
Multi-Agent Soft Actor-Critic with Coordinated
Loss for Autonomous Mobility-on-Demand Fleet

Control

Zeno Woywood1*, Jasper I. Wiltfang1*, Julius Luy1, Tobias Enders1, and
Maximilian Schiffer1,2

1 School of Management, Technical University of Munich,
Arcisstraße 21, 80333 Munich, Germany,

{zeno.woywood, jasper.wiltfang, julius.luy, tobias.enders}@tum.de
2 Munich Data Science Institute, Technical University of Munich,

Walther-von-Dyck-Straße 10, 85748 Garching, Germany
schiffer@tum.de

Abstract. We study a sequential decision-making problem for a profit-
maximizing operator of an autonomous mobility-on-demand system. Op-
timizing a central operator’s vehicle-to-request dispatching policy re-
quires efficient and effective fleet control strategies. To this end, we em-
ploy a multi-agent Soft Actor-Critic algorithm combined with weighted
bipartite matching. We propose a novel vehicle-based algorithm archi-
tecture and adapt the critic’s loss function to appropriately consider co-
ordinated actions. Furthermore, we extend our algorithm to incorporate
rebalancing capabilities. Through numerical experiments, we show that
our approach outperforms state-of-the-art benchmarks by up to 12.9%
for dispatching and up to 38.9% with integrated rebalancing.

Keywords: hybrid learning and optimization · multi-agent learning ·
deep reinforcement learning · coordinated loss · autonomous mobility on
demand

1 Introduction

Autonomous Mobility-on-Demand (AMoD) systems promise to transform urban
mobility, following Mobility-on-Demand (MoD) providers like Uber and DiDi.
They enable MoD services with fast response times and point-to-point trips at
lower costs, shifting operator priorities: MoD depends on driver wages, favoring
revenue maximization, whereas AMoD focuses on profit optimization by mini-
mizing distance-related costs. Additionally, AMoD enhances central control by
leveraging historical and contextual trip data. In this context, operators face
two key decisions: accepting and dispatching requests, and rebalancing vehicles
to match demand. This results in a stochastic control problem, which we study

* Both authors contributed equally to this work.



2 Z. Woywood et al.

through the lense of Deep Reinforcement Learning (DRL). Specifically, we intro-
duce a novel parallel algorithm combining multi-agent DRL with combinatorial
optimization for scalability and efficiency.

Related Work: Control algorithms for (A)MoD systems range from rule-
based heuristics [see, e.g., 9] to (learning-enriched) optimization approaches [see,
e.g., 1; 13], and Model Predictive Control (MPC) [see, e.g., 10], but are only
loosely related to this work as we focus on Reinforcement Learning (RL). RL
adapts online to stochastic demand, whereas MPC relies on fixed predictive hori-
zons. RL approaches split into single-agent approaches for dispatching [20; 18; 23]
or rebalancing [5; 6; 12], and multi-agent approaches for dispatching [16; 21; 24; 4]
or rebalancing [7; 15; 17]. Here, multi-agent approaches promise to increase scal-
ability to larger action spaces and remain the focus of our work. Accordingly, we
limit our discussion to recent works in this field to ensure conciseness.

For dispatching, [16] proposed a mean field actor-critic algorithm, while [21]
used a value-based approach, [24] used Q-Learning with KL-divergence opti-
mization, and [4] employed a Soft Actor-Critic (SAC) with bipartite matching.
For combined dispatching and rebalancing, [15] used a graph neural network
with a centralized critic for training, and a decentralized actor-critic for execu-
tion, while [7] used Deep Q-Networks and Proximal Policy Optimization with
attention mechanisms to process global states, and [17] proposed a two-stage
algorithm for dispatching and rebalancing using centralized programming. All
methods treated dispatching and rebalancing as sequential decisions. Our work
contributes to this field by integrating dispatching and rebalancing in a multi-
agent DRL setting.

Contribution: To close the research gap outlined above, we present a novel
multi-agent actor-critic algorithm for AMoD fleet dispatching and integrated
rebalancing under a profit maximization objective. Specifically, we propose a
scalable parallel SAC architecture, wherein each vehicle functions as an agent
providing per-request weights, to address the operators’ need for a comprehen-
sive and feasible solution to its control problem. We obtain coordinated actions
for the fleet by solving a bipartite matching problem, wherein vehicles and re-
quests represent vertices with the agents’ per-request weights between them. To
account for the differences between per-agent and coordinated actions induced
by the combination of DRL and a coordination layer, we show how to adapt the
critic loss function. This “coordinated loss” leads to a more precise estimate of
the value of future states which is coordinated across the fleet. We show that
our algorithm outperforms dispatching-only algorithms by up to 12.9% on real-
world datasets while maintaining stability and scalability. We further extend our
dispatching algorithm to include the concurrent option of rebalancing by provid-
ing artificial rebalancing requests to the same model. The extended algorithm
achieves superior performance, up to 38.9%, compared to a rebalancing heuristic.
To foster future research and ensure reproducibility, our code is publicly available
on GitHub: https://github.com/tumBAIS/HybridMADRL-AMoD-Relocation.

https://github.com/tumBAIS/HybridMADRL-AMoD-Relocation


Multi-Agent SAC with Coordinated Loss for AMoD Fleet Control 3

2 Control Problem

We consider a stochastic multi-stage control problem introduced in [4], in which
a profit-maximizing central operator manages a (possibly autonomous) fleet of
vehicles to serve stochastic customer requests that enter the system over time,

Fig. 1: Schematic visualization of vehicle dispatching (and rebalancing) over time.

see Figure 1. The operator accepts or rejects requests and dispatches vehicles
accordingly. These decisions must be made in real time such that shifting rejected
requests into the future is not possible. In an extension of this basic dispatching
problem, we allow for a rebalancing decision, where the operator can redistribute
idling vehicles within the operating area to proactively match vehicle supply and
anticipated customer demand. We formalize the underlying control problem as
a Markov Decision Process (MDP) in the following.

Preliminaries: We consider discrete time steps t within a time horizon T =
{0, 1, . . . , T}, and represent the grid-based operating area as a graph G = (V, E)
with edge weights ed ∈ R>0 denoting the distance and et ∈ N denoting the
number of time steps required to traverse an edge e ∈ E ⊆ {{v, u} |u, v ∈
V ∧ v ̸= u}. Vertices v ∈ V represent the centers of zones in the operating
area. The neighbors of a vertex v are given by NG(v) = {u | (u, v) ∈ E}. If
the operator accepts a request, the customer must be picked up within a given
maximum waiting time ωmax ∈ N0. In each time step, a variable number of
requests Ft appear in the system, and the operator needs to take simultaneous
decisions over a batch of requests with a fixed-size fleet of autonomous vehicles
K.

States: We denote the system state at time step t ∈ T by
st = (t, (kj,t)j∈{1,...,K}, (fi,t)i∈{1,...,Ft}), with K representing the number of ve-
hicles kj,t, j ∈ {1, . . . ,K} and Ft being the number of new fleet requests fi,t,
i ∈ {1, . . . , Ft}. We describe vehicles k = (p, τ, f1, f2), with a position p ∈ V,
a number of time steps τ ∈ N0 left to reach this position and a vehicle-specific
request buffer f1, f2, which are tuples. Here, p can either be the current vertex
for an idling vehicle or the next vertex on the vehicle’s route if it is traveling.
To account for realistic trip lengths and maximum waiting times, we restrict the
number of requests pre-assigned to a vehicle to two. An idling vehicle is charac-
terized by an empty request buffer, i.e., f1 = ∅ as the request buffer fills up in
a first-in-first-out fashion. We label the position of vehicle kj,t as pj,t and label



4 Z. Woywood et al.

the other attributes of the vehicle in the same notation. The set Ft = Ct ∪ B
contains all available requests in time step t with Ft = |Ft| as the count of
available requests, incl. variable customer requests Ct and time-persistent (re-
)balancing requests B. If the operator does not allow vehicle rebalancing, no
rebalancing requests are available, i.e., B = ∅ and Ft = Ct. We describe requests
f = (ω, o, d) with a waiting time ω ∈ N0 ∪ ∅ tracking the elapsed time from
request placement to pick-up, an origin o ∈ V, and a destination d ∈ V. To en-
able the representation of customer and rebalancing requests based on the same
tuple f , rebalancing requests obtain an empty waiting time (ω = ∅) and an origin
corresponding to their destination (o = d). To allow for rebalancing, one creates
a set of rebalancing requests B = {(∅, v, v) | v ∀ V} to consider all vertices
as rebalancing destinations. Moreover, the operator cannot rebalance multiple
vehicles to the same zone in one time step, as we create only one rebalancing
request for each zone. However, one can easily relax this constraint by creating
multiple rebalancing requests for each zone. To reduce the possible action space
and enforce solely reasonable rebalancing movements, we define a vehicle-specific
rebalancing request set Ct ∪ Bj,t. We consider two variants to obtain this set for
individual vehicles that permit equivalent rebalancing behavior: (i) a vehicle j
can rebalance to any zone except its own: Bj,t = {(∅, v, v) | v ∀ V \ pj,t}, (ii) a
vehicle j can rebalance to its adjacent zones: Bj,t = {(∅, v, v) | v ∀ NG(pj,t)}.

Actions: The operator takes one decision ai,t per request fi,t, i ∈ {1, . . . , Ft}.
The operator can either reject it (ai,t = 0) or assign it to a vehicle (ai,t = j),
which is only possible if the vehicle has a free place in its request buffer and the
request is a customer request, i.e., f2j,t = ∅∧fi,t ∈ Ct. A vehicle can also rebalance
(ai,t = j) under the condition that it idles and the request is a vehicle-specific
rebalancing request, i.e., f1j,t = ∅ ∧ fi,t ∈ Bj,t. Each vehicle can be assigned to at
most one request per time step. The action space of the central operator reads

A(st) =

{(
a1,t, . . . , aFt,t

) ∣∣∣ (ai,t = 0) ∨ (ai,t = j ∧ f2j,t = ∅ ∧ fi,t ∈ Ct) ∨

(ai,t = j ∧ f1j,t = ∅ ∧ fi,t ∈ Bj,t)∀ i ∈ {1, . . . , Ft} ∧ j ∈ {1, . . .K},
Ft∑
i=1

1(ai,t = j) ≤ 1, ∀ j ∈ {1, . . . ,K}
} (2.1)

Transition: First, we describe the action-dependent transition from the pre-
decision state st to the post-decision state st+. A reject decision does not alter the
state. If a (rebalancing) request is assigned to a vehicle, the request is appended
to that vehicle’s request buffer.

The transition from the post-decision state to the next system state st+1 is
independent from the action and follows system dynamics. If a vehicle picks up
a customer at its origin vertex, we reset the waiting time of that request. If a
vehicle finds itself at a vertex and is serving a request, the position of the vehicle
is updated based on the route taken. Vehicles take the shortest route to their
next destination. If a vehicle drops off a customer before the next decision is
made, the request buffer removes the old request and shifts the content of the



Multi-Agent SAC with Coordinated Loss for AMoD Fleet Control 5

second request buffer position into the first. The waiting time for accepted but
not yet served requests increases by the time step increment. Rejected requests
are dropped and leave the system immediately. New requests appear according
to an unknown distribution.

Rewards: The operator aims to maximize profits. As autonomous vehi-
cles have negligible fixed costs after an initial investment, the operational costs
c ∈ R≤0 and trip fares are based on the driven distance. Each request is billed
individually, depending on whether a car has picked up the customer on time.
The revenue per request rev(f) ∈ R>0 is based on the operator’s pricing model
and the total revenue per time step over all vehicles depends on the post-decision
state

Rev(st+) =
K∑
j=1

1(f1j,t+ ̸= ∅∧τj,t+ = 0∧pj,t+ = o(f1j,t+)∧ω(f1j,t+) ≤ ωmax) rev(f1j,t+).

Regardless of whether customers are on board, the vehicle incurs variable
costs denoted by c ∈ R≤0 per unit of distance traveled. Based on the vehi-
cle’s route from the post-decision position pj,t+ to the next pre-decision position
pj,t+1, the total cost per time step results to

Cost(st+) = c

K∑
j=1

1(f1j,t+ ̸= ∅ ∧ τj,t+ = 0) (pj,t+, pj,t+1)
d
.

The total profit at time t+ is Profit(st+) = Rev(st+)−Cost(st+). The post-
decision state st+ is a function of the pre-decision state st and the taken action
at ∈ A (st). Thus, we write Profit(st+) = Profit(st,at).

The centralized operator of the AMoD fleet aims to find a policy π(at|st)
maximizing the expected total profit over T , based on the initialized state s0:

Profit(s0) = max
π

E(st,at)∼π

[
T−1∑
t=0

Profit(st,at)
∣∣∣s0] .

3 Methodology

Figure 2 gives an overview of our algorithm’s architecture. To derive an efficient
and scalable algorithm, we employ multi-agent SAC to keep the action space
tractable. SAC’s entropy-regularized policy yields superior stability and sample
efficiency over other RL algorithms. In this algorithm’s architecture, vehicles
represent agents, which use the same actor neural network and share parameters
for efficiency. All agents evaluate all available requests and assign them a weight.
We mask these weights to ensure feasibility constraints, and create a weighted bi-
partite graph with vehicle agents and requests representing vertices accordingly.
We use this weighted matching to obtain an optimal vehicle-to-request alloca-
tion, i.e., a coordinated action for all agents based on the set of single agent
outputs. During training, we use per-agent rewards to avoid a credit assignment



6 Z. Woywood et al.

problem [2]. The critic learns from these rewards and provides per-agent values
to the actor to update its policy. To train actor and critic, we use the discrete
version of SAC, i.e., Soft Actor-Critic Discrete (SACD) [3]. Our algorithm scales
linearly with the number of requests one agent has to evaluate. The employment
of the SACD and the combination with bipartite matching are analogous to the

Bipartite
AgentK

Agent1
Environment

Critic
CriticK

Critic1

Actor Masking
Weighted

Matching

...

...

Weights

Constrained

Weights

Request

Per-Agent

Q-Values

Coordinated
Action

Global State

Global State

Per-Agent Rewards

Shared

Parameters

Shared

Parameters

Fig. 2: Overview of our algorithm’s architecture, showing actor components (red),
critic components (blue) and a combinatorial optimization component (gray).

algorithm proposed in [4]. Contrarily to [4], we use a vehicle-based parallel al-
gorithm architecture, a masking procedure, an adapted critic loss function, and
finally extend our algorithm to include rebalancing.

3.1 Algorithm Architecture

We model each vehicle as an agent, see Figure 3, as it enables the agents to
build up reward trajectories corresponding to their actions, thereby fostering
the learning process and accurate reward allocation. The agents’ neural network
architecture assesses each request based on the following input features: miscel-
laneous features mt contain general environment information, which is the same
for all agents, e.g., the current time in the period; vehicle features vj,t are agent-
specific, e.g., the current position and the request buffer; request features fi,t
which we duplicate for all agents, e.g., the origin and the destination. We com-
bine all features to one input-vector per vehicle and request. For the complete
set of features, we refer to Appendix B.1.

The actor assesses all currently available requests fi,t , i ∈ {1, . . . , Ft} for one
vehicle in parallel. To fix the input dimension of our agent’s neural network
architecture, we pad the evaluated requests to have a constant size of Fmax. To
facilitate more simultaneous requests and speed-up computation for big instance
sizes, one may limit Fmax via a broadcasting range, which gives only the closest
requests to each vehicle. We introduce an empty request f0,t that allows a vehicle
to reject unappealing requests.

We process each input vector separately through five parallel dense layers
with identical parameters, forming a trainable multi-layer embedding. The two-
dimensional output tensor is stacked and flattened into a one-dimensional vector,
then evaluated in five dense layers. The final softmax activation outputs values



Multi-Agent SAC with Coordinated Loss for AMoD Fleet Control 7

wi,t ∈ [0, 1] which we interpret as per-request weights. All agents share a com-
mon neural network architecture and parameters. The critic follows the same
architecture and features as the actor but also receives the coordinated action
as input. For algorithm specifications and final hyperparameters, we refer to
Appendix B.

3.2 Coordinated Critic Loss SAC-Discrete

To derive the coordinated critic loss, we introduce the relevant notation. The per-
request weights wi,t of each vehicle j are only processed further if they exceed a
threshold δ, otherwise the vehicle rejects the request (cf. Appendix B.3). Solving
this classic assignment problem with the masked actors’ outputs as edge weights
via bipartite matching, we get the coordinated action ā of the fleet with per-
vehicle action āj . We denote a transition by (s, ā, r, s′), with environment state s
and next state s′ (denoted as st+1 in the control problem).

With these definitions, we are ready to derive the coordinated critic loss.
Recall that SAC is an off-policy algorithm that incentivizes exploration by find-
ing an optimal stochastic policy π∗ via a maximum entropy objective. To this
end, we parameterize the actor and critic network with parameters ϕ and θ.
We use two critic networks Q ∈ {Q1, Q2} to mitigate overestimation along with
target networks with parameters

¯
θ to ensure a stable target. We obtain the

target parameters through an exponential moving average of the primary critic
parameters. Then, the policy loss matching the control problem is

Jπ(ϕ) = E(s,ā,r,s′)∼D

[∑
j

πϕ(a|s, j)T ·
(
α log(πϕ(a|s, j))− min

m∈1,2

{
Qm

¯
θ (ā|s, j)

})]
.

(3.1)
We define rj as the reward for agent j and sample transitions from a replay

buffer D. We define the policy’s entropy as log(πϕ(a|s, j)), wherein α ∈ R≥0

controls the degree of exploration and γ is the discount factor. Note that π(a|s, j)
represents the probability of vehicle j deciding for a specific request. Hence, it
corresponds to the weights w in Figure 3 (see Subsection 3.1), e.g., for a specific
vehicle we get π(a = f1,t|s) = w1,t.

Input Parallel Dense Flatten Dense Softmax

...... ......

f0,t

f1,t

vtmt

Features

...

w1,t

...

wFmax,t

w0,t

Fig. 3: Vehicle-based agent architecture in which we combine input features to
an input-vector (left) and use parallel neural networks (right).



8 Z. Woywood et al.

The respective critic loss for our setting is

JQ(θ) = E(s,ā,r,s′)∼D

[∑
j

1

2

(
Qθ(ā|s, j)− yj

)2]
, with

yj = rj + γ · πϕ(a
′|s′, j)T ·

(
min
m∈1,2

{
Qm

¯
θ (a′|s′, j)

}
−α log(πϕ(a

′|s′, j))
) (3.2)

as proposed in [4]. As πϕ(a
′|s′, j) is the per-agent probability of taking per-

agent action a′ in the next state, we refer to Equation (3.2) as a local loss.
The local loss does not accurately reflect the probability of agent j executing
a′ given s′. The local loss is only accurate, if a′ is executed (cf. Appendix A.1).
However, each agent executes an action āj based on ā which differs from a′ due to
discrete assignments and feasibility constraints. To obtain a critic loss function
that accurately reflects the coordinated action, we define a modified πϕ(a

′|s′, j),
which we denote by π̄ϕ(a

′|s′, j) ∈ {0, 1} that gets π̄ϕ(a
′|s′, j) = 1 if a′ = āj

and zero otherwise. Note that the distribution of π̄ is degenerate as its support
reduces to āj . We use the modified π̄ϕ(a

′|s′, j) to derive a new target yj .

Proposition 1. Let us denote by ȳj the per-agent target based on π̄ϕ(a
′|s′, j).

Then,
ȳj = rj + γ min

m∈1,2

{
Qm

¯
θ (ā|s′, j)

}
. (3.3)

For a proof of Proposition 1, we refer to Appendix A. The adjusted critic
loss function now reads

JQ(θ) = E(s,ā,r,s′)∼D

[∑
j

1

2

(
Qθ(ā|s, j)− ȳj

)2]
. (3.4)

and reflects a coordinated loss, as we compute the critic loss using the agent-
specific action which we derived from the coordinated action ā. Herein, we obtain
ȳj according to Equation (3.3). The actor loss does not require adaptation as
it learns from the critic’s predictions, which, in turn, already result from the
correct updates based on Equation (3.4).

4 Experimental Design

We follow [4; 8], and use the well-established NYC Taxi dataset [22] to bench-
mark our model against state-of-the-art algorithms. We employ a hexagonal grid
for spatial discretization to balance real-world similarity with computational ef-
ficiency and differentiate two settings: a smaller 11 zone (larger 38 zone) setting
with 500m (1000m) distance between adjacent zones in lower Manhattan. For
the 11 small zones, we use the dataset without modifications. In the case of the
38 large zones, we apply a downscaling factor of 20 to reduce the number of
requests, ensuring a comparable fleet size assessment in both scenarios. We con-
sider daily one-hour intervals as episodes, spanning from 8:30 to 9:30 a.m. with



Multi-Agent SAC with Coordinated Loss for AMoD Fleet Control 9

a time step size of one minute. Throughout the year 2015, excluding holidays
and weekends, we include a total of 245 dates, using 200 for training, 25 for
validation, and 20 for testing purposes. We configure the waiting time to be 5
(10) minutes. The cost parameter determines the cost per distance driven and
is set to make round trips profitable with a 20% margin.

We consider two experiments: pure dispatching as well as integrated dis-
patching and rebalancing. For the experiment with pure dispatching, we model
instances with supply shortage, as operators in dispatching scenarios with infi-
nite supply can fulfill any request immediately, making a myopic policy sufficient.
Thus, we set a maximum of 12 (20) requests per time step and deploy 12 (50)
vehicles. For the experiment integrating dispatching and rebalancing, we model
a supply overhang as rebalancing is only valuable if vehicles idle. We integrate
rebalancing requests in our algorithm’s architecture with artificial requests to im-
itate rebalancing as a dispatching decision, as explained in Section 2. To leverage
knowledge about the environment and enhance training, we alter the training
rewards of rebalancing actions. The agent receives a fare (positive or negative)
depending on the vehicle population of the current and the target zone. We re-
fer to Appendix B.4 for further details on the rebalancing requests and their
training rewards. For the 38 large zones, we generate rebalancing requests to
neighboring zones only (see Appendix C.3). Thus, we set a maximum of 6 (10)
requests per time step and deploy 24 (120) vehicles. We add a constraint that
requires vehicles to be in the zone or en route to the origin zone of the request to
foster rebalancing further. Moreover, we study the sensitivity w.r.t. the number
of vehicles by considering additional instances with ± 50% vehicles. Finally, we
create an additional dataset by shifting the originally rather homogeneous and
well-balanced NYC Taxi dataset towards an imbalanced request distribution.
The modified dataset has one (two) distinct clusters of departing customers,
and we refer to it as “Clustered” hereafter. For details on the setup, evaluated
scenarios, and hyperparameters we refer to Appendix C.

5 Results and Discussion

In the following, we analyze the performance of our algorithm focusing on a pure
dispatching setting (Subsection 5.1), as well as a setting that includes rebalancing
decisions (Subsection 5.2). In the first part, we denote by Vlocal our algorithm
using a local critic loss function (cf. Equation 3.2) and by Vcoord. our algorithm
using a coordinated critic loss function (cf. Equation 3.4). We benchmark our
dispatching performance against two algorithms: an algorithm using request-
vehicle combinations as in [4] (RVC ) and a greedy policy (Greedy). The Greedy
algorithm weighs every request according to its profitability before matching.
In the second part, we show the capabilities of our integrated dispatching and
rebalancing algorithm by extending Vcoord. with rebalancing (Vext.). Here, we
benchmark against Greedy, our algorithm without rebalancing and a rebalancing
heuristic (Heuristic) that distributes the number of vehicles per zone equally. For
a detailed description of all benchmarks, see Appendix C.2.



10 Z. Woywood et al.

50k 100k 150k 200k
Training steps

-300
-200
-100

0
100
200
300
400

R
ew

ar
d

11 small zones

50k 100k 150k 200k
Training steps

-1500
-1000

-500
0

500
1000
1500

38 large zones

Greedy
RVC

Vlocal
Vcoord.

Fig. 4: Average validation rewards of all four algorithms on both NYC settings.
The shadowed area is the minimum and maximum value across 5 seeds.

5.1 Dispatching

Figure 4 shows the validation results of all four algorithms for dispatching. RVC
and Vcoord. exhibit a stable performance throughout training in both settings.
RVC converges to the same reward as Greedy, while Vcoord. converges to a sig-
nificantly higher reward. The validation results of Vlocal show stability issues,
especially for 38 zones. For the larger setting, Vcoord. requires more training steps
until convergence as the complexity rises with more vehicles and requests. The
validation reward across training episodes of Vlocal demonstrates that our algo-
rithm exhibits a high variance and a convergence below Greedy, when neglecting
the coordinated critic loss function. These observations show that the work of [4]
improves stability and performance by employing one agent per request-vehicle
combination, which improves performance even when using a local loss. While
a vanilla implementation of our parallel vehicle-based algorithm is inferior to
such an approach, utilizing our algorithm with a coordinated critic loss allows
for significant improvements as the combination of a coordinated critic loss and
a vehicle-based agent representation better reflects problem dynamics and con-
sequently eases the learning.

Table 1 and Figure 5 show each algorithm’s improvement in test performance
compared to Greedy corresponding to the validation results in Figure 4. Vcoord.

outperforms Greedy significantly, RVC exhibits a test result close to Greedy
and Vlocal performs worse than Greedy. The strong performance of Vcoord. high-
lights the significance of employing a coordinated critic loss. In contrast, the low
performance of Vlocal indicates that the error from using a local loss function sub-
stantially hinders the search for a stable and performant policy, which increases
with a higher number of vehicles. RVC evaluates one request-vehicle combina-
tion at a time, effectively splitting the vehicle into multiple agents. Thus, RVC
lacks the ability to perform anticipatory planning for individual vehicle routes as
request-vehicle combinations only exist in the current time step. Consequently,
RVC inadequately accounts for the subsequent state s′ and the error resulting
from bipartite matching, as it employs the current state for target retrieval,
leading to a biased estimate that does not accurately predict the future state,
yielding near Greedy results. Our vehicle-based architecture, on the other hand,
is able to form a reward trajectory which is necessary for long-term planning. As



Multi-Agent SAC with Coordinated Loss for AMoD Fleet Control 11

the algorithm evaluates all requests and receives a reward corresponding to only
its actions, it gains a correct estimate of the next state’s value and can therefore
optimize its subsequent dispatching decisions.

-20%

-10%

0%

10%

20%

N
YC

11 small zones

-30%
-20%
-10%

0%
10%
20%

38 large zones

Greedy
RVC
Vlocal

Vcoord.

Fig. 5: Test performances for dispatching (0% indicates equal performance to
Greedy). Each dot represents the average of one test date across 5 seeds.

Algo. 11 small 38 large

Greedy 350.9 1529.5
RVC +1.9% −1.1%
Vlocal −4.8% −21.0%
Vcoord. +12.9% +12.9%

Table 1: Performance improve-
ment to Greedy for dispatching
across 5 seeds.

Metric Greedy RVC Vcoord.

Rejects to empty (%) 18.3 18.2 44.7
Rejects to occupied (%) 19.2 19.8 49.9
Pick-up distance (zones) 2.4 2.4 0.2
Waiting time (min) 3.8 3.7 2.5

Table 2: Structural comparison of different
algorithms on the 11 small zones setting (av-
erage across 5 seeds).

Note that, using request-vehicle combinations with global rewards instead
of per-agent rewards also fixes the reward allocation problem. In case of global
rewards, all agents have a shared goal, fostering coordination to optimize the
collective outcome. For this reason, [8] extend RVC to utilize global rewards.
However, the test for RVC with global rewards for our setting performed about
the same as RVC with per-agent rewards. Thus, indicating the challenge to learn
from a single reward signal in combination with the lack of trajectories for the
request-vehicle combinations.

To analyze the algorithms’ policies, we compare the metrics presented in Ta-
ble 2 for profitable requests. A request is profitable for the operator, if the fare is
higher than the distance cost of any vehicle, and the vehicle can fulfill the request
within the maximum waiting time. For each algorithm, we assess the share of
rejected requests out of the number of profitable requests to gain insights into
the algorithms’ behaviors. The metric “rejects to empty” considers empty zones
as destinations for the profitable requests and “rejects to occupied” counts zones



12 Z. Woywood et al.

with more than one vehicle located at that destination. We divide both metrics
by the total number of requests to retrieve their ratio. The “pick-up distance”
presents the distance driven to the pick-up zone from the current destination
of the vehicle. Lastly, the “waiting time” is the average time a customer waits
until pick-up. Greedy and RVC behave similarly, but Vcoord. rejects with 44.7%
more than double the amount of profitable requests, keeps waiting times shorter,
and reduces pick-up distance by a factor of ten. Hence, Vcoord. learns a different
policy in two ways. First, it better utilizes implicit rebalancing by preferring re-
quests that allow heading towards empty zones over requests ending in occupied
zones. Second, it rejects more low-profit requests to wait for those with higher
profits, particularly favoring requests starting in the vehicle’s current zone as in-
dicated by the low pick-up distance. This leads to lower waiting times, as future
customers rarely have to wait until the vehicle arrives at their location. Such a
policy proves effective in instances with supply shortages, where the opportunity
cost of rejecting requests is low.

5.2 Integrated Dispatching and Rebalancing

Figure 6 shows the improvement in test performance compared to Greedy for
integrated dispatching and rebalancing. Vcoord. performs close to Greedy in all
settings, whereas Heuristic and Vext. perform significantly better than Greedy,
especially on the Clustered dataset. The low performance improvement of Vcoord.

compared to dispatching-only bases on the oversupply of vehicles in the tested
instances, for which Greedy is inherently strong. Note that for the Clustered
dataset, Heuristic and Vext. are able to outperform Greedy by 96.2% (51.3%) and
101.0% (111.5%) respectively. Thus, our algorithm performs 39.8% better than
Heuristic on the larger setting, but only 1.3% on the smaller one. The result of
Heuristic for the smaller setting indicates that the rule-based rebalancing policy
matches the distribution and frequency of requests for this instance size well.

0%

20%

40%

N
YC

11 small zones with 24 Vehicles

0%

10%

20%
38 large zones with 120 vehicles

0%
50%

100%
150%

C
lu

st
er

ed

Vcoord. Heuristic Vext.

0%
50%

100%
150%

Fig. 6: Test performances on both scenarios and datasets for integrated dispatch-
ing and rebalancing compared to Greedy. Each dot represents the average of one
test date across 5 seeds.



Multi-Agent SAC with Coordinated Loss for AMoD Fleet Control 13

Zones 11 small zones 38 large zones

Setting Algo. \ K #12 #24 #36 #60 #120 #180

NYC

Greedy 297.3 418.3 479.6 1594.4 2282.7 2674.1
Vcoord. +2.0% +1.7% +1.6% +1.4% +1.0% +0.7%
Heuristic +6.4% +14.2% +10.6% +5.6% +8.3% +8.4%
Vext. +9.9% +20.0% +21.3% +6.4% +12.3% +10.1%

Clustered

Greedy 137.2 198.8 241.8 429.3 688.5 882.6
Vcoord. +1.2% +3.1% +0.8% +1.4% +1.0% +0.7%
Heuristic +74.1% +96.2% +70.5% +66.5% +51.3% +48.6%
Vext. +85.6% +101.0% +96.7% +107.7% +111.5% +106.4%

Table 3: Performance improvement to Greedy for dispatching and rebalancing
to compare the impact of varying numbers of vehicles K (ceteris paribus) across
5 seeds.

Furthermore, we explore the sensitivity of varying number of vehicles on
operator returns, see Table 3. Notably, our algorithm Vext. demonstrates an
overall increasing relative performance improvement in comparison to Heuristic
as the number of vehicles rises. This supports the scalability of our algorithm and
indicates that Vext. effectively capitalizes on past experiences, anticipating future
requests and incorporating the spatial distribution, especially for the Clustered
dataset. Determining the optimal fleet size is imperative for operators aiming to
maximize their profits gained from their rebalancing policy. When the fleet size
is small, the degree of freedom to improve is also small. When the fleet size is
excessively large, rebalancing becomes less profitable in relative terms as Greedy
already achieves a comparable performance.

6 Conclusion

This work studies the fleet control problem of a profit-maximizing AMoD op-
erator and offers a comprehensive solution, including the implementation code.
We solve the dispatching problem by proposing a novel multi-agent SACD ar-
chitecture, in which each agent first evaluates requests in parallel and combines
them afterwards for a vehicle-based output. Thus, our algorithm ensures com-
putational efficiency while optimizing its reward trajectory through long-term
planning. We show an error in the critic’s loss function and demonstrate how to
accurately derive a coordinated loss for estimating future state values when com-
bining multi-agent SAC with a coordination layer, achieved via bipartite match-
ing. By adjusting the critic loss function to a coordinated loss, we obtain a more
accurate estimate of the next state’s value, fostering the learning process of our
agent. In addition, we extend our dispatching algorithm by incorporating con-
current rebalancing capabilities. Experimental results show that our approach



14 Z. Woywood et al.

surpasses state-of-the-art benchmarks while demonstrating stability across dif-
ferent instances. For dispatching, we outperform the closest benchmark by up
to 12.9% and for integrated dispatching and rebalancing by up to 38.9%. In fu-
ture work, we will extend the AMoD fleet control problem by covering charging
and investigate how the adaptation to a coordinated critic loss function impacts
the performance of DRL models with combinatorial optimization in other multi-
agent problem settings.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.



Bibliography

[1] Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D.: On-
demand high-capacity ride-sharing via dynamic trip-vehicle assignment.
Proceedings of the National Academy of Sciences pp. 462–467 (2017)

[2] Chang, Y.h., Ho, T., Kaelbling, L.: All learning is local: Multi-agent learning
in global reward games. In: Advances in Neural Information Processing
Systems. pp. 1–8 (2003)

[3] Christodoulou, P.: Soft actor-critic for discrete action settings. CoRR
(2019), http://arxiv.org/abs/1910.07207

[4] Enders, T., Harrison, J., Pavone, M., Schiffer, M.: Hybrid multi-agent deep
reinforcement learning for autonomous mobility on demand systems. In:
Proceedings of The 5th Annual Learning for Dynamics and Control Con-
ference. pp. 1284–1296 (2023)

[5] Fluri, C., Ruch, C., Zilly, J., Hakenberg, J., Frazzoli, E.: Learning to operate
a fleet of cars. In: 2019 IEEE Intelligent Transportation Systems Conference
(ITSC). pp. 2292–2298 (2019)

[6] Gammelli, D., Yang, K., Harrison, J., Rodrigues, F., Pereira, F.C., Pavone,
M.: Graph neural network reinforcement learning for autonomous mobility-
on-demand systems. In: 2021 60th IEEE Conference on Decision and Con-
trol (CDC). pp. 2996–3003 (2021)

[7] Holler, J., Vuorio, R., Qin, Z., Tang, X., Jiao, Y., Jin, T., Singh, S., Wang,
C., Ye, J.: Deep reinforcement learning for multi-driver vehicle dispatching
and repositioning problem. In: 2019 IEEE International Conference on Data
Mining (ICDM). pp. 1090–1095 (2019)

[8] Hoppe, H., Enders, T., Cappart, Q., Schiffer, M.: Global rewards in multi-
agent deep reinforcement learning for autonomous mobility on demand sys-
tems. In: Abate, A., Cannon, M., Margellos, K., Papachristodoulou, A.
(eds.) Proceedings of the 6th Annual Learning for Dynamics amp; Con-
trol Conference. Proceedings of Machine Learning Research, vol. 242, pp.
260–272 (2024)

[9] Hyland, M., Mahmassani, H.S.: Dynamic autonomous vehicle fleet oper-
ations: Optimization-based strategies to assign avs to immediate traveler
demand requests. Transportation Research Part C: Emerging Technologies
pp. 278–297 (2018)

[10] Iglesias, R., Rossi, F., Wang, K., Hallac, D., Leskovec, J., Pavone, M.: Data-
driven model predictive control of autonomous mobility-on-demand sys-
tems. In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). p. 1–7 (2018)

[11] Iqbal, S., Sha, F.: Actor-attention-critic for multi-agent reinforcement learn-
ing. In: Proceedings of the 36th International Conference on Machine Learn-
ing. pp. 2961–2970 (2019)

http://arxiv.org/abs/1910.07207


16 Z. Woywood et al.

[12] Jiao, Y., Tang, X., Qin, Z., Li, S., Zhang, F., Zhu, H., Ye, J.: Real-world
ride-hailing vehicle repositioning using deep reinforcement learning. Trans-
portation Research Part C: Emerging Technologies p. 103289 (2021)

[13] Jungel, K., Parmentier, A., Schiffer, M., Vidal, T.: Learning-based
online optimization for autonomous mobility-on-demand fleet control
(2023). https://doi.org/10.48550/ARXIV.2302.03963, https://arxiv.
org/abs/2302.03963

[14] Kullman, N.D., Cousineau, M., Goodson, J.C., Mendoza, J.E.: Dynamic
ride-hailing with electric vehicles. Transportation Science 56(3), 775–794
(2022)

[15] Li, B., Ammar, N., Tiwari, P., Peng, H.: Decentralized ride-sharing of shared
autonomous vehicles using graph neural network-based reinforcement learn-
ing. In: 2022 International Conference on Robotics and Automation (ICRA).
pp. 912–918 (2022)

[16] Li, M., Qin, Z., Jiao, Y., Yang, Y., Wang, J., Wang, C., Wu, G., Ye, J.: Ef-
ficient ridesharing order dispatching with mean field multi-agent reinforce-
ment learning. In: The World Wide Web Conference. p. 983–994 (2019)

[17] Liang, E., Wen, K., Lam, W.H.K., Sumalee, A., Zhong, R.: An integrated re-
inforcement learning and centralized programming approach for online taxi
dispatching. IEEE Transactions on Neural Networks and Learning Systems
pp. 4742–4756 (2022)

[18] Liu, Z., Li, J., Wu, K.: Context-aware taxi dispatching at city-scale using
deep reinforcement learning. IEEE Transactions on Intelligent Transporta-
tion Systems pp. 1996–2009 (2022)

[19] Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments. In: Advances
in Neural Information Processing Systems. pp. 1–12 (2017)

[20] Qin, Z., Tang, X., Jiao, Y., Zhang, F., Xu, Z., Zhu, H., Ye, J.: Ride-hailing
order dispatching at didi via reinforcement learning. INFORMS Journal on
Applied Analytics p. 272–286 (2020)

[21] Tang, X., Qin, Z., Zhang, F., Wang, Z., Xu, Z., Ma, Y., Zhu, H., Ye, J.:
A deep value-network based approach for multi-driver order dispatching.
In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. p. 1780–1790 (2019)

[22] TLC, N.: Trip record data (2015), https://www.nyc.gov/site/tlc/
about/tlc-trip-record-data.page

[23] Zheng, B., Ming, L., Hu, Q., Lü, Z., Liu, G., Zhou, X.: Supply-demand-
aware deep reinforcement learning for dynamic fleet management. ACM
Trans. Intell. Syst. Technol. pp. 1–19 (2022)

[24] Zhou, M., Jin, J., Zhang, W., Qin, Z., Jiao, Y., Wang, C., Wu, G., Yu,
Y., Ye, J.: Multi-agent reinforcement learning for order-dispatching via
order-vehicle distribution matching. In: Proceedings of the 28th ACM In-
ternational Conference on Information and Knowledge Management. p.
2645–2653 (2019)

https://doi.org/10.48550/ARXIV.2302.03963
https://doi.org/10.48550/ARXIV.2302.03963
https://arxiv.org/abs/2302.03963
https://arxiv.org/abs/2302.03963
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page


Multi-Agent SAC with Coordinated Loss for AMoD Fleet Control 17

A Proof of Proposition 1

Proposition 1. Let us denote by ȳj the per-agent target using π̄ϕ(a
′|s′, j). Then:

ȳj = rj + γ min
m∈1,2

{
Qm

¯
θ (āj |s′, j)

}
Proof. First, we express the target ȳj based on π̄ϕ(a

′|s′, j) using the SACD target
definition in Equation (3.2)

ȳj = rj + γ π̄ϕ(a
′|s′, j)T ·

(
min
m∈1,2

{
Qm

¯
θ (a′|s′, j)

}
−α log(π̄ϕ(a

′|s′, j))
)
. (A.1)

Now, we develop (A.1) and start with the scalar product as the sum over all
actions belonging to A

ȳj = rj + γ
∑
a′∈A

[
π̄ϕ(a

′|s′, j)
(
min
m∈1,2

{
Qm

¯
θ (a′|s′, j)

}
−α log(π̄ϕ(a

′|s′, j))
)]

(I)
= rj + γπ̄ϕ(āj |s′, j)

(
min
m∈1,2

{
Qm

¯
θ (āj |s′, j)

}
−α log(π̄ϕ(āj |s′, j))

)
+ γ

∑
a′∈A\āj

[
π̄ϕ(a

′|s′, j)
(
min
m∈1,2

{
Qm

¯
θ (a′|s′, j)

}
−α log(π̄ϕ(a

′|s′, j))
)]

(II)
= rj + γ π̄ϕ(āj |s′, j)︸ ︷︷ ︸

= 1

(
min
m∈1,2

{
Qm

¯
θ (āj |s′, j)

}
−α log(π̄ϕ(āj |s′, j))︸ ︷︷ ︸

= 0

)
+ γ

∑
a′∈A\āj

[
π̄ϕ(a

′|s′, j) min
m∈1,2

{
Qm

¯
θ (a′|s′, j)

}
︸ ︷︷ ︸

= 0

−π̄ϕ(a
′|s′, j)α log(π̄ϕ(a

′|s′, j))
]

(III)
= rj + γ min

m∈1,2

{
Qm

¯
θ (āj |s′, j)

}
−γ

∑
a′∈A\āj

[
π̄ϕ(a

′|s′, j)α log(π̄ϕ(a
′|s′, j))︸ ︷︷ ︸

= 0

]
= rj + γ min

m∈1,2

{
Qm

¯
θ (āj |s′, j)

}
.

(A.2)
In the above derivation, we used the following reasoning:

(I) We divide the sum into terms depending on the action āj and terms
depending on the set of actions A \ āj . Here, āj is the agent-specific action
derived from the coordinated action ā.

(II) We recall that π̄ϕ(a
′|s′, j) =

{
1, if a′ = āj

0, if a′ ̸= āj
, as the distribution π̄ϕ(a

′|s′, j)

is degenerate.
(III) We use the rule of L’Hôpital to compute π̄ϕ(a

′|s′, j)Tα log(π̄ϕ(a
′|s′, j))

for π̄ϕ(a
′|s′, j) = 0, if a′ ̸= āj . Let us denote x = π̄ϕ(a

′|s′, j), then the following
holds

lim
x→0

x log(x) = lim
x→0

log x
1
x

L′Hpital
= lim

x→0

1
x

− 1
x2

= lim
x→0

−x2

x
= lim

x→0
−x = 0.

(A.3)



18 Z. Woywood et al.

Hence, we set π̄ϕ(a
′|s′, j)Tα log(π̄ϕ(a

′|s′, j)) = 0.

A.1 Dependency on the Environment

We note here, that the usage of the unadjusted loss yj can lead to good results
depending on the environment. Using the unadjusted loss in unconstrained en-
vironments, where the agent can execute its action directly, e.g., cooperative
environments that determine only the reward depending on the action of oth-
ers, can yield good results [11]. However, in our problem setting the matching
algorithm introduces a competitive component leading to a constrained environ-
ment. In competitive environments, where the executed actions depend on the
actions of others, using the per-agent action leads to an increasingly inaccurate
yj with a higher number of agents. The increasing mismatch between per-agent
actions and the actually executed actions, derived from the coordinated action,
is shown by [19] where they propose their multi-agent deep deterministic policy
gradient algorithm.

B Methodology

In the following, we describe methodological details. First, we present our cho-
sen features and architecture details of the employed neural networks. Second,
we outline the hyperparameters used in our experiments. Third, we explain the
masking, which we use to retrieve the weights for our bipartite matching. Fourth,
we describe details regarding the definition of rebalancing requests and the cor-
responding reward mechanisms applied during the training process.

B.1 Feature & Neural Network Architectures

In this section, we describe the features used for our new parallel architecture in
detail. The input state for the first parallel dense layer is specific to the respective
agent j and considers all available requests i ∈ {1, . . . , Ft}. As we fix the number
of requests per agent, we extend Ft to Fmax through padding to have a static
input size. We use a spatial discretization to divide the operating area into a
hexagonal grid. Each grid zone represents a central point with horizontal and
vertical indices. We map all possible locations of the operating area to zones.
The encoding of a location is based on the normalized indices of the respective
zone.

We now list the specific environment information that we use as inputs to
generate features for the neural network. The inputs differ slightly depending on
whether rebalancing is enabled (Vext.) or whether only the critic evaluates the
feature (Critic):
– Miscellaneous features mt contain general environment information and

are the same for all agents:
• Time step in the episode, normalized to [0,1]



Multi-Agent SAC with Coordinated Loss for AMoD Fleet Control 19

• Aggregated time steps needed for all vehicles to reach their final destination
positions, normalized to [0, 1], which indicates the current level of activity
within the fleet

• Count of requests placed since start of current episode, divided by the count
of requests placed on average until the current time step, which indicates
the observed demand compared to an average episode

– Vehicle features vj,t are agent-specific:
• Normalized encoding of vehicle’s end position, which is the current vertex

if no request is assigned, otherwise destination of assigned request that will
be served last

• Time steps to reach this position, divided by the maximum time between
any two vertices in the graph representing the operating area

• Number of assigned requests, normalized to [0,1]
– Request features fi,t are duplicated for all agents:

• Normalized encoding of the request origin zone
• Normalized encoding of the request destination zone
• Distance from origin to destination on graph G, normalized by maximum

distance to [0, 1]
• (Vext.) Rebalancing flag in {0, 1}
• (Vext.) Number of vehicles with final destination in pick-up zone, normalized

to [0,1]
• (Vext.) Number of vehicles with final destination in drop-off zone, normalized

to [0,1]
– Request-Vehicle features (fi,t,vj,t) are specified per request i and vehicle

j:
• Distance from vehicle position to request origin, normalized by maximum

distance to [0, 1]
• (Critic) Waiting time flag in {0, 1}, which indicates whether a request can

be picked up in time

Next, we describe the actor network. The general structure of the input pro-
cessing resembles prior work by [4] using the attention mechanism and embed-
dings presented in [7] and [14]. The request and vehicle input features serve as
inputs to create the respective embeddings. Each embedding consists of a feed-
forward dense layer with 32 units and a rectified linear unit (ReLU) activation.
The attention mechanism computes a context from each embedding. The global
context is the concatenation of the request context and the vehicle context. As
the number of requests are time-dependent, we use embeddings and contexts
to represent variable-size inputs in a fixed-size global representation. For each
path of the parallel network (see Figure 3), we combine the request and vehicle
embeddings, the global context, and the specific request-vehicle input features.
The parallel networks act as trainable multi-layer embeddings. We experience
better performance when we shuffle the parallel inputs for all customer requests
in order to train all subsequent nodes after the flattening equally. We evaluate
these inputs for five parallel dense layers with unit sizes of 512, 256, 128, 64, 32
and after flattening for six layers with unit sizes of 1024, 512, 256, 128, 64, 32.



20 Z. Woywood et al.

We apply L2 regularization with a coefficient of 10−4 to all layers. Generally, we
use ReLU activation for the feedforward layers and evaluate the final output on
a softmax activation with |Fmax + 1| units.

The critic network architecture is similar to the actor network’s architecture.
However, we add the information regarding which requests were accepted af-
ter the coordination to the input features for the embeddings and the context
calculation. To this end, we add a binary flag 0, 1 that denotes rejection and
acceptance for requests. For the vehicle input features, we integrate the infor-
mation of the origin and the destination of newly assigned requests. The critic
output does not have an activation function.

B.2 Hyperparameters

We mostly use the same hyperparameters as [4] for our algorithm. We train for
200,000 steps (300,000 for rebalancing on 38 large zones), update the network
parameters every 20 steps, and test the performance of the current policy on the
validation data every 2,880 steps (48 episodes). During the first 20,000 steps,
we collect experience with a random policy and do not update the network
parameters. For the next 30,000 steps, we add linearly declining noise to the
actor’s weights. For the critic loss, we use the Huber loss with a delta value of 10
instead of the squared error. We use gradient clipping with a clipping ratio of 10
for actor and critic gradients. We use the Adam optimizer with a learning rate
of 3× 10−4. We sample batches of size 128 from a replay buffer with maximum
size of 100,000 for the first experiment and 50,000 for the second experiment. We
set the discount factor to 0.925. For the update of the target critic parameters
we use an exponential moving average with smoothing factor 5× 10−4. We tune
the entropy coefficient individually per instance in the range of 0.2 to 0.6.

We conduct multiple training runs using five different random seeds and
select the model with the highest validation performance across these runs. The
selected model undergoes testing on the dataset, and the results presented in
this paper reflect its performance on the test data.

B.3 Edge weight masking

In Figure 3, we use deterministic post-processing to mask the edge weights used
in matching to adhere to our constraints and to determine the per-agent reject
action. The masking step enables the agent to reject single requests by comparing
the weights against a constant threshold. The selected threshold is the highest
value at which the agent is able to accept all requests and also rank them against
one another. Thus, a per-request weight must be greater than δ = 1/(Fmax+1).
By ranking we refer to the agent’s ability to signal its wish to take multiple
requests, but valuing them differently. During training, the agent differentiates
between an active and a passive reject action. The active reject action occurs
if the agent does not want any request. In this case, we will consider the Q-
value and probability of the reject action when calculating the loss. For the
passive reject action, the system does not use the Q-value and probability when



Multi-Agent SAC with Coordinated Loss for AMoD Fleet Control 21

calculating the loss, as the matching decided that the agent does not receive a
request instead of the agent choosing to reject all its requests. Thus, the passive
reject action is not the same as the active reject action and therefore the Q-value
for actively rejecting cannot be used.

In Algorithm 1 we describe how we mask the weights obtained from the
actor (cf. Figure 2). We start with the plain weights from the actor as input
data and change them to match the environment constraints and to retrieve the
reject action. We first check whether the second place of the request buffer f2j,t
is occupied (Line 1). If this is the case, we set all weights of the vehicle wi,t to 0
and a passive reject action a0,t = 0 (Line 2). If not, we check for each weight of
the vehicle wi,t if is it higher than the previously mentioned threshold which we
denote as δ (Line 5). If this is the case, we keep the weight as-is (Line 6) if this is
not the case, we set it to 0 (Line 8). Finally, we check for an active reject action
by adding up all weights of one vehicle and check whether the sum corresponds
to zero (Line 9). If this is the case, we determine an active reject action a0,t = 1
(Line 10) and if not a passive reject action a0,t = 0 (Line 12).

Algorithm 1 Masking per vehicle agent
Input Data: weights wi,t ; threshold δ = 1

Fmax+1

Output Data: weights wi,t ; reject action a0,t

1 if f2j,t ̸= ∅ then
2 wi,t = 0 ; a0,t = 0
3 else
4 for i in Ft do
5 if wi,t > δ then
6 wi,t = wi,t

7 else
8 wi,t = 0

9 if
∑

i wi,t = 0 then
10 a0,t = 1
11 else
12 a0,t = 0

B.4 Rebalancing Requests

To seamlessly integrate rebalancing with dispatching, we model rebalancing ac-
tions as requests. We constrain rebalancing requests and differentiate them from
customer requests as follows:
(a) Vehicle j can only accept rebalancing requests when it idles, i.e., when its

request buffer is empty (f1j,t = ∅∧ f2j,t = ∅). Therefore, only one rebalancing
action can be undertaken at a time.

(b) The origin of rebalancing requests corresponds to their destination. Thus,
a vehicle’s approach to that destination is considered as rebalancing.



22 Z. Woywood et al.

(c) Rebalancing request i is only possible to a zone not corresponding to the
current zone of vehicle j, i.e, pj,t ̸= di,t.

(d) Rebalancing requests must be accepted immediately and cannot be deferred,
i.e., ωi,t = ∅.

(e) Rebalancing requests generate operational costs corresponding to the dis-
tance traveled by the vehicle that fulfills it.

(f) We incorporate a flag into the rebalancing request features to distinguish
them from customer requests.

As rebalancing requests incur only costs, every rebalancing action returns
a negative reward when executed. The algorithm learns to identify the positive
impact of rebalancing in future time steps via the Bellman recursion. However, we
can speed up learning by incorporating additional reward signals during training.
We do so by calculating an artificial reward signal for rebalancing, only used
during training, that is added to the operational costs of rebalancing in order to
incentivize good rebalancing behavior and to penalize bad behavior.

Algorithm 2 describes the calculation of the training reward signal for rebal-
ancing requests. The variable xd

t (fi) in Line 1 measures the number of vehicles
in the destination zone d of the rebalancing request i at time t normalized to a
value between 0 (full zone) and 1 (empty zone). The variable xo

t (fi) calculates
a similar proxy measure for the origin zone o of the request. We distinguish be-
tween empty and full origin zones (Line 2), as empty zones result in a negative
reward signal (Line 3) and full zones in a positive reward signal (Line 5). We
give the positive reward signal in Line 5 proportional to the emptiness of the
destination as we multiply by xd

t (fi), and we increase the negative reward signal
faster (indicated by factoring it with -2). Finally, we sum up xd

t (fi) and xo
t (fi),

wherein we attribute a lower weight to xo
t (fi) (Line 7) to mitigate unnecessary

rebalancing. Thus, we have a reward signal that accounts for the occupancy of
both the destination zone and the origin zone, to give the complex state rep-
resentation additional reward signals, which rebalancing would otherwise not
receive.

Algorithm 2 Calculation of training signal for rebalancing during training
Input Data: number of vehicles at origin of the request ot(fi) ; number of vehicles at

destination of the request dt(fi), cost parameter c, minimum distance
between two vertices l, average number of vehicles per zone rounded up
⌈vt⌉, average number of vehicles per zone rounded down ⌊vt⌋

Output Data: training signal sj,t for vehicle j
1 xd

t (fi) = 1−min{1, dt(fi)
⌊vt⌋ }

2 if ot(fi) < vu then
3 xo

t (fi) =
(⌈vt⌉−ot(fi)+1)×(−2)

⌈vt⌉
4 else
5 xo

t (fi) =
ot(fi)−⌈vt⌉

⌈vt⌉ × xd
t (fi)

6 xt(fi) =
xo
t (fi)

2
+ 2× xd

t (fi)
7 fj,t = c× l × xt(fi)



Multi-Agent SAC with Coordinated Loss for AMoD Fleet Control 23

C Experiments

In the following, we present additional details about our experiments. First, we
provide information regarding the underlying datasets and the system configu-
ration. Second, we elaborate on the three benchmark algorithms. Third, we offer
insights into the rebalancing behavior exhibited by our policy.

C.1 Datasets

For our experiment, we use yellow taxi trip records in NYC from the year 2015
[22], excluding weekends and holidays. We assume that request placement times
coincide with the reported pick-up times in the dataset. We extract pick-up
and drop-off longitude/latitude coordinates, restricting our experiment to trips
where both coordinates fall on the main island of Manhattan. We use spatial
discretization by employing hexagonal grids. We map each request to a pick-up
and a drop-off zone based on the shortest distance of the requests pick-up and
drop-off coordinates to the center of any zone. We exclude trips starting and
ending in the same zone. The distances between neighboring zones are set at
459 meters for small zones and 917 meters for large zones. Travel time between
two neighboring zones assumes two and five time steps based on realistic driving
speeds. We construct a graph, wherein each zone represents a vertex and edges
connect neighboring zones. Vehicles traveling between non-neighboring zones
follow the shortest route.

We focus on two different subsets of zones within the NYC dataset, which
define our simulated operating areas, i.e., the part of Manhattan in which our
fleet operates. Hence, we only consider requests that have pick-up and drop-off
locations within the operating area. For the 38 large zones, we downscale the trip
data by a factor of 20, using every 20th request for simulation. This adjustment
accommodates hardware limitations and results in an average of 360 requests
per episode for the 11 small zones and 828 requests for the 38 large zones. The
mean trip distance is larger for the 38 large zones, influencing the number of
vehicles required.

Figure 7a illustrates the smaller operating area of the NYC dataset, where
colors represent the pick-up and drop-off frequency. Dark green represents zones
with a majority of pick-ups, while dark red represents zones with a majority of
drop-offs. Light yellow / green reflect zones where the number of pick-ups and
drop-offs is almost equal. Although some of the 11 small zones exhibit a minor
bias toward either drop-off or pick-up, it is not strongly pronounced. Therefore,
we obtain a second dataset which maintains the temporal patterns of the NYC
taxi dataset while altering the drop-off and pick-up locations to achieve more
imbalanced request distributions. We do so by sampling pick-ups from a normal
distribution around a cluster and sampling drop-offs towards its edges from
another normal distribution. This modification allows for a more imbalanced
spatial distribution of requests, depicted by dark green and dark red zones in
Figure 7b. This simulates realistic scenarios like, e.g., the end of a major sports



24 Z. Woywood et al.

(a) NYC - 11 zones (b) Clustered - 11 zones

Fig. 7: The 11 zone operating area. Zones dominated by pick-ups are marked in
green, zones dominated by drop-offs are marked in red, and zones with a balance
between pick-ups and drop-offs are marked in light green/yellow.

event in the middle of the operating area. Figure 8 displays the operating area
of the 38 large zones with its spatial distribution.

We assume a maximum waiting time of five minutes for the 11 small zones
setting and ten minutes for the 38 large zones setting, with the increased waiting
time due to the longer trip lengths and greater size of the operating area. To
achieve a 20% operating profit margin with empty driving to the pick-up loca-
tion, we set the revenue at 5.00 USD per km, and operational costs at 2.00 USD
per km.

C.2 Benchmarks

In the following, we describe the used benchmarks for all experiments:
Greedy : It chooses the highest reward at the current time step. Thus, it

assigns every request a weight that depends on the profitability of the request.
The weight is zero for unprofitable requests, i.e., if the cost is higher than the
fare or if the time to pick-up the customer is higher than the maximum waiting
time. The algorithm weighs all other requests proportionally to the profitability
for each vehicle. To this end, Greedy subtracts the cost of the total distance, i.e.,
the distance to the pick-up plus the distance driven with the customer, from the
fare of the request.

Rebalancing Heuristic: It weighs customer requests the same way as the
greedy policy, but has additional rebalancing capabilities. Heuristic weighs rebal-
ancing actions lower than customer requests and aims for an equal distribution
of vehicles per zone. Heuristic attributes a non-zero weight to rebalancing re-
quests only if the vehicle’s current zone has more vehicles than the rounded up
average number of vehicles per zone ⌈vt⌉ and vehicle’s destination zone has less



Multi-Agent SAC with Coordinated Loss for AMoD Fleet Control 25

(a) NYC - 38 zones (b) Clustered - 38 zones

Fig. 8: The 38 zone operating area. Zones dominated by pick-ups are marked in
green, zones dominated by drop-offs are marked in red, and zones with a balance
between pick-ups and drop-offs are marked in light green/yellow.

vehicles than the rounded down ⌈vt⌉ average number of vehicles per zone. The
weight is proportional to the vehicle’s distance to the destination zone.

RVC : Each agent represents a request-vehicle pair. All agents return two
probabilities, one for declining the request and one for accepting it. Both proba-
bilities add up to one. The accept probabilities serve as weights in the bipartite
matching problem if they are higher than the reject probabilities during valida-
tion and testing. If the accept probabilities are lower than the reject probabili-
ties, they are not considered in the bipartite matching problem. During training,
accept and reject decisions are sampled according to their respective probabili-
ties and the weights in the bipartite matching problem then correspond to the
probability of the sampled action.

C.3 Rebalancing Behavior

Our experiments show for the 11 small zones setting that Vext. always rebalances
vehicles to a neighboring zone in one time step. This behavior is beneficial as
the agent can reevaluate its rebalancing actions in each time step and check for
new customer requests. The larger the setting, the more rebalancing actions the
agent has to evaluate. This increases noise and computational effort. As the agent
exclusively rebalances to neighboring zones in the context of the 11 small zones
setting, we intentionally extend this practice to encompass only neighboring
zones as viable rebalancing options for the larger 38 zones.


	Multi-Agent Soft Actor-Critic with Coordinated Loss for Autonomous Mobility-on-Demand Fleet Control

