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Abstract

Contrast-Consistent Search (CCS) is an unsupervised probing method able to test1

whether large language models represent binary features, such as truth, in their2

internal activations. While CCS has shown promise, its two-term objective has3

been only partially understood. In this work, we revisit CCS with the aim of clari-4

fying its mechanisms and extending its applicability. We argue that what should5

be optimized for, is relative contrast consistency. Building on this insight, we6

reformulate CCS as an eigenproblem, yielding closed-form solutions with inter-7

pretable eigenvalues and natural extensions to multiple variables. We evaluate these8

approaches across a range of datasets, finding that they recover similar performance9

to CCS, while avoiding problems around sensitivity to random initialization. Our10

results suggest that relativizing contrast consistency not only improves our under-11

standing of CCS but also opens pathways for broader probing and mechanistic12

interpretability methods.13

1 Introduction14

When Large Language Models (LLMs) perform well on benchmarks for a given domain or task, the15

results are sometimes questioned; in part because of a limited understanding of their working. How16

is it that LLMs do what they do? Without a clear picture of how an LLM approaches its tasks, we17

cannot verify if that approach is sensible, or how well it will do outside of benchmarks. The goal of18

Mechanistic Interpretability is to remedy this situation by identifying both: (1) what mechanisms19

are responsible for model behaviors; and, (2) what variables those mechanisms use, where they are20

encoded, and if they correspond to interpretable features.21

This paper provides an in-depth look at Contrast-Consistent Search (CCS) [Burns et al., 2023]. This22

unsupervised probing method was introduced to determine if language models represent sentences23

as true or false. Being unsupervised, it has one advantage: it does not assume that the model’s24

truth-values agree with human-authored labels. CCS has a two-termed loss function designed to find a25

parameter vector for which the probability that the probe assigns to a sentence and its negation add up26

to one. We perform an ablation of the method’s loss terms and find that one of the terms is necessary27

for a different reason than what originally motivated its inclusion. We argue that contrast consistency28

should be defined in a relative way. Based on this insight, we find that CCS’s objective can be29

made completely linear. This allows us to solve for contrast consistent directions using Contrastive30

Eigenproblems. This approach yields interpretable eigenvalues that provide additional insights.31

We demonstrate this by showing that datasets where CCS does not reliably find accurate probes32

are datasets that fail to isolate a single contrastive feature. We also demonstrate that Contrastive33

Eigenproblems are easily extended to settings with multiple features by replicating results that show34

how truth and polarity are encoded together in a shared subspace.35
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2 Understanding CCS36

CCS is a probing method, meaning it involves training small classifiers on the activations of a larger37

model in order to establish whether certain information is present. The method yields a binary38

classifier, but unlike typical probes, a CCS probe is not given labels to train on. Instead, the probe39

exploits the fact that its inputs are contrastive, i.e. necessarily have opposite feature values.40

Burns et al. [2023] focus on sentences and their negations to train the CCS probes. For example, they41

used inputs that consisted of question-answer pairs like “Is grass green? Yes/No”, or of declarative42

sentences such as “Grass is green.” and “Grass is not green.”. Basically, the pair of inputs (X+, X−)43

consist of language that—if uttered—would amount to an assertion (X+) or denial (X−) of a44

proposition X . The method relies only on the expectation that any latent probability distribution45

captured by the model’s internals must sum up to one. Of course, we would expect such a basic46

consistency property for all (binary) variables, not just truth. So in general, we have some binary47

feature of interest, and X+ and X− are inputs who primarily (and ideally, exclusively) differ in that48

feature’s value. Typically, such inputs come in the form of minimal pairs where a word is changed,49

replaced or inserted in order to also change some sentence-level property. Unless specified otherwise,50

we take ‘sentence truth’ as our feature of interest.51

The probes trained with CCS operate on a language model’s latent-space activations of X+ and X−,52

which we denote x+ and x−, respectively. In this work, we will use CCS with linear probes of the53

following form: p(x) = σ(θ⊺x), where θ are the probe parameters. When using such linear probes54

we are assuming that there is a direction in latent space that the language model uses to represent the55

feature of interest. By projecting activations on the feature direction we can construct a probe that56

parameterizes a probability distribution for the binary feature of interest.57

The objective of CCS consists of a minimization of two terms, the consistency and confidence loss:58

θccs = argmin
θ

Ex+,x−Lθ
cons(x

+,x−) + Lθ
conf (x

+,x−),

with Lθ
cons(x

+,x−) =
[
σ(θ⊺x+) + σ(θ⊺x−) − 1

]2
,

and Lθ
conf (x

+,x−) = min
{
σ(θ⊺x+), σ(θ⊺x−), 1−σ(θ⊺x+), 1−σ(θ⊺x−)

}2
.

The consistency loss is minimized when the probabilities assigned to sentences and their negations add59

up to one. The confidence loss is said to prevent the degenerate solution where p(x+) = p(x−) = 0.5.60

We use the symmetric (unbiased) confidence loss introduced by Farquhar et al. [2023].61

Burns et al. [2023] solve this optimization problem using gradient descent, using activations for tokens62

from X+ and X−. For example, with “Between green and blue, grass is [green/blue]”, the bracketed63

Table 1: Mean and standard deviation
of accuracy for 9 datasets, trained on
activations of the (next to) last token.

Dataset answer (%) period (%)

comparisons 100± 00 91± 00
sp_en_trans 99± 00 100± 01
cities 99± 00 99± 00
amazon 93± 00 93± 00
imdb 87± 00 87± 07
ent_bank 79± 10 82± 16
snli 71± 14 85± 06
copa 59± 06 48± 02
rte 54± 06 54± 07

tokens would be used for x+ and x− respectively.64

We begin our analysis of CCS by reporting its performance in65

different circumstances. We use datasets from three sources66

[Burns et al., 2023, Marks and Tegmark, 2024, Schouten67

et al., 2025] (see Appendix F). We include probes trained68

on both the last and next-to-last tokens, corresponding to a69

period token and an answer token. We trained probes for a70

total of 9 datasets; using 30 different seeds for the probe’s71

random initialization.72

In Table 1, we report probe accuracy for layer 16 in Llama-73

2 [Touvron et al., 2023], which we will use throughout74

the paper. We find that CCS does not reliably reach well-75

performing minima for all datasets. Specifically, there are76

multiple cases where the average performance is above ran-77

dom, but the exact performance varies between seeds. We wonder if this could be caused by the78

two-termed objective, thus our next step is an investigation of what makes the two terms necessary.79

2.1 Loss-term ablations80

Given that the stated purpose of the confidence loss is to avoid the degenerate solution, it makes81

sense to begin by determining what other strategies could help us avoid finding that solution. The82
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Table 2: Accuracies for probes trained with ablated and/or altered objectives.

µ± σ (%) CCS Lconf Lcons Lcons Lcons Lcons CCS
- - - +a1 +a2 +a1+a2 +a1+a2

Marks and Tegmark
[2024]

comparisons 100±00 100±01 66±11 62±09 65±11 59±07 100±00
sp_en_trans 99±00 96±08 64±13 66±12 65±14 74±14 99±00
cities 99±00 98±04 70±14 72±13 77±14 67±12 99±00

Burns et al. [2023]
amazon 93±00 94±00 67±09 65±11 72±13 64±09 94±00
imdb 87±00 81±09 60±06 61±07 63±09 58±07 87±01

degenerate solution arises under the following conditions:83

σ(θ⊺X
+

) = σ(θ⊺X
−
) = 0.5 =⇒ θ⊺X

+

= θ⊺X
−

= 0

where X
+

=
[
x+
1 ,x

+
2 , . . . ,x

+
N

]⊺ ∈ RN×D, is the data matrix for positive samples, and X
−

for negative84

samples. Thus, there are two ways for the degenerate case to arise: (1) the vector learned by the85

probe has zero length, |θ| = 0; or, (2) the direction points into the null space of the data matrix.86

When training probes, it is not uncommon to work with relatively small datasets. Thus, the number87

of samples can easily be smaller than the dimensionality of the model’s latent space, resulting in88

a rank-deficient data matrix. To address both paths to the degenerate case, we can alter the CCS89

training process in two ways.90

Alteration 1. By restricting the search space to unit vectors θ̂ we avoid learning the zero vector.91

Note that the magnitude of the probe parameter vector is unimportant to its accuracy.92

Alteration 2. To remove the null space from the data matrix, we use singular value decomposition:93

UΣV⊺ = SVD(X
+−

train), where X
+−

train ∈ R2N×D is a matrix containing both the hidden states for94

the training data’s positive samples (X
+

train ), and the negative samples (X
−

train ). We then apply the95

probes to the reduced representations: p(x) = σ(θ̂V⊺
:rx) (with r being the rank of X

+−

train ). This96

strategy assumes the null spaces of X
+−

train , X
+

and X
−

are the same.97

Overall, we compare the following kinds of probes: (1) ordinary CCS; (2) only the confidence term98

(Lconf); (3) only the consistency term (Lcons), including versions altered in one (Lcons+a1, Lcons+a2)99

or both ways (Lcons+a1+a2); and finally, (4) CCS with only the alterations, no ablations (CCS+a1+a2).100

For this experiment, we use the datasets for which CCS performed well in Table 1.101

Results. In Table 2, we give the results of the ablation. A few things stand out: (1) the ablation102

of the confidence loss-term reduces accuracy more than the ablation of the consistency loss-term,103

suggesting the former is more important than the latter; and (2) the proposed alterations do not104

compensate for the ablation of the confidence loss-term. These results clearly show that the role of105

the confidence term is not limited to preventing the degenerate solution.106

2.2 The effect of the confidence loss107

The confidence term encourages probabilities closer to the extremes, but what needs to be true to108

make that happen? It is minimized when either the positive or negative sample of each pair are109

assigned a probability of zero or one. But, this would require that ∀x : θ⊺x = ±∞. Seemingly,110

minimizing the confidence-loss is just maximizing ||θ⊺X
+

|| or ||θ⊺X
−
||.111

When considering unit-length vectors θ̂, the only way to maximize θ̂⊺x is to reduce the angle between112

them. This would mean that the confidence-loss is biasing θ̂ towards directions where the data has113

higher variance, i.e. the first (few) principal component(s).114

To test this hypothesis, we will compare the directions found by CCS to the principal components.115

By ablating the two loss terms again, we can see if the confidence loss causes the direction to be116

more similar to the first few principal components. Specifically, for CCS, Lconf-only, and Lcons-only,117

we will measure: λK(θ) = 1
||θ|| ||V:Kθ||. This measures how much of θ extends into the subspace118

spanned by the first K principal components.119
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Figure 1: Extent to which learned vectors point
into the subspace spanned by the first K principal
components. Shown for: CCS, only the consis-
tency loss (–conf), and only the confdidence loss
(–cons); on the IMDB dataset, using activations
for answer tokens, averaged over 30 random seeds.

Results. In Figure 1, we can see that the120

confidence-loss indeed causes CCS to find di-121

rections closer to the first few principal compo-122

nents of X
+−

. With only the consistency loss, the123

learned vectors have almost no magnitude in the124

subspace spanned by the first K principal com-125

ponents. When the confidence loss is added, its126

magnitude in the high-variance subspace grows.127

And finally, when we train with only the confi-128

dence loss, we find vectors that on average have129

a cosine similarity of over 0.5 with the first prin-130

cipal component. Results for other datasets and131

both answer and period token can be found in132

Appendix A.133

Discussion. But why do salient directions make for more accurate CCS probes? We see two main134

reasons. First, by virtue of how contrastive data are created, the contrastive feature is often (one of)135

the first principal component(s). This is especially true when using the answer token itself to probe.136

Second, what we really care about is not absolute but relative contrast consistency. If the variance of137

the hidden states along a direction θ̂ is very small anyway, then having a small difference between138

σ(θ̂⊺x−) and 1− σ(θ̂⊺x+) is not indicative of real contrast consistency. The confidence loss biases139

CCS toward directions θ̂ for which ||θ̂⊺X
+−
|| is large, making it less likely that the contrast-consistency140

is simply due to θ̂ pointing into a direction along which the hidden states already have low variance.141

However, this will always bias CCS towards high-variance directions, even when the contrastive142

feature is less salient.143

3 The Geometry of a Binary Feature144

Before continuing to test the ‘relative contrast consistency’ hypothesis we formulated in the previous145

section, we will first identify what we want from linear probes in the ideal case.146

3.1 Two Kinds of Linear147

There are (at least) two different ways to think about what is involved in learning the latent-space148

direction associated with a given binary feature. On the one hand, we can think of our probe as149

learning to separate latent space into two regions that correspond to the possible values of the binary150

feature of interest. In that case, we are learning a hyperplane’s normal vector n. In the context of151

contrast pairs, we want to have the following property:152

∀i : sgn(n⊺x+
i ) = −sgn(n⊺x−

i ). (1)
That is, we want it to separate positive from negative samples. This property is what we need if we153

want to our probe to accurately predict the feature value. Logistic Regression is a common method to154

train such a probe. And, when previous work has used classification metrics such as accuracy, they155

were (implicitly) treating linear probes in this way. On the other hand, we can think of our probe156

as learning a direction t along which representations need to be translated for the model to treat the157

variable as having the opposite value. For contrast pairs, it is along this direction that a representation158

x+ would have to be translated to reach x−:159

∀i ∃αi : x+
i = x−

i + αit. (2)
This is a direction we can use to intervene in a language model [ActivationAddition, Turner et al.,160

2024]. And, when previous work [e.g. Marks and Tegmark, 2024] used interventions to test if a161

direction models a causal variable, they (implicitly) use this way of thinking about linear probes.162

3.2 Contrast Error and Displacement163

CCS most closely adheres to the classification-style linear probing, with its consistency loss requiring:164

σ(θ⊺x+) = 1−σ(θ⊺x−) =⇒ σ(θ⊺x+) = σ(−θ⊺x−) =⇒ θ⊺x+ = −θ⊺x−.
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(a) Ideal scenario where x+
i = x−

i + αit, and the only
other feature is represented orthogonally to t.
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(b) Scenario where x+
i = x−

i +αit, but the only other
feature is represented obliquely to t. The separating
hyperplane’s normal n is no longer the same as t.

Figure 2: Comparison of feature alignments with t in two scenarios.

Thus, with θ = n, it requires a stronger version of the property given in Equation (1). Contrasting165

samples must not only be on opposite sides of a hyperplane but also need to be equidistant from it. It166

follows that in the ideal case, we find θ in the null space of the following matrix:167

θ⊺(x− + x+) = 0 =⇒ ||θ⊺(X
−
+X

+

)|| = 0.

We call this matrix the commonality matrix C = X
−

+ X
+

, since it captures the features that the168

positive and negative pairs have in common, i.e. the non-contrastive features that do not cancel out.169

For the intervention-style linear probing, we have:170

x+
i + αit = x−

i =⇒ X
+

+αt⊺ = X
−

=⇒ αt⊺ = X
−
−X

+

.

Therefore, in order to identify t we are looking for a rank-one decomposition of X
−
−X

+

. Borrowing171

the terminology of Fry et al. [2023], we will call this matrix the displacement matrix D = X
−
−X

+

.172

3.3 The Ideal Case173

In Figure 2, we can see an idealized 2-dimensional representation how samples might be distributed174

in a model’s latent space. In both subfigures, the direction t is rotated onto the x-axis. In Figure 2a,175

the only other feature is uncorrelated with the binary feature of interest.176

However, we cannot generally assume that features are uncorrelated. Marks and Tegmark [2024]177

point out that the feature of interest (such as sentence truth) can be correlated with other features,178

thereby preventing classification-style probes from finding directions like t. In Figure 2b, a feature is179

represented in a direction not orthogonal to the feature of interest. This non-orthogonal representation180

of the second feature, amounts to a shearing w.r.t. the situation in Figure 2a.181

For both subfigures, we can see that: (1) the vectors x−
i + x+

i lie on the separating hyperplane (the182

dotted grey line); and, (2) each x−
i − x+

i lies on the x-axis. While in Figure 2a the hyperplane’s183

normal vector also lies on the x-axis, in Figure 2b it does not. Assuming the feature of interested is184

not correlated with any other features, then t = n, but in other cases the vectors can differ.185

The properties we have derived for the sum and difference vectors both involve changes in variance186

along the direction of interest. When the elements of the contrast pairs are summed, the variance187

shrinks (to zero for the ideal case) in the direction n; and, when we take their difference, the variance188

grows in the translation direction t (while shrinking in all other directions, to zero in the ideal case).189

3.4 Imperfections190

In the introduction, we said “X+ and X− are inputs who primarily (and ideally, exclusively) differ191

in [a] feature’s value”. And it is certainly useful to pay attention to whether changes between positive192

and negative samples are indeed as minimal and as closely tied to the feature of interest as possible.193

However, in practice it is impossible to perfectly isolate all features this way. It may be also be194

tempting to naively assume that if we did have the perfect contrastive dataset, that the properties we195

expect or desire from linear representations would hold exactly. However, besides any imperfections196

in the data, the model may also simply represent the data imperfectly. For both these reasons, in the197
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Table 3: Performance of DRC and RRC compared to CCS. Bold indicate results where our methods
match or exceed CCS median and CRC-TPC.

answer period

CCS CRC
DRC RRC

CCS CRC
DRC RRCDataset min med max -TPC min med max -TPC

comparisons 100 100 100 100 100 100 92 92 92 56 93 94
sp_en_trans 99 99 99 98 98 98 99 99 99 99 99 99
cities 99 99 99 99 99 99 98 98 99 51 99 99
amazon 94 94 94 94 94 94 92 93 93 53 93 93
imdb 86 87 88 87 87 87 87 88 89 87 89 88
ent_bank 84 86 87 82 84 86 48 93 94 86 89 90
snli 49 86 90 77 82 73 81 85 93 81 87 87
copa 51 55 68 54 53 52 47 47 52 49 48 47
rte 46 50 61 49 50 50 45 57 68 58 58 56

next section, we will focus on finding directions with the highest increase or decrease in variance,198

rather than exact solutions to the equations given above.199

4 Contrastive Eigenproblems200

In Section 2, based on our experimental results, we formulated the hypothesis that the objective of201

CCS amounts to finding a direction with high Relative Contrast Consistency (RCC). In the first part202

of this section, we will test this hypothesis. Specifically, we will approach the problem of finding203

a direction with high RCC as a (generalized) eigenvalue problem. We will show that regardless of204

whether an such an approach is applied to consistency, or to displacement, we get the same solution in205

both cases. Despite the failure to distinguish intervention- and classification-style probes, contrastive206

eigenproblems still have two advantages: (1) we can use the eigenvalues to get an impression of how207

well the dataset succeeds in isolating a single feature, and (2) we can straightforwardly extend the208

approach to probing for multiple variables.209

4.1 Problem formulation210

Based on the intuitions we developed in the last section, we now propose to solve directly for211

increases/decreases in variance.212

Difference-Relative Contrast (DRC). Here, we express decreases/increases in variance as differ-213

ences in variance between C/D and X
+−

, giving two eigenproblems:214 (
C⊺C−X

+−
⊺X
+−)

nk = λknk and,
(
D⊺D−X

+−
⊺X
+−)

tk = µktk.

Negative values for λk correspond to directions nk for which the variance in C is smaller than the215

variance in X
+−

. Thus, the last eigenvector of the lefthand problem is a good candidate for θ. And216

conversely, a positive value for µk indicates that tk is a direction along which the variance in D is217

larger than in X
+−

. Now consider that with A = X
+

±X
−

, both are instances of:218 (
A⊺A−X

+−
⊺X
+−)

vk = νkvk

=⇒
(
X
+⊺

X
+

+X
− ⊺

X
−
±

(
X
+⊺

X
−
+X

− ⊺
X
+
)
−X

+−
⊺X
+−)

vk = νkvk

And, because X
+−

just contains the rows of X
+

and X
−

:219

=⇒
(
X
+⊺

X
−
+X

− ⊺
X
+
)
vk = ± νkvk

Since, both eigenproblems involve the same two cross-terms between X
+

and X
−

; they yield the same220

bases in opposite order. This means that formulating relative contrast consistency as a eigenproblem221

of differences in variance, forces us to assume t = n. This approach also turns out to be very closely222

linked to Contrast Consistent Reflection [Schouten et al., 2025] (see Appendix C).223
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Figure 3: Top DRC eigenvalues for three datasets with various kinds of eigenvalue distributions.
Based on activations taken from the answer token.

Ratio-Relative Contrast (RRC). We can also formulate generalized eigenproblems:224

C⊺Cnk = λkX
+−

⊺X
+−
nk =⇒ λk =

n⊺
kC

⊺Cnk

n⊺
kX
+−

⊺X
+−
nk

,

and similarly for D and t. Now the eigenvalues give ratios between the variances, rather than225

differences. Both of these problems are instances of:226 (
X
+−⊺

X
+−

±
(
X
+⊺

X
−
+X

− ⊺
X
+
))

wk = ωkX
+−

⊺X
+−
wk

=⇒
(
I±

(
X
+−

⊺X
+−)− 1

2
(
X
+⊺

X
−
+X

− ⊺
X
+
)(

X
+−

⊺X
+−)− 1

2

)
w′

k = ωkw
′
k

=⇒
(
X
+−

⊺X
+−)− 1

2
(
X
+⊺

X
−
+X

− ⊺
X
+
)(

X
+−

⊺X
+−)− 1

2

w′
k = ±(ωk − 1)w′

k.

Thus, this formulation too gives the same bases, and also forces n = t.227

4.2 Evaluation228

We test both approaches and compare their classification accuracy to the min/median/max accuracy229

of CCS (over 30 seeds). The results can be seen in Table 3. What is clear is that when CCS converges230

to the same performance reliably, both approaches match that performance almost exactly. And,231

for those datasets where CCS is more sensitive to the random initialization, both approaches have232

accuracies somewhere between the minimum and the maximum of CCS. Generally both formulations233

perform very similarly, thus in the following experiments, we report results only for DRC. Another234

method proposed by Burns et al. [2023] is CRC-TPC, which simply takes the top principal component235

of D. It can be seen to perform considerably worse on the period token for three datasets, likely236

because it finds a direction with high overall variance (see Appendix B).237

4.3 Interpreting Eigenvalues238

One of the benefits of approaching CCS as an eigenproblem, is that we get the whole basis of239

eigenvectors and their eigenvalues. One potential problem with contrast-based probing is that even if240

we construct the probing data ourselves, it is hard to be absolutely sure that we have truly isolated241

a single feature. Not only can features be hard to differentiate from each other, but an LLM may242

model matters in a way that does not map onto our understanding of the problem. Looking at the243

distribution of eigenvalues can be of help. If the contrasting data and the model’s representation244

thereof meets our expectations, then the first eigenvalue should stand out from the rest, indicating one245

(and only one) direction is clearly contrast-consistent.246

In Figure 3, we can see the top-10 eigenvalues for three different datasets. For the ‘amazon’ dataset247

we see precisely what we wanted, the first eigenvalue is clearly larger than the rest. Going to ‘copa’,248

we see a somewhat flatter distribution of eigenvalues. For this dataset, there is a second eigenvector249

which we will look at in more detail. For the last dataset ‘snli’, we can see an even more diffuse250

distribution. We see more diffuse eigenvalues precisely in those cases where CCS has a large spread251

(between min. and max. accuracy in Table 3; see Appendix D for top-10 eigenvalues on all datasets).252

Case study: COPA. Choice of Plausible Alternatives [Roemmele et al., 2011] is a commonsense253

causal reasoning dataset. It consists of prompts such as: “Consider the following example: “‘The bar254

7



4 2 0 2 4
Axis 1

0.4

0.2

0.0

0.2

0.4

Ax
is 

2

Projection onto Axes 1 & 2
Neg-False
Neg-True
Pos-False
Pos-True

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Axis 3

0.04

0.02

0.00

0.02

0.04

Ax
is 

4

Projection onto Axes 3 & 4
Neg-False
Neg-True
Pos-False
Pos-True

Figure 4: Projections of xp,c, xp,i, xn,c, xn,i onto DRC’s first and second eigenvectors (left) and its
third and fourth eigenvectors (right). Grey lines show contrast-pairs.

closed.”’ Choice 1: It was crowded. Choice 2: It was 3 AM. Q: Which is more likely to be the cause,255

choice 1 or choice 2? choice [1/2].”256
Table 4: COPA samples, showing the
core event for both choices along with
activation strength for contrastive feature
given by DRC’s top eigenvector.

‘bad’ choice ‘good’ choice

3.23 hungry guest -2.25 gracious guest
3.28 he collapsed -1.59 he felt awe
3.32 stalked her -2.48 called her
3.06 burnt dinner -2.18 lit candle

None of the approaches perform well on this dataset, typi-257

cally doing no better than random guessing. For the answer258

token, CCS does occasionally find directions that perform259

better at around 68%, suggesting that the model is not at260

fault. Given that the two highest eigenvalues seem to stand261

out among the rest, it makes sense to ask: (1) what does262

the top eigenvector represent, if not ‘sentence truth’? and263

(2) does the second eigenvector encode ‘sentence truth’?264

To answer the first question, we looked at a subset of265

COPA together with the relevant activations, i.e. the projections of the answer token hidden states266

onto the first eigenvector. Looking at the most contrastive examples (where activations had the267

highest absolute values) quickly revealed the answer. It appears that in COPA, ‘sentence truth’ is268

not the only thing that changes between positive and negative samples, the answers often also differ269

in sentiment. In Table 4, we can see some examples of how high activations (left) correspond to270

the occurrence of comparatively ‘bad’ situations or events in answers, and low activations (right)271

correspond to comparatively ‘good’ situations or events (see Appendix E for full samples). As for the272

second question, the answer is most likely yes. DRC’s second eigenvector predicts ‘sentence truth’273

on COPA with 70% accuracy.274

4.4 Multivariate Extension: Polarity and Truth275

The ability to find multiple directions can also be used deliberately. In recent work, Bürger et al.276

[2024] show that polarity and truth occupy a shared subspace. To showcase the utility of our approach277

in a multivariate setting, we will replicate their results. We use the ‘cities’ dataset, varying both the278

polarity and the country that a city is said to lie in. For a given city, we denote the four samples as:279

xp,c, xp,i, xn,c, xn,i, where p and n indicate positive and negative polarity, and c and i indicate the280

correct and incorrect country. Of these, only xp,c (affirmation of correct country) and xn,i (denial of281

incorrect country), are true statements. Between these four points, there are six pairs to be formed.282

We can use DRC on the sum of all variants to cause the variance to decrease in multiple directions:283

C = Xp,c + Xp,i + Xn,c + Xn,i Equivalently, we can also concatenate the six contrast pairs,284

causing the variance to grow in multiple directions.285

D =


Xp,c −Xn,c

Xp,i −Xn,i

Xp,c −Xp,i

Xn,c −Xn,i

Xp,c −Xn,i

Xn,c −Xp,i


(polarity, truth)
(polarity, truth)

(truth)
(truth)

(polarity)
(polarity)

X
+−

=

 Xp,c

Xp,i

Xn,c

Xn,i


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Results. In Figure 4, we can see activations for the portion of the cities dataset we held out for286

evaluation, plotted by their coordinates along the first/second, and third/fourth eigenvectors found287

by DRC. We see clear separation between true and false statements by the first eigenvector. The288

second eigenvector separates statements by the truth of the base (unnegated) proposition. Finally, the289

third eigenvector separates statements by their polarity. Our results clearly show that there are three290

orthogonal directions in Llama-2 that together encode truth and polarity.291

5 Related Work292

CCS has seen a number of other analyses since its publication. Fry et al. [2023] introduce the293

midpoint-displacement loss function. This function uses the same sum and difference vectors that294

make up our C and D matrices. They argue that CCS is optimizing for a trade-off between the angle295

to the sum vectors and the angle to the difference vectors. We argue that both should be relativized,296

removing the component that biases CCS to the directions of higher variance. Farquhar et al. [2023]297

give proofs and demonstrate empirically that CCS can find features other than truth. While this can298

get in the way if the original goal of ‘eliciting latent knowledge’ is the primary concern, it can also be299

seen as an advantage that makes CCS more widely applicable. Our approach gives an orthonormal300

basis with eigenvalues indicating to what extent each direction is contrast consistent. Thus, if there301

are multiple binary features present in our contrast pairs, this can be diagnosed and, if necessary,302

addressed. Levinstein and Herrmann [2024] also identify problems around isolating truth, and report303

CCS failing to learn the sentence truth feature under various experimental settings, possibly because304

it was learning the another feature instead. Belrose et al. [2024] analyze and extend CRC-TPC, a305

closely related method. They show how the objective of CRC-TPC can be decomposed into separate306

interpretable terms, and then propose a number of additions, including a paraphrase invariance term307

and a supervised term. Similar to this work, their approach is also reducible to an eigendecomposition.308

While the solutions explored are similar, Belrose et al. focus on classification performance, while309

we explore how formulating contrastive eigenproblems can help diagnose problems in the data, and310

enable extensions to multivariate settings.311

6 Conclusion312

We have explored: (1) how CCS functions; (2) what linear probes should learn in the ideal case;313

and (3) how CCS might be formulated as an eigenproblem and the advantages of doing so. We314

have argued that the confidence loss is an imperfect way of ensuring CCS probes find directions315

with high relative contrast consistency. We identified two ways of thinking about linear probes316

(classification-style and intervention-style) and how contrastive data can help to find them. In trying317

to solve for such probes by formulating eigenproblems, we have not succeeded in identifying distinct318

methods to solve for one of the two types of linear probes. However, what the eigenproblem approach319

does provide is: (1) interpretable eigenvalues that indicate how well our contrastive data isolates a320

single feature, and (2) a natural extension to the multivariate setting. Looking at the eigenvalues, we321

have seen that CCS’s varying performance on some datasets can be explained by the failure of those322

datasets to isolate one and only one contrastive feature. Using multivariate contrastive eigenproblems,323

we have replicated recent results showing how truth and polarity are encoded in the latent spaces of324

language models. We believe these results show that Contrastive Eigenproblems provide a useful tool.325

It either yields an accurate probe, or the means to explain why such a probe is difficult to find for a326

particular dataset. Future work should look for contrastive probing techniques that can find separate327

directions which are optimal for either classification or intervention.328
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A Maximum variance effect of confidence-loss370

0.0

0.2

0.4

0.6

0.8

1.0
answer | amazon period | amazon

0.0

0.2

0.4

0.6

0.8

1.0
answer | cities period | cities

0.0

0.2

0.4

0.6

0.8

1.0
answer | comparisons period | comparisons

0.0

0.2

0.4

0.6

0.8

1.0
answer | sp_en_trans period | sp_en_trans

1 2 4 8 16 32 64 128
K

0.0

0.2

0.4

0.6

0.8

1.0
answer | imdb

1 2 4 8 16 32 64 128
K

period | imdb

method
CCS
conf-only
cons-only

Figure 5: Effect of loss terms on probe parameter vector’s similarity to top principal components.
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B Performance of CRC on top 5 contrastive principal components371

Here we show the performance of the principal components of X− −X+. When we use the top372

principal component this is equivalent to CRC-TPC [Burns et al., 2023]

Table 5: Accuracy of classifying with principal components of X
+

−X
−

for 9 datasets.

Dataset Token PC1 PC2 PC3 PC4 PC5

comparisons answer 1.00 .47 .53 .45 .57
sp_en_trans answer .98 .45 .61 .46 .67
cities answer .99 .63 .55 .41 .55
amazon answer .94 .47 .51 .50 .54
imdb answer .87 .58 .51 .51 .52
ent_bank answer .82 .54 .48 .58 .51
snli answer .77 .59 .77 .60 .56
copa answer .54 .71 .52 .60 .50
rte answer .49 .68 .60 .53 .58

comparisons period .56 .52 .56 .94 .55
sp_en_trans period .99 .51 .56 .58 .61
cities period .51 .97 .58 .46 .59
amazon period .53 .92 .49 .54 .50
imdb period .87 .51 .52 .49 .53
ent_bank period .86 .51 .61 .59 .51
snli period .81 .67 .51 .58 .50
copa period .49 .46 .53 .48 .65
rte period .58 .66 .51 .59 .51

373

C Connections between DRC, CCR, and CRC-TPC374

Belrose et al. [2024] helpfully point out that CRC-TPC can be broken down as follows. They remind375

us that: Var(A−B) = Var(A) + Var(B)− 2Cov(A,B). Meaning the top principal component w∗376

of D can be written as:377

w∗ = argmax
||w||2=1

w⊺Cov(D)w

= argmax
||w||2=1

w⊺Cov(X
+

−X
−
)w

= argmax
||w||2=1

w⊺
(

Cov(X
+

) + Cov(X
−
)− Cov(X

+

,X
−
)− Cov(X

−
,X

+

)
)
w,

where Cov(·, ·) denotes the cross-variance. Using notation from Section 2, we have:378

= argmax
||w||2=1

w⊺
(
2Cov(X

+−
)− Cov(X

+

,X
−
)− Cov(X

−
,X

+

)
)
w

= argmax
||w||2=1

w⊺
(
X
+−

⊺X
+−

−X
+

⊺X
−
−X

−
⊺X

+
)
w.

Schouten et al. [2025] introduce Contrast Consistent Reflection. They note that the objective of379

CCS requires that a pair of contrasting activations lie on opposite sides of, and equidistant from, a380

hyperplane. They propose that it may be beneficial to train probes that require points to also be each381

other’s exact reflection through the hyperplane. Their proposed objective is:382

r∗ = argmin
||r||2=1

Ex+,x− ||x+ − (I− 2rr⊺)x−||2,

which is equivalent to:383

= argmin
||r||2=1

||X
+

⊺ − (I− 2rr⊺)X
−

⊺||2,1.
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With a Frobenius norm, we change the objective slightly, but allow for a closed-form solution.384

r∗ = argmin
||r||2=1

||X
+

⊺ − (I− 2rr⊺)X
−

⊺||2F

= argmin
||r||2=1

||X
+

⊺ −X
−

⊺ + 2r
(
r⊺X

−
⊺
)
||2F

With ||A+B||F = ||A||F + ||B||F + 2 tr(A⊺B), we have:385

= argmin
||r||2=1

||X
+

⊺ −X
−

⊺||2F + 4||r
(
r⊺X

−
⊺
)
||2F + 4 tr((X

+
⊺ −X

−
⊺)⊺r(r⊺X

−
⊺))

= argmin
||r||2=1

4r⊺X
−

⊺X
−
r+ 4 r⊺X

−
⊺(X

+
⊺ −X

−
⊺)⊺r

= argmin
||r||2=1

r⊺X
−

⊺X
+

r

And, because the quadratic form only depends on the symmetric part:386

= argmin
||r||2=1

r⊺
(
X
−

⊺X
+

+X
+

⊺X
−)

r

= argmax
||r||2=1

r⊺
(
−X

−
⊺X

+

−X
+

⊺X
−)

r

Which is identical to both: (1) the terms that the cross-covariance terms contributed to the derivation387

for CRC-TPC; and, (2) the objective for the first (or last) eigenvector of DRC as shown in Section 4.388

D Eigenvalue Distributions389
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Figure 6: Top DRC eigenvalues for all datasets. Based on activations taken from the answer token.
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E Full COPA examples390

Table 6: Strongly and weakly activating samples in COPA for DRC’s first eigenvector. The answer
choice corresponding to the high value is highlighted in bold.

Act. strengths Prompt

3.06 -3.49 Consider the following example: “‘I finished a page of the book.”’ Choice 1: I ripped
out the next page. Choice 2: I turned to the next page. Q: Which one is more likely to
be the effect, choice 1 or choice 2? choice [1/2].

3.23 -2.25 Consider the following example: “‘The host served dinner to his guests.”’ Choice 1: His
guests were gracious. Choice 2: His guests went hungry. Q: Which one is more likely
to be the effect, choice 1 or choice 2? choice [1/2].

3.28 -1.59 Consider the following example: “‘The man contemplated the painting.”’ Choice 1: He
felt in awe. Choice 2: He collapsed. Q: Which one is more likely to be the effect, choice
1 or choice 2? choice [1/2].

3.32 -2.48 Consider the following example: “‘The woman filed a restraining order against the man.”’
Choice 1: The man called her. Choice 2: The man stalked her. Q: Which one is more
likely to be the cause, choice 1 or choice 2? choice [1/2].

3.06 -2.18 Consider the following example: “‘The smoke alarm went off.”’ Choice 1: I lit a candle.
Choice 2: I burnt my dinner. Q: Which one is more likely to be the cause, choice 1 or
choice 2? choice [1/2].

3.91 -2.94 Consider the following example: “‘The scientist conducted an experiment.”’ Choice 1:
She validated her theory. Choice 2: She fabricated her data. Q: Which one is more
likely to be the effect, choice 1 or choice 2? choice [1/2].

2.58 -3.41 Consider the following example: “‘The girl desired her parent’s approval.”’ Choice 1:
She ran away from home. Choice 2: She obeyed her parent’s rules. Q: Which one is
more likely to be the effect, choice 1 or choice 2? choice [1/2].

2.66 -3.35 Consider the following example: “‘The detective flashed his badge to the police officer.”’
Choice 1: The police officer confiscated the detective’s badge. Choice 2: The police
officer let the detective enter the crime scene. Q: Which one is more likely to be the
effect, choice 1 or choice 2? choice [1/2].

2.29 -2.94 Consider the following example: “‘A man cut in front of me in the long line.”’ Choice
1: I confronted him. Choice 2: I smiled at him. Q: Which one is more likely to be the
effect, choice 1 or choice 2? choice [1/2].

2.06 -2.87 Consider the following example: “‘The man had an attack of conscience.”’ Choice 1:
He manipulated his friend. Choice 2: He admitted his indiscretion. Q: Which one is
more likely to be the effect, choice 1 or choice 2? choice [1/2].

0.22 0.13 Consider the following example: “‘A burglar broke into the house.”’ Choice 1: The
homeowners were asleep. Choice 2: The security alarm went off. Q: Which one is more
likely to be the effect, choice 1 or choice 2? choice [1/2].

0.04 0.32 Consider the following example: “‘The baby was wailing in his crib.”’ Choice 1: The
mother picked up the baby. Choice 2: The baby crawled to the mother. Q: Which one is
more likely to be the effect, choice 1 or choice 2? choice [1/2].

0.04 0.33 Consider the following example: “‘I pushed the gas pedal.”’ Choice 1: The car accel-
erated. Choice 2: The car door opened. Q: Which one is more likely to be the effect,
choice 1 or choice 2? choice [1/2].

-0.10 -0.32 Consider the following example: “‘The investigators deemed the man’s death a suicide.”’
Choice 1: He left a note. Choice 2: He had children. Q: Which one is more likely to be
the cause, choice 1 or choice 2? choice [1/2].

-0.16 -0.35 Consider the following example: “‘The girl performed in a dance recital.”’ Choice 1:
Her parents showed her how to dance. Choice 2: Her parents came to watch the recital.
Q: Which one is more likely to be the effect, choice 1 or choice 2? choice [1/2].

0.34 -0.58 Consider the following example: “‘The man was bitten by mosquitoes.”’ Choice 1: He
went camping in the woods. Choice 2: He fell asleep on his couch. Q: Which one is
more likely to be the cause, choice 1 or choice 2? choice [1/2].
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F Datasets391

F.1 Prompts used for original CCS datasets392

F.1.1 amazon393

1 {394

2 answer_choices: "negative ||| positive",395

3 jinja: "Consider the following example: ’’’ {{content}} ’’’ Between {{answer_choices[0]}}396

and {{answer_choices[1]}}, the sentiment of this example is |||397

{{answer_choices[label]}}"398

4 }399

F.1.2 imdb400

1 {401

2 answer_choices: "negative ||| positive",402

3 jinja: "The following movie review expresses what sentiment? {{text}} |||403

{{answer_choices[label]}}"404

4 }405

F.1.3 copa406

1 {407

2 answer_choices: "choice 1 ||| choice 2",408

3 jinja: "Consider the following example: ’’’{{premise}}’’’ Choice 1: {{choice1}} Choice 2:409

{{choice2}} Q: Which one is more likely to be the {{question}}, choice 1 or choice 2?410

||| {{answer_choices[label]}}"411

4 }412

F.1.4 rte413

1 {414

2 answer_choices: "incorrect ||| correct",415

3 jinja: ’Assuming that the following is true: "{{text1}}"\nConcluding that: "{{text2}}" is |||416

{{answer_choices[label]}}’417

4 },418
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