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Abstract
Differential equations are essential and popular
in science and engineering. Learning-based meth-
ods including neural operators, have emerged as
a promising paradigm. We explore its quantum
counterpart, and propose QuanONet – a quantum
neural operator which has not been well studied
in literature compared with their counterparts in
other machine learning areas. We design a novel
architecture as a hardware-efficient ansatz, in the
era of noisy intermediate-scale quantum (NISQ).
Its circuit is pure quantum. By lying its ground
on the operator approximation theorem for its
quantum counterpart, QuanONet in theory can fit
various differential equation operators. We also
propose its modified version TF-QuanONet with
ability to adaptively fit the dominant frequency
of the problem. The real-device empirical re-
sults on problems including anti-derivative opera-
tors, Diffusion-reaction Systems demonstrate that
QuanONet outperforms peer quantum methods
when their model sizes are set akin to QuanONet.

1. Introduction
Nonlinear differential equations are essential tools in mod-
eling complex phenomena across various scientific and en-
gineering fields. Traditional numerical methods, including
finite element methods (FEM) and finite difference methods
(FDM), often rely on discretizing the problem domain and
solving it iteratively. Recently, artificial intelligence (AI)
methods, such as neural operators (Lu et al., 2021; Li et al.,
2020), have emerged as promising alternatives by learning
nonlinear operators directly and achieving some degree of
generalization across different conditions.

Quantum computing offers a fundamentally different ap-
proach to addressing these challenges. Some existing quan-
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tum algorithms for solving differential equations map equa-
tions into higher or infinite dimensional linear spaces (Carle-
man, 1932; Forets & Pouly, 2017; Kowalski & Steeb, 1991;
Jin et al., 2024) or use gradient computation of differentiable
quantum circuits (Kyriienko et al., 2021; Xiao et al., 2024b)
to solve differential equations. However, these methods are
inherently limited to solving specific differential equations
and lack the ability to learn nonlinear operators or generalize
across varying conditions. This restricts their applicability
in solving more complex real-world problems.

Quantum neural networks (QNNs) leverage the exponen-
tially large Hilbert space of quantum systems to achieve
quadratic speedup in online perceptron (Kapoor et al., 2016)
and reinforcement learning (Dunjko et al., 2016). So there
have been many studies using QNN to implement popu-
lar classical neural network architectures. However, ex-
isting QNN implementations of neural operators, such as
QFNO (Jain et al., 2024) and quantum DeepONet (Xiao
et al., 2024a), are limited to accelerating the evaluation
phase using quantum Fourier transforms (QFT) and quan-
tum orthogonal neural networks. The former is not observed
to outperform classical operators on differential equation
problems, and the latter uses a hybrid network structure that
brings the communication overhead between quantum and
classical devices.

We propose QuanONet, a general framework for learning
(nonlinear) operators in differential equations using QNN.
This means that it can not only be well-suited for the era
of noisy intermediate-scale quantum (NISQ) by using any
QNN architecture that features low qubit requirements and
does not rely on high-connectivity quantum hardware, but
also has potential in the future fault-tolerant quantum era.

Our QuanONet is grounded in the Universal Approxima-
tion Theorem for operators, and we show that its QNN im-
plementation retains the powerful operator approximation
capabilities of classical methods and have good general-
ization performance in different cases. Furthermore, we
propose TF-QuanONet, a version of QuanONet that uses
the trainable-frequency method (Jaderberg et al., 2024). By
using the input encoded coefficients as additional trainable
parameters, it can efficiently learn the spectrum of opera-
tors without the need for extremely deep quantum circuit
repetition. These features position QuanONet as a versatile
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and scalable tool for solving differential equations, with
significant potential applications in fields such as fluid dy-
namics, material science, and physical simulation. The
contributions of this paper are:

1) We extend the classic universal approximation theorem
for operators (Chen & Chen, 1995) to the quantum state ver-
sion, and give the universal approximation theorem for quan-
tum computing for operators – see Theorem 3.1 and 3.2.

2) Based on our theoretical results, we propose a gen-
eral trainable quantum neural network framework with
pure quantum circuits without hybrid classic-quantum ar-
chitecture as a nontrivial limitation suffered from existing
work (Xiao et al., 2024a) namely QuanONet for learning
(nonlinear) operators.

3) We further propose a trainable-frequency version, TF-
QuanONet, which is tailored to dominant frequency compo-
nent learning in operators and is different from all previous
neural operators. It can capture the high frequency part
of the operator without depending on the well setting of
coefficients, and is thus robust and efficient.

4) We study a number of differential equation problems.
Experimental results show that QuanONet with appropri-
ate coefficient initialization can achieve better performance
than other quantum solvers, while TF-QuanONet overcomes
the difficulty of QuanONet in selecting appropriate hyper-
parameter coefficients, and performs well across various
coefficient initial conditions.

2. Related Work and Preliminaries
2.1. Quantum Computing for Complex Problems

Quantum computing has shown great promise in solving
complex problems, e.g. combinatorial optimization and
quantum chemistry, whereby quantum variational algo-
rithms like Quantum Approximate Optimization Algorithm
(QAOA) (Farhi et al., 2014) have been well developed.

For differential equations solving, emerging quantum meth-
ods have been devised, which can be broadly classified into
two categories. One is quantum algorithms based on am-
plitude methods and phase estimation, For example, Jin
et al. (2024) converted linear differential equations with
non-unitary dynamics into Schrödinger-type equations and
solved using quantum phase estimation and amplitude am-
plification. Oz et al. (2023) used the quantum amplitude
estimation by utilizing Chebyshev points for numerical inte-
gration to design robust quantum PDE solvers.

Another category is based on variable weight algorithm
(VQA). Sarma et al. (2024); Lubasch et al. (2020) repre-
sented solution function with the state amplitudes and op-
timized the cost function, which is its difference between

the solution function obtained by the classical numerical
method, to obtain the evolution operator of the equation
in a short time. Some works (Kyriienko et al., 2021; Xiao
et al., 2024b; Joo & Moon, 2021) utilized methods similar to
Physics-Informed Neural Networks (PINNs) (Raissi et al.,
2019). In this paradigm, quantum circuits are employed
for variational optimization of differential equations, where
quantum systems compute gradients through circuit eval-
uations. These gradients are then used to optimize neural
network parameters, approximating solutions to the equa-
tions. While effective for specific problems, such quantum
approaches have not yet been extended to the learning of
nonlinear operators directly from data, an area that remains
largely unexplored. More comprehensive discussion and
comparison with related works are given in Appendix B.

Beyond differential equations, quantum computing has
demonstrated potential in other complex problem domains.
In combinatorial optimization, quantum algorithms like
QAOA aim to find near-optimal solutions to problems such
as graph partitioning (Herrman et al., 2021), scheduling
and logistics (Azad et al., 2022). Similarly, in quantum
chemistry, quantum algorithms are used to simulate molecu-
lar structures (Yan et al., 2023) and energy states (Cerezo
et al., 2021) with greater precision than classical methods,
potentially revolutionizing fields like drug discovery and
materials science. These advancements highlight the versa-
tility of quantum computing in addressing a wide range of
computationally demanding problems.

2.2. Universal Approximation Theorems of QNNs

The foundation for the approximation capabilities of QNNs
has been recently studied. Yu et al. (2022) showed that a
QNN, even with a single qubit, can approximate any contin-
uous single-variable function with arbitrary accuracy. This
result parallels the Universal Approximation Theorem (Cy-
benko, 1989; Hornik, 1991) in classical neural nets. More-
over, Pérez-Salinas et al. (2020); Kapoor et al. (2016) proved
a universal approximation theorem for QNNs by construct-
ing a one-qubit quantum circuit able to arbitrarily approxi-
mate any continuous complex-valued function. Schuld et al.
(2021) showed a similar approach that data encoding can be
approximated by infinitely (akin to infinite-width classical
neural networks) repeating simple encoding schemes as:
Theorem 2.1. (Schuld et al., 2021) Denote Hm a univer-
sal Hamiltonian family, fm the associated quantum model
family:

fm(x) = ⟨Γ|S†
Hm

(x)MSHm
(x)|Γ⟩ (1)

For all functions g ∈ L2([0, 2π]
N ), and for all ϵ > 0, there

exists some m′ ∈ N, some state |Γi⟩ ∈ Cdm′

, and some
Hamiltonian M such that

|fm′(x)− g(x)| ≤ ϵ (2)
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Gonon & Jacquier (2023) moved one step further and
proved precise error bounds for these approximations. Yu
et al. (2024) showed that quantum models outperform clas-
sical ReLU neural networks by model size, circuit depth,
and the number of trainable parameters when approximating
high-dimensional functions with specific smoothness condi-
tions. In addition, several works (Goto et al., 2021; Pérez-
Salinas et al., 2021) have proposed that hybrid quantum
classical architectures could provide a promising solution.
By integrating trainable weights into the QNN, these mod-
els enrich the frequency spectrum of the network, enabling
effective multivariable function approximation.

The frequency principle (Xu, 2018; Xu et al., 2019)
suggested that DNNs train low-frequency components
quickly but have poor generalization performance for high-
frequency data. Its quantum version Xu & Zhang (2024)
shows that QNNs preferentially learn the dominant fre-
quency within the spectrum. In this paper, we study the
training behavior in the specific operator learning context,
especially for the high-frequency terms of operator.

2.3. The Deep Operator Network (DeepONet)

DeepONet is a deep learning framework designed to approx-
imate nonlinear operators that map inputs (e.g., initial or
boundary conditions) to the solutions of differential equa-
tions. Unlike traditional machine learning models that pre-
dict outputs for fixed input-output pairs, DeepONet learns
the operator itself, mapping an input function to its corre-
sponding output function. Its network structure is inspired
by the universal approximation theorem for operator.
Theorem 2.2. (Chen & Chen, 1995) Suppose that g is a
Tauber-Wiener function, X is a Banach Space, K1 ⊆ X ,
K2 ⊆ Rn are two compact sets in X and Rn respectively,
V is a compact set in C(K1), G is a nonlinear continu-
ous operator, which maps V into C(K2). Then for any
ϵ > 0, there are positive integers M,N,m, constants
cki , ξ

k
ij , θ

k
i , ζk ∈ R, ωk ∈ Rn, xj ∈ K1, i = 1, · · · ,M ,

k = 1, · · · , N , j = 1, · · · ,m, such that

|G(u)(y)−
N∑

k=1

M∑
i=1

cki g(

m∑
j=1

ξkiju(xj) + θki )︸ ︷︷ ︸
Branch

g(ωk · y + ζk)︸ ︷︷ ︸
Trunk

| < ϵ

(3)

As shown in Fig. 1, DeepONet consists of two primary
components: Branch Net and Trunk Net. The Branch Net
encodes the input function (e.g. initial conditions or bound-
ary conditions) at a fixed number of sensors and the Trunk
Net encodes the locations for the output functions. The
output of the network is obtained by combining the outputs
of the Branch and Trunk Nets, through a dot product, to gen-
erate the final solution of the operator. The model is trained
on pairs of input-output data, generated from numerical
solutions of differential equations.

Figure 1. (a) For a differential equation, the solution operator G
tries to learn a mapping from function u(x) to G(u)(y). (b)
Stacked DeepONet consists of a number of Branch Nets and a
Trunk Net, following the form of Theorem 2.2. (c) Unstacked
DeepONet is proposed by Lu et al. (2021) to reduce the storage
and computation cost of Stacked DeepONet.

It has been shown that DeepONet can generalize to new,
previously unseen conditions, enabling the rapid solution
of differential equations with different initial or boundary
conditions without retraining. At present, there have been
many improvements for the original version, such as Lu et al.
(2021) merging a large number of Branch Nets into one
network to reduce memory and computational cost, called
UnStacked DeepONet. Goswami et al. (2022) proposed a
physical-informed variational formulation of DeepONet (V-
DeepONet) to alleviate the computational burden. He et al.
(2024) proposed the Sequential DeepONet (S-DeepONet)
by introducing sequential learning models in the Branch Net
to allow for accurate predictions of the solution contour plots
under parametric and time-dependent loading histories.

3. Methodology
We will first derive the approximation theorem for quantum
state functions, provide the quantum state substitution for
the vector inner product in the classic operator approxima-
tion theorem and give the quantum universal approximation
theorem for operators. The theory results inspire us to then
propose a operator learning QNN architecture: QuanONet.
We also discuss how the coding coefficients affect the ap-
proximation error of QuanONet through frequency spectral
and how to overcome this effect.
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3.1. Theoretical Results

3.1.1. QUANTUM UNIVERSAL APPROXIMATION FOR
QUANTUM STATE FUNCTIONS

Although works about QNNs have studied universal approx-
imation for functions, there still lack the approximation the-
orem for quantum state functions. Specifically, for a normal-
ized quantum state that depends on the inputs, parametric
quantum circuits can output its approximation with arbitrary
accuracy, where the inputs are encoded as model parameters.
Based on feasible assumptions about QNN (Schuld et al.,
2021), we give an approximation scheme for an arbitrary
quantum state function with the form of:

|ϕ(x)⟩ =
∑
j

gj(x)|j⟩ (4)

It satisfies the normalization conditions
∑

j |gj(xj)|2 = 1.
{|j⟩} is the basis of a finite dimensional quantum system.

Then we define a quantum state as the output of a parametric
quantum circuit as follows:

|ψθ(x)⟩ = U(θ,x)|0⟩ (5)

where θ and x are the optimizable parameters and the en-
coding parameters.

The quantum circuit consists of a data encoding circuit
S(x)and a trainable circuit W (θ) controlled by parameters
θ both alternating L layers. The data encoding block con-
sists of gates of the form e−ixH . We focus on the role of the
data encoding, and view the trainable circuit blocks as ar-
bitrary unitary operations as W (θ) =W . Thus the overall
quantum circuit has the form:

U(x) =W (L+1)S(x)W (L) · · ·W (2)S(x)W (1) (6)

For notational simplicity and without loss of generality, we
consider simple single-layer quantum circuits with L = 1,
obtain |Γ⟩ by acting W (1) on the initial state |0⟩ and rewrite
W (2) as W . Thus we have the equivalent form:

|ψ(x)⟩ =WS(x)|Γ⟩ (7)

Specifically, Schuld et al. (2021) introduced the concept
of a Hamiltonian family {Hm|m ∈ N} where Hm acts on
m subsystems of dimension d. Such a Hamiltonian family
defines a family of quantum states via

|ψm(x)⟩ =WSHm(x)|Γ⟩ (8)

Given Hamiltonian Hm with eigenvalues {λ1, · · · , λdm},
the eigenspectrum of Hm is

ΛHm = {λj |j ∈ {1, · · · , dm}} (9)

A Hamiltonian family whose eigenspectrum asymptoti-
cally contains any integer frequency via the following no-
tion (Schuld et al., 2021): a Hamiltonian family {Hm} is a
universal Hamiltonian family if it has the property that for
all K ∈ N there exists some m ∈ N such that

ZK = {−K, · · · , 0, · · · ,K} ⊆ ΛHm
. (10)

As proposed in Schuld et al. (2021), the Hamiltonian family
defined as the linear combinations of Pauli operators

Hm =

m∑
i=1

σ(i)
q , q ∈ {x, y, z}, (11)

is indeed a universal Hamiltonian family with m = K. This
gives the theorem:
Theorem 3.1. [Quantum Universal Approximation Theo-
rem for State Functions] Let Hm be a universal Hamilto-
nian family, and ψm the associated quantum state family:

|ψm(x)⟩ =WSHm(x)|Γ⟩. (12)

For all normalized quantum state functions |ϕ(x)⟩ =∑
j gj(x)|j⟩ with functions gj ∈ L2([0, 2π]

N ), and for all

ϵ > 0, there exists some m′ ∈ N, some state |Γ⟩ ∈ Cdm′

,
and some W such that

∥|ψm′(x)⟩ − |ϕ(x)⟩∥ ≤ ϵ (13)

Compared with Theorem 2.1, the proof of Theorem 3.1
requires the spectrum ΛHm be able to contain the highest
integer frequency Ks = maxKj among all amplitudes in
the state function. See proof in Appendix D.

Theorem 2.1 has a heuristic significance for the wider appli-
cation of QNN: it shows that QNN cannot only be used for
approximating multivariable functions, but also for learning
quantum states that depend on the input, e.g. predicting
ground state of quantum systems under different conditions.
Based on this theorem, we will provide the construction of
the quantum neural operator in the next section.

3.1.2. QUANTUM UNIVERSAL APPROXIMATION FOR
OPERATORS

Based on the above theorem, we give the quantum universal
approximation theorem for operators as follows.
Theorem 3.2. [Quantum Universal Approximation The-
orem for Operators] Suppose that X is a Banach Space,
K1 ⊆ X , K2 ⊆ Rn are two compact sets in X and Rn

respectively, V is a compact set in C(K1), G is a nonlinear
continuous operator, which maps V into C(K2), then for
any ϵ > 0, there exist a positive integer N , a real constant
c, a N -dim state function |t⟩ and a N -dim state functional
|b⟩, such that

|G(u)(y)− c⟨b(u)|t(y)⟩| < ϵ (14)
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A full proof is given in Appendix E. This theorem states
that the operator can be approximated by an inner product
of quantum states depending on the input function and the
output location respectively, implying the existence of a
QNN structure which can learn the differential operator.

Before introducing the architecture of QuanONet inspired
by the theorem, we briefly introduce and extend the error
analysis of DeepONet with Lanthaler et al. (2022). Specifi-
cally, the error sources of DeepONet mainly include three
parts: encoding, approximation and re-construction errors,
where encoding error depends on the settings of sensors,
However, both approximation and re-construction errors
depend on the approximation ability of the network and
the dimension of the vector (quantum state). Similarly, the
error sources of QuanONet also come from these three parts,
which inspires us that QuanONet may be applicable to the
operator version of the QNN dominance problem, namely
smooth and spectrally simple operators according to the
results of Yu et al. (2024) and Leong et al. (2025).

3.2. The Architecture of QuanONet

As shown in Fig. 2, QuanONet consists of two primary com-
ponents: Branch (BNC) Layers and Trunk (TNK) Layers,
which encode the input function u = {u(xi)}mi=1 and the
output locations y respectively. The output of the circuit is:

⟨ψθ(y,u)|H|ψθ(y,u)⟩

=⟨0|U†
Bnc(θ

b,u)U†
Tnk(θ

t,y)HUTnk(θ
t,y)UBnc(θ

b,u)|0⟩
(15)

Write Hamiltonian H in spectral decomposition form H =∑
i λi|i⟩⟨i|, then the output can be written as

⟨ψθ(y,u)|H|ψθ(y,u⟩

=
∑
i

λi|⟨i|UTnk(θ
t,y)UBnc(θ

b,u)|0⟩|2 (16)

If Hamiltonian has only one eigenstate |0⟩ with eigenvalue
1 and all other eigenvalues are zero, then the output corre-
sponds to the squared version of the Eq. 3.2.

⟨ψθ(y,u)|H|ψθ(y,u⟩ = |⟨0|UTnk(θ
t,y)UBnc(θ

b,u)|0⟩|2

= |⟨t(θt,y)|b(θb,u)⟩|2
(17)

Since the Hamiltonian is free to choose, we only need to
scale it so that the bound of its spectrum includes the range
of the output function. An optional Hamiltonian is:

H = a

n∑
i=1

σ(i)
z + b (18)

with the upper bound b+ na and the lower bound b− na.
n is the total number of qubits.

Since parameters of the rotation quantum gates are periodic
in the range [0, 2π], inputs u and y should be encoded in a

Figure 2. QuanONet’s detailed architecture. (a) A hardware-
efficient class of examples of Encoder, Entangle, and Ansatz
layers. (b) Structure of Branch and Trunk Layers with hyper-
parameters hb, ht, lb, lt representing the number of repetitions of
Ansatz-Entangle and encoder-train alternating layers in them. To
satisfy the requirement of inner product form, the quantum Layers
of Branch and Trunk Layers are arranged in reverse order. (c) The
overall quantum circuit structure, and the circuit parameters are
trained by the gradient of the loss function of the output value.

range less than 2π. A simple method is multiplying inputs
by hyper-parameter coefficients λ = [λ, · · · , λ] so that

λ∥[y,u]∥1 ≤ π (19)

Ideally, we could set λ very small to ensure that the model
fits a wider range of inputs. However as proposed in Xu &
Zhang (2024); Jaderberg et al. (2024), the extremely small
λ means that a higher number of repeated layers is required
to achieve Fourier series completeness. How to choose the
most appropriate λ under the condition that the size of the
quantum circuit is limited requires careful consideration.

The order of applying Branch and Trunk Layers does not
affect the approximation formula. We adopt the sequence of
encoding the input u with the Branch Layers first, followed
by the encoding of variable y with the Trunk Layers.

As a high-level framework, QuanONet allows for different
implementations. To accommodate the current hardware
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limitations of quantum computers, e.g. restricted connectiv-
ity and depth constraints, we employ a QNN design with
Hardware-Efficient Ansatz (HEA) as shown in Fig. 2 as
our vanilla version. By leveraging this hardware-efficient
circuit structure, QuanONet achieves a practical balance be-
tween expressiveness and resource requirements, especially
remaining deployable on existing quantum hardware.

3.3. The Trainable-Frequency Technique

The frequency principle provides a perspective for under-
standing the training behavior and generalization ability of
deep neural networks. Since the data input is introduced
into the quantum state through trigonometric functions, So
Frequency plays a more critical role in training and opti-
mization. Specifically, (Xu & Zhang, 2024) developed an
evolution equation for gradients and residue dynamics in the
frequency domain by introducing quantum neural tangent
kernels (QNTK) and empirically showed that the dominant
frequency of the data set is learned first by QNNs.

Though asymptotically large fixed-frequency (FF) QNN are
universal function approximators (Schuld et al., 2021), in
reality, finite-sized quantum computers will permit models
with only a finite range of frequencies. So the approxi-
mation effect of quantum variational circuits is strongly
related to whether the frequency spectrum can match the
spectrum of problems. In Jaderberg et al. (2024), trainable-
frequency (TF) models are introduced, which extend the
conventional fixed-frequency parameterization of quantum
circuits. In typical QNN models, the generator Hamiltoni-
ans used for data encoding determine a fixed set of equally
spaced frequencies. TF models add trainable parameters to
the generator, allowing the circuit to dynamically adjust the
frequency spectrum it represents. It improves the ability to
adapt to the spectral characteristics of the target function.

We propose TF-QuanONet, a tailored and improved version
of QuanONet. TF-QuanONet employs a trainable-frequency
model for its Branch and Trunk Layers. By introducing
trainable weights and biases in the quantum encoding that
is λ ⊙ [y,u] + b, it dynamically adjusts frequency repre-
sentation during training. This allows the model to adapt
to high-frequency or irregularly spaced spectral features of
operators that may not be captured by FF-QNN.

4. Experiments
All the numerical simulations are performed on a machine
with 190GB memory, one physical CPU with 32 cores AMD
Ryzen Threadripper 3970X CPU, and 5 GPUs (NV GeForce
RTX 3090). We implement a Python quantum simulator
without noise to simulate QNNs Based on MindSpore (Xu
et al., 2024) framework, and designing classical neural net-
works using DeepXde (Lu et al., 2020) framework.

Figure 3. Schematic representation of the function and spectrum
of the (a) true function, (b) FF-QNN and (c) TF-QNN, where the
QNNs have been trained to the optimum. The FF-QNN model will
have a large approximation error when it is not close to the com-
plete Fourier series, while TF-QNN can preferentially fit the main
frequency part to improve the accuracy. This effect is particularly
significant when the high-frequency components of the function
dominate or when the quantum circuit is shallow.

4.1. Protocols

We evaluate QuanONet and TF-QuanONet on a range of
benchmark problems: three ordinary differential equation
(ODE) and one partial differential equation (PDE) problem:

Anti-derivative operator.

G : u(x) → v(x) =

∫ x

0

u(τ)dτ, x ∈ [0, 1] (20)

Homogeneous ODE.

G : u(x) → v(x),
dv(x)

dx
= v(x) + u(x), x ∈ [0, 1] (21)

Nonlinear ODE.

G : u(x) → v(x),
dv(x)

dx
= −v(x)2 + u(x), x ∈ [0, 1]

(22)

Diffusion-reaction (D-R) System.

G : u(x) → v(x, t),
∂v

∂t
= D

∂2v

∂x2
+ kv2 + u, x, t ∈ [0, 1]

(23)

all with zero initial/boundary conditions.

Baseline. We comprehensively compare the proposed
QuanONet and TF-QuanONet with the following methods:

Quantum methods: QNN with hardware efficient ansatz
(HEA) (Kandala et al., 2017), trainable-frequency HEA
(TF-HEA) (Jaderberg et al., 2024).

Classic methods: fully-connected neural net (FNN) (Raissi
et al., 2018)), DeepONet (Lu et al., 2021).
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Figure 4. The λ distribution of trained TF-QuanONet with initial-
ized to 0.001 of all runs on each problem. The distribution in
nonlinear ODE case is significantly more dispersed.

Data Generation. We generate the dataset by using the
mean-zero Gaussian random field with the form: u ∼
G(0, kl(x1, x2)) where the covariance kernel kl(x1, x2) =
e−∥x1−x2∥2/2l2 is the radial-basis function (RBF) kernel
with a length-scale parameter l > 0 to sample input func-
tion u. We solve the ODE systems by Runge-Kutta (4, 5)
and PDEs by a second-order finite difference method.

Settings. We scale the various QNNs to ensure that they
have close number of parameters (1200 for ODE and 2400
for PDE) and use the Adam optimizer (Kingma, 2014) with
learning rate 0.0001. The details are shown in the Ap-
pendix A. The number of qubits of all QNNs is 5, and
the Hamiltonian is H =

∑5
i=1 σ

(i)
z . Detailed configuration

is given in Table 2, Table 3 and Table 4.

4.2. Results

We use 5 runs with different training/test data sampling and
network initialization to compute the mean error and the
standard deviation (SD), as presented in Table 1.

For ODE e.g. homogeneous ODE (Fig. 5), QuanONet per-
forms best under λ = 0.1, but the error increases signif-
icantly as the hyperparameter λ decreases. The trainable
frequency technique improves TF-QuanONet’s robustness
to λ, and makes it perform optimally in all cases. Note
that all quantum methods have less generalization error than
FNN. In the case of nonlinear ODE, QNNs generally per-
form worse than classical methods, because this case has a
more spread out frequency domain distribution compared
to other problems (Fig. 4), so deeper QNNs are needed to
ensure frequency completeness. But our method still en-
hances the best performance among quantum methods. Four
representative cases are shown in Fig. 6 and Fig. 7.

The hardware noise characteristics in the NISQ era are pri-
marily influenced by qubit count, gate cost and circuit depth.
We conduct extensive benchmarking across various qubit
count, layer depths and Hamiltonian, with complete experi-
mental results and analysis presented in Appendix F.

Fig. 8 further supports the potential of TF-QuanONet on

Figure 5. Errors of all methods trained to learn the homogeneous
ODE. The solid and dash lines are the training error and test error
in training, respectively. The shaded regions are the one-standard-
derivation from 5 runs with different training/test data and network
initialization. All methods are plotted by a uniform ordinate scale.

Method Branch Trunk Params. #

TF-QuanONet Depth Ansatz Depth Depth Ansatz Depth 1200
20 2 10 2

DeepONet Depth Width Depth Width 1261
2 10 2 10

Figure 6. Anti-derivative operator results for the input function
u = sinπx, with hyperparameters of networks in below.

real-devices. We train a 2-qubits TF-QuanONet for the anti-
derivative operator and test it on IBM brisbane Q57/Q581.
By leveraging Qiskit’s compilation optimization techniques
and using standard noise mitigation, the circuit depth is
reduced to merely 20 layers. Using u(x) = x as input func-
tion and standard noise mitigation like zero-noise extrap-
olation (Giurgica-Tiron et al., 2020), we achieved MSE =
1.57e-3 (vs. 1.5e-5 simulation). The gap is mainly attributed
to non-ideal gate operations and residual decoherence ef-
fects.

The experiments collectively show that:

1We acknowledge Shikun Wei who helped the IBM Quantum
platform access and experiments during his stay in Paris, France.
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Table 1. Test error comparison with different initial values of λ. The best is in gray and second best in lightgray.

Method λ
ODE PDE

Antideriv operator Homogeneous ODE Nonlinear ODE D-R System

HEA
0.001 0.095871± 0.002140 0.267378± 0.006169 0.900696± 0.034579 0.000601± 0.000022
0.01 0.053324± 0.001074 0.127268± 0.001941 0.705380± 0.030721 0.000530± 0.000039
0.1 0.030112± 0.000759 0.084640± 0.002567 0.369845± 0.017249 0.006988± 0.001866

TF-HEA
0.001 0.002484± 0.000028 0.002608± 0.000048 0.045553± 0.007749 0.000113± 0.000021
0.01 0.002518± 0.000040 0.002604± 0.000039 0.044619± 0.008089 0.000102± 0.000008
0.1 0.002519± 0.000035 0.002613± 0.000032 0.044673± 0.007877 0.000807± 0.000131

QuanONet
0.001 0.131876± 0.003809 0.330244± 0.005671 0.869680± 0.031546 0.000601± 0.000033
0.01 0.043198± 0.001002 0.114915± 0.003816 0.630765± 0.031184 0.000347± 0.000015
0.1 0.001341± 0.000190 0.002005± 0.000253 0.059582± 0.008323 0.001802± 0.001053

TF-QuanONet
0.001 0.000113± 0.000010 0.000192± 0.000028 0.039072± 0.007277 0.000055± 0.000014
0.01 0.000121± 0.000010 0.000198± 0.000013 0.039469± 0.008081 0.000051± 0.000010
0.1 0.000112± 0.000008 0.000181± 0.000021 0.039074± 0.007452 0.000145± 0.000028

DeepONet 0.000596± 0.000215 0.000665± 0.000117 0.027237± 0.003972 0.000088± 0.000036
FNN 0.000934± 0.000594 0.001187± 0.000732 0.028487± 0.006250 0.000089± 0.000066

Method Branch Trunk Params. #

TF-QuanONet Depth Ansatz Depth Depth Ansatz Depth 2400
40 2 20 2

DeepONet Depth Width Depth Width 2521
3 15 3 15

Figure 7. D-R system results for input functions u = x (above) and
u = sinπx (below). The hyperparameters of networks are shown
below. The predictions and the truth share the same colorbar, and
errors of two methods are plotted on another same colorbar.

Expressiveness. TF-QuanONet achieves lower approxi-
mation errors over diverse tasks, outperforming existing
quantum methods at similar scale and model size.

Optimization Efficiency. Coefficient setting significantly
influences approximation error. Trainable frequency tech-
niques help TF-QuanONet learn the dominant frequency of

Method Qubits # Params. # Gates # Iterations #

TF-QuanONet 2 960 1080 100000

Figure 8. Inference results of a 2-qubits TF-QuanONet and Deep-
ONet on anti-derivative operator. The input function is u(x) = x.

the operator, thus providing robustness.

Broad Applicability. TF-QuanONet effectively handles
various operator learning tasks, showcasing its versatility
and potential for solving complex differential equations.

5. Conclusion and Outlook
We have derived the universal approximation theorem of
QNNs for quantum state functions, giving a quantum ver-
sion of the operator approximation theorem and construct-
ing a quantum neural operator QuanONet based entirely on
quantum circuits. To address the frequency spectral locality
issue that may arise due to the coding coefficient setting, we
introduce the trainable frequency method and propose an
improved version: TF-QuanONet.

Acknowledgment
Work was partly supported by NSFC (92370201,
62222607).

8



QuanONet: Quantum Neural Operator with Application to Differential Equation

Impact Statement
This paper concerns the between of machine learning and
quantum computing for the fundamental problem of dif-
ferential equation solving. It has wide technical impact to
AI and other disciplines and we need to be careful the fast
development of the potential technology.

References
Arrazola, J. M., Kalajdzievski, T., Weedbrook, C., and

Lloyd, S. Quantum algorithm for nonhomogeneous linear
partial differential equations. Physical Review A, 100(3):
032306, 2019.

Azad, U., Behera, B. K., Ahmed, E. A., Panigrahi, P. K., and
Farouk, A. Solving vehicle routing problem using quan-
tum approximate optimization algorithm. IEEE Transac-
tions on Intelligent Transportation Systems, 24(7):7564–
7573, 2022.

Berry, D. W. High-order quantum algorithm for solving
linear differential equations. Journal of Physics A: Math-
ematical and Theoretical, 47(10):105301, 2014.

Carleman, T. Application de la théorie des équations
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A. Details of the Experiments

Table 2. Default parameters for each problem

Case u space Sensors # Training # Testing # Batch Size

ODE
Anti-deriv operator GRF(l = 0.2) 100 10000 100000 100
Homogeneous ODE GRF(l = 0.2) 100 10000 100000 100

Nonlinear ODE GRF(l = 0.2) 100 10000 100000 100
PDE D-R system GRF(l = 0.2) 100 100000 1000000 100

Table 3. Hyperparameters for each network in ODE case

Network Type Branch Trunk Gates # Param.# Iterations #Depth Ansatz Depth Depth Ansatz Depth

QuanONet 20 2 20 2 1800 1200 100000
TF-QuanONet 20 2 10 2 1350 1200 100000

Depth Ansatz Depth

HEA 40 2 1800 1200 100000
TF-HEA 32 2 1440 1280 100000

Branch Trunk

Depth Width Depth Width

DeepONet 2 10 2 10 — 1261 100000

Depth Width

FNN 2 10 — 1251 100000

Table 4. Hyperparameters for each network in PDE case

Network Type Branch Trunk Gates # Param.# Iterations #Depth Ansatz Depth Depth Ansatz Depth

QuanONet 40 2 40 2 3600 2400 100000
TF-QuanONet 40 2 20 2 2700 2400 100000

Depth Ansatz Depth

HEA 80 2 2880 2400 100000
TF-HEA 64 2 3600 2560 100000

Branch Trunk

Depth Width Depth Width

DeepONet 3 15 3 15 — 2521 100000

Depth Width

FNN 3 16 — 2481 100000

B. Further Related Works
B.1. Neural operators accelerated by quantum computing

DeepONet entails quadratic complexity concerning input dimensions during evaluation. Given the progress in quantum
algorithms and hardware, Xiao et al. (2024a) proposed to utilize quantum computing to accelerate DeepONet evaluations,
yielding complexity that is linear in input dimensions. The quantum DeepONet they proposed integrates unary encoding and
orthogonal quantum layers. However, since the quantum DeepONet only utilizes quantum circuits to speed up DeepONet’s

12



QuanONet: Quantum Neural Operator with Application to Differential Equation

Figure 9. (Xiao et al., 2024a) Architecture of quantum DeepONet. The Branch Net and Trunk Net are replaced these with QOrthoNN,
which is composed of several quantum layers arranged sequentially. The nonlinear operations are performed on classical computers.

evaluation, this means that we cannot expect it to achieve better results than DeepONet (or even worse if noise is taken into
account), so we provide results of DeepONet as an alternative.

B.2. Fourier neural operator with quantum Fourier layers

Jain et al. (2024) proposed a new quantum circuit for performing a quantum fourier transform (QFT) on an input encoded
as a superposition of unary states which can be sequentially combined to form QFNO, a quantum version of a trainable
Fourier neural network for solving Parametric PDEs.

Figure 10. (Jain et al., 2024) (a) The proposed Sequential Quantum Circuit, which replicates the classical FNO operation from (b) if we
measure at the end.

Compared with classical FNO, QFNO uses QFT to construct Fourier transform layer, but the advantage is not obvious. In
numerical experiments, QFNO does not observe better performance than classical FNO. Jain et al. (2024) proposed that due
to the efficiency of the QFT, QFNO has logarithmic time complexity compared to Ns input dimension, while its classical
counterpart has linear time complexity as shown in Table 5. However, the number of qubits and circuit depth of QFNO will
still bring huge noise to current quantum devices, making the QFT impossible.

We provide the results of FNO with 100 initial functions as training instances, as shown in Tab. 6
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Table 5. (Jain et al., 2024) Comparison of the order of time/depth complexities of the quantum Fourier Layer (QFL) in QFNO circuits
with the classical Fourier Layer (FL). Here Ns denotes the sampling dimension, Nc denotes the channel dimension and K denotes
the maximum number of modes allowed. If QFNO is used to solve the benchmark problem in this paper, it means that multiple
low-noise quantum circuits with up to 100 qubits are needed, which cannot be realized using the existing quantum devices.

Method Qubits # Circuits # Gate Complexity Depth Complexity

Classical FL — — — Nc +Ns logNs

Parallel QFL Nc +Ns K KNc logNc +KNcNs logNs Nc +Nc logNs

Sequential QFL Nc +Ns 1 KNc logNc +NcNs logNs KNc +Nc logNs

Composite QFL Nc +Ns 1 (Nc +K) log(Nc +K) +NcNs logNs log(Nc +K) +Nc logNs

Table 6. Test error comparison of TF-QuanONet, DeepONet and FNO

Method Data type Iteration # Antideriv operator Homogeneous ODE Nonlinear ODE

TF-QuanONet Aligned 10000 0.002763± 0.000107 0.003424± 0.000270 0.114749± 0.021397
Semi-aligned 10000 0.002524± 0.000153 0.003020± 0.000151 0.077709± 0.011518

DeepONet Aligned 10000 0.004308± 0.000332 0.006661± 0.002313 0.856181± 0.127804
Semi-aligned 10000 0.003557± 0.000342 0.006016± 0.003654 0.279827± 0.071935

Method Batch Size Iteration # Antideriv operator Homogeneous ODE Nonlinear ODE

FNO
1 100000 0.031340± 0.008230 0.086708± 0.029126 0.330201± 0.149577

10 10000 0.004615± 0.001619 0.009267± 0.002576 0.077072± 0.015786
50 2000 0.006853± 0.001724 0.015811± 0.003861 0.096177± 0.026694

B.3. Physics-informed quantum neural network

For the output of a QNN as follows:
fθ(x) = ⟨ψθ(x)|H|ψθ(x)⟩ (24)

Define another two sets of inputs x(i)+ and x(i)− as:

x(i)+ = [x0, x1, · · · , xi +
π

2
, · · · ],x(i)− = [x0, x1, · · · , xi −

π

2
, · · · ] (25)

Thus the partial derivative of f(x) can easily calculated by

∇xifθ(x) =
1

2
[fθ(x

(i)+)− fθ(x
(i)−)] (26)

Based on the differentiability of QNNs like this, Xiao et al. (2024b) introduced a physics-informed quantum neural
network (PI-QNN) by employing the QNN as the function approximator for solving forward and inverse problems of PDEs.
Numerical results indicate that PI-QNN demonstrates superior convergence over PINN when solving PDEs with exact
solutions that are strongly correlated with trigonometric functions. Kyriienko et al. (2021) proposed a similar approach
earlier and called it differentiable quantum circuits (DQC), and designed a Chebyshev quantum feature map that offers a
powerful basis set of fitting polynomials and furnishings rich expressivity.

They are all quantum methods designed for solving differential equations with specific input functions, thus are fundamentally
different from the quantum neural operators proposed in this paper.

B.4. Fault-tolerant quantum algorithms for differential equations

Berry (2014) proposed a fault-tolerant quantum algorithm which solves sparse systems of linear ODEs by discretising the
system of ODEs and subsequently employing the HHL algorithm (Harrow et al., 2009) to solve the resulting system of
linear equations. Childs & Liu (2020) also proposed a quantum algorithm for solving linear ODEs, which, however, relies

14



QuanONet: Quantum Neural Operator with Application to Differential Equation

Figure 11. Schematic diagram of PI-QNN (Xiao et al., 2024b).

on spectral methods. Spectral methods use linear combinations of basis functions (e.g., a Fourier basis) to approximate the
solution. This approach also ends with solving a linear system of equations on a quantum computer. A quantum algorithm
to solve quadratically nonlinear ODEs under certain conditions is described in (Liu et al., 2021), using the Carleman
linearisation (Carleman, 1932; Forets & Pouly, 2017; Kowalski & Steeb, 1991) to approximate the nonlinear part. The
Carleman linearisation represents a finite-dimensional polynomially nonlinear system by an infinite-dimensional linear
system. To make use of the Carleman linearisation, the infinite-dimensional linear system is truncated at a certain point.
Subsequently, Liu et al. (2021) again discretised the resulting system and solve the linear system with HHL (Harrow et al.,
2009). The algorithm presented in (Liu et al., 2021) may also be applied to solving certain PDEs (with a restricted kind
of nonlinearity), as the discretisation of a PDE in all but one dimension generally results in a system of ODEs. Liu et al.
(2023) presented an algorithm for solving (nonlinear) reaction-diffusion equations. Using Euler’s method, as well as the
Carleman linearisation for the nonlinearity, they discretise the PDE and solve the resulting system with HHL. Childs et al.
(2021) presented quantum algorithms for solving linear PDEs by making use of the finite difference method (FDM) and
spectral methods separately. In the FDM approach, they discretise the PDE on a grid. Both cases result in a linear system of
equations which needs to be solved. The authors of (Arrazola et al., 2019) also present a quantum algorithm for solving
linear PDEs, which relies on Hamiltonian simulation of a cleverly chosen Hamiltonian, which encodes certain properties of
the PDE. Lloyd et al. (2020) outlined a quantum algorithm to solve nonlinear ODEs by mapping the ODE to the nonlinear
Schrödinger equation, which is then solved using Trotterisation. Another numerical scheme, the finite element method
(FEM, which approximates the solution by using interpolating functions within each discretised element) and HHL are
used to solve elliptic PDEs in (Montanaro & Pallister, 2016). Jin & Liu (2022); Jin et al. (2023; 2024) derived quantum
algorithms for solving nonlinear ODEs as well as the nonlinear Hamilton-Jacobi (HJ) equation (which is a special case of
the nonlinear Hamilton-Jacobi-Bellman PDE). They do so, by mapping the nonlinear ODEs and the nonlinear HJ equation
to linear ODEs and HJ equations using linear representation methods, such as the level set method, and then use HHL to
solve the linear system.

C. Partial Fourier Series Representation of State Functions
We show how a certain class of L = 1 quantum models naturally realise states with amplitudes of multivariate Fourier series.

We consider a output quantum state of the form:

|ψ(x)⟩ =WS(x)|Γ⟩ (27)

with
S(x) := e−ix1H1 ⊗ · · · ⊗ e−ixNHN (28)

where

|Γ⟩ =
2d∑

j1,··· ,jN=1

γj1,··· ,jN |j1⟩ ⊗ · · · ⊗ |jN ⟩ (29)

is some arbitrary state, and W is some arbitrary unitary operator. To simplify the index handling, we introduce the
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multi-indices j ∈ [2d]N with which we can rewrite

|Γ⟩ :=
∑
j

γj|j⟩ (30)

Additionally, as argued before we can without loss of generality assume that all Hamiltonians are diagonal, i.e.:

Hk = diag(λ(k)1 , · · · , λ(k)
2d

) (31)

With this assumption, we note that S(x) is diagonal with entries

[S(x)]j,j = e−ix·λj (32)

where we have defined
λj = (λ

(1)
j1
, · · · , λ(N)

jN
) (33)

Given this, we see that
|ψ(x)⟩ =

∑
j

∑
k

γj[WS(x)]j,k|j⟩

=
∑
j

∑
k

γjWj,ke
ix·λj |j⟩

(34)

which is indeed a partial multivariate Fourier series, with the accessible frequencies fully determined by the spectra of the
encoding Hamiltonians {Hk}, and the Fourier coefficients determined by the trainable unitaries (or equivalently, the state
and Hamiltonian).

D. Proof of the Quantum Universal Approximation Theorem for State Functions
We provide in this section a proof of the Theorem 3.1.

Theorem 3.1 Let Hm be a universal Hamiltonian family, and ψm the associated quantum state family:

|ψm(x)⟩ =WSHm(x)|Γ⟩. (35)

For all normalized quantum state functions |ϕ(x)⟩ =
∑

j gj(x)|j⟩ with functions gj ∈ L2([0, 2π]
N ), and for all ϵ > 0,

there exists some m′ ∈ N, some state |Γ⟩ ∈ Cdm′

, and some W such that

∥|ψm′(x)⟩ − |ϕ(x)⟩∥ ≤ ϵ (36)

Proof. To begin with, we note that we can approximate any given g ∈ L2([0, 2π]
N ), up to an arbitrarily small error in L2

norm, by using a truncated Fourier series (Weisz, 2012). More specifically, for any ϵ > 0, there exists some K ∈ N and
some set of coefficients {cn|n ∈ ZN

K}, such that

g̃(x) =

K∑
n1=−K

· · ·
K∑

nN=−K

cne
ix·n :=

∑
n∈ZN

K

cne
ix·n (37)

satisfies
∥g̃(x)− g(x)∥ ≤ ϵ (38)

Thus we rewrite |ϕ(x)⟩ with g̃j(x) =
∑

n∈ZN
Kj

cjne
ix·n

|ϕ(x)⟩ =
∑
j

∑
n∈ZN

Kj

cjne
ix·n|j⟩ =

∑
n∈ZN

Ks

∑
j

cjne
ix·n|j⟩ (39)

where Ks = max{Kj}.
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To prove the theorem we therefore only need to show that there exists an m′ ∈ N, some state |Γ⟩ and some unitary operator
W so that the output quantum state |ψm(x)⟩ generates the state function |ϕ(x)⟩. Recall that the output quantum state is
defined as

|ψm(x)⟩ =WSHm
(x)|Γ⟩ (40)

with
SHm

(x) := e−ix1Hm ⊗ · · · ⊗ e−ixNHm (41)

In Appendix C , we have seen that we can express the output quantum state as

|ψ(x)⟩ =
∑
j

∑
k

γj[WS(x)]j,k|j⟩

=
∑
j

∑
k

γjWj,ke
ix·λj |j⟩

(42)

where the multi-indices j and k have N entries that iterate over all 2d basis states of the d qubit subsystems. Let ΛHm
be the

eigenspectrum of Hm, as defined in Eq. 9. As the {Hm} form a universal family of Hamiltonians by assumption, we can
choose an m′ ∈ N so that

ZKs
= {−Ks, · · · , 0 · · · ,Ks} ⊆ ΛH′

m
(43)

The accessible frequency vectors λj independently contain all possible combinations of the frequencies in ΛH′
m

.

The vector-valued frequency spectrum for the multivariate case is therefore the Cartesian product of N copies of ΛH′
m

:

Ω = ΛHm′ × · · · × ΛHm′︸ ︷︷ ︸
N times

(44)

As ZK ⊆ ΛH′
m

we naturally have that ZN
Ks

⊆ Ω, which means that the Fourier series generated by the chosen model
contains all terms that are necessary to construct the Fourier series state |ϕ(x)⟩. With the coefficients which can be freely
chosen, Eq. 42 can be easily chosen to be the form of Eq. 39.

E. Proof of the Quantum Universal Approximation Theorem for Operator
We will often use the following notations.

K: some compact set in a Banach space.

C(K): Banach space of all continuous functions defined on K, with norm ∥f∥C(K) = maxx∈K |f(x)|.

Cp[−1, 1]n: All 2-periodic functions with period 2 with respect to every variable xi, i = 1, · · · , n.

Lemma E.1. Suppose that K is a compact set in Rn, f ∈ C(K), then there is a continuous function E(f) ∈ C(Rn), such
that (1) f(x) = E(f)(x) for all x ∈ K; (2) supx∈Rn |E(f)(x)| ≤ supx∈K |f(x)|; (3) there is a constant c such that

sup
|x′−x′′|<δ

|E(f)(x′)− E(f)(x′′)| ≤ c sup
|x′−x′′|<δ,x′,x′′∈K

|f(x′)− f(x′′)| (45)

Proof. The proof of Lemma E.1 can be found in Stein (p.175).

Lemma E.2. V is a compact set in C(K) if and only if

1. V is a closed set in C(K),

2. there is a constant M such that ∥f(x)∥C(K) ≤M for all f ∈ V ,

3. V is equicontinuous, i.e., for any ϵ > 0, there exists δ > 0 such that |f(x′)− f(x′′)| < ϵ for all f ∈ V , provided that
x′,x′′ ∈ K and ∥x′ − x′′∥K < δ.

Proof. The proof of Lemma E.2 can be found in Dieudonné (2011) (p.142).
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Lemma E.3. Suppose that K is a compact set in In = [0, 1]n, V is a compact set in C(K), then V can be extended to a
compact set in Cp[−1, 1]n.

Proof. By Lemmas E.1 and E.2, V can be extended to be a compact set V1 in C[0, 1]n. Now, for every f ∈ V1, define an
even extension of f as follows:

f∗(x1, · · · , xk, · · · , xn) = f(x1, · · · ,−xk, · · · , xn) (46)

Then U ∈ {f∗ : f ∈ V1} is the required compact set in Cp[−1, 1]n.

Lemma E.4. Suppose that U is a compact set in Cp[−1, 1],

BR(f ;x) =
∑

|m|≤R

(1− |m|2

R2
)αcm(f)eiπm·x (47)

is the Bochner-Riesz means of Fourier series of f , where m = [m1, · · · ,mn], |m|2 =
∑n

i=1 |mi|2, cm(f) are Fourier
coefficients of f , then for any ϵ > 0, there is R > 0 such that

|BR(f ;x)− f(x)| ≤ ϵ (48)

Proof. The proof of Lemma E.4 can be found in Stein & Weiss (1971).

Lemma E.5. Suppose that |ψ(f)⟩ is a continuous m-dim state function defined on the Banach space C(K), |ϕ(x)⟩ is a
continuous m-dim state function defined on the compact set K, there exist a real constant c, (m+ 2)-dim normalized state
functions |Ψ(f)⟩ and |Φ(x)⟩, such that

⟨ψ(f)|ϕ(x)⟩ = c⟨Ψ(f)|Φ(x)⟩ (49)

Proof. Without loss of generality, we can write |ψ(f)⟩ and |ϕ(x)⟩ as

|ψ(f)⟩ =
m∑
i=1

gi(f)|i⟩, |ϕ(x)⟩ =
m∑
i=1

hi(x)|i⟩. (50)

Since their amplitudes are both bounded, we define the 1-norm of the state function ∥ψ(f)⟩∥ = max ∥gi(f)∥1. Because the
case of ∥|ψ(f)⟩∥ = 0 or ∥|ϕ(x)⟩∥ = 0 is trival, we can write |Ψ(f)⟩ and |Φ(x)⟩ as:

|Ψ(f)⟩ = 1

∥|ψ(f)⟩∥
(

m∑
i=1

gi(f)|i⟩+ gm+1(f)|m+ 1⟩)

|Φ(x)⟩ = 1

∥|ϕ(x)⟩∥
(

m∑
i=1

hi(x)|i⟩+ hm+2(x)|m+ 2⟩)
(51)

Since the norms of the first m dimensions are less than or equal to 1, there exist fi+1 and gi+2 to normalize |Ψ(f)⟩ and
|Φ(x)⟩. Thus exist a real constant c, such that

⟨ψ(f)|ϕ(x)⟩ = c⟨Ψ(f)|Φ(x)⟩ (52)

Theorem E.6. Suppose that K is a compact set in Rn, and U is a compact set in C(K), then for any ϵ > 0, there exist a
positive integer N , a real constant c, a N -dim state function |t⟩, which is independent of f ∈ C(K), and a N -dim state
functional |b⟩ depending on f , such that

|f(x)− c⟨b(f)|t(x)⟩| ≤ ϵ (53)

holds for all x ∈ K and f ∈ U .
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Proof. Without loss of generality, we assume that K ⊆ [0, 1]n. By Lemma E.3, we can assume that K = [−1, 1]n and
U ⊆ [−1, 1]n. By Lemma E.4, for any ϵ > 0, there exists R > 0, such that for any x = [x1, · · · , xn] ∈ [−1, 1]n and f ∈ U ,
there holds:

|
∑

|m|≤R

(1− |m|2

R2
)αcm1···mn(f

∗) exp(iπ(m1x1 + · · ·+mnxn))− f∗(x1, · · · , xn)| < ϵ (54)

By the definition of the Fourier coefficients and the evenness of f(x), we can rewrite it as:

|
∑

|m|≤R

dm1···mn(f
∗) cos(π(m1x1 + · · ·+mnxn))− f∗(x1, · · · , xn))− f∗(x1, · · · , xn)| < ϵ (55)

where dm1···mn are real numbers. It is obvious that for every x ∈ [−1, 1]n, the first item is the inner product of two states:∑
|m|≤R

dm1···mn
(f∗)|m⟩

∑
|m|≤R

cos(π(m1x1 + · · ·+mnxn))|m⟩
(56)

By Lemma E.5, exist a positive intege N , a real constant c, a N -dim state functional |b(f∗)⟩ and a N -dim state function
|t(x)⟩, such that

|f∗(x)− c⟨b(f∗)|t(x)⟩| < ϵ (57)

is true for all x ∈ [−1, 1]n and f∗ ∈ V . Thus

|f(x)− c⟨b(f)|t(x)⟩| < ϵ (58)

is true for all x ∈ [0, 1]n and f ∈ U .

Lemma E.7. {ηi}∞i=1 is a sequence such that η1 > η2 > · · · ηn → 0 and {n(ηi)}∞i=1 is a sequence of positive integers such
that n(η1) < n(η2) < · · · < n(ηk) → ∞, such that the first n(ηk) elements N(ηk) = {x1, · · · , xn(ηk)} is an ηk-net in K.
We define functions

T ∗
ηk,j

(x) =

1− ∥x− xj∥k
ηk

if ∥x− xj∥X ≤ ηk

0 otherwise
(59)

and

Tηk,j(x) =
T ∗
ηk,j

(x)∑n(ηk)
j=1 T ∗

ηk,j
(x)

(60)

for j = 1, · · · , n(ηk). For each u ∈ V , we define a function

uηk
(x) =

n(ηk)∑
j=1

u(xj)Tηk,j(x) (61)

and sets Vηk
= {uηk

: u ∈ V } and V ∗ = V
⋃
(
⋃∞

k=1 Vηk
). We then have the following results:

1) For each fixed k, Vηk
is a compact set in a subspace of dimension n(ηk) ∈ C(K).

2) For every u ∈ V , there holds
∥u− uηk

∥C(K) ≤ δk (62)

3) V ∗ is a compact set in C(K).

Proof. The proof of Lemma E.7 can be found in Chen & Chen (1995).
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Theorem E.8. Suppose that X is a Banach Space, K ⊆ X is a compact set, V is a compact set in C(K), f is a continuous
functional defined on V , then for any ϵ > 0, there exist a positive integer N , a real constant c, a N -dim state function |t⟩,
which is independent of f ∈ C(K), and a state functional |b⟩ depending on f , such that

|f(u)− c⟨b(f)|t(x)⟩| ≤ ϵ (63)

holds for all u ∈ V .

Proof. By Tietze’s Extension Theorem, we can define a continuous functional on V ∗ such that

f∗(u) = f(u) if u ∈ V (64)

Because f∗ is a continuous functional defined on the compact set V ∗, therefore for any ϵ > 0, we can find a δ > 0 such that
|f∗(u)− f∗(v)| < ϵ/2 provided that u, v ∈ V ∗ and ∥u− v∥C(K) < δ. Let k be fixed such that δk < δ, then by proposition
2. of Lemma E.7 for every u ∈ V ,

∥u− uηk
∥X < δk (65)

which implies
|f∗(u)− f∗(uηk

)| < ϵ/2 (66)

for all u ∈ V . By proposition 1. of Lemma E.7, we see that f∗(uηk
) is a continuous functional defined on the compact set

Vηk
in Rn(ηk). By Theorem E.6, we can find N , c, |b⟩, |t⟩, such that

|f∗(uηk
)− c⟨b(f∗)|t(x)⟩| < ϵ/2 (67)

We conclude that
|f(u)− c⟨b(f)|t(x)⟩| < ϵ (68)

Thus, Theorem E.8 is proved.

Theorem E.9. Suppose that X is a Banach Space, K1 ⊆ X , K2 ⊆ Rn are two compact sets in X and Rn respectively, V
is a compact set in C(K1), G is a nonlinear continuous operator, which maps V into C(K2), then for any ϵ > 0, there exist
a positive integer N , a real constant c, a N -dim state function |t⟩ and a N -dim state functional |b⟩, such that

|G(u)(y)− c⟨b(u)|t(y)⟩| < ϵ (69)

Proof. From the assumption that G is a continuous operator which maps a compact set V in C(K1) into C(K2), it is
straightforward to prove that the range G(V ) = {G(u) : u ∈ V } is also a compact set in C(K2). By Theorem E.6, for any
ϵ > 0, there are a positive integer N , a real constant c, a N -dim state function |t⟩ and a N -dim state functional |b⟩, such that

|G(u)(y)− c⟨b(G(u))|t(y)⟩| < ϵ (70)

holds for all y ∈ K2 and u ∈ V .

Since G is a continuous operator, combining with the last proposition of Theorem E.6, we conclude that for each k =
1, · · · , N , |b(G(u))⟩ is a continuous state functional defined on V .

|G(u)(y)− c⟨b(u)|t(y)⟩| < ϵ (71)

F. Extensive benchmarking
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Table 6. Test error comparison of TF-QuanONet with different qubits and params. #, where all Trunk Depth is set to 10 and Ansatz
Depth is set to 2. Under the condition of different qubit numbers, the performance of TF-QuanONet generally increases with the increase
of Branch Depth. Interestingly, our method performs better at low qubits, which may be because the deeper Branch Net improves the
expressivity in the frequency domain.

Qubits # Branch Depth MSE Param. # Epochs #

2
50 6.5e-5 960 1000

100 5.8e-5 1760 1000
150 4.9e-5 2560 1000

4
25 4.4e-5 1120 1000
50 3.2e-5 1920 1000
75 3.7e-5 2720 1000

5
20 2.2e-4 1200 1000
40 1.7e-4 2000 1000
60 1.3e-4 2800 1000

10
10 3.15e-4 1600 1000
20 1.45e-4 2400 1000
30 1.05e-4 3200 1000

Table 7. Execution time of TF-QuanONet on a quantum simulator and DeepONet with 10000 training instances based on different
frameworks. The forword time of TF-QuanONet is about 10-100 times that of DeepONet at the same scale

Framework TF-QuanONet DeepONet
Training Inference Training Inference

DeepXde 82.1543 0.000059858s 0.8119s 0.000000414s
Torch 168.0444s 0.000082172s 0.9917s 0.000000411s

MindSpore 10.4797s 0.000008763s 1.5054s 0.000000467s

Figure 12. Error curve of TF-QuanONet with different Hamiltonian for anti-derivative operator, Z-7 means H = 7
5

∑5
i=1 σ

i
z with spectral

radius equals 7. Further increasing the spectral radius has little impact on the results, but too small spectral radius will limit the range of
the solution function and thus affect the prediction accuracy.
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