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Abstract
Single-cell RNA sequencing (scRNA-seq) offers
insights into cellular heterogeneity and tissue com-
position, yet leveraging this data for patient-level
clinical predictions remains challenging due to the
set-structured nature of single-cell data, as well
as the scarcity of labeled samples. To address
these challenges, we introduce scSet, a diffusion-
based autoencoder that learns patient-level repre-
sentations from sets of single-cell transcriptomes.
Our method uses a transformer-based encoder to
process variably sized and unordered cell inputs,
coupled with a conditional diffusion decoder for
self-supervised learning on unlabeled data. By
pre-training on large-scale unlabeled datasets, sc-
Set generates robust patient representations that
can be fine-tuned for downstream clinical predic-
tion tasks. We demonstrate the effectiveness of
scSet patient embeddings for clinical prediction
across multiple real-world datasets, where they
outperform existing patient representations, even
with limited labeled data. This work represents an
important step toward bridging the gap between
single-cell resolution and patient-level insights.
Code is available at https://github.com/
clinicalml/scset.

1. Introduction
Single-cell RNA sequencing (scRNA-seq) provides a de-
tailed view of the cellular composition of a tissue, en-
abling insights such as the identification of cell type specific
biomarkers (4; 16), tumor heterogeneity (1; 4), the com-
position of the tumor-immune microenvironment (42; 35),
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and the diverse cell states that can exist for a single-cell
type (30; 38). While it is widely acknowledged that single-
cell features correlate with clinical outcomes of interest
(32), few machine learning (ML) tools exist to make patient-
level predictions based on scRNA-seq data. We identify
two major hurdles for ML for patient-level prediction from
single-cell data: (1) Patient single-cell datasets do not im-
mediately lend themselves to predictive machine learning
methods which assume that the input features are either con-
sistently or meaningfully ordered (e.g. logistic regression or
recurrent/convolutional networks, respectively), since their
features (the cells) have no consistent or meaningful order.
(2) The numbers of single-cell samples with clinical labels
for any given disease state is often too small to employ ma-
chine learning methods to automate the discovery of features
which correlate with clinical outcomes of interest. This is
due to a combination of single-cell data being expensive
to generate, clinical samples requiring patient consent and
potentially invasive biopsies, and clinical labels requiring
careful annotation and patient follow-up.

Most commonly, single-cell samples are simply averaged
across cells prior to being input to an ML model, or else
manual feature engineering and statistical analysis are used
to find correlations between single-cell features with patient-
level information (33; 43). Machine learning architectures
that predict sample-level information from a parametrized
embedding of single-cell data have only recently started to
emerge (10; 20; 22).

In this work, we introduce scSet, a diffusion-based au-
toencoder for learning patient-level representations from
scRNA-seq data. Our method addresses both of the above
challenges, first by developing an encoder that can handle
variably sized and unordered cell inputs, and second by
leveraging unlabeled samples for self-supervised learning
via a denoising diffusion objective. Taken together, scSet
learns patient representations in an unsupervised manner,
which can then be fine-tuned to predict clinical features of
interest from a limited cohort of clinically-labeled samples.
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2. Related Work
2.1. Representation Learning for Sets

Representation learning for sets has been explored through
various approaches, both supervised and unsupervised, with
applications spanning multiple domains, including point
clouds, graphs, and multi-instance learning (MIL). Early
work such as DeepSets (41) proposed permutation-invariant
architectures that aggregate unordered inputs using pool-
ing functions like sum or mean. Transformer-based models
for sets, such as Set Transformer (18) and Attention-based
Deep Multiple Instance Learning (15), introduced attention
mechanisms to capture higher-order interactions between
set elements. More recently, unsupervised approaches such
as SetVAE (17) incorporate principles from Set Transformer
into a variational autoencoder framework to learn unsu-
pervised latent representations of sets, using the Chamfer
Distance as a proxy reconstruction loss in order to handle
unordered set data. A noise prediction loss as used in diffu-
sion models (14; 27) is less computationally expensive and
can also handle unordered set data, and thus we were moti-
vated to explore a diffusion-based decoder for unsupervised
set learning. Others have recently begun to explore this
direction too, with applications in 3D point clouds instead
of biology (44). Our work builds on these foundational prin-
ciples but extends them to the biomedical domain, enabling
unsupervised patient representation learning from sets of
single cells.

2.2. Representation Learning for scRNA-seq

Representation learning in the single-cell space has mostly
focused on learning representations of individual cells, with
methods such as scVI (23), Geneformer (37), and scGPT
(7), as well as multimodal models such as totalVI (11).
Any of these cell embeddings can be used as input to our
model, which instead focuses on encoding a set of cells
into a patient-level representation, and decoding a patient
representation back to individual cells through conditional
denoising diffusion. Other approaches for learning sample-
level encodings of single-cells have only recently started
to emerge and have focused on supervised methods, as
described in Section 2.3.

2.3. Patient-Level Representations from scRNA-seq

The simplest and most common method for summarizing
sample expression is to take the average gene expression
across all cells in the sample, referred to as pseudobulk.
However, pseudobulk obscures the granular view of cell
states afforded by single-cell. Recently, a few methods
have been proposed for learning patient-level representa-
tions from scRNA-seq data (20; 10; 22; 8; 25; 12; 31).
These have mostly built off of the deep set (41) or attention-

based multiple instance learning (ABMIL) (15) frameworks.
While these works propose architectures that learn to aggre-
gate single-cell data into patient-level representations, they
are all trained on (semi-)supervised tasks. By contrast, a
key contribution of our work is our self-supervised training
objective, which allows learning representations from un-
labeled data and improves the quality of our downstream
supervised predictions.

2.4. Diffusion Models for scRNA-seq data

Diffusion models have been used for a variety of tasks in
machine learning, ranging from image generation (14) to
drug discovery (6). Recently, diffusion models have been
applied to scRNA-seq data for gene expression imputation
(24; 21; 9). While these methods use diffusion models to
generate scRNA-seq data, they do not condition the model
on a patient-specific representation, or leverage it as part of
an autoencoding framework for learning a patient represen-
tation.

3. Method
Single-cell RNA sequencing profiles the transcriptomes of
individual cells in a patient sample. Each cell’s transcrip-
tome is represented as a vector of gene expression values,
x ∈ RG, where G denotes the total number of all genes de-
tected across cells in our dataset. A scRNA-seq sample from
a given patient is observed as an unordered set of single-cell
transcriptomes, X = {xi}Ni=1. Our goal is to learn a mean-
ingful vector representation z ∈ Rd of the set of cells for
each patient.

To this end, we propose scSet, a diffusion-based autoen-
coding framework for learning patient-level representations
from scRNA-seq data. The following sections detail the
decoder, encoder, and training procedure for scSet. A
schematic overview of the model is provided in Figure 1.

3.1. Diffusion-based Decoder

We employ a conditional Denoising Diffusion Probabilistic
Model (DDPM) (14; 27), which uses the patient representa-
tion z for conditioning and, starting from noise, generates
sample cells matching the patient profile.

Given a number of time steps T ∈ N and a variance schedule
β1, ..., βT ∈ R>0, we model the diffusion forward-process
as

q(x0:T |z) = q(x0|z)
T−1∏
t=0

q(xt+1|xt, z) (1)

where q(x0|z) is the data distribution of cell profiles condi-
tioned on a patient representation z and

q(xt+1|xt, z) = N (xt+1;
√

1− βt+1xt, βt+1I). (2)
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(a) A set of cells are embedded to a patient representation using
a transformer. The patient representation conditions a diffusion
model that learns to denoise individual cells, effectively modeling
pθ(x0:T | patient rep).

Patient 
Anchor 
Cells

Encoder
Patient 

Representa
-tion

Timesteps

Patient 
Target Cell

Noise

Multiply 
& Add

Noisy 
Target Cell

Noise 
Predictor

Regression 
Loss

Predicted 
Noise
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Figure 1. Two complementary overviews of the SCSET model: (a) schematic of the patient-conditioned diffusion model, and (b) model
and training flowchart.

As a decoder, we learn a denoising backward-process

pθ(x0:T |z) = pθ(xT |z)
T∏

t=1

pθ(xt−1|xt, z) (3)

parametrized as

pθ(xT |z) = N (xT ; 0, σ
2I) (4)

pθ(xt−1|xt, z) = N (xt−1;µθ(xt, t, z), σ
2
t I), (5)

with mean predictor µθ(xt, t, z) given by

µθ(xt, t, z) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t, z)

)
. (6)

Here ϵθ(xt, t) is a noise-predicting neural network, αt =
1− βt and ᾱt =

∏t
s=1 αs.

A key assumption of our paper is that cells in a sample are
conditionally independent given z, and thus the probability
of the set of cells X is the product of the probability of each
cell in the set, pθ(X|z) =

∏
x∈X pθ(xt = x|z). Due the

presence of multiple cell types in each sample, we expect
pθ(xt = x|z) to be a complex, multimodal distribution.

The noise-predicting network is an adapted multilayer per-
ceptron with residual connections. The patient represen-
tations and sinusoidal time step embeddings are each pro-
cessed by feed-forward networks, summed and incorporated
into the noise prediction through Adaptive Layer Normaliza-
tion (28). For the diffusion process, we use a cosine noise
schedule (27) and T = 1000 time steps.

3.2. Transformer-based Encoder

The scSet encoder, fϕ, maps the unordered set of cells in a
patient sample {xi}Ni=1 to a fixed-dimensional representa-
tion z ∈ Rd, where d = 256 in our model. To address the

challenges posed by the variable size and lack of ordering
in the input data, we employ a transformer-based architec-
ture with a learnable [CLS] token that serves as a global
representation of the input set.

The architecture begins with a linear embedding layer that
projects each cell xi ∈ RG into d-dimensional space:

x′
i = Linear(xi), x′

i ∈ Rd.

A learnable [CLS] token is appended to the set of cells,
forming the input to the encoder:

X ′ = [[CLS];x′
1;x

′
2; . . . ;x

′
N ] ∈ R(N+1)×d.

The transformed set X ′ is then passed through a series of
transformer encoder blocks (39), each consisting of multi-
head self-attention, feedforward networks, and layer nor-
malization. These layers are intended to model interactions
between cells and to encode information about cells in the
context of their tissue environment. Formally, each encoder
layer is defined as:

X ′(ℓ+ 1
2 ) = LN(MHSA(X ′(ℓ)) +X ′(ℓ)) (7)

X ′(ℓ+1) = LN(FFN(X ′(ℓ+ 1
2 )) +X ′(ℓ+ 1

2 )) (8)

where MHSA denotes multi-head self-attention, LN Layer
Normalization and FFN a feed-forward network. Dropout
is applied to attention and feed-forward layers to prevent
overfitting.

After passing through L transformer blocks, the embedded
[CLS] token is extracted as the patient representation z.
This representation z serves as the input to the diffusion-
based decoder for patient-specific cell generation, and the
encoder is jointly optimized with the decoder during train-
ing, as described in Section 3.3.
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When using z as input for a downstream clinical prediction
task, the weights of the encoder can optionally be further
updated to tailor the patient embedding for the downstream
task (see Section 4.2.3).

3.3. Training Procedure

The encoder fϕ and the decoder pθ are jointly trained using
the noise prediction loss

L(ϕ, θ) = Et∼[1,T ],x0,ϵt

[
∥ϵ− ϵθ(xt, t, fϕ({x̃i}Nanchor

i=1 )∥2
]

(9)

where t ∼ U({1, ..., T}), ϵ ∼ N (0, I), xt ∼ q(xt|x0, z),
and x0 as well as x̃i for i ∈ 1, ..., Nanchor are drawn uni-
formly without replacement from the cells of patient j.
To estimate the loss during training in practice, mutually
exclusive subsets of X are used as input to the encoder
({x̃i}Nanchor

i=1 , referred to as “anchor cells”) and to the noise-
prediction network (x0, referred to as a “target cell”). Note
that this objective functions allows back-propagation of the
gradients through both the denoising decoder pθ and the
sample encoder fϕ.

The training procedure without mini-batching is described
in detail in Algorithm 1. For training, we use the AdamW
optimizer with learning rate 1×10−3. Gradients are clipped
at a threshold of 0.1.

4. Experiments
We evaluate scSet’s learned patient embeddings through (i)
qualitative and quantitative evaluations of the unsupervised
trained embeddings and (ii) using the patient embeddings as
input to downstream clinical prediction tasks. We describe
the datasets, metrics, baselines and results for each of these
approaches in Sections 4.1 and 4.2, respectively.

4.1. Training Patient Representations via Conditional
Diffusion

In this section, we validate that the patient representations
learned by scSet capture known variations between patients.
First, we show that the diffusion model decodes the expected
distribution of cell types for each patient, and then we use
real and semi-synthetic data to validate that patients with
known differences are separated in the latent space.

4.1.1. DATA

The scSet autoencoder was trained on data from the CZ
CELLxGENE (CxG) Discover Census (3), containing 7,342
samples from diverse tissue and disease contexts. scVI
embeddings provided in the Census were used to represent
input cells; we retained 14 scVI latents by filtering to latents

with standard deviation > .4 across the pretraining corpus.
We chose to represent cells using scVI embeddings rather
than raw gene expression as it already partially corrects
for batch effects and reduces the dimensionality of inputs.
We used 90% of patients for training and held out 10% for
evaluation.

For our semi-synthetic data, we created patient samples by
resampling cells from a pool of 8064 immune cells (nat-
ural killer cells, helper T cells, CD8+ cytotoxic T cells,
and monocytes) from 32 patients from a multiple myeloma
study (42) that was not part of the pretraining corpus, in
order to create synthetic patients belonging to different syn-
thetic “patient subtypes.” For each subtyping experiment,
we simulated 12 patients, each with 200 cells. For our cell
type composition experiment, we created samples that were
enriched for a given cell type: we randomly sampled cells
of the dominant cell type to account for 55% of the sample
composition, and the remaining cell types to each account
for 15%. For our perturbation subtyping experiment, we cre-
ated a “perturbed” subtype in which cell types were present
in equal proportions to their unperturbed counterparts, but
with a slight phenotypic shift in helper T cells, and an equal
and opposite shift in CD8+ cytotoxic T cells (more details
provided in Appendix G).

4.1.2. RESULTS

If the model has learned meaningful patient representations,
we expect the diffusion decoder—which is conditioned on
those representations—to generate sets of cells that closely
resemble a patient’s true cells. Thus, we ran inference on
the CxG evaluation set (10% of patients that were not used
to train scSet), decoding 500 cells per patient (the number
of decoded cells is arbitrarily set by the user). Starting
from Gaussian noise at time step T = 1000, we visualize
via UMAP (26) the reconstructed cell profiles of patients
grouped by tissue as they are denoised over time steps in
the diffusion decoder (Figure 2). Color-coding cells by
their cell types shows that for each tissue, the model gener-
ates the same cell types which were present in the ground
truth single-cell data, and in relatively similar proportions
(the Pearson correlation coefficient between the true and
reconstructed cell type proportions for each tissue was con-
sistently high: 0.95 for lung, 0.97 for breast, 0.89 for heart,
and 0.91 for blood). We include tables showing the true
and reconstructed cell type proportions for each tissue in
Appendix H. Note that since generated cells have no ground
truth cell type labels, we predicted instead pseudo-cell type
labels from their simulated profiles at t = 0 using a k-
Nearest Neighbors classifier trained on the true cells from
these patients.

While Figure 2 and Appendix H show that the landscape of
true cells for each tissue matches the landscape of generated
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Figure 2. UMAP visualizations of cells over timesteps of the denoising process, starting from random noise (XT=1000). Test set patient
samples were embedded using fϕ and used to condition the denoising network; the union of these cells is shown in the right column,
labeled “true cells.” 500 cells per patient were generated. For visualization purposes, each row contains the union of cells from a given
tissue, with the number of patients N indicated in parentheses. True cells are colored by their ground-truth cell type and simulated cells
are colored by pseudo-cell type labels, obtained by predicting cell types using a k-Nearest Neighbors classifier trained on all cells in the
test set.
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Figure 3. Pearson correlations between true and reconstructed cell
type proportions for evaluation set patients from each tissue (the
same patients shown in Figure 2). scSet reconstructs a set of cells
per patient which matches the relative proportions of cell types in
the true patient sample.

cells, we wanted to confirm that the patient representations
condition the model to generate patient-specific profiles,
rather than simply tissue-specific profiles. We calculated
the Pearson correlations between the cell type proportions
vectors of the true and generated cells for each sample in a
tissue, and observed that the generated cell type distribution
for a given patient is usually most strongly correlated with
the ground-truth distribution of cell types in the patient used
for conditioning. We visualize these results in Figure 3.

Finally, we qualitatively validate that the patient represen-
tations learned are reasonable. First, we inspect the em-
beddings for 1,500 patient samples from the CxG Discover
Census. Coloring each patient sample by its tissue type,
Figure 4 reveals that scSet representations separate patient
samples by their tissue origin, as expected. We next ran hi-
erarchical clustering on patient embeddings from our semi-
synthetic data, and observed that scSet separates patients
based on differences in cell type proportions (Figure 5a) as
well as shifts in cell states, or phenotypes (Figure 5b). For
the perturbation experiment, we intentionally induced a per-
turbation that could not be detected between samples whose
cells had simply been averaged (since equal and opposite
perturbations were imposed on different cell types), high-
lighting that scSet captures signal in its patient embeddings
that pseudobulk would not be able to (Figure 5c).
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Figure 4. UMAP visualization of the patient embeddings encoded
via scSet, colored by tissue type.
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Figure 5. Hierarchical clustering of semi-synthetic samples that
were generated as part of the (a) cell type composition subtype
experiment or (b) cell type perturbation subtype experiment. The
left box shows that scSet embeddings for these semi-synthetic
patients cluster by subtype. The right box (c) shows that a simple
AVERAGE embedding of the perturbed patients do not cluster by
subtype.

4.2. Clinical Prediction from Patient Representations

We evaluated our learned embeddings by using them as
input to supervised models for predicting patient-level phe-
notypes for the datasets described below in Section 4.2.1.
Our clinical prediction models are comprised of scSet’s
transformer encoder, which aggregates single-cell data into
a patient-level representation via the [CLS] token, and an
appended prediction head, as described in Section 4.2.3.

4.2.1. DATA & TASKS

HLCA. The human lung cell atlas (HLCA) (34) combines
49 datasets related to the human respiratory system, inte-
grating over 2.4 million cells from 486 individuals. In our
HLCA triple task, we train models to discriminate between
the three most prevalent disease states for lung tissue sam-
ples in this dataset: normal (N = 216 samples), COVID-19
(N = 82), and pulmonary fibrosis (PF) (N = 71). We use
a 10-fold cross validation scheme and assign all the patients
from a given dataset to the same fold to avoid confound-
ing by dataset-specific batch effects. This setup requires
the model to generalize across batches, and is significantly
more challenging than an ungrouped K-fold scheme, but
better reflects a potential real-world deployment setting for
our model. We include results from a binary version of
this task, discriminating between normal and PF patients, in
Appendix I.

SLE. The systemic lupus erythematosus (SLE) dataset
(29) contains 1.2 million peripheral blood mononuclear cells
(PBMCs) from 162 patients with SLE and 99 healthy con-
trols. We train models to discriminate between SLE and
healthy samples, and use a standard 10-fold cross-validation
scheme for evaluation.

COVID-19. The COVID-19 dataset (36) profiles tran-
scriptomes of 624,325 peripheral blood mononuclear cells
from 24 healthy donors and 102 patients with varying sever-
ities of COVID-19, ranging from asymptomatic to critical
disease. We train models to discriminate between COVID-
19 and healthy samples, and use a standard 10-fold cross-
validation scheme for evaluation.

Each dataset was pre-processed to embed cells using the
trained scVI model available on CxG Discover Census. The
same 14 latent dimensions as used for pretraining scSet
were retained.

4.2.2. BASELINE PATIENT ENCODERS

We compared our transformer-based encoder to multiple
baseline encoders with varying degrees of complexity: (i)
AVERAGE takes a simple average of features across cells, as
is currently common practice when summarizing scRNA-
seq to the patient level. (ii) CELL TYPE FRACTIONS and
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(iii) CELL TYPE MEANS summarize cell type level infor-
mation, either the fractions of cells in the sample assigned
to each cell type, or the average of features for cells of a
given specific cell type, concatenated together for all cell
types in the dataset. (iv) CELL TYPE FRACS+MEANS is the
concatenation of the two. These cell type level summary
vectors have been shown to correlate with clinical features
(33; 43), but require expert labeling of cell types in order to
construct, thus representing an expert-engineered baseline.
(v) KMEANS cluster data into K clusters and concatenate
the mean embeddings from each cluster. The K-means
is trained on the training set, with results from K=30 and
K=60 shown here. (vi) Inspired by recent work from (2),
SCSET W/ FLOW DECODER uses a flow-based decoder dur-
ing pretraining instead of a diffusion model. (vii) Finally,
we compare to another attention-based encoder, ABMIL
(15), as recent work for supervised clinical prediction from
scRNA-seq employed this architecture (15; 10). Of note,
while ABMIL uses attention to compute a parameterized
weighted average of cells, it does not compute self-attention
between input cells as our transformer encoder does.

To tease apart the benefit afforded by the architecture of the
encoder vs. our diffusion pretraining, we included ablation
baselines for each of the parametric encoders, evaluating
the performance of scSet and ABMIL encoders both with
and without diffusion pretraining.

4.2.3. PREDICTION MODELS.

We input the patient embeddings to 3 different prediction
models: (i) LINEAR PROBE, an L2-regularized logistic re-
gression model, (ii) MLP, a simple multilayer perceptron
with 2 hidden layers and GELU activations (13), and (iii)
FINETUNE END-TO-END (FT-E2E), which uses the MLP
from (ii) but jointly finetunes the encoder and MLP end-to-
end, allowing gradient updates to propagate through both
components to adapt the encoder’s representations for the
downstream task.

For the MLP-based prediction heads, we use a weighted
cross-entropy loss to compensate for class imbalance. Hy-
perparameter tuning was performed using nested K-fold
validation, with inner K=5 and outer K=10, as described
in Section 4.2.1. Hyperparameter details are provided in
Appendix D.

4.2.4. METRICS

We report the F1 score (↑) across folds, which balances
precision and recall, making it suitable for class-imbalanced
settings. For multiclass tasks, we use the weighted F1 score,
averaging per-class F1 values weighted by the number of
positives. Accuracy and AUC scores are reported in Ap-
pendix I.

4.2.5. RESULTS

Across most tasks and prediction models, scSet outperforms
all other encoders and ablation models (Table 1). Our abla-
tion baselines (SCSET W/O DIFFUSION and ABMIL W/O
DIFFUSION) suggest that pretraining the encoder via our
conditional-diffusion autoencoder improves downstream su-
pervised performance.

In real-world settings, clinically-labeled scRNA-seq cohorts
are often small (3), and thus a model that can improve
predictive performance on small amounts of labeled data
is valuable. With this in mind, we evaluated each model’s
performance when trained on just 25, 50, or 100 training
samples per-fold. We repeated this experiment five times,
each time using a different random subset of data, and we
report the mean and standard error of the mean (SEM) across
all random subsets and test folds. Even with limited training
data, scSet consistently outperforms the baseline models
(Figure 6).
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Figure 6. With limited numbers of training samples, scSet still out-
performs baseline encoders on the COVID-19 and SLE prediction
tasks. Error bars represent the standard error, calculated over 5
random subsamplings of the training data for each of 10 folds.

5. Discussion
Our results demonstrate that scSet effectively learns mean-
ingful patient-level representations from single-cell RNA
sequencing data through a diffusion-based autoencoding
framework. By leveraging a transformer-based encoder to
aggregate unordered single-cells, and employing a condi-
tional diffusion decoder to generate realistic cellular com-
positions, scSet provides a powerful and flexible method
for patient-level modeling that elegantly circumvents the
challenge of autoencoding set-structured data. scSet embed-
dings prove useful for downstream clinical prediction tasks,
suggesting that scSet captures clinically relevant signals that
generalize across datasets.

The introduction of self-supervised learning for patient-level
representations from scRNA-seq data mitigates the common

7
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Table 1. Performance of scSet and baselines on clinical prediction tasks, as described in Section 4.2. Average weighted F1-Scores across
folds ± SEM are shown. Best performers (by mean) are bolded.

TASK COVID-19 HLCA TRIPLE SLE

SUPERVISED MODEL
LINEAR
PROBE

MLP FT-E2E LINEAR
PROBE

MLP FT-E2E LINEAR
PROBE

MLP FT-E2E

SCSET .95±.02 .93±.02 .93±.02 .78±.06 .68±.07 .66±.08 .93±.02 .94±.01 0.95±0.01
SCSET W/O DIFFUSION .9±.03 .86±.02 .88±.03 .61±.06 .47±.08 .53±.09 .92±.02 .83±.04 .92±.02
SCSET W/ FLOW DECODER .9±.03 .71±.04 .87±.03 .57±.07 .43±.09 .57±.07 .87±.02 .76±.04 .92±.01
ABMIL W/ DIFFUSION .87±.03 .83±.03 .85±.03 .62±.08 .57±.06 .52±.05 .87±.02 .9±.01 .92±.01
ABMIL W/O DIFFUSION .88±.03 .86±.03 .84±.03 .57±.07 .38±.07 .52±.06 .87±.02 .82±.01 .9±.02
AVERAGE 0.88±.02 .8±.04 .81±.04 .58±.07 .49±.06 .5±.05 .88±.02 .75±.03 .77±.03
CELL TYPE FRACTIONS .84±.02 .68±.04 N/A .6±.07 .51±.09 N/A .83±.02 .72±.03 N/A
CELL TYPE MEANS .87±.03 .92±.03 N/A .73±.04 .68±.04 N/A .94±.01 .86±.03 N/A
CELL TYPE FRACS+MEANS .87±.03 .92±.03 N/A .72±.04 .7±.05 N/A .95±.01 .9±.02 N/A
KMEANS30 .92±.03 .86±.04 N/A .77±.05 .63±.06 N/A .94±.02 .92±.02 N/A
KMEANS60 .94±.02 .9±.02 N/A .79±.04 .66±.06 N/A .89±.02 .92±.01 N/A

issue of limited labeled datasets in biomedical applications.
By learning from large-scale unlabeled data, scSet can cre-
ate pretrained representations that transfer effectively to new
clinical prediction tasks with minimal labeled data. This
approach is particularly advantageous for studying rare dis-
eases or heterogeneous conditions where labeled single-cell
samples are scarce. Additionally, our framework is modular
and can incorporate different cell embeddings, making it
adaptable to future advances in single-cell representation
learning.

6. Limitations and Future Work
While scSet presents a promising framework for patient-
level representation learning, several limitations remain.
First, our model is trained on cells represented by precom-
puted scVI embeddings. While this standardizes inputs
and mitigates batch effects, future work could explore end-
to-end training of cell and patient embeddings to improve
interpretability and performance.

Additionally, our current approach conditions the gener-
ative diffusion model on patient representations derived
from scRNA-seq data; however, this framework could be
extended to generate single-cell profiles conditioned on bulk
RNA-seq profiles, patient characteristics, or single-cell data
from other modalities.

As spatial scRNA-seq data becomes more widely available,
future extensions could integrate spatial information, which
is often predictive of clinical outcomes (40; 35).

Importantly, although this work aims to bridge single-cell
data and translational impact, it remains early-stage and
would require further development, validation, and clinical
testing before clinical use.
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Technical Appendices and Supplementary
Material

A. Interpretation of scSet as an Autoregressive
Model

Our work shares a conceptual connection with autoregres-
sive modeling. Viewing each cell in a sample as a token
similar to those used in natural language processing, scSet
aims to learn the joint distribution over tokens, for which
autoregressive approaches have recently shown great ca-
pabilities (5). However, autoregressive models typically
process sequences, where there is a canonical ordering that
determines the next token to predict. Further, autoregressive
approaches generally learn a probability distribution over
discrete tokens, not continuous samples such as single-cell
profiles. Inspired by the framework introduced in Li et al.
(2024) (19), scSet can be seen as an autoregressive model
which selects an arbitrary ordering of cells for each sample,
and then uses the first Nanchor < N cells to predict a latent
prototype of the next cell state, namely the patient represen-
tation, which is subsequently transformed into an actual cell
state by the diffusion model.

B. Data Pre-Processing
The scSet autoencoder was trained on data from the CZ
CELLxGENE (CxG) Discover Census (3), which we filtered
to the 7,342 samples with at least 128 cells.

C. Algorithm for Pretraining scSet

Algorithm 1 Conditional Diffusion Autoencoding Training

Input: Encoder fϕ, noise predictor ϵθ, time steps T ,
number of anchor cells Nanchor, number of target cells
Ntarget, number of time steps per sample Ntime, inverse
variance schedule (ᾱt)

T
t=1, patient samples (Xj)Mj=1.

repeat
Sample patient j ∼ U([M ])
Subsample Nanchor anchor cells A ⊂ Xj and Ntarget

target cells Y ⊂ Xj

Sample Ntime time steps tℓ ∼ U([T ])
Compute patient representation z = fϕ(A)
Sample NtargetNtime noise vectors ϵkℓ ∼ N (0, I)
Compute noisy cells ỹkℓ =

√
ᾱtℓyk +

√
1− ᾱtℓϵkℓ

Compute loss L(ϕ, θ) =
∑Ntarget

k=1

∑Ntime

ℓ=1 ∥ϵkℓ −
ϵθ(ỹkℓ, tℓ, z)∥2
Update θ and ϕ using ∇θ,ϕL

until loss has converged

D. Hyperparameter Tuning
For our scset model, which is made up of a transformer
and a denoising diffusion network, we used the following
hyperparameters for the transformer: 4 transformer heads, 2
blocks (layers) of transformers, batch size 32, and learning
rate 10−3. We searched over the following hyperparame-
ters: number transformer heads {2, 4}; number transformer
blocks {2, 3, 4}; batch size {16, 32, 64, 128}; learning rate
{10−2, 10−3, 10−4}. We found that our choice of batch
size and learning rate significantly affected validation set
denoising loss. While models trained with different batch
sizes converged to a similar loss by 200 epochs, we found
that the larger the batch size, the longer the model took
to converge to this loss. We chose a batch size of 32, to
balance this behavior (which would suggest choosing the
lowest batch size) with efficient use of our GPUs (which
are only partially utilized at lower batch sizes). Once the
batch size was fixed, a learning rate of 10−3 performed best.
The number of transformer heads and blocks did not mean-
ingfully alter performance, so we settled on 4 heads and 2
blocks to balance expressivity with avoiding overfitting and
unnecessary complexity.

For the logistic regression in sklearn, we tuned the hyper-
parameter C over the following values using nested cross-
validation: [0.01, 0.1, 1, 10, 100, 1000, 10000, 100000,
1000000].

E. Compute Environment
Models were trained on a single NVIDIA A100 80GB GPU,
on a cluster with 504GB RAM.

F. Statistics
We ran each task on K held out test folds. We report the
95% confidence intervals for the mean performance across
these folds. To calculate these intervals, we determined the
sample mean (x) and sample standard deviation (s) for the
performance metrics, then computed the standard error of
the mean (SEM) as s/

√
(n), where n is the number of runs

(n = 10). For n = 10, the t-value for a 95% confidence
level is 2.262. The margin of error (ME) was obtained by
multiplying the t-value with the SEM. We reported 95%
confidence intervals as x±ME.

G. Details for Generating Semi-Synthetic
Datasets

scVI embeddings for cells from a multiple myeloma study
(42) were obtained using the trained scVI model down-
loaded from CZ CELLxGENE Discover Census (3) used
throughout this work.
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To create the semi-synthetic data for our perturbation sub-
typing experiment, we first created 12 patients with 200
cells each, sampling 25% of cells from each cell type (natu-
ral killer cells, helper T cells, CD8+ cytotoxic T cells, and
monocytes). For the 6 patients assigned to our ‘perturbed’
subtype, we added a constant to five of the latent dimensions
for all helper T cells. We subtracted this same constant from
the same latents for all CD8+ cytotoxic T cells in those sam-
ple samples. We chose this perturbation structure because
it represents a case where averaging, or pseudobulking, the
sample would lose the signal due to the equal and opposite
effect of the two perturbations.

H. Tables Comparing Cell Type Proportions
Between True and scSet Reconstructed
Samples

See Tables 2, 3, 4, 5.

As described in Section 4.1.2, we expect scSet’s diffusion
decoder to generate sets of cells that closely resemble each
patient’s true set of cells. Thus, we evaluated scSet’s recon-
struction capabilities using patient samples from the test set:
cells from each test set patient were encoded to a patient em-
bedding using the trained encoder, zj = fθ(X

j). We then
generated 500 cells per patient (the number of decoded cells
is arbitrarily set by the user). Starting from Gaussian noise
at time step T = 1000, we visualize the UMAPs (26) of the
reconstructed cell profiles of multiple patients grouped by
tissue as they are denoised over time steps in Figure 2. We
found that for each tissue, the model generates the expected
cell types in relatively correct proportions. Here, we include
cell type proportions tables to give more insight into this
result. For each tissue shown in Figure 2, we include a
table of the true and simulated cell type compositions for
each tissue (this data is aggregated across samples from
each tissue, i.e. we took the union of cells from all samples
belonging to each tissue). The true and simulated propor-
tions are relatively close, which can be summarized by the
Pearson correlation coefficient between the two columns in
each table, which is consistently high: 0.95 for lung, 0.97
for breast, 0.89 for heart, and 0.91 for blood. Note that since
generated cells have no ground truth cell type labels, we
predicted instead pseudo-cell type labels from their simu-
lated profiles at t = 0 using a k-Nearest Neighbors classifier
trained on the true cells from these patients.

I. Full Results for All Clinical Prediction Tasks
See Tables 6, 7, 8, 9.

Table 2. Cell type proportions for true and scSet reconstructed lung
samples. Limited to 30 most common cell types among true cells.

cell type synthetic proportions true proportions

macrophage 0.201715 0.201773
T cell 0.261124 0.187556
monocyte 0.119152 0.088269
type II pneumocyte 0.033254 0.071061
endothelial cell 0.043735 0.068700
fibroblast 0.042020 0.045328
natural killer cell 0.019104 0.044489
ciliated columnar cell of tracheobronchial tree 0.014721 0.040659
B cell 0.020867 0.038324
epithelial cell 0.064459 0.033209
dendritic cell 0.029967 0.028383
malignant cell 0.013530 0.026704
type I pneumocyte 0.010624 0.023661
neutrophil 0.005860 0.022848
plasma cell 0.004288 0.021982
mast cell 0.014960 0.017470
smooth muscle cell 0.003954 0.005168
pericyte 0.002620 0.004827
secretory cell 0.003859 0.004695
club cell 0.001810 0.004197
myeloid cell 0.002573 0.004013
nasal mucosa goblet cell 0.001906 0.003830
respiratory basal cell 0.000858 0.003095
lung ciliated cell 0.000048 0.002885
lung pericyte 0.000238 0.002308
lung goblet cell 0.000048 0.002020
neuron 0.000286 0.000944
ciliated cell 0.016246 0.000577
stromal cell 0.000667 0.000367
mesothelial cell 0.001048 0.000341

Table 3. Cell type proportions for true and scSet reconstructed
blood samples. Limited to 30 most common cell types among true
cells.

cell type synthetic proportions true proportions

T cell 0.671453 0.407475
naive T cell 0.017003 0.168529
monocyte 0.161800 0.156635
natural killer cell 0.030631 0.122473
B cell 0.101011 0.064810
naive B cell 0.003179 0.040356
dendritic cell 0.011306 0.011751
platelet 0.000768 0.006774
plasmablast 0.000804 0.003751
T-helper 0.000009 0.003279
blood cell 0.000357 0.003261
T follicular helper cell 0.000071 0.002978
progenitor cell 0.000911 0.001455
erythrocyte 0.000170 0.001065
lymphocyte 0.000143 0.001038
thymocyte 0.000054 0.000916
plasma cell 0.000036 0.000687
IgG plasma cell 0.000009 0.000445
IgA plasma cell 0.000009 0.000427
double negative T regulatory cell 0.000009 0.000337
innate lymphoid cell 0.000036 0.000296
macrophage 0.000054 0.000225
IgA plasmablast 0.000161 0.000180
common lymphoid progenitor 0.000009 0.000180
megakaryocyte 0.000000 0.000166
ILC1, human 0.000000 0.000126
myeloid cell 0.000000 0.000117
IgM plasma cell 0.000000 0.000108
IgG plasmablast 0.000009 0.000085
megakaryocyte-erythroid progenitor cell 0.000000 0.000076
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Table 4. Cell type proportions for true and scSet reconstructed
breast samples. Limited to 30 most common cell types among
true cells.

cell type synthetic proportions true proportions

epithelial cell 0.270300 0.204534
fibroblast 0.139667 0.146364
T cell 0.158140 0.115783
endothelial cell 0.073285 0.092961
progenitor cell 0.079273 0.089614
basal cell 0.070646 0.079420
endothelial tip cell 0.070443 0.060402
luminal hormone-sensing cell of mammary gland 0.024259 0.046506
perivascular cell 0.017052 0.036515
pericyte 0.009541 0.022112
macrophage 0.046488 0.021452
smooth muscle cell 0.002436 0.018359
subcutaneous adipocyte 0.007917 0.014657
B cell 0.006293 0.008317
plasmablast 0.001827 0.007151
naive B cell 0.000812 0.005376
natural killer cell 0.001827 0.004970
monocyte 0.007714 0.004564
IgA plasma cell 0.000812 0.004311
dendritic cell 0.006192 0.003398
naive T cell 0.000000 0.002891
lymphocyte 0.000000 0.002434
myeloid cell 0.001320 0.002384
Tc1 cell 0.000000 0.001471
leukocyte 0.000000 0.001065
mast cell 0.002944 0.001014
contractile cell 0.000406 0.000710
IgG plasma cell 0.000203 0.000710
neutrophil 0.000203 0.000558

Table 5. Cell type proportions for true and scSet reconstructed
heart samples. Limited to 30 most common cell types among true
cells.

cell type synthetic proportions true proportions

fibroblast 0.232488 0.193614
endothelial cell 0.117873 0.151561
regular ventricular cardiac myocyte 0.144636 0.133050
pericyte 0.066325 0.113281
cardiac muscle cell 0.086572 0.110705
mural cell 0.033279 0.098604
regular atrial cardiac myocyte 0.082965 0.066016
myeloid cell 0.085408 0.046247
macrophage 0.072609 0.020128
smooth muscle cell 0.001280 0.018211
lymphocyte 0.041541 0.015755
T cell 0.023272 0.006110
cardiac neuron 0.001629 0.005931
epicardial adipocyte 0.002444 0.005871
monocyte 0.001513 0.005152
neural cell 0.001164 0.005092
mast cell 0.003258 0.001677
natural killer cell 0.000000 0.000839
dendritic cell 0.001745 0.000779
adipocyte 0.000000 0.000719
mesothelial cell 0.000000 0.000659
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Table 6. Full set of results for the triple HLCA task. Average across folds ± SEM are shown.

AUC ACCURACY WEIGHTED F1

LINEAR
PROBE

MLP FT-E2E LINEAR
PROBE

MLP FT-E2E LINEAR
PROBE

MLP FT-E2E

MODEL

SCSET 0.89±0.05 0.83±0.06 0.74±0.11 0.75±0.06 0.66±0.07 0.65±0.07 0.78±0.06 0.68±0.07 0.66±0.08
SCSET W/O DIFFUSION 0.73±0.07 0.71±0.05 0.72±0.07 0.61±0.05 0.45±0.07 0.51±0.08 0.61±0.06 0.47±0.08 0.53±0.09
SCSET W/ FLOW DECODER 0.73±0.07 0.66±0.06 0.73±0.07 0.58±0.06 0.49±0.09 0.55±0.07 0.57±0.07 0.43±0.09 0.57±0.07
ABMIL W/ DIFFUSION 0.71±0.07 0.7±0.05 0.71±0.05 0.65±0.08 0.53±0.06 0.48±0.06 0.62±0.08 0.57±0.06 0.52±0.05
ABMIL W/O DIFFUSION 0.71±0.07 0.68±0.05 0.73±0.05 0.58±0.06 0.39±0.06 0.49±0.06 0.57±0.07 0.38±0.07 0.52±0.06
AVERAGE 0.71±0.06 0.62±0.05 0.64±0.05 0.62±0.07 0.44±0.05 0.46±0.04 0.58±0.07 0.49±0.06 0.5±0.05
CELL TYPE FRACTIONS 0.79±0.04 0.74±0.1 NAN 0.58±0.06 0.47±0.09 NAN 0.6±0.07 0.51±0.09 NAN
CELL TYPE MEANS 0.9±0.03 0.84±0.05 NAN 0.7±0.04 0.63±0.04 NAN 0.73±0.04 0.68±0.04 NAN
CELL TYPE FRACS+MEANS 0.9±0.03 0.8±0.06 NAN 0.7±0.04 0.66±0.05 NAN 0.72±0.04 0.7±0.05 NAN
KMEANS30 0.92±0.05 0.83±0.08 NAN 0.76±0.05 0.58±0.07 NAN 0.77±0.05 0.63±0.06 NAN
KMEANS60 0.9±0.03 0.79±0.07 NAN 0.78±0.04 0.63±0.07 NAN 0.79±0.04 0.66±0.06 NAN

Table 7. Full set of results for the SLE task. Average across folds ± SEM are shown.

AUC ACCURACY WEIGHTED F1

LINEAR
PROBE

MLP FT-E2E LINEAR
PROBE

MLP FT-E2E LINEAR
PROBE

MLP FT-E2E

MODEL

SCSET 0.98±0.01 0.98±0.01 0.99±0.0 0.93±0.02 0.94±0.01 0.95±0.01 0.93±0.02 0.94±0.01 0.95±0.01
SCSET W/O DIFFUSION 0.98±0.01 0.95±0.02 0.97±0.01 0.92±0.02 0.84±0.03 0.92±0.02 0.92±0.02 0.83±0.04 0.92±0.02
SCSET W/ FLOW DECODER 0.95±0.01 0.88±0.02 0.97±0.01 0.87±0.02 0.77±0.04 0.92±0.02 0.87±0.02 0.76±0.04 0.92±0.01
ABMIL W/ DIFFUSION 0.95±0.01 0.95±0.02 0.96±0.01 0.87±0.02 0.9±0.01 0.92±0.01 0.87±0.02 0.9±0.01 0.92±0.01
ABMIL W/O DIFFUSION 0.94±0.01 0.91±0.01 0.97±0.01 0.87±0.02 0.82±0.01 0.9±0.02 0.87±0.02 0.82±0.01 0.9±0.02
AVERAGE 0.95±0.01 0.87±0.02 0.86±0.04 0.88±0.02 0.75±0.03 0.77±0.03 0.88±0.02 0.75±0.03 0.77±0.03
CELL TYPE FRACTIONS 0.93±0.01 0.79±0.04 NAN 0.83±0.02 0.73±0.02 NAN 0.83±0.02 0.72±0.03 NAN
CELL TYPE MEANS 0.98±0.01 0.93±0.02 NAN 0.94±0.01 0.86±0.03 NAN 0.94±0.01 0.86±0.03 NAN
CELL TYPE FRACS+MEANS 0.99±0.0 0.96±0.01 NAN 0.95±0.01 0.9±0.02 NAN 0.95±0.01 0.9±0.02 NAN
KMEANS30 0.98±0.01 0.97±0.01 NAN 0.94±0.02 0.92±0.02 NAN 0.94±0.02 0.92±0.02 NAN
KMEANS60 0.98±0.01 0.98±0.01 NAN 0.89±0.02 0.92±0.01 NAN 0.89±0.02 0.92±0.01 NAN

Table 8. Full set of results for the COVID-19 task. Average across folds ± SEM are shown.

AUC ACCURACY WEIGHTED F1

LINEAR
PROBE

MLP FT-E2E LINEAR
PROBE

MLP FT-E2E LINEAR
PROBE

MLP FT-E2E

MODEL

SCSET 0.98±0.01 0.98±0.02 0.98±0.01 0.95±0.02 0.93±0.02 0.92±0.02 0.95±0.02 0.93±0.02 0.93±0.02
SCSET W/O DIFFUSION 0.95±0.02 0.96±0.02 0.82±0.1 0.9±0.02 0.86±0.02 0.88±0.03 0.9±0.03 0.86±0.02 0.88±0.03
SCSET W/ FLOW DECODER 0.93±0.02 0.79±0.04 0.94±0.05 0.89±0.03 0.75±0.02 0.86±0.03 0.9±0.03 0.71±0.04 0.87±0.03
ABMIL W/ DIFFUSION 0.92±0.03 0.86±0.06 0.88±0.06 0.88±0.03 0.83±0.03 0.85±0.03 0.87±0.03 0.83±0.03 0.85±0.03
ABMIL W/O DIFFUSION 0.93±0.03 0.92±0.03 0.9±0.04 0.89±0.03 0.85±0.03 0.86±0.02 0.88±0.03 0.86±0.03 0.84±0.03
AVERAGE 0.94±0.02 0.85±0.03 0.86±0.04 0.88±0.02 0.79±0.04 0.79±0.05 0.88±0.02 0.8±0.04 0.81±0.04
CELL TYPE FRACTIONS 0.89±0.04 0.61±0.06 NAN 0.85±0.02 0.67±0.04 NAN 0.84±0.02 0.68±0.04 NAN
CELL TYPE MEANS 0.96±0.02 0.97±0.02 NAN 0.88±0.02 0.93±0.03 NAN 0.87±0.03 0.92±0.03 NAN
CELL TYPE FRACS+MEANS 0.96±0.02 0.97±0.02 NAN 0.88±0.02 0.91±0.03 NAN 0.87±0.03 0.92±0.03 NAN
KMEANS30 0.95±0.02 0.9±0.04 NAN 0.92±0.02 0.87±0.04 NAN 0.92±0.03 0.86±0.04 NAN
KMEANS60 0.96±0.01 0.97±0.02 NAN 0.94±0.02 0.9±0.02 NAN 0.94±0.02 0.9±0.02 NAN

Table 9. Full set of results for the binary HLCA task. Average across folds ± SEM are shown.

AUC ACCURACY WEIGHTED F1

LINEAR
PROBE

MLP FT-E2E LINEAR
PROBE

MLP FT-E2E LINEAR
PROBE

MLP FT-E2E

MODEL

SCSET 0.78±0.06 0.81±0.06 0.85±0.03 0.78±0.06 0.87±0.04 0.83±0.06 0.76±0.09 0.87±0.04 0.83±0.06
SCSET W/O DIFFUSION 0.64±0.09 0.58±0.1 0.71±0.08 0.8±0.07 0.71±0.07 0.81±0.06 0.77±0.09 0.73±0.06 0.82±0.06
SCSET W/ FLOW DECODER 0.47±0.09 0.48±0.15 0.73±0.04 0.81±0.07 0.72±0.1 0.84±0.04 0.75±0.09 0.67±0.11 0.85±0.04
ABMIL W/ DIFFUSION 0.59±0.06 0.66±0.08 0.68±0.06 0.79±0.07 0.77±0.07 0.79±0.05 0.74±0.09 0.78±0.07 0.78±0.06
ABMIL W/O DIFFUSION 0.46±0.13 0.58±0.11 0.45±0.09 0.81±0.07 0.7±0.07 0.7±0.07 0.75±0.09 0.7±0.08 0.7±0.07
AVERAGE 0.51±0.12 0.64±0.12 0.48±0.06 0.81±0.07 0.69±0.06 0.63±0.04 0.75±0.09 0.73±0.06 0.67±0.05
CELL TYPE FRACTIONS 0.81±0.07 0.53±0.08 NAN 0.79±0.07 0.7±0.06 NAN 0.77±0.09 0.73±0.07 NAN
CELL TYPE MEANS 0.9±0.07 0.82±0.06 NAN 0.86±0.04 0.72±0.07 NAN 0.85±0.05 0.76±0.06 NAN
CELL TYPE FRACS+MEANS 0.9±0.06 0.81±0.08 NAN 0.86±0.04 0.79±0.04 NAN 0.85±0.05 0.82±0.04 NAN
KMEANS30 0.9±0.04 0.82±0.04 NAN 0.88±0.03 0.87±0.04 NAN 0.89±0.03 0.87±0.04 NAN
KMEANS60 0.92±0.04 0.86±0.03 NAN 0.87±0.04 0.82±0.03 NAN 0.86±0.04 0.83±0.04 NAN
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