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Abstract

Model immunization is a new technique of protecting models against downstream
harmful fine-tuning while remaining useful on intended tasks. Prior works utilize
condition number based regularizers to ill-condition the optimization landscape
for harmful tasks. However, the induced protection does not guarantee that immu-
nization will persist. In this work, we introduce the novel concept of creating a
trap in the landscape, so that harmful finetuning optimization will be trapped in
an unoptimized minima. We propose a geometry-aware trap-inducing objective,
which limits multi-step harmful loss reduction to the expected local geometry-based
loss. Furthermore, to properly evaluate immunization retainment, we introduce an
extrinsic metric, Relative Fine-Tuning Deviation (RFD). Across multiple pretrained
backbones and datasets, we show our method increases resistance to harmful adap-
tation and preserves primary-task accuracy, outperforming curvature-only baselines
on RFD while remaining competitive on standard utility metrics.

1 Introduction

Open model release has unlocked extraordinary downstream utility but also enables rapid adaptation
to undesirable tasks. The model immunization task aims to tackle this aspect by studying parameters
that remain useful on intended tasks yet resist (or significantly raise the cost of) adaptation on
restricted domains [Zheng and Yehl 2024, [Deng et al., 2024} Zheng et al., [Huang| 2025]]. Prior work
has framed this goal as task blocking or non—fine-tunable learning. The model is either conditioned
during pretraining or in a separate post-training phase so that subsequent fine-tuning on harmful
tasks is hampered, thus increasing the cost of undesirable downstream adaptation while preserving
performance on desired tasks.

Current works for model immunization have largely treated the problem in the meta-learning context
[Deng et al.l 2024, [Zheng and Yehl 2024, [Zheng et al., [2024]]. These methods simulate an adversary
during training and optimize an initialization that resists subsequent adaptation on restricted domains.
However, as these methods are learning a bad initialization for the harmful task, the protection is
sensitive to the specific setting of the meta-learning optimization and may not transfer when the
attacker deviates from these choices.

A complementary line of work shifts focus from meta-learning to conditioning the model’s geometry
[Zheng et al.]. Instead of simulating fine-tuning, it directly shapes curvature by controlling the
Hessian’s condition number, which is the ratio between extreme singular values that governs how
easily optimization can progress. By reducing curvature (well-conditioning) of the model’s loss
landscape in desired directions and increasing it (ill-conditioning) for restricted ones, they hinder the
ease of harmful adaptation intrinsically. More related works can be found in Appendix [A]l

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Lock-LLM: Prevent
Unauthorized Knowledge Use from LLM:s.



While curvature control can hinder harmful fine-tuning, it only affects current parameters and not
the overall optimization path or destination. Condition number regularization can be optimized
by gradient descent and thus may facilitate adversarial search for descent directions that still yield
large loss decreases on restricted domains. Thus, curvature alone cannot ensure negligible harmful
adaptation across multiple fine-tuning steps. What is needed is a criterion that also targets the
destination of the optimization, and conditions it to be a suboptimal local minima. We refer to such
spaces as traps for the optimization process.

We propose constructing such fraps in the optimization path, so that even after plausible fine-tuning
steps, the expected loss reduction on the restricted domain is minimal. Intuitively, a trap is a region
where adaptation looks promising locally yet yields little global improvement, making it inefficient for
an adversary to escape without essentially re-training. Concretely, we simulate the actual multi-step
loss reduction under adaptation and reduce it to the estimated expected loss reduction from the
initial parameter setting, thus trapping the optimization by local geometry. This setting complements
curvature-based conditioning, which slows down optimization, while traps restrict the destination of
the optimization into a local optima.

We validate the proposed methodology empirically on two widely used pretrained models and three
separate downstream datasets. Existing methods use RIR (Relative Immunization Ratio) metric
[Zheng et al.[], which is an intrinsic measure of immunization and can be unreliable. We introduce a
new metric RFD (Relative Finetuning Deviation), which is an extrinsic immunization criterion and
overcomes previous issues. We observe considerable improvement in model immunity across all the
datasets and backbones, conveying the effectiveness of our proposed methodology.

The main contributions of our work are as follows: (1) we introduce a trap-based immunization
objective that minimizes expected loss reduction on restricted domains. In combination with curvature-
based regularizers that shape the local geometry, these traps suppress multi-step progress in a local
optima; (2) we propose RFD, an extrinsic and reliable metric that captures persistent divergence from
baseline adaptation in linear probing, thereby addressing the limitations of intrinsic conditioning
ratio metrics; and (3) we provide comprehensive experiments on ImageNet-pretrained backbones and
multiple restricted domains, showing consistent gains in immunization capability while maintaining
strong pretraining performance.

2 Preliminaries

This section provides the setting of model immunization, the background of condition-number based
methods and limitations of pure curvature conditioning.

Model immunization setting. We adopt the model immunization framework [Zheng and Yehl |[2024]]
in which a model is trained to be simultaneously useful on a primary task while being resistant to
harmful fine-tuning. Concretely, we assume access to two datasets: a primary dataset Dp for model
pretraining, where high performance should be retained, and a harmful dataset D7, where fine-tuning
should be intentionally impeded. Following prior work on condition-number based immunization
[Zheng et al.], we consider a feature extractor fy parameterized by 6, coupled with a lightweight
linear head w, that is already pretrained with the primary dataset Dp. An adversary is modeled as
using transfer learning via linear probing [Zhuang et al., 2020]], by attaching a new linear head wy to
fo and optimizing on Dy . In the adversary setting, fy is frozen and only wy is learnable. The goal
of immunization is to convert f, to an immunized version f4 such that optimization on Dy using
f1(Dy) - wy is impeded, while performance on Dp using f{(Dp) - w remains the original.

Condition number-based model immunization. A central quantity in this setting is the condition
number [|Gloub and Van Loan, |1996] of a matrix S,

max
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where ST denotes the pseudoinverse, and the max and min singular values are denoted by 0d** and

0@ The condition number captures the spread of singular values, and thus the curvature of the loss
landscape when S is the Hessian H matrix. Multiple works have looked at the implications of the
condition number « for gradient-based optimization [Nenov et al.| 2024, Boyd and Vandenberghel
2004]], where lower « creates a smooth gradient landscape which indicates faster convergence during
fine-tuning (well-conditioned), and higher  indicates slower fine-tuning performance due to the
landscape having high curvature (ill-conditioned). Nenov et al.|[2024] introduced a regularizer that



minimizes x, which was adapted into two regularizers by [Zheng et al.| for the purpose of inducing
ill-conditioned curvature for optimization on Dy, while maintaining D p optimization:
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By utilizing Riy(Hp) and Ryen(Hp) as regularizers, where Hy and H p stands respectively for the
Hessian for Dy and D p optimization, « for the harmful task can be increased while « for the primary
task decreases. Zheng et al.| showed theoretically that immunization to harmful fine-tuning can be
characterized using this formulation in a linear-model setting, and extended to show effectiveness of
the method to non-linear models empirically. Here, we only focus on the non-linear model setting,
and the effect of curvature-based conditioning on model-immunization.

Limitations of Pure Curvature Conditioning. While curvature shaping is effective, relying solely
on x-based regularization is insufficient for robust immunization. A large condition number slows
down harmful fine-tuning but does not prevent eventual convergence if the adversary has sufficient
compute or employs alternative optimization strategies, such as using a higher learning rate. Moreover,
condition numbers reflect only spectral properties of the loss Hessian and provide no guarantees
on where optimization trajectories lead. As a result, models can still exhibit harmful loss reduction
even in high—« regimes. This motivates extending beyond curvature to explicitly design deceptive
landscapes or traps in which harmful fine-tuning progress is intrinsically limited.

3 Methodology
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Figure 1: Comparison between harmful-task loss landscapes for non-
immunized model, condition number (CN) based immunization [Zheng
et al.], and our introduced trap inducing loss based immunization. For
the non-immunized model, the curvature is smooth and gradient descent
easily finds the global optima. For the CN-based immunization, using
Equation |2|introduces high curvature for the harmful task, but it can
also lead a path to a better optima as well. Our formulation (Equation

minimizes the difference between the actual multi-step loss £%,
and the expected loss C’;zp, which induces deceptive plateaus / slow-
descent regions. Our immunized model is the most resistant to harmful
finetuning as shown in downstream performance.

worse) than what local curvature predicts. As a result, harmful fine-tuning is steered into shallow
basins from which substantial progress is difficult.

Let Lz denote the harmful-task loss for the harmful dataset Dy, and let #° be the current parameters
with gg = VLg(6°) and Hy = V2L (6°), and 6F are future parameters after k optimization steps.
Here, we consider Af = 6% - §9.

Taylor expansion and approximation. For a small update A#, a second-order Taylor expansion
around 0° gives

Ly (0%) =~ Ly (0° + A0) = Ly (6°) + gy A0+ 2 AOT Hy A + R3



where R3 denotes higher-order terms. In practice, these higher-order contributions are negligible
for sufficiently small steps, so the quadratic approximation serves as the local model of the loss
landscape.

Expected loss reduction. The quadratic surrogate predicts a reduction of

ALexy = Ly (6°) — Ly (0° + A0) = —(gg A0 + 1 A0T Hy AG) )

This expression captures the improvement the local curvature permits, a gain that is moderated by the
curvature penalty along the descent direction.

Actual loss reduction. The actual realized decrease after k steps of optimization is

ALy = Ly (0°) — L (6%) )

If AL, substantially exceeds ALeyp, then the landscape around ¢° provided an unexpectedly
favorable descent path, enabling harmful fine-tuning to progress faster than the local model predicts.
Here, the Taylor series approximation is based on a small Af change, but we are taking k steps of
optimization. So we expect, 8 — #° > Af and AL, > ALexp.

Trap inducing loss formulation. We introduce the trap inducing loss, which penalizes any surplus
improvement during model optimization beyond the initial expectation:

[,trap(eo) = softplus (ALam — ALexp) 6)

This formulation enforces a deceptive landscape for the harmful-task loss L. Gradients may initially
signal meaningful descent directions. However, the landscape is sculpted so that the realized loss
decrease is bounded by the local quadratic model. Fine-tuning thus becomes trapped in a local
minimum. Over multiple steps, this results in attractor basins in which harmful optimization requires
disproportionately many updates to escape.

Synergy with condition number regularization. Condition-number based regularizers slow harmful
adaptation by increasing ill-conditioning, but they do not guarantee that the harmful loss will not
eventually decrease if sufficient optimization effort is applied. The trap loss complements this
approach by bounding the realized decrease relative to its quadratic prediction, ensuring that even
when ill-conditioned directions are eventually navigated, the actual improvement remains limited. In
combination, condition-number and the trap loss yield models that are both spectrally ill-conditioned
and geometrically deceptive, providing substantially stronger immunization than either method alone.

3.2 Model Immunization Objective

We incorporate trap inducing loss with the condition number based curvature conditioning for our
final model immunization process. Given a pretrained feature extractor 6, pretrained linear head w,
primary dataset D p, and harmful dataset Dy, our final objective is:

mein Licap(0) + Ritt(Her) + Rywert(Hp) + L(Dp,w, §) @)

where L, denotes our trap inducing loss, R;; and R, denotes regularizers to maximize and mini-
mize condition numbers of Hessian Hy; for Dy optimization and Hessian Hp for Dp optimization
respectively, and finally £(Dp,w, 8) refers to the original primary dataset optimization objective.
The output of this optimization will be an immunized feature extractor 6;.

3.3 Evaluation Metric

To evaluate immunization, |Zheng et al.| introduced the Relative Immunization Ratio (RIR) metric,
which measures the ratio of condition number of Hessian:

o () / () ®
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Table 1: Quantitative results of immunization of ImageNet pretrained ResNet18 and ViT models over
3 finetuning datasets. We report both RIR and RFD to show immunization quality, while test accuracy
onthe primary dataset ImageNet D p is shown to ensure original utility retainment.

Dy Method ResNet18 ViT
RIRT Dp TestAcc. (%)T RFDT RIRT Dp TestAcc. (%)T RFDT
Tnit. 6y 1.0 67.04 - 1.0 82.37 -
R Only 1.078 63.58 2.28 4.578 82.01 2.93
E IMMA 1.002 63.71 2.36 0.781 80.95 7.57
3 Opt K 1.007 63.73 0.16 3.47 82.68 7.57
CN 3.521 62.27 10.06 84.155 82.01 33.32
Ours 43.920 65.99 47.19 70.128 82.48 38.77
- _ RyOny 1239 638 3.333° 1358 80.14 2.29
= IMMA 1.021 65.41 0.22 0.799 81.27 1.38
B Opt K 1.082 63.80 0.37 42.49 82.36 5.08
£ CN 27.47 58.04 4.62 96.300 82.20 8.38
Ours 64.845 64.54 19.04 86.203 82.69 7.46
= Ry Only 1126 66.15 € 650 1105 7 76.37 478
Q IMMA 1.002 67.33 1.03 0.796 81.59 7.80
= Opt Kk 1.007 67.31 0.68 7.183 82.51 3.35
3 CN 25.701 61.92 21.16 7141 82.97 26.44
© Ours 25.04 60.16 28.32 86.303 82.91 28.35

While informative, RIR is an intrinsic metric; meaning this tries to estimate immunization retention
without performing any actual harmful finetuning. This depends heavily on optimization hyper-
parameters and is therefore unstable for cross-experimental comparison. We instead propose an
extrinsic and robust evaluation metric, which we term the Relative Fine-Tuning Deviation (RFD).

In a linear probing setting, let Mé;?e and M]S:Znu denote the harmful-task performance (test accuracy)

of a baseline and immunized model at epoch ¢, respectively. We define

AL,
RFD = ) Z | M(t) | x 100%, 9
t=1 base
where E is the number of probing epochs. Intuitively, RFD measures the average percentage by
which an immunized model resists harmful fine-tuning relative to a baseline. Unlike RIR, this
metric is extrinsic (outcome-based and measured under a fixed linear-probing protocol) and directly
interpretable as slowdown in harmful adaptation.

4 Experiments

4.1 Setup

The experiment setup is designed and implemented following [Zheng et al.| Further details can be
found in Appendix

Models and datasets. We evaluate on two ImageNet [Deng et al., |2009] pretrained backbones
(ResNet18 [He et al., 2016], ViT [Dosovitskiy et al., 2020]), where ImageNet is used as the primary
dataset D p. The attack is simulated using the linear probing transfer learning setup on three datasets
(Cars [Krause et al.,[2013]], Food101 [Bossard et al.,[2014]], Country211 [Radford et al.| [2021]]) and
each of them are considered as harmful dataset Dy individually.

Baselines. Following |Zheng et al., we create several baselines for comparison: (i)R;; Only (ill-
conditioning on Dy only), (ii) IMMA [Zheng and Yehl [2024] (bi-level optimization), (iii) Opt K
(direct condition-number optimization, instead of regularizer), (iv) CN or Condition Number based
immunization using regularizers [Zheng et al.].

Metrics. We report (i) RIR 1 - as shown in Equation|[8] this is an intrinsic measure of curvature which
indirectly indicates immunization to harmful finetuning, (ii) Dp Test Acc. 1 - accuracy of primary
task showing utility of pretrained model, and (iii) RFD 1 - as introduced in Equation [9] this is the
extrinsic metric to measure immunization levels.
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Figure 2: Test accuracy in the downstream harmful linear probing setting, across all three datasets.
The figure shows our model showing the worst scores across the harmful finetuning process, thus
having the best immunization retainment.

4.2 Main results

Table summarizes results for both backbones across Dy € {Cars, Food101, Country211}. Overall,
our method delivers the strongest immunization through substantially high RFD, while maintaining
competitive RIR and primary accuracy on Dp.

Trap inducing loss-based immunization has the most protection across different models and
harmful datasets. In ResNetl8 experiments, our method has on average 33.69% better RFD
and 25.7% better RIR scores compared to the nearest best methods, signalling a higher degree of
immunization, while retaining 2.83% more accuracy in the pretraining dataset, suggesting higher
utility. Figure [2] shows the epoch-wise fine-tuning accuracy for the three datasets. It is evident from
the figure that our formulation retains the most immunization compared to baselines. For ViT, though
the model has a 3.07% decrease in RIR scores, it shows on average 2.14% increase in RFD scores.
This also points to the unreliability of using RIR as a metric compared to RFD, which is an extrinsic
measure and shows the actual immunized capability in downstream harmful task.

Our method has the best pretrained performance retention. Retaining primary dataset per-
formance is important in the context of releasing and open-sourcing models. Though our method
has a performance decrease of 1.5% compared to the unprotected model across the two baselines, it
exhibits a 1.56% increase in pretraining performance retention compared to CN [Zheng et al.].

Table 2: Changing batch-size during pro- RFD is more reliable than RIR as a metric to measure
tection phase has effect on RIR scores ~ immunization. While existing methods [Zheng et al.]

Setting RIRT Dp Acc.? RFD?T used RIR as a metric for immunization evaluation, our

bs=64 43.920 65.99 47.19 study shows that depending solely on this metric is

bs=128 34.412 65.59 48.52  not a reliable criterion. There are multiple examples
in Table E], where the RIR score is higher, however
immunization capability in the extrinsic measure RFD is
lower. Furthermore, due to being dependent on singular value calculations, evaluating RIR is very
sensitive to the training setting. Changing minor details, such as batch-size, can result in a much
different RIR score as shown in Table E} On the other hand, RFD metric is robust to such changes and
provides direct feedback due to being an extrinsic measure.

5 Conclusion

We introduce a trap-based objective that minimizes the expected loss reduction of harmful fine-tuning
steps and combine it with condition-number regularizers to produce models that are both spectrally
ill-conditioned and geometrically deceptive. Empirically, our approach raises the cost of harmful
adaptation while preserving utility on intended tasks and yields consistent gains on an extrinsic
finetuning metric (RFD), addressing the limitations of purely intrinsic curvature indicators (RIR). Next,
we plan to apply this objective to generative tasks and models, including diffusion and large language
models, and gauge immunization efficacy in a real-world setting.
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A Related Works

Model Immunization in Vision and Generative Models. Model immunization is introduced as a
proactive defense to make pre-trained models inherently difficult to fine-tune on certain restricted
or harmful tasks while preserving their normal utility [Zheng et al.||Zheng and Yeh| 2025[. IMMA
prevents malicious adaptation of text-to-image models while maintaining generation quality [Zheng
and Yeh) 2024]]. Learning-to-Obstruct showed that backbones can be meta-trained to serve as poor
initializations for restricted classes, obstructing few-shot adaptation while retaining performance on
others [Zheng et al.,[2024]. Multi-Concept Immunization extended this idea by using differentiable
model merging to immunize simultaneously against multiple concepts [Zheng and Yeh, [2025]].

Immunization and Misuse Prevention in Foundation Models. SOPHON introduces non-fine-
tunable learning, a paradigm that prevents the pre-trained model from being fine-tuned to indecent
tasks while preserving its original performance [Deng et al.| 2024]]. [Henderson et al., 2023]
proposed Self-Destructing Models, in which meta-learned adversarial censoring blocks gradient-
based adaptation on forbidden tasks. Zhou et al.|[2024] developed security vectors to absorb malicious
behaviors during training, preventing them from being integrated into the core parameters. [Rosati
et al.| [2024] formalized immunization by defining theoretical conditions and evaluation criteria for
fine-tuning defenses.

B Detailed Experiment Setup

B.1 Training Details

We follow the experimental settings from [Zheng et al.]. The setting utilized the Cars Krause et al.
[2013]] and Country211 Radford et al.| [2021] datasets. We incorporated a third dataset Food101
Bossard et al.|[2014] in this setting. The chosen hyperparameters for the training are provided in
Table 3|

Table 3: Hyperparameters for immunization training. A¢rep, AR
Royei1, Ry respectively. n is the learning rate.

AR, are weights for Liyqp,

well?

Dataset Model n Atrap  ARwew AR, Epochs  Batch Size
ImageNet vs. Stanford Cars ResNetl8 1 x 107° 1 5x107° 2 x 10° 3 64
ImageNet vs. Food101 ResNetl8 1 x 1075 1 5x107% 2 x 106 3 64
ImageNet vs. Country211 ~ ResNetl8 1 x 107° 1 1x107% 2x10° 3 64
ImageNet vs. Stanford Cars ~ ViT 1x107° 1 3x1076 3 x108 2 64
ImageNet vs. Food101 ViT 1x107° 1 3x107% 3 x 108 2 64
ImageNet vs. Country211 ViT 1x107° 1 1x107% 1x108 2 64

Hessian calculation.  Our formulated loss requires us to calculate the Hessian. However, accurate
Hessian calculation is computationally expensive and is not scalable. For this reason, we approximate
the Hessian to make our loss objective computationally tractable. For the Hessian required for
condition number regularizers R,¢;; and R;;;, we use the feature covariance matrix following |[Zheng
etal.l



Harmful classifier head wy; initialization.  Our formulation requires us to simulate harmful task
loss to calculate AL, from Equation@ For this, we needed to include a separate head wyy to simulate
the linear probing setting, which is different than the pretrained head w. For best performance, we
need some sort of signal from wg;, which should be informative enough for us to differentiate between
actual and expected loss reduction. Thus, if we used a random initialized head or a fully trained
head, the optimization gradient wouldn’t be useful. To solve this issue, we utilized the K-Nearest
Neighbors algorithm [Laaksonen and Oja, [1996] to cluster together features from the harmful dataset.
We initialize the harmful classifier using the centroids from the clusters, which provides us a decent
enough unoptimized starting point. This ensures we get proper gradient signal during harmful linear
probing simulation.

C Discussion
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Figure 3: Loss Landscape evolution after k inner steps as epochs progress.
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Loss landscape visualization after inner steps. Figure [3] shows the visualization of the loss
landscape after k inner steps from Eq. [5 at different checkpoints during the protection training. The
left image shows how the loss landscape for the harmful dataset evolved after k inner steps at outer
step 0 (meaning no protection mechanism has been introduced). The image shows an overall convex
shape, and an easy path to get optimum results during finetuning. The right image depicts the same
after outer step 350, when the protection mechanism has been introduced. This shows that 1) the
loss landscape has changed to incorporate high curvature along the path, and 2) the loss values after
k-step optimization has grown compared to the loss landscape without any protection. This points
to the protection mechanism changing the landscape in a way that is adversarial to finetuning. The
visualization was created using the PyHessian tool [[Yao et al.,|[2020].

Trap inducing loss and condition number regularizers

are complementary. Table ] shows the model perfor- ) )
mance in three different settings: 1) only use Trap inducing Table 4: Synergy between Trap inducing
loss, 2) only use condition number regularizer, and 3) use loss and condition number regularizers
both. When using only trap loss without any curvature Setting RIRT Dp Acc. T
condition, the RIR metric (which indirectly measures cur- Lirap 1.072 68.92
vature) is low. However, when used in conjunction with I Rw}ﬁl’ RZHR, 433'5922]0 gggg
condition number regularizers R,,.;; and R;;;, the RIR gets trap: “well ill . .

a big boost compared to inidividual loss settings. Thus,

this indicates there is a complementary nature to both of these losses and both needs to be used for
optimal results.

Effect of finetuning learning rate on immunization. Table [5] shows the efficacy of both the
condition number based regularizers (CN) and our introduced immunization method when different
base learning rates are used to perform the downstream harmful linear probing task. The table shows
that immunization retainment changes when learning rate is incresed/decreased for the downstream



task. However, our method is always the best for each of the different downstream learning rate
setting. This points to the robustness of our introduced method compared to existing work.

Table 5: Effect of different learning rates
in the harmful linear probe setting for
the Food101 dataset.

setting basengy  RFD
CN 0.1 4.62
Ours 0.1 19.04
CN 0.01 12.62
Ours 0.01 24.87
CN 0.001  32.03
Ours 0.001  35.35
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