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Abstract

Since the advent of knowledge distillation, many researchers have been intrigued
by the dark knowledge hidden in the soft labels generated by the teacher model.
This prompts us to scrutinize the circumstances under which these soft labels are
effective. Predominant existing theories implicitly require that the soft labels are
close to the ground-truth labels. In this paper, however, we investigate whether
biased soft labels are still effective. Here, bias refers to the discrepancy between
the soft labels and the ground-truth labels. We present two indicators to measure
the effectiveness of the soft labels. Based on the two indicators, we propose
moderate conditions to ensure that, the biased soft label learning problem is both
classifier-consistent and Empirical Risk Minimization (ERM) learnable, which
can be applicable even for large-biased soft labels. We further design a heuristic
method to train Skillful but Bad Teachers (SBTs), and these teachers with accuracy
less than 30% can teach students to achieve 90% accuracy on CIFAR-10, which
is comparable to models trained on the original data. The proposed indicators
adequately measure the effectiveness of the soft labels generated in this process.
Moreover, our theoretical framework can be adapted to elucidate the effectiveness
of soft labels in three weakly-supervised learning paradigms, namely incomplete
supervision, partial label learning and learning with additive noise. Experimental
results demonstrate that our indicators can measure the effectiveness of biased soft
labels generated by teachers or in these weakly-supervised learning paradigms.

1 Introduction

Knowledge distillation [2, 17, 20] has achieved remarkable achievements in a wide range of applica-
tions. It has emerged as a popular paradigm for model compression [22, 21] and transfer learning
[41, 34] by distilling knowledge from the big model (teacher) to the small model (student). Students
inherit the knowledge of the teacher by imitating the soft labels generated by the teacher model.
Many experiments show that learning from soft labels can be very effective, even surpassing learning
from ground-truth labels [2, 17, 37]. However, there are still many mysteries why these soft labels
are effective. Most existing theories do not apply to soft labels that significantly deviate from the
ground-truth labels and lack explicit indicators to evaluate the soft labels [39, 58, 7, 35]. In this paper,
we mainly focus on the effectiveness of the biased soft labels, especially large-biased soft labels.

It is significant to study the effectiveness of biased soft labels. Firstly, expert-labeled annotation
typically requires a substantial investment of manpower and time. But the soft labels in weakly
supervised learning could be cheap and biased [59, 46]. Evaluating the biased soft labels is instructive
for weakly supervised learning. Secondly, these biased soft labels can apply for privacy protection
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Figure 1: (a) Images of the birds in CIFAR-10. (b) An example of the soft label for "Bird" in Yuan
et al. [53]. (c) An example of the large-biased soft label for "Bird". Compared with Yuan et al. [53],
the value of the ground-truth label (Bird) in the large-biased soft label is probably much smaller, and
is likely not the top of the large-biased soft label.

[15, 11]. When they are employed for subsequent training, they can conceal the ground-truth labels.
It is consistent with the requirements of privacy and utility in privacy protection [27].

After realizing the significance of biased soft labels, we study the biased soft labels and reveal that
large-biased soft labels can also teach good students. This phenomenon inspire us to seek indicators
to measure the effectiveness of soft labels. As a result, we propose two intuitive indicators, namely
unreliability degree and ambiguity degree. The intuition behind them is to convert the soft label into
a top-k set (k is a constant), which contains the top-k labels of the soft label. Unreliability degree is
the probability that the ground-truth label is not in the top-k set while ambiguity degree is the upper
bound of the probability that the incorrect label and the correct label co-occur in the top-k set.

Furthermore, based on the proposed indicators, we present moderate conditions to ensure that, the
biased soft label learning problem is classifier-consistent [28] and Empirical Risk Minimization
(ERM) learnable [6]. The former guarantees that the learners can converge to the optimal solution as
learning from original labeled data. The latter implies that learners’ performance can generalize to
the entire data distribution. Our theory not only guarantees the effectiveness of biased soft labels, but
also provides explicit indicators to evaluate the soft labels.

Biased soft labels are prevalent in weakly supervised learning [24, 44, 59], and our theory can offer
theoretical insights for these paradigms. In detail, we apply the theory to three classic weakly-
supervised learning paradigms: incomplete supervision [3], partial label learning [5] and learning
with additive noise [10]. In these weakly-supervised learning paradigms, soft labels are biased and
we provide a theoretical guarantee for the learners in these fields. In other words, we prove that the
biased soft labels in the three paradigms are effective to train a good model.

It is important to note that, Yuan et al. [53] argues that poorly-trained teachers can teach good
students. In fact, their soft labels are a mixture of the teacher’s outputs and the ground-truth labels
with a ratio of 0.1 : 0.9, which makes the soft labels close to the ground-truth labels as illustrated
in Figure 1(b). Differently, our experiments reveal that large-biased soft labels can also teach good
students. Furthermore, the effectiveness of these soft labels can be measured by unreliability degree
and ambiguity degree. In addition, experiments on three weakly-supervised learning paradigms also
demonstrate that biased soft label learning problem is learnable and the proposed indicators are
effective. Our contributions can be summarized as follows:

• We find that learning from large-biased soft labels may also achieve comparable performance and
intend to explore the underlying mechanisms behind the effectiveness of the biased soft labels.

• Two indicators have been proposed to measure the effectiveness of soft labels. Based on the
indicators, we present moderate conditions to guarantee the effectiveness of the soft labels. It is
proved that the biased soft label learning problem is classifier-consistent and ERM learnable.

• A heuristic method is designed to train skillful but bad teachers, i.e., teachers with low accuracy
but who can teach good students. We can explain this phenomenon with unreliability degree and
ambiguity degree.

• The theory provides a theoretical view for the learners in three weakly-supervised learning
paradigms. Specifically, we provide theoretical guarantees for the learnability of these paradigms
from the perspective of soft labels. Experimental results are consistent with our theory.

2



2 Related Work

Knowledge Distillation and Label Smoothing Knowledge Distillation (KD) was initially proposed
in model compression [22, 21] and then applied to transfer learning [41, 34]. There is growing
interest in why distilling can transfer information and what the dark knowledge hidden in the soft
labels is. Furthermore, the dark knowledge also exists in the variants of knowledge distillation, which
are introduced in the appendix A.1. Label Smoothing (LS) [38] is a regularization method to improve
performance by mixing the uniform noise into the ground-truth label. It is convinced that soft labels
can restrain overconfidence of the student model. Essentially, both KD and LS can be unified as
learning from soft labels Yuan et al. [53].

Label Enhancement Label Distribution Learning (LDL) [13] was proposed to exploit the label
distribution to mirror the relationship between the label and the instance, where the formalization of
the label distribution is identical to the soft labels mentioned above. In the remainder of the paper, we
use nomenclature soft labels. Due to the high cost of labeling the soft labels, Label Enhancement
(LE) [48] was proposed to recover the soft label from the logical label by exploiting the implicit
correlation among different labels. Numerous novel algorithms have been designed in recent years
that aim to improve the predictive model with the soft labels [47, 57]. Wang and Geng [42] applied
the margin theory to the soft labels and designed the adaptive margin loss.

In fact, most existing explanations of the soft labels are empirically and experimentally validated,
while the rigorous theoretical analyses usually have strong assumptions regarding the model or data
distribution. Phuong and Lampert [35] explored the mechanism of distillation where the teacher
model and the student model are linear. Allen-Zhu and Li [1] supposed that the instance could be
decomposed into multiple independent features and had a linear relationship with the sample, and
then proved the effectiveness of the soft labels. Wang and Yoon [43] solved the objective functional
problem of self-distillation with the Green’s function, which assumes that the network can reach the
optimal solution. Menon et al. [31] and Zhou and Song [58] regarded the generated soft labels as the
posterior probability and assumed the existence of the Bayes probability. There is also some work
analyzing soft labels from the perspective of transfer risk [19, 18]. Most existing theories suggest
that students can achieve good performance only when the soft labels are close to the ground-truth
labels, and lack explicit indicators to measure the effectiveness of the soft labels.

3 Methodology

3.1 Preliminary

Let X be the instance space, Y = {1, 2, . . . , c} be the label space with c classes and ∆ be the
soft-label space over Y , i.e., ∆ = {d ∈ Rc|

∑
i∈Y di = 1,di ≥ 0 for all i ∈ Y}. Define D as the

data distribution over X × Y and H as the hypothesis space from X to Y . Each h ∈ H is called the
learner or hypothesis. When h ∈ H is a neural network, it often employs a softmax function in the
final layer and takes the highest value as the prediction. Slightly abusing notation, we use h(x) ∈ ∆

to denote the soft label generated by model h, and h̃(x) ∈ Y to represent the model’s prediction.

Next, we introduce some important concepts in the Probably Approximately Correct (PAC) learn-
ing [40]. The Natarajan dimension [32] was proposed to characterize the capacity of multiclass
hypothesis spaces and we denote dH as the Natarajan dimension of H. The expected classifica-
tion error of a hypothesis h ∈ H is defined as ErrD(h) = E(x,y)∼D[I(h(x) ̸= y)], where I(·)
is the indicator function. Given a finite dataset z, the empirical classification error is defined as
Errz(h) =

1
n

∑n
i=1 I(h(x) ̸= y). The Empirical Risk Minimization (ERM) learner hERM is defined

as hERM = argmin
h∈H

Err∆z (h|f), while the optimal learner h∗ is defined as h∗ = argmin
h∈H

ErrD(h).

Considering that this study involves two models: generating soft labels and learning from the soft
labels. To avoid ambiguity, we use f to represent the model generating soft labels (teacher) and h to
denote the model trained with soft labels (student). It should be noted that f ∈ H can be a neural
network or a map based on certain rules, such as label smoothing.

In order to gain a deeper insight into the concept of biased soft labels, we have provided precise
definitions for relevant terms below. These definitions may not have a direct correlation with the
theoretical analysis presented in section 3.2, but they serve to elucidate the boundaries of our research.

3



Definition 1 (Bias of soft labels). Give a dataset D consisting of n samples, the feature vector for the
i-th sample is denoted as xi and the corresponding label is denoted as yi. Let f represent a model or
a mapping rule. The bias of the soft labels generated by f on dataset D is

Bias(f,D) =
1

n

n∑
i=1

[1− fyi
(xi)] ,

where fyi
(xi) refers to the component of the soft label f(xi) that corresponds to the true label yi.

Definition 2 (Large-biased soft labels). Soft labels generated by f on dataset D is called biased soft
labels when Bias(f,D) > 0 and called large-biased soft labels when Bias(f,D) ≥ 1.

The bias, as defined here, essentially represents the disparity between the soft label and the true label.
Here, we employ the Manhattan distance, also referred to as L1-norm, although other metrics can
also be suitable. A threshold of Bias ≥ 1 is employed to categorize soft labels as "large-biased."
In practical scenarios, the choice of the threshold can be adapted based on specific contexts. After
establishing the concept of large-biased soft labels, we proceed to define "bad teachers."
Definition 3 (Bad teachers). We define f as a bad teacher if the soft labels it generates on dataset D
are large-biased. Typically, D is the training set for f .

The definition of the bad teachers is based on the definition of large-biased soft labels. Similarly,
here we adapt 1 as the boundary value for bad teachers. It’s important to note that when we use
"good/bad" to describe teachers, we are referring to the performance of teachers on the dataset D.
On the other hand, when we say teachers are "skillful," we are emphasizing that they are adept at
instructing students, leading to excellent student performance. Due to the fact that the performance
of the student model is contingent on both the model structure and the complexity of the dataset, we
are unable to establish precise boundaries for "skillful teachers." In this context, ’skillful’ merely
signifies that the teacher produces students with acceptable performance.

3.2 Theoretical Analysis of Soft Labels

In this subsection, we define two indicators, unreliability degree and ambiguity degree, to measure
the effectiveness of soft labels. Based on these indicators, we present moderate conditions to ensure
that the biased soft label learning problem is classifier-consistent and Empirical Risk Minimization
(ERM) learnable. The underlying intuition behind the indicators is to convert the soft label into a set.
Let Ωk(d) = {i ∈ Y | i ranks top-k in d} be the set of top k labels in the soft label d. Here, k is a
constant ranging in {1, 2, . . . , c− 1}. When k = 1, Ωk(d) has only one element, i.e., the prediction.
For soft labels generated by teacher f , we define the unreliability degree as,

ηk(f) = Pr(x,y)∼X×Y(y /∈ Ωk(f(x))). (1)

However, it is not enough to measure the soft labels by merely unreliability degree. For example, for
images whose ground-truth labels are 1, if label 2 always appears in Ωk(d), then the student model
is unable to distinguish label 1 from label 2. Therefore, we introduce the ambiguity degree [4] and
extend it to more general soft labels (induced by teacher f )

γk(f) = max
i∈Y

Pr(x,y)∼X×Y,y ̸=i(i ∈ Ωk(f(x))). (2)

Ambiguity degree bound the probability of co-occurrence. In other words, if a model f is with
ambiguity degree γk(f), then Pr(i ∈ Ωk(f(x)) | i ̸= y, x, y) ≤ γk(f). The smaller η or γ is, the
more effective the soft labels are. However, when k increases, η will decrease and γ is inverse, which
means k should be selected cautiously.

Theorem 1. Training with soft labels generated by the teacher model f , if γk(f) < 1 − ηk(f)
1−ηk(f)

,
then the optimal student model h∗ ∈ H satisfies h∗ = argmin

h∈H
ErrD(h|f).

The proof can be found in A.2. Theorem 1 ensures that the student model h learning from the
teacher can converge to the optimal learner over the entire data distribution. This property is known
as classifier-consistency [12]. However, it does not provide the sample complexity bounds of the
learning problem. In other words, it does not establish a connection between the generalization bound
and the number of training samples.
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Next, we provide our main result, a sufficient condition for the ERM learnability of the biased
soft label learning problem. In the previous subsection, we presented the definition of expected
classification error and empirical classification error, which are based on the label space Y . Here,
given the soft label generating model f , we define the soft label-based expected error

Err∆(h|f) = E(x,y)∼X×Y [I(h̃(x) /∈ Ωk(f(x)))],

and the soft label-based empirical error on dataset z = {(xi, yi)}ni=1

Err∆z (h|f) =
1

n

n∑
i=1

I
(
h̃ (xi) /∈ Ωk(f(xi))

)
.

In the above equations, the set Ωk(f(xi)) is determined by the soft label f(xi). We denote Hη as
the set of teacher models whose generated soft labels are with unreliability degree η, i.e., Hη = {f :
ηk(f) = η}. With such soft labels, we analyze the performance of the ERM learners (students). The
definition of the ERM learner is provided in the preliminary. Specifically, based on the unreliability
degree in (1) and the ambiguity degree in (2), we provide a sufficient condition to ensure that, the
biased soft label learning problem is ERM learnable.
Theorem 2 (Main theory). For k ∈ {1, 2, . . . , c− 1}, assume the unreliability degree ηk(f) and the
ambiguity degree γk(f) of the soft labels generated by teacher model f , denoted concisely as ηk and
γk, and satisfy 0 < ηk, γk < 1 and ηk + γk < 1. Let θk = log 2(1−ηk)

1−ηk+γk
and suppose the Natarajan

dimension of the hypothesis space H is dH. Define

n0(H, ε, δ) = min
k∈{1,2,...,c−1}

{ 2
θkε
2 + log 1

2−2ηk

(dH(log(2dH)

+ log
1

θkε
2 + log 1

2−2ηk

+ 2 logL) + log
1

δ
+ 1)

}
.

Then when n > n0, the ERM learner satisfies ErrD(hERM|f) < ε with probability 1− δ.

The proof can be divided into two lemmas. Let define Hε be the set of hypotheses with error at least
ε, i.e, Hε = {h ∈ H : ErrD(h|f) ≥ ε}. Our target is to bound the probability Pr(h ∈ Hε), which
measures the generalization of the learner h. Since the entire soft label space is inaccessible, Hε is
evaluated by the mediator Rn,ε as follows:

Rn,ε =
{
z ∈ (X × Y)n : ∃h ∈ Hε,Err

∆
z (h|f) = 0

}
.

Then, our goal is to prove that Pr(z ∈ Rn,ε | f ∈ Hη) ≤ δ. In other words, given dataset z, the
student model h has the generalization bound greater than ε with probability at most δ. Since the
teacher model f is intractable and the soft label space ∆ is unknown, it is very difficult to directly
calculate the conditional probability Pr(z ∈ Rn,ε | f ∈ Hη). We bound it by introducing a testing
set z′. Lemma 1 is adapted from [[9], Lemma 11.1.5] and [[16], Corollary 2.6].
Lemma 1. For a testing set z′ ∈ (X × Y)n, we can define the set Sn,ε as

Sn,ε = { (z, z′) ∈ (X × Y)2n : ∃h ∈ Hε,Err
∆
z (h|f) = 0,Err∆z′(h|f) ≥

ε

2
}.

Then, we have Pr((z, z′) ∈ Sn,ε | f ∈ Hη) ≥ 1
2 Pr(z ∈ Rn,ε | f ∈ Hη), for n > 8 log 2

ε .

The proof of Lemma 1 can be found in appendix A.3. With lemma 1, we just need to estimate
Pr((z, z′) ∈ Sn,ε | f ∈ Hη). It seems more complicated to introduce the testing set z′ but we can
swap training/testing instance pairs, which is a classic method in the proof of learnability, to refine
the data distribution on X × Y into each single instance.
Lemma 2. On the same condition of theorem 2, we have

Pr ((z, z′) ∈ Sn,ε | f ∈ Hη) ≤ (2n)dHL2dH exp

(
−nθε

2

)
.

The proof of Lemma 2 can be found in appendix A.4. With Lemma 1 and Lemma 2, we can prove
Theorem 2, which is detailed in the appendix A.5.
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In this section, we establish two essential properties of the soft labels. Classifier-consistency guaran-
tees the effectiveness of the soft labels in a macroscopic perspective, and ERM learnability provides
a microcosmic generalization bound for the student model h. The corresponding threshold conditions
are presented to ensure the student model can learn from the soft labels. The theory is applicable to
all biased soft labels. This inspires us to consider that accuracy alone may not be a sufficient measure
of a teacher’s teaching ability. In the section 5.1, we design a simple heuristic algorithm to generate
such skillful but bad teachers, i.e., teachers with low accuracy but can teach good students. These
results are illustrative for the comprehension and development of the soft label based algorithms.

4 Biased Soft Labels in Weakly-Supervised Learning

The labels in weakly-supervised learning (WSL) could be incomplete, inexact, inaccurate [59]
because accurate annotation is often expensive and difficult to obtain. Soft labels are widely used in
WSL. Many weakly-supervised learning paradigms can be transformed into learning from soft labels.
Due to the lack of the supervisory information, the soft labels could be large-biased but the model can
still learn from them. In this section, our theory is adapted to three classic weakly-supervised learning
paradigms and can provide theoretical guarantee for the learnability of these problems. These findings
reflect that the theory is promising and extensible.

4.1 Incomplete Supervision

In incomplete supervision, there are labeled data and unlabeled data. A common approach is to use
the model to label the unlabeled data and then learn with all data iteratively. The soft labels of the
unlabeled data are probably biased but make a significant contribution to the training process. We
propose an ideal accuracy function and, based on it, we provide a theoretical analysis on incomplete
supervision from the perspective of soft labels. Suppose there are N labeled data and M unlabeled
data sampled from X × Y . The predictive model h is an ERM learner on both labeled data and
unlabeled data. The label of unlabeled data will be updated iteratively.
Assumption 1. For N labeled data and M unlabeled data whose soft labels have unreliability
degree η and ambiguity degree γ, the ERM learner h has a deterministic accuracy funtion ρ(η, γ),
the probability that h predict correctly. The model architecture, data distribution and optimization
are implicitly included in ρ(η, γ).
Assumption 2. Given that smaller values of η or γ result in more supervised information in the soft
labels, we assume ρ(η, γ) decreases with η and γ.

We suppose that the incorrect labels share the equal probability to appear in the top-k set. The
distribution of the incorrect labels can be characterized in a more refined manner. For instance,
assume that there is a upper bound of p(i|x)

p(j|x) , i, j ∈ Y, i, j ̸= y, i ̸= j. We employ simplified
assumptions because they can still capture and reflect this process. Based on the ideal ρ(η, γ), we
delineate the progressive performance of h. Let ρt denote the accuracy of h at epoch t and we have

ρt+1 ≥ ρ(1− ρt,
c− k − ρt
c− 1

). (3)

In practice, as learner h learns from labeled data and unlabeled data, the performance of h will
improve and the soft labels of the unlabeled data will be more effective. Consequently, h and the soft
labels may achieve a dynamic equilibrium.
Theorem 3. Based on the ideal accuracy function ρ(η, γ), with a moderate initial state η0, γ0
satisfying Theorem 2, if final accuracy of ρfinal exists, it can be calculated by the following fixed point
equation:

x = ρ(1− x,
c− k − x

c− 1
). (4)

where k accords with the top-k set in η and γ, c is the number of class labels. If ρ(η, γ) is kL-Lipschitz
continuous (kL < 1− 1

c ), then ρfinal exists and is unique.

The proof is detailed in A.6. In fact, the deterministic ρ(η, γ) is unattainable due to the indeterminacy
of the optimization and the potential uncertainty in the data distribution. An intuitive extension
is to assume ρ(η, γ) is a probability distribution related to the training specifics, which can be
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further investigated. Theorem 3 is coarse yet in agreement with the general intuition. The model h
improves as the soft labels envolve and finally reach the bottleneck restricted by the model, data and
optimization.

In this section, we demonstrate the potential benefits of our theory in several classic weakly-supervised
learning paradigms. There remain numerous domains associated with soft labels. It is essential to
possess an appropriate theory to analyze the soft labels for the corresponding algorithms. Our theory
can be instrumental for comprehending and constructing the soft label based algorithms.

4.2 Partial Label Learning

In Partial Label Learning (PLL), each instace is typically assigned a set of possible labels, i.e., the
candidate label set s [28, 46, 49]. The corresponding candidate label space is denoted by S , i.e., the
non-empty power set of Y . Traditional PLL assumes the ground-truth label must be in the candidate
label set. But recently, Lv et al. [29] considers that ground-truth label could be not in the candidate
label set, which is named as Unreliable Partial Label Learning (UPLL).

In UPLL, there are two basic concepts, partial rate ν and unreliable rate µ. Partial rate ν is the ratio
of incorrect labels in the candidate label set to total labels. A lower partial rate usually indicates a
better performance of the model. Unreliable rate µ is the probability of ground-truth label y not in
the candidate label set, which can be formally stated as

µ = Pr(x,y,s)∼X×Y×S(y /∈ s).

The discrete candidate label set s can be transformed into the soft label by

di =


1

|s|
i ∈ s

0 i /∈ s

,

where |s| is the cardinality of set s. So PLL also can be viewed as learning from biased soft labels.
Then we have the following corollary.
Corollary 1. For UPLL with partial rate ν and unreliable rate µ, regard the generated soft labels as
teacher. Then, we have η = µ and γ = ν. With the same conditions in Theorem 2, UPLL is ERM
learnable and the sample complexity remains unchanged.

This corollary show that UPLL is ERM learnable under a moderate condition. We provide new
insights from the perspective of soft labels.

4.3 Learning with Additive Noise

Additive noise mechanism [30, 14] is an important methodology for differential privacy. Specifically,
Laplace noise or Gaussian noise is added to data for protecting privacy. The privacy budget can be
controlled by adjusting the scale of the noise. After normalization, the noisy labels are also biased
soft labels in nature. In fact, given the probability density function of noise, we can calculate the
corresponding unreliability degree and ambiguity degree in order to measure the effectiveness of
the noisy labels. With the biased soft labels, the task is to train a utility model with strong privacy
guarantees. Our theory can guarantee the utility of such soft labels.

To calculate unreliability degree and ambiguity degree, we refer to order statistic [8]. Order statistic
analyze the ith-smallest value of random samples from a continuous distribution. We denote the
order distribution Order(d, n, i) as the ith-smallest value of n samples from distribution d. The
software Mathematics [45] provide an efficient API for estimating the order distribution.
Corollary 2. Let d denote the noise distribution (e.g. Laplace noise and Gaussian noise) and regard
the noisy soft labels as the teacher. With the k in Eq.1 and the total classes c, for k ≤ c− 1, we can
compute the η and γ as

η = Pr x∼Order(d,c−1,n−k+1)
y∼d

(1 + y > x),

γ =
η + k − 1

c− 1
.

With the same conditions in Theorem 2, the problem learning with additive noise is ERM learnable
and the sample complexity remains unchanged.
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Figure 2: Indicators of soft labels generated by SBTs on CIFAR-10 (a), CIFAR-100 (b) and Tiny
ImageNet (c). Acc represents the accuracy of the student model trained with the biased soft labels.
Unreliability degree ηk(f) and ambiguity degree γk(f) are the two indicators proposed in our study.

As the scale of the noise increases, η and γ will increase, i.e., the effectiveness of the soft labels will
decrease. This result agrees with the practical situation.

5 Experiments

Our experimentally investigate whether biased soft labels are still effective and whether the proposed
indicators can measure the effectiveness of these soft labels, which consist of three parts. Firstly, we
design a simple heuristic algorithm to generate Skillful but Bad Teachers (SBTs), which have low
accuracy (less than 35%) but can teach good students. Secondly, experimental results demonstrate that
students learning from SBTs can achieve comparable performance as models trained on the original
data. We can explain these phenomenons with unreliability degree and ambiguity degree. Thirdly,
we conduct experiments in weakly-supervised learning paradigms, and the results also confirm that
unreliability degree and ambiguity degree can reflect the effectiveness of the biased soft labels. Due
to space limitations, we present a part of experimental results in the appendix. Additionally, we
provide the details of the experiment setup in appendix A.7.

5.1 Skillful but Bad Teachers

In this subsection, we introduced the design of the SBTs. The intuition behind SBTs, inspired by
Theorem 2, is to inhibit correct predictions and reduces the unreliability degree and ambiguity degree
simultaneously. So we design some heuristic loss functions and have some hyperparameters that
qualitatively control the unreliability degree and ambiguity degree. More specifically, the designed
loss functions are intended to keep the ground-truth label within the top-k set of the soft labels,
without necessarily requiring it to be at the top. Here, k is an empirical constant, which we have set
to 3 or 4 in training SBTs.

Firstly, SBTs will punish those correctly predicted instances as

Lpun(x, y) = −I(argmax
j∈Y

(dj) = y)ℓ(f(x), y), (5)
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Figure 3: Indicators of learning with Gaussian noise on CIFAR-10 (a) and CIFAR-100 (b).

where ℓ(·, ·) is the cross entropy loss function. In practice, the value of the ground-truth label
decreases significantly, which causes the ground-truth label to fall out of the top-k set, i.e., large ηk.
So the ground-truth label y is compensated when y /∈ Ωk(f(x)):

Lcomp(x, y) = I(y /∈ Ωk(f(x)))ℓ(f(x), y). (6)

The compensation term is designed to improve the top-k accuracy of SBTs, which keeps the statistical
effectiveness of the soft labels generated by SBTs. In practice, we found there was a strong correlation
among the top-k labels, which leaded to the confusion between the ground-truth label and similar
labels, i.e., large γk. To decrease this correlation, we propose an effective method to make the labels
in Ωk(f(x)) as independent as possible. We randomly select k − 1 labels except the ground-truth
label y. Then the selected k − 1 labels are employed as the learning objectives:

Lrnd(x, y) = ℓ(f(x), srnd). (7)

where srnd is the set of the k − 1 random labels excluding y. Consequently, the total objective of
SBTs is as follows:

L(x, y) = Lce(x, y) + α1Lpun(x, y) + α2Lcomp(x, y) + α3Lrnd(x, y) (8)

where Lce(x, y) is the vanilla cross-entropy loss between the output of the model and the ground-truth
label, and α1, α2, α3 are the trade-off parameters.

5.2 Effectiveness of the Proposed Indicators

In this subsection, our aim is to demonstrate that, despite the soft labels generated by SBTs are
large-biased, students still achieve high accuracy. As outlined in Table 2 of the appendix, we adapt
four different classic metrics: Chebyshev distance, KL divergence, Manhattan distance, and Euclidean
distance. These metrics are employed to measure the discrepancies between the large-biased soft
labels generated by SBTs and the ground-truth labels. The soft labels generated by SBTs exhibit
substantial differences when compared to those from normally trained teachers. Nevertheless, they
remain effective in instructing good students. It should be noted that the accuracy of the students
mirrors the effectiveness of the soft labels. However, accuracy is an indirect measure contingent on
the student model. The proposed unreliability degree and ambiguity degree can directly measure
the effectiveness of these soft labels. The smaller the unreliability degree and ambiguity degree,
the more effective the soft labels, and subsequently, the students’ accuracy tends to be higher. This
phenomenon is illustrated in Figure 2, which agrees with our expectations.

In the experiments, we set k = 4 for unreliability degree ηk(f) and ambiguity degree γk(f) (k in
the indicators can be different from k in training SBTs). Since ηk(f) and γk(f) are probabilities
over the entire data distribution X × Y and difficult to compute, we estimate them empirically by the
the generated soft labels on the test data. Note that training with the ground-truth labels can achieve
accuracy 95.29% on CIFAR-10, 78.13% on CIFAR-100 and 72.53% on Tiny ImageNet. We can find
many interesting results in Figure 2:

• When these soft labels are generated by SBTs with accuracy less than 30%, which means they are
quite different from the ground-truth labels, the students can still achieve accuracy much higher
than the teachers.

9



• As ηk(f) and γk(f) decrease, Acc (i.e., accuracy of the student) increases. The proposed indicators
exhibit an inverse correlation with the students’ accuracy, which reflects the effectiveness of the
proposed indicators.

• For the more complicated dataset like CIFAR-100 and Tiny ImageNet, accuracy (Acc) is more
sensitive to ηk(f) and γk(f). This implies that, for more complex tasks, the quality of the
annotation is more crucial.

The hyperparameters in Eq.(8) are pivotal in controlling the indicators of these soft labels, which is
elucidated in A.8. Furthermore, we conducted experiments to investigate whether the effectiveness
of soft labels is influenced by different model backbones, as detailed in A.9. We tested a range of
architectures, including wideresnet 28x2, 28x4, 40x2, and 40x4. The four distinct backbones exhibited
consistent patterns, indicating that the proposed indicators are effective across different backbones.
In addition, we present the overall distribution of these soft labels in A.10. The experimental results
demonstrate that biased soft labels can also teach good students and the proposed indicators can
measure the effectiveness of these soft labels, which confirm the validity of our theory.

5.3 Biased Soft Labels in Weakly-Supervised Learning

Table 1: Students learning from partial labels.
Dataset γk(f) ηk(f) Student

CIFAR-10

0.1 0.1 93.98
0.1 0.3 93.38
0.1 0.5 91.94
0.3 0.1 90.38
0.3 0.3 88.59
0.3 0.5 86.28
0.5 0.1 85.11
0.5 0.3 82.05
0.5 0.5 77.95

CIFAR-100

0.01 0.1 74.19
0.01 0.3 73.16
0.01 0.5 72.29
0.05 0.1 68.08
0.05 0.3 66.28
0.05 0.5 63.69
0.1 0.1 61.18
0.1 0.3 58.6
0.1 0.5 52.41

The aforementioned weakly-supervised learning
paradigms have engendered a lot of specialized
algorithms. The intention of this paper is not
to devise more efficacious algorithms, but to
evaluate the effectiveness of the soft labels in
the weakly-supervised learning paradigms by
unreliability degree and ambiguity degree. The
results of partial label learning are shown in Ta-
ble 1, while the results of learning with additive
noise are shown in Figure 3. Due to space lim-
itations, the results of incomplete supervision
are shown in A.11. From the three experiments,
we can observe that the accuracy of the students
decrease when unreliability degree and ambigu-
ity degree increase. All the results reflect that
these indicators can measure the effectiveness
of the soft labels well, which is consistent with
our theory. In addition, since the soft labels in
partial label learning and learning with additive
noise are generated by a mapping rule rather
than a neural network, the results of these experiments are more stable and smooth.

6 Conclusion

In this paper, we find that even large-biased soft labels can teach a good student and focus on the
effectiveness of the biased soft labels. It motivates us to rethink when the biased soft labels (or
teachers) are effective. We propose two indicators, unreliability degree and ambiguity degree, to
measure the effectiveness of soft labels. Based on the proposed indicators, we provide moderate
conditions that guarantee the classifier-consistency and ERM learnability of the biased soft label
learning problem. Our theoretical framework can be adapted to elucidate the effectiveness of soft
labels in three weakly-supervised learning paradigms, incomplete supervision, partial label learning
and learning with additive noise. We design a heuristic method to train Skillful but Bad Teachers
(SBTs), which validate that large-biased soft labels can teach good students. Besides, the effectiveness
of both soft labels generated by SBTs and soft labels in the weakly-supervised learning paradigms
can be measured by the proposed indicators well, which is consistent with our theory.
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A Appendix

A.1 Variants of Knowledge Distillation

Self-distillation [55, 25, 50] treats the mixture of the outputs and the ground-truth labels as target
soft labels, and the proportion is iteratively adjusted during the training. Ensemble KD [52, 60]
employs the ensemble of the soft labels (teachers) to improve generalization. Besides, in mutual
learning [56, 51], there is no explicit teacher network and multiple students learn from each other by
synthesizing soft labels of other students. Soft labels play an important role in all these variants.

A.2 Proof of Theorem 1

For simplification, we denote the probability of event A as p(A).

ErrD(h|f) =E(x,y)∼X×Y [ min
i∈Ωk(f(x))

ℓ(h(x), i) · p(i ∈ Ωk(f(x))) | f ]

=E(x,y)∼X×Y [ min
i∈Ωk(f(x))

{ℓ(h(x), i) · p(i ∈ Ωk(f(x)) | y ∈ Ωk(f(x))) · p(y ∈ Ωk(f(x)) | f)

+ ℓ(h(x), i) · p(i ∈ Ωk(f(x)) | y /∈ Ωk(f(x))) · p(y /∈ Ωk(f(x)) | f)}].

The coefficient of ℓ(h(x), y) is:

Coff[ℓ(h(x), y)] =p(y ∈ Ωk(f(x)) | y ∈ Ωk(f(x))) · p(y ∈ Ωk(f(x)) | f)
=1− η.

For i ̸= y, there is

Coff[ℓ(h(x), i)] =p(i ∈ Ωk(f(x)) | y ∈ Ωk(f(x))) · p(y ∈ Ωk(f(x)) | f)
+ p(i ∈ Ωk(f(x)) | y /∈ Ωk(f(x))) · p(y /∈ Ωk(f(x)) | f)

≤γ(1− η) + η.

Therefore, when 1− η > γ(1− η) + η, i.e., γ < 1− η
1−η , we have h∗ = argmin

h∈H
ErrD(h|f).

A.3 Proof of Lemma 1

Let z, z′ be the training set and the testing set, and each of them is of size n. DefineH(z) = {h ∈ H :

Err∆z (h|f) = 0} as the set of zero-empirical-risk hypotheses. We can bound Pr (z ∈ Rn,ε | f ∈ Hη)
with Pr ((z, z′) ∈ Sn,ε | f ∈ Hη) as follows

Pr ((z, z′) ∈ Sn,ε | f ∈ Hη)

=Pr ((z, z′) ∈ Sn,ε | z ∈ Rn,ε, f ∈ Hη)

=Pr
(
{∃h ∈ Hε ∩H(z),Errz′(h|f) ≥ ε

2
} | z ∈ Rn,ε, f ∈ Hη

)
≥Pr

(
h ∈ Hε ∩H(z),Errz′(h|f) ≥ ε

2
| z ∈ Rn,ε, f ∈ Hη

)
≥1− exp (− · εn

8
).

When n > 8 log 2
ε , we have Pr ((z, z′) ∈ Sn,ε | f ∈ Hη) ≥ 1

2 Pr (z ∈ Rn,ε | f ∈ Hη), which com-
pletes the proof.

A.4 Proof of Lemma 2

We follow the methodology of proving the ERM learnability in [26]. Here we need to bound
Pr (Sn,ε | f ∈ Hη). The key behind the proof is to refine Err∆z (h|f) and Err∆z′(h|f). We use a
classic method, i.e., swap, to refine the probability of a single instance. A swap σ(z, z′) = (zσ, z′σ)
means exchanging some instances between the training set z and testing set z′ while keeping size
n unchanged. Each (x, y) ∈ z is a training instance while each (x, y) ∈ z′ is a testing instance.
There are 2n different swaps in total and we define G as the set of all swaps. Firstly, we use swap to
describe Pr (Sn,ε | f ∈ Hη).
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2n Pr ((z, z′) ∈ Sn,ε | f ∈ Hη) =
∑
σ∈G

E [Pr((z, z′) ∈ Sn,ε | x, y, x′, y′, f ∈ Hη)]

=
∑
σ∈G

E [Pr(σ(z, z′) ∈ Sn,ε | x, y, x′, y′, f ∈ Hη)]

=E

[∑
σ∈G

Pr(σ(z, z′) ∈ Sn,ε | x, y, x′, y′, f ∈ Hη)

]
.

Here, the expectations are with respect to (x, y, x′, y′). To further refine Sn,ε, we define Sh
n,ε for a

certain classifier h as

Sh
n,ε = {(z, z′) : Err∆z (h|f) = 0,Errz′(h|f) ≥ ε

2
}.

Let H | (x, x′) be the hypothesis space that have different prediction for instances (x, x′). Next, we
have the bound∑
σ∈G

Pr(σ(z, z′) ∈ Sn,ε | x, y, x′, y′, f ∈ Hη) ≤
∑

h∈H|(x,x′)

∑
σ∈G

Pr(σ(z, z′) ∈ Sh
n,ε | x, y, x′, y′, f ∈ Hη).

By [33], the complexity of the hypothesis space H | (x, x′) can be bounded as∣∣∣H | (x, x′)
∣∣∣ ≤ (2n)dHL2dH .

Let dxi
= f(xi) be the soft label of xi induced by model f and Ωk(dxi

) be the top-k set of the soft
label. Then,

Pr
(
σ(z, z′) ∈ Sh

n,ε | x, y, x′, y′, f ∈ Hη

)
=I

(
Errz′σ (h|f) ≥ ε

2
| f ∈ Hη

)
· Pr

(
h̃(xσi ) ∈ Ωk(dxi), 1 ≤ i ≤ n | xσ, yσ, f ∈ Hη

)
=I

(
Errz′σ (h|f) ≥ ε

2
| f ∈ Hη

)
·

n∏
i=1

Pr
(
h̃(xσi ) ∈ Ωk(dxi

) | xσ, yσ, f ∈ Hη

)
.

For the pair of (x, y, x′, y′), we consider the number of instances of all cases. Specifically, let u1,
u2 and u3 represent the number of both incorrectly predicted instances, one incorrectly predicted
instances and both correctly predicted instances. Besides, we define uσ as the number of instances
where (xσ, yσ) is incorrectly predicted while (x′σ, y′σ) is correctly predicted. Afterwards, the number
of incorrectly predicted instances in the testing set is u1 + u2 − uσ .

I
(
Errz′σ (h|f) ≥ ε

2
| f ∈ Hη

)
=I(u1 + u2 − uσ ≥ ε

2
n)

≤I(u1 + u2 ≥ ε

2
n).

For Pr
(
h̃(xσi ) ∈ Ωk(dxi

) | xσ, yσ, f ∈ Hη

)
, we count instances which have been swapped. On the

one side, there are u2 + u3 − uσ instances are correctly predicted (h̃(xσi ) = yσi ) where we have

Pr
(
h̃(xσi ) ∈ Ωk(dxi) | f ∈ Hη

)
= 1− η by (1). On the other side, there are u1 + uσ instances are

incorrectly predicted (h̃(xσi ) ̸= yσi ), where we have Pr
(
h̃(xσi ) ∈ Ωk(dxi) | f ∈ Hη

)
≤ γ by (2).

So, we have
n∏

i=1

Pr
(
h̃(xσi ) ∈ Ωk(dxi) | xσ, yσ, f ∈ Hη

)
≤ (1− η)u2+u3−uσ · γu1+uσ .

And then, the conditional probability can be bounded as follow:

Pr
(
σ(z, z′) ∈ Sh

n,ε | x, y, x′, y′
)
≤ I

(
u1 + u2 ≥ ε

2
n
)
· (1− η)u2+u3−uσ · γu1+uσ .
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There are 2n different swaps and we sum all.∑
σ∈G

I
(
u1 + u2 ≥ ε

2
n
)
· (1− η)u2+u3−uσ · γu1+uσ

≤2u1+u3 · I
(
u1 + u2 ≥ ε

2
n
)
·

u2∑
j=0

(
u2
j

)
(1− η)u2+u3−j · γu1+j

=2n−u2 · (1− η)u2+u3 · γu1 · I
(
u1 + u2 ≥ ε

2
n
)
·

u2∑
j=0

(
u2
j

)
(

γ

1− η
)j

=2n−u2 · (1− η)n−u1 · γu1 · I
(
u1 + u2 ≥ ε

2
n
)
· (1 + γ

1− η
)u2

=I
(
u1 + u2 ≥ ε

2
n
)
· 2n−u2 · (1− η)n−u1 · γu1 · (1− η + γ

1− η
)u2

=I
(
u1 + u2 ≥ ε

2
n
)
· (2− 2η)n · ( γ

1− η
)u1 · (1− η + γ

2(1− η)
)u2 .

where n = u1 + u2 + u3. The 2u1+u3 in the first step means ways of swapping both correct
instances and both incorrect instances. The index of j equals u2 different swaps of one correctly
predicted instances. According to the assumption η + γ ≤ 1, we have 0 < γ

1−η <
1−η+γ
2(1−η) < 1. For

u1 + u2 ≥ ε
2n, when u1 = 0 and u2 = ε

2n, the right side reaches its maximum as follows:

Pr (Sn,ε | f ∈ Hη) ≤ (2n)dH · L2dH · (2− 2η)n · (1− η + γ

2(1− η)
)

nε
2 .

We have proved the Lemma 2.

A.5 Proof of Theorem 2

With Lemma 1 and Lemma 2, we have

Pr (Rn,ε | f ∈ Hη) ≤ 2dH+1 · ndH · L2dH · (2− 2η)n · (1− η + γ

2(1− η)
)

nε
2 .

We set θ as

θ = log
2(1− η)

1− η + γ
.

Since η + γ < 1, we get θ > 0. We need to bound Pr (Rn,ε | f ∈ Hη) with η, which means

(dH + 1) · log 2 + dH log n+ 2dH logL+ n log (2− 2η)− θεn

2
≤ log η.

Note that the function f(x) = log 1
a + ax − −1 ≥ 0. Let a =

θε
2 +log( 1

2−2η )

dH
and x = n. It can be

inferred that

log n ≤
θε
2 + log( 1

2−2η )

dH
n− log

θε
2 + log( 1

2−2η )

dH
− 1.

With the bound of log n, we get the linear inequality of n. Since the aforementioned results hold for
all k ∈ {1, 2, . . . , c− 1}, Let

n0(H, ε, δ) = min
k∈{1,2,...,c−1}

{ 2
θkε
2 + log 1

2−2ηk

(dH(log(2dH)

+ log
1

θkε
2 + log 1

2−2ηk

+ 2 logL) + log
1

δ
+ 1)

}
.

When n > n0, we get Pr (Rn,ε | f ∈ Hη) < η and the proof is finished.
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Figure 4: Average of the soft labels in CIFAR-10 (a) and CIFAR-100 (b).

A.6 Proof of Theorem 3

Generally, for epoch t, we denote ηt and γt as the the unreliability degree and ambiguity degree of
the the soft labels of the unlabeled data. The model will achieve the accuracy of epoch t, ρ(ηt, γt).
We refer to it as ρt for simplicity. Then, for next epoch t+ 1, the unreliability degree and ambiguity
degree of next epoch can be estimated ηt+1 ≤ 1− ρt. The estimation of ambiguity degree is a little
bit more complicated. Incorrect label share equal probability γt+1 because we assume the noise is
uniformly distributed. Then we have

ηt+1 + (c− 1)γt+1 = k.

Further,

γt+1 ≤ c− k − ρt
c− 1

.

For ρ(η, γ) monotonically decreases, with the upper bounds on ηt+1 and γt+1, we can get a lower
bound on ρt+1 as

ρt+1 = ρ(ηt+1, γt+1)

≥ ρ(1− ρt,
c− k − ρt
c− 1

).

If ρfinal = limt→∞ ρt exists, it must satisfy the fix point equation,

x = ρ(1− x,
c− k − x

c− 1
).

Next, we prove that if ρ(η, γ) is kL-Lipschitz continuous (kL < 1− 1
c ), then ρfinal exists and is unique.

We define

ψ : (η, γ) → (1− ρ(η, γ),
c− k

c− 1
− ρ(η, γ)

c− 1
),

where (η, γ) ∈ [0, 1]2. l1-norm is employed as the norm on [0, 1]2 and denote d(·, ·) as the distance
function. We want to show that ψ is a contraction mapping. For (η1, γ1), (η2, γ2) ∈ [0, 1]2,

d(ψ(η1, γ1), ψ(η2, γ2))

=(1 +
1

c− 1
)|ρ(η1, γ1)− ρ(η2, γ2)|

≤(1 +
1

c− 1
) · kLd((η1, γ1), (η2, γ2))

where (1 + 1
c−1 ) · kL ∈ [0, 1). So ψ is a contraction mapping and there is a unique fixed point (η, γ)

that ψ(η, γ) = (η, γ). That means ρfinal exists and is unique.
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Table 2: Different metrics of soft labels.

Dataset Setting Acc(Teacher) Cheby KL Manhattan Euclidean Acc(Student)

CIFAR-10

Supervised 95.29 0.0630 0.3335 0.1259 0.1728 95.68

SBTs

19.07 0.8323 1.9295 1.6646 0.9093 88.53
20.98 0.8312 1.9619 1.6625 0.9129 88.85
22.00 0.8348 1.9197 1.6696 0.9078 89.32
22.95 0.8213 1.8781 1.6427 0.9008 89.57
24.73 0.8357 1.8968 1.6715 0.9058 90.22
26.54 0.8396 1.9110 1.6768 0.9076 90.43
28.07 0.8390 1.9099 1.6489 0.9150 90.58

CIFAR-100

Supervised 78.13 0.1998 1.3763 0.3996 0.2630 79.01

SBTs

21.85 0.9145 3.4739 1.8290 0.9467 68.42
22.74 0.9078 3.3814 1.8156 0.9391 69.28
24.55 0.9093 3.3457 1.8187 0.9392 69.55
25.35 0.9064 3.3299 1.8129 0.9370 69.88
26.53 0.9008 3.2921 1.8016 0.9320 71.22
27.22 0.9046 3.2858 1.8092 0.9329 71.34
28.05 0.9009 3.2560 1.8018 0.9302 72.08

A.7 Experiment Setup

We consider three benchmark image datasets CIFAR-10, CIFAR-100 [23] and Tiny ImageNet, and
generate the soft labels with different hyperparameters of the teacher model. The student model is
trained with the generated soft labels and aims to distinguish the ground-truth label. The accuracy of
the student model is employed to measure the effectiveness of the soft labels. Datasets are divided
into training, validation, testing set in the ratio of 4:1:1. For the fairness of the experiments, all
student models are WideResNet28×2 architecture [54] on each dataset. In all experiments, we use
mini-batch SGD [36] with a batch size of 128 and a momentum of 0.9. Each model is trained with
maximum epochs T = 200 and employs early stopping strategy with patience 20. We report final
performance using the test accuracy corresponding to the best accuracy on validation set. For the all
experiments, we employ a basic re-weighting strategy to train the student model. Specifically, in each
epoch, we train the student model and update the soft labels with the softmax outputs of it.

Weakly-supervised learning For PLL, we employ a common strategy to zeroize the soft labels that
are not in the candidate set. For learning with unlabeled data, we warm-up the model for 5 epochs.
Then, we train with all data every epoch and label the unlabeled data with the model every 5 epochs.
Each dataset is divided into labeled set, unlabeled set, testing set in the ratio of 1:19:4.

A.8 Hyperparameters in (8)

We set the number of the random labels (in 7) as 3 while k in ηk and γk as 4 in all experiments.
The punishment factor α1 ranges from 0 to 0.4 and the compensation factor α2 ranges from 0.9
to 1.3. The weight of the random labels α3 is from 1.6 to 2.3. In detail, we observe the following
phenomenons:

• As mentioned in 1, we cannot take the accuracy of the teacher as the sole criterion to evaluate
the pedagogical efficacy. γ defined in (2) can be seen as the coarse measure of the imbalance
of the label. For the student model, the smaller γ could mean the better performance if the
number of random labels is fixed.

• Both the punishment and the random labels are applied to decrease the top-1 accuracy within
a reasonable range. For the simple dataset, large punishment are needed to protect privacy
and for the complicated dataset like CIFAR-100, we enhance the ratio of random labels to
reduce the effect of similar labels.

• These soft labels are very different from the ground-truth labels, which means low accuracy.
In these soft labels, the average degree of the ground-truth labels is around 0.2.
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Figure 5: The curve of the indicators in incomplete supervision.
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Figure 6: The experiments of 4 different backbones: WRN 28×2, WRN 28×4, WRN 40×2, WRN
40×4. On the left are the experiments conducted on CIFAR-10, while on the right are those performed
on CIFAR-100.

A.9 Experiments of different backbones

Figure 6 demonstrates whether the effectiveness of soft labels is influenced by different backbones.
We experimented with wideresnet 28x2, 28x4, 40x2, and 40x4. In the Figure 2, we omitted the
Unreliability degree and Ambiguity degree, which are the same the that of Figure 2 in the paper, for
clarity. The four distinct backbones displayed consistent trends, further suggesting that the proposed
indicators are effective across different backbones.

A.10 Overall distribution of the Soft Labels Generated by SBTs

As illustrated in Figure 4, the horizontal axis represents the ground-truth label while the vertical axis
represents the mean of the soft labels. The diagonal can be seen as the degree of correctly predicted
labels. We can see that the ground-truth label is dominant in the soft labels. On the other side, the
figure can be seen as a simple measure of the similarity between labels.

A.11 Experiments of Incomplete Supervision

The predictive model label the unlabeled data and then learn with all data alternately. As shown
in Figure 5, Acc (the accuracy of the model) improves as the soft labels evolve. Accordingly,
unreliability degree ηk(f) decreases and ambiguity degree γk(f) remain unchanged, which means
the soft labels of the model are more effective. The figure shows the dynamics in the training with
unlabeled data, which is consistent with the theory in 4.1. Furthermore, we find that the soft labels of
unlabeled data exhibit a high ambiguity degree γk(f), indicating that some categories may be very
similar and difficult for the model to distinguish.
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