponds with better performance, whereas
when scaling the large singular values, larger µ corresponds
to better performance. 2) The effect of µ is inversely pro-
portional between the datasets, decreasing µ improves the
performance on Electricity while achieving worse perfor-
mance on NO2. Finally, we note that employing FOMA in
the latent space or both in the input and latent spaces yields
inconsistent results across datasets.

6. Discussion
We have proposed FOMA, a data-driven method for data
augmentation of regression tasks. We showed that FOMA
supports the network tendency of representing dominant
components of its input signals by creating virtual exam-
ples sampled from the tangent planes of the original train
set. Implementing FOMA is straightforward, and it is fully
differentiable. Throughout an extensive evaluation, we have
shown that FOMA improves the generalization error of neural
models on regression benchmarks including in-distribution
generalization and out-of-distribution tasks. We also ablated
our model with respect to several design choices. Generally,
we find our method to obtain highly competitive results and
often surpass state-of-the-art approaches.

We inspected the effect of the hyper-parameters α, ρ and
whether to scale the small or large singular values. For
FOMA, we observe a relatively consistent performance
across tasks, whereas FOMAρ presents mixed results (see
Tabs. 8, 9). Given that FOMA and FOMAρ perform similarly,
we can not derive a specific guideline for choosing these
hyper-parameters. Another limitation is that the time com-
plexity of FOMA is governed by the SVD calculation, which
may be restrictive for large train batches. Finally, we men-
tion that if k = n0 +m, i.e., the tangent space dimension
equals that of the data rank, then our approach can be only
applied to the dominant singular values.

There are several exciting avenues for future exploration.
First, is there a fundamental link between the vicinal dis-
tribution employed and the learned representation? While
several existing works suggest that linearity yields better
models (Azencot et al., 2020; Berman et al., 2023; Zeng
et al., 2023), the model dependency on the specific defini-
tion of vicinity is still not well understood. Second, can
similar methods to ours be useful in classification tasks?
The adaptation of FOMA to classification is straightforward,
however, several design choices which were tuned for re-
gression may require change in a classification setting. In
particular, the computational demands of SVD-based data
augmentation are higher in comparison to mixup schemes.
Improving these aspects by e.g., approximating the tangent
space of the manifold may be highly impactful in regression
as well as classification tasks. Another interesting avenue
to explore is the relation between FOMA and generative
modeling (Naiman et al., 2024). We plan to explore these
questions in future work.
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A. Method overview
In this section we provide details for different methods used to evaluate the intrinsic dimension and linear dimension which
are used for FOMA and FOMAρ respectively.

A.1. Intrinsic dimension

To estimate the intrinsic dimension of data, we use the TwoNN (Facco et al., 2017) ID estimator. The ID-estimator relies on
the distances to only the two closest neighbors of each point, minimizing the influence of inconsistencies in the dataset
during estimation.
Let X = {x1, x2, · · · , xN} be a set of points sampled uniformly on a manifold with intrinsic dimension d. For each point
xi, we calculate the two shortest distances r1, r2 from other elements in X \ {xi} and determine the ratio µi =

r2
r1

. It has
been proven that µi, 1 ≤ i ≤ N are distributed according to a Pareto distribution with parameter d + 1 on the interval
[1,∞), specifically f (µi | d) = dµ

−(d+1)
i . While d can be estimated by maximizing the likelihood:

P (µ1, µ2, · · ·µN | d) = dN
N∏
i=1

µ
−(d+1)
i . (1)

We adopt the approach suggested by Facco et al. (2017) using the cumulative distribution F (µ) = 1− µ−d. The method
involves estimating the parameter d through linear regression on the empirical estimate of F (µ). To do this, we arrange
the values of µ in ascending order and define F emp(µi) ≈ i

N . A linear regression is then performed on the set of points
{(logµi,− log(1− F emp

i ))}Ni=1 where the slope of the fitted line is the estimated ID.

A.2. Linear dimension

A common method for estimating the linear dimension of data is to perform principal component analysis (PCA) or SVD
and count the number of components that should be included to describe some percentage of the variance in the data, usually
above 90%. More formally:

k = argmax
k̃

k̃∑
j=1

σj/
∑
j

σj ≤ ρ .

B. Sequential models capture dominant components of data better
Following the discussion in Sec. 3, we verify empirically that neural networks model the dominant parts of their data better.
We repeat the experiment in Fig. 3 (left) using additional two datasets which are trained on different architectures. For
evaluation, we use the dataset whose singular values are modified using varying values of λ. The results are presented in
Fig. 4, where solid lines represent the results of the non-regularized model, and dashed lines are associated with models
trained with FOMA. Remarkably, we observe a similar qualitative behavior as we reported in Sec. 3. In particular, the highest
MSE values are obtained for both the baseline and regularized models for λ = 1, i.e., when the data is unchanged. Further,
the model attain improved error measures as λ decreases, where the error profile is similar for the baseline and regularized
models. Based on these results, we deduce that sequential models prefer to represent and compute the dominant components
of data, reinforcing our choice for supplying such data to the network during training.

C. Dataset Description
In this section, we provide detailed descriptions of datasets used in the experiments in this work.

Airfoil Self-Noise (Brooks et al., 2014). The dataset comprises aerodynamic and acoustic test findings for various sizes of
NACA 0012 airfoils, obtained at different wind tunnel speeds and angles of attack. Each input instance consists of five
features: frequency, angle of attack, chord length, free-stream velocity, and suction side displacement thickness. The label
represents the one-dimensional scaled sound pressure level. To normalize the input features, min-max normalization is
applied. As per reference (Hwang & Whang, 2021), the training, validation, and test sets consist of 1003, 300, and 200
examples, respectively.
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Crimes Electricity

Figure 4. Evaluating a non-augmented model (solid lines) and a model trained with FOMA (dashed lines) on train data whose small
singular values are scaled down for different values of λ (see also Fig. 3, left). Communities and crime dataset trained on a three-layer full
connected network (left). Electricity trained on LST-Attn (Lai et al., 2018) (right).

NO2 (Aldrin, 2004). The NO2 emission dataset originates from a study examining the relationship between air pollution
near a road and traffic volume along with meteorological variables. Each input comprises seven features, including the
logarithm of the number of cars per hour, temperature 2 meters above ground, wind speed, temperature difference between
25 and 2 meters above ground, wind direction, hour of the day, and the day number since October 1st, 2001. The hourly
values of the logarithm of NO2 concentration, measured at Alnabru in Oslo between October 2001 and August 2003, serve
as the response variable or label. As per reference (Hwang & Whang, 2021), there are 200 examples in the training set, 200
in the validation set, and 100 in the test set.

Exchange-Rate (Lai et al., 2018). The exchange-rate dataset comprises a time-series collection of daily exchange rates
for eight countries: Australia, Britain, Canada, Switzerland, China, Japan, New Zealand, and Singapore, spanning from
1990 to 2016. The total length of the time series is 7,588, with a daily sampling frequency. A sliding window size of 168
days is applied. The input dimension is 168 × 8, and the label dimension is 1 × 8 data points. Following the methodology
outlined in (Lai et al., 2018), the dataset has been divided into training (60%), validation (20%), and test (20%) sets in
chronological order.

Electricity (Brooks et al., 2014). This dataset is a time-series collection obtained from 321 clients, representing electricity
consumption in kWh recorded every 15 minutes from 2012 to 2014. The total length of the time series is 26,304, sampled
hourly. As with the Exchange-Rate data, a window size of 168 is utilized, resulting in an input dimension of 168 × 321 and
a corresponding label dimension of 1 × 321. Similar to the methodology described in Lai et al. (Lai et al., 2018), the dataset
is divided accordingly.

Echo (Ouyang et al., 2020). The Echocardiogram Videos dataset comprises 10,030 labeled apical-4-chamber echocar-
diogram videos captured from various perspectives, accompanied by expert annotations for studying cardiac motion and
chamber sizes. These videos were sourced from individuals undergoing imaging at Stanford University Hospital between
2016 and 2018. To delineate the left ventricle area, initial preprocessing involves frame-by-frame semantic segmentation of
the videos. This preprocessing method generates video clips containing 32 frames of 112 × 112 RGB images, which serve
as input for predicting ejection fraction. The dataset is partitioned into training, validation, and test sets, with sizes of 7,460,
1,288, and 1,276, respectively.

RCF. RCF-MNIST, where ”RCF” stands for ”Rotated-Colored-Fashion”, is a dataset constructed with specific color and
rotation attributes. In this dataset, the normalized RGB vector for red and blue is [1, 0, 0] and [0, 0, 1] respectively, and
the normalized rotation angle (i.e., label) for each image is denoted as g, where g ∈ [0, 1]. During the construction of the
training set, 80% of the images are colored using the RGB value [g, 0, 1− g], while the remaining 20% are colored with
[1− g, 0, g]. Consequently, there is a strong spurious correlation between color information and labels within the training
set. To simulate distribution shift in the test set, this spurious correlation is reversed, with 80% of the images colored using
RGB values [1− g, 0, g], and the remaining 20% with [g, 0, 1− g]]. The impact of this spurious correlation on performance
is evaluated by comparing the performance of the same test set with or without distribution shift. The results, presented in
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Table 11, demonstrate that the subpopulation shift induced by the spurious correlation indeed affects performance negatively,
as anticipated.

PovertyMap. This dataset is part of the WILDS benchmark (Koh et al., 2021), comprising satellite images sourced
from 23 African countries, which are utilized for predicting the village-level real-valued asset wealth index. Each input
consists of a 224 × 224 multispectral LandSat satellite image with 8 channels, while the corresponding label represents the
real-valued asset wealth index. The domains of the images encompass information regarding the country, urban, and rural
areas. The dataset is divided into 5 distinct cross-validation folds, with all countries in these splits being disjoint to facilitate
the out-of-distribution setting. All experimental configurations adhere to the methodology outlined by Koh et al. (Koh et al.,
2021).

Crime (Redmond, 2009). The Communities And Crimes dataset is a tabular compilation that integrates socio-economic
data from the 1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crime data from the 1995
FBI UCR. It encompasses 122 attributes believed to have some plausible connection to crime, such as median family
income and the percentage of officers assigned to drug units. The target attribute for prediction is per capita violent crimes,
which includes offenses such as murder, rape, robbery, assault, among others. To prepare the data, all numeric features are
normalized using the decimal range 0.00 to 1.00 through an equal-interval binning method, and missing values are imputed
with the average values of the corresponding attributes. Domain information is denoted by state identifications, resulting
in a total of 46 domains. The dataset is partitioned into training, validation, and test sets containing 1,390, 231, and 373
instances, respectively. These sets consist of 31, 6, and 9 disjoint domains, respectively.

DTI (Huang et al., 2021). The Drug-target Interactions dataset is designed to forecast the binding activity score between
each small molecule and its corresponding target protein. Input features encompass information on both the drug and target
protein, represented by one-hot vectors, while the output label denotes the binding activity score. The training and validation
sets are curated from the years 2013 to 2018, while the test set spans the years 2019 to 2020. The ”Year” attribute serves as
the domain information.
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D. Additional Experiments
D.1. Comparison with additive noise

In Section. 4 we show a relation of our method to additive noise. For completeness, we add a supplementary experiment that
compares our method with additive noise as shown in Table. 6 and Table. 7. The experiment was conducted as follows:
Given a sample xi ∈ Rn and yi ∈ Rm we sample ϵx ∼ N (0, σ × In), ϵy ∼ N (0, σ × Im) and create the noised sample
(x̃i = xi + ϵx, ˜yi = yi + ϵy). Where σ is selected from {0.1, 0.01, 0.001, 0.0001} and the best model is chosen according
to the performance on the validation set.

Table 6. Comparison of in-distribution generalization tasks with additive noise.

Airfoil NO2 Exchange-Rate Electricity
RMSE ↓ MAPE (%)↓ RMSE ↓ MAPE (%)↓ RMSE ↓ MAPE (%)↓ RMSE ↓ MAPE (%)↓

ERM† 2.901 1.753 0.537 13.615 0.0236 2.423 0.0581 13.861
ERM+noise 3.172 1.864 0.524 13.326 0.016 1.568 0.600 14.068
FOMA 1.646 0.963 0.521 13.23 0.013 1.280 0.058 14.614
FOMAρ 1.471 0.816 0.512 12.894 0.013 1.262 0.059 13.437

Table 7. Comparison of out-of-distribution robustness problems with additive noise.

RCF (RMSE) Crimes (RMSE) DTI (R)
Avg. ↓ Avg. ↓ Worst ↓ Avg. ↑ Worst ↑

ERM† 0.164 0.136 0.170 0.483 0.439
ERM + noise 0.180 0.136 0.166 0.492 0.442

FOMA 0.171 0.132 0.164 0.496 0.430
FOMAρ 0.159 0.128 0.158 0.503 0.459

E. Hyperparameters
We list the hyperparameters for every dataset in Table 8 and Table 9 for the methods FOMA and FOMAρ, respectively. In our
main results, we apply our method on the input space or on the latent space or both and report the one with best performance.
All hyperparameters are selected by cross-validation, evaluated on the validation set. Some of the hyperparameters such
as architecture and optimizer are not included in the table since they were not changed and were used as they appear in
previous works (Yao et al., 2022).

Table 8. Hyperparameter choices for the experiments using FOMA.

Dataset Airfoil NO2 Exchange-Rate Electricity Echo RCF Crimes PovertyMap DTI

Learning rate 5e−4 1e−3 1e−2 5e−4 1e−4 1e−4 5e−3 1e−3 5e−4

Batch size 32 64 16 128 10 128 8 32 64
Input/Latent latent both input both latent latent input latent latent
Epochs 200 100 200 150 20 250 200 50 200
Singular values small small small small small small small small large
α 0.8 0.9 0.2 1.1 1.1 1 0.6 1.5 0.5
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Table 9. Hyperparameter choices for the experiments using FOMAρ.

Dataset Airfoil NO2 Exchange-Rate Electricity Echo RCF Crimes PovertyMap DTI

Learning rate 5e−4 1e−3 1e−3 1e−4 1e−4 1e−4 1e−3 5e−3 1e−2

Batch size 128 8 8 8 10 8 64 32 64
Input/Latent input input input input latent latent both latent latent
Epochs 100 250 150 200 20 250 100 50 250
Singular values large small large large small small large small large
α 1.4 0.3 1 0.7 1.1 1.5 0.6 1 0.6
ρ 0.975 0.95 0.8 0.875 0.85 0.95 0.875 0.875 0.825

F. Results with Standard Deviation
In Tables 10, 11, we report the full results of in-distribution generalization and out-of-distribution robustness respectively.

Table 10. Full results of in-distribution generalization. We compute the mean and standard deviation for results of three seeds.

Airfoil NO2 Exchange-Rate
RMSE ↓ MAPE (%)↓ RMSE ↓ MAPE (%)↓ RMSE ↓ MAPE (%)↓

ERM 2.901± 0.067 1.753± 0.078 0.537± 0.005 13.615± 0.165 0.023± 0.003 2.423± 0.365
Mixup 3.730± 0.190 2.327± 0.159 0.528± 0.005 13.534± 0.125 0.023± 0.002 2.441± 0.286
Mani Mixup 3.063± 0.113 1.842± 0.114 0.522± 0.008 13.357± 0.214 0.024± 0.004 2.475± 0.346
C-Mixup⋆ 2.739± 0.06 1.640± 0.069 0.516± 0.01 13.069± 0.294 0.024± 0.005 2.455± 0.629
ADA⋆ 2.357± 0.118 1.377± 0.064 0.515± 0.006 13.128± 0.12 0.021± 0.006 2.250± 0.781
FOMA 1.646± 0.103 0.963± 0.056 0.521± 0.013 13.23± 0.289 0.013± 0.000 1.280± 0.037
FOMAρ 1.471± 0.047 0.816± 0.008 0.512± 0.008 12.894± 0.217 0.013± 0.000 1.262± 0.037

C-Mixup† 2.717± 0.067 1.610± 0.085 0.509± 0.006 12.998± 0.271 0.0203± 0.001 2.041± 0.134
ADA† 2.360± 0.133 1.373± 0.056 0.514± 0.007 13.127± 0.146 0.020± 0.006 2.115± 0.689

Electricity Echo
RMSE ↓ MAPE (%)↓ RMSE ↓ MAPE (%)↓

ERM 0.058± 0.001 13.861± 0.152 5.402± 0.024 8.700± 0.015
Mixup 0.058± 0.000 14.306± 0.048 5.393± 0.040 8.838± 0.108
Mani Mixup 0.058± 0.000 14.556± 0.057 5.482± 0.066 8.955± 0.082
C-Mixup⋆ 0.057± 0.000 13.471± 0.15 5.483± 0.097 9.121± 0.208
ADA⋆ 0.059± 0.001 13.578± 0.146 - -
FOMA 0.058± 0.000 14.653± 0.166 5.215± 0.061 8.331± 0.088
FOMAρ 0.059± 0.000 13.437± 0.26 5.476± 0.01 8.742± 0.091
C-Mixup† 0.057± 0.001 13.372± 0.106 5.177± 0.036 8.435± 0.089
ADA† 0.058± 0.001 13.464± 0.296 - -
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Table 11. Full results of out-of-distribution generalization. We compute the mean and standard deviation for results of three seeds.

RCF (RMSE) Crimes (RMSE) DTI (R) PovertyMap (R)
Avg. ↓ Avg. ↓ Worst ↓ Avg. ↑ Worst ↑ Avg. ↑ Worst ↑

ERM 0.162± 0.003 0.134± 0.003 0.173± 0.009 0.464± 0.014 0.429± 0.004 0.80± 0.04 0.50± 0.07
Mixup 0.176± 0.003 0.128± 0.002 0.154± 0.001 0.465± 0.004 0.437± 0.016 0.81± 0.04 0.46± 0.03
ManiMixup 0.157± 0.020 0.128± 0.003 0.155± 0.009 0.474± 0.004 0.431± 0.009 - -
C-Mixup⋆ 0.153± 0.004 0.130± 0.003 0.161± 0.01 0.475± 0.013 0.440± 0.016 0.804± 0.03 0.517± 0.06
ADA⋆ 0.171± 0.009 0.130± 0.003 0.156± 0.006 - - - -

FOMA 0.171± 0.015 0.132± 0.002 0.164± 0.002 0.492± 0.003 0.442± 0.019 0.776± 0.03 0.492± 0.05
FOMAρ 0.159± 0.01 0.128± 0.004 0.158± 0.002 0.503± 0.008 0.459± 0.01 0.832± 0.04 0.482± 0.06

C-Mixup† 0.146± 0.005 0.123± 0.000 0.146± 0.002 0.498± 0.008 0.458± 0.004 0.81± 0.03 0.53± 0.07
ADA† 0.162± 0.014 0.129± 0.003 0.155± 0.006 0.492± 0.009 0.448± 0.009 0.793± 0.03 0.521± 0.06
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