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Abstract

In this work, we propose a syntactically informed self-supervised learning framework for
generating sentence representations. In our framework, we train a recursive hypernetwork
to compose sentence representation from any word-level representation by using a set of
newly proposed self-supervised tasks. We verify that the newly proposed framework can
generate sentence representations that encode more linguistic information than state-of-the-
art sentence representations and verify the stability and adaptability of our model.

1 Introduction

Most neural language models generate vector representations (embeddings) of words or tokens. For example,
earlier models such as word2vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014) generate repre-
sentations of words, and more recent models such as BERT (Devlin et al., 2018) and RoBERTa (Liu et al.,
2019) generate contextual representations of each token in a sentence. Most recent large language models,
such as GPT (Brown et al., 2020) and Llama (Touvron et al., 2023), also internally generate representations
of the tokens in the prompt for text generation. However, many natural language processing tasks require
representations of sentences.

The standard way to create a sentence representation is to average the embeddings of the tokens in the
sentence. However, this averaging ignores syntactic information and the position of tokens in a sentence.
Although Transformer-based language models internally encode some syntactic information Raganato &
Tiedemann (2018); Hewitt & Manning (2019); Clark et al. (2019); Reif et al. (2019); Jawahar et al. (2019);
Lin et al. (2019); Manning et al. (2020); Arps et al. (2022); Pimentel et al. (2022), such internal syntactic
information is limited Sinha et al. (2021b); Pham et al. (2021); Sinha et al. (2021a); Nedumpozhimana &
Kelleher (2024), and there is a growing body of work across a range of NLP tasks that points to the benefits
of explicitly injecting syntactic information into transformer models, see e.g. (Pang et al., 2019; Moradshahi
et al., 2019; Min et al., 2020; Wang et al., 2020; Pham et al., 2021; Sachan et al., 2021; Xu et al., 2021b;
Tian et al., 2022; Hou et al., 2024; Kai et al., 2024).

Muennighoff et al. (2023) introduced the Massive Text Embedding (MTEB) benchmark and evaluated a range
of embedding models across a variety of tasks. Their results indicate that no single embedding method obtains
the best performance across all tasks, and when performance is averaged across tasks, supervised methods
outperform unsupervised methods. However, supervised methods also have larger variance in performance
across tasks. It has long been known that in deep networks the features learned in later layers are fitted
to the training task and less transferable across tasks, see e.g. (Yosinski et al., 2014). Consequently, the
greater variance in performance across tasks for supervised methods may be caused by their representations
being are overfitted to the learning task. Indeed, Carlsson et al. (2021) argue that self-supervised methods
for sentence representations are preferable to supervised because they avoid the pre-training objective bias,
and do not require labelled datasets.

Murty et al. (2023) observe that Transformer-based models trained in a supervised manner on compositional
generalisation benchmarks become more tree-like (syntactic) in their processing over the course of training,
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and the more tree-like the processing of a model, the better its performance on tests of compositional
generalizability. Moreover, they find that models trained in a self-supervised manner do not learn tree-
structured processing. This suggests that one way to improve the performance of self-supervised methods
for generating sentence representations is to improve the encoding of syntax within the generated embeddings.

We propose a novel self-supervised framework for generating syntactically informed sentence representa-
tions using a recursive hypernetwork trained. This framework has two major components: (1) a recursive
hypernetwork architecture that implements a pair of trainable compositional operators, one semantic and
one syntactic, and (2) a set of 6 self-supervised learning tasks used to train the compositional operators.
The framework explicitly infuses syntactic information in two ways. First, the order in which embeddings
are composed is defined by the constituency parse tree of the sentence being processed. Second, the self-
supervised tasks are designed to guide the compositional operators to encode syntactic information as well
as distributional semantic information in the embeddings they generate.

The rest of the paper is structured as follows. Section 2 presents a review of previous work, Section 3 describes
the framework, and Section 4 describes the training of the models. Section 5 presents results from a set
of probing tasks designed to assess whether the framework improves the encoding of linguistic information
when compared with state-of-the-art baselines, and Section 6 reports an analysis of semantic compositional
operator in terms of: (a) robustness to parse tree depth, and (b) sensitivity to syntactic information. Finally,
Section 7 presents our conclusions and plans for future work.

2 Sentence Representation Learning

There is a growing body of work on generating neural sentence representations; see Kashyap et al. (2023)
for a recent survey. The technical novelty of our work arises from combining a recursive hypernetwork with
a self-supervised learning objective. Recursive hyper-networks have previously been used to train sentence
representations; however, all of this work has been done using supervised learning. In the following two
sections, we first review previous research on recursive hyper-networks for sentence representations and
then review supervised and self-supervised approaches to sentence representation learning. Although to date
supervised approaches tend to outperform unsupervised methods, this may be because unsupervised methods
do not explicitly integrate syntactic information into their objectives (see discussion regarding Murty et al.
(2023) in Section 1). Consequently, we hypothesise that a self-supervised framework (recursive hypernetwork
model+objective) that encourages the encoding of more linguistic information into a representation may
result in improved performance. The benefit of improving the performance of self-supervised methods is
that it avoids the need for expensive labelled datasets, and may also result in more transferable (as in
downstream task-agnostic) representations.

2.1 Recursive Neural Networks

In our work we choose to use a recursive neural network sentence representation learning because of its ability
to explicitly use the syntactic information from a parse tree by composing the representation of sentences (or
phrases) recursively.1 Socher et al. (2011b;a) proposed a recursive neural network with a simple feedforward
network as the composition operator, which was later generalised and extended in (Socher et al., 2012;
2013a;b) for sentence representation learning. However, these recursive neural networks based on feedforward
networks suffer from the vanishing gradient problem when processing sentences with deep tree structures. To
address this problem, Tai et al. (2015) adapted the LSTM architecture to recursive networks and proposed
a compositional operator called Tree-LSTM. Contemporaneously, and in parallel, Le & Zuidema (2015) and
Zhu et al. (2015) proposed similar extensions that use an LSTM over a tree structure.

Kim et al. (2018) modified the Tree-LSTM by augmenting the syntactic tag information as a supplementary
input to the gate functions of the Tree-LSTM to compose the representation of each node in the constituency
parse tree. The traditional Tree-LSTM is designed to be applied on a binarised constituency parse tree, which

1Note that Recursive Neural Networks are not the only model that explicitly utilises the syntactic information from the
parsed tree. For example, the hypertree neural network proposed by Zhou et al. (2022) learns representations of each node in
the constituency parse tree through iterative updates rather than a recursive composition.
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can be one of its limitations. To overcome this, Xu et al. (2021a) extended the Tree-LSTM to an ARTree-
LSTM, which can be applied to constituency parse trees with any number of child nodes. Liu et al. (2017)
extended the Tree-LSTM by exploiting the advantages of hypernetwork or meta-network. They used a small
meta-network and a dynamic parameter prediction method to enable different types of compositions. Shen
et al. (2020) extended this work further by explicitly using syntactic (tag) information for the dynamic
parameter prediction and improved the performance. Xu et al. (2020) also used a similar combination of
Tree-LSTM and hypernetwork for the compositional operator as that of Shen et al. (2020).

In the literature, the recursive neural networks are used to generate task-specific sentence representations. In
our work, we use the combination of the hypernetwork with the Tree-LSTM (please see section 3.2 for more
details) to compose sentence representations that avoid the need for separate training for each downstream
task. To our knowledge, no one has explored the possibility of using the state-of-the-art recursive neural
network (hypernetwork+Tree-LSTM) for composing such a general sentence representation.

2.2 Supervised versus Unsupervised

Some of the earlier models, such as by Hill et al. (2016); Mitchell & Lapata (2010); Mikolov et al. (2013);
Arora et al. (2017), use simple non-parametric compositions for generating sentence representation. Apart
from such simple baseline models, almost all approaches use some task(s) to learn or fine-tune the model to
generate sentence representation, and Hill et al. (2016) observed that such tasks will significantly impact the
quality of the model.

A considerable amount of literature has used supervised learning approaches to generate sentence representa-
tions specific to target downstream tasks. Such models have to train separately for each of the tasks, which is
a limitation of this approach. Therefore, in this work, our focus is on generating representations of sentences
that are not fitted to specific downstream tasks. There are some notable models in the literature that utilise
the supervised learning approach for generating such sentence representations. For example, Conneau et al.
(2017) proposed a supervised model called Infersent for learning universal sentence representation by using
labelled Stanford Natural Language Inference (SNLI) datasets, and Wieting et al. (2016) proposed a model
which captures paraphrastic similarity by using a paraphrase dataset for learning sentence representation.
The Universal Sentence Encoder by Cer et al. (2018) utilised unlabeled data along with the labelled SNLI
data to train a Transformer encoder model for generating sentence representation with a multitask learning
framework. Reimers & Gurevych (2019) proposed another supervised model called SBERT by using the
SNLI dataset. Even though these supervised learning tasks empirically show their transfer effect to other
tasks, there is no convincing reason observed for their generalizability (Carlsson et al., 2021). Also, such a
supervised approach requires highly valuable labelled data, which restricts the scalability of such models.
Therefore, generally, self-supervised or unsupervised tasks are preferred over supervised tasks for learning
scalable models.

Self-supervised learning is widely used for generating sentence representations. One such model is the
sentence representation model proposed by Le & Mikolov (2014), which is trained to predict words in the
sentence (or document). The CPHRASE model by Pham et al. (2015) learns the representation by using the
task of context predictions for phrases at all levels of the constituency parsed tree generated by a supervised
parser. The Skipthought model, Kiros et al. (2015) extended the skip-gram model for words (Mikolov
et al., 2013) to the sentence level by proposing a task of decoding the next and previous sentences from
the encoded sentence representation by using the encoder-decoder architecture. Ba et al. (2016) used the
same task and architecture of Skipthought with an additional layer-norm regularisation and improved the
performance. Hill et al. (2016) used an additional autoencoder task along with the task used by Kiros et al.
(2015). In the same work, Hill et al. (2016) further proposed a Sequential Denoising Autoencoder model
for sentence representation learning that has the objective of reconstructing the original sentence from a
corrupted (noise-added) input representation.

Logeswaran & Lee (2018) simplified the tasks of Kiros et al. (2015) and used the task of identifying a context
sentence from other contrastive sentences using the sentence representation, rather than regenerating the
sentence itself. Pagliardini et al. (2018) used a CBOW-like objective (Mikolov et al., 2013) to predict a
word within the sentence for composing the sentence representation. In another model called DeCLUTR,

3



Under review as submission to TMLR

based on the concept of contrastive loss, Giorgi et al. (2021) extended the task of Logeswaran & Lee (2018)
by allowing overlapping and subsuming context segments along with adjacent segments as positive samples.
Carlsson et al. (2021) also proposed a self-supervised training objective called contrastive tension to learn
sentence representation from pre-trained language models by removing the bias posed by the pre-training
objective and achieved a new state-of-the-art in semantic text similarity tasks. Hu et al. (2022) used another
self-supervised task of token prediction by using its left context and right context.

Inspired by various approaches in the literature, in this work, we propose a set of novel self-supervised tasks
for learning representations of phrases and sentences, which we will describe in more detail in section 3.1.
Some of our proposed tasks have some similarities with the tasks proposed or used by Pham et al. (2015)
and Kiros et al. (2015). However, our tasks are novel and have many notable differences from previous tasks,
and we will discuss more about this in section 3.1.

3 Proposed Model
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Figure 1: Model Architecture

The proposed model (shown in Figure 1) consists of two recursive neural networks. One network composes
the syntactic embeddings of the tokens in the tree, the other composes the semantic embeddings. Both
networks implement a pairwise composition operator. For both networks, the order in which embeddings
are combined is defined by the structure of the constituency parse tree of the input sentence. To use the
parse tree to sequence the pair-wise compositions, we convert the parse tree into a binary tree at the start of
the composition process. Importantly, each composition performed by the semantic composition network is
preceded by the corresponding syntactic composition. This is important because the result of the syntactic
composition is fed into the semantic network. Consequently, while the syntactic compositional operator (⊕) is
a regular operator with learnable parameters, some of the parameters of the semantic compositional operator
(⊗) are generated from the syntactic embeddings created from the syntactic compositions implemented by
the recursive syntactic network. Therefore, the syntactic recursive network acts as the hypernetwork that
generates parameters of the semantic recursive network.

In a regular recursive network, there will be a unique composition operator to generate the representation of
any node in the constituency parse tree. However, one can argue that the composition operator to generate
the semantic representation of a noun phrase can be different from the compositional operator to generate
the semantic representation of a sentence or a verb. The hypernetwork architecture enables the model to
learn different semantic compositional operators for different syntactic categories.
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We formally define the syntactic compositional operator ⊕ as a binary operator on a dx-dimensional syntactic
embedding space and the semantic compositional operator ⊗ as a binary operator on a dm-dimensional
semantic embedding space.

⊕ : Rdx × Rdx −→ Rdx

⊗ : Rdm × Rdm −→ Rdm

Given these operators, the syntactic and semantic representations of a parent node p in a constituency parse
tree are generated by the composition of its left child l and its right child r,

Xp = ⊕(Xl, Xr)
Ep = ⊗(El, Er; Xp)

where Xp, Xl, and Xr are the dx dimensional syntactic embeddings and Ep, El, and Er are the dm dimen-
sional semantic embeddings of p, l, and r.

The model recursively applies the compositional operators on a constituency parse tree of input text, and for
that, the embeddings of all leaf nodes are required. These leaf node embeddings can be learned, or we can
provide them from off-the-shelf language models. We introduced an embedding layer to learn the embeddings
of the syntactic categories of leaf nodes. In the semantic recursive network, we use the embeddings of word
tokens generated by off-the-shelf language models such as GloVe or RoBERTa. This allows the semantic
recursive network to use the linguistic information from existing language models. Then, to generate the
representation of any node p, we concatenate its syntactic embedding (Xp) and semantic embedding (Ep),
which results in a dx + dm dimensional vector (note that this concatenation of the syntactic and semantics
embeddings is additional to the hypernetwork process whereby the syntactic embedding is used as input to
the semantic compositional operators, and so the syntactic embedding is used at two levels in our framework:
within the hypernetwork process and in this concatentation operation).

3.1 Proposed Tasks

We train our model on a set of 6 self-supervised tasks that take the embedding (syntactic or semantic) of
any node of the parse tree and output the target label, which is generated from the input itself. Tasks that
take syntactic embedding as input and output syntax-related targets (for example, the syntactic category of
the node) are called syntactic tasks and tasks which take semantic embedding as input and output semantic
targets (for example, generating the string that corresponds to the node) are called semantic tasks. All the
proposed 6 tasks are listed below.

1. self category prediction: Predict the syntactic category (e.g., NP, VP, etc.) of a node from its
syntactic embedding. This is to encourage the model to encode the category information in its
syntactic embedding.

2. neighbour category prediction: Predict the syntactic category of the sibling of a node by using
its syntactic embedding. This is to encourage the model to encode the category information of its
sibling in its syntactic embedding.

3. syntactic position prediction: Predict whether the node is a left child or right child from its
syntactic embedding. This is because the neighbour category prediction task does not use the infor-
mation about the position of the node, and such position information can be useful. This task will
force the model to encode the positional information in its syntactic embedding.

4. self text generation: Generate the text that corresponds to a node from its semantic embedding.
This is similar to an auto-encoder (tree auto-encoding), which forces the semantic embedding of
each node to encode the information in the corresponding text. Note that this task is different
from the Recursive Auto Encoder used by Socher et al. (2011b), in which the representation of
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the parent is predicted from the representations of the children. In our case, instead of generating
representations, we directly generate or decode the string of the node itself. In this text generation
task, phrases in the higher levels of the parsed tree will have to predict longer sequences. This can
be seen as analogous to the decision to consider a longer context window for higher-level phrases in
the CPHRASE model by Pham et al. (2015). To justify this decision, they argue that: "for shorter
phrases, narrower contexts are likely to be most informative (e.g., a modifying adjective for a noun),
whereas for longer phrases and sentences it might be better to focus on broader “topical” information
spread across larger windows". This argument justifies our task, which predicts longer sequences
from phrases and sentences from higher levels of the parse tree.

5. neighbour text generation: Generate the text corresponding to the sibling node by using the
semantic embeddings of a node. This task is to force the model to encode the information about
the left or right context of each node in its semantic embedding.

6. semantic position prediction: Predict whether the node is a left child or a right child from its
semantic embedding. This is to encode the positional information in the semantic embedding.

Here, our objective is to learn a general (task-agnostic) representation of sentences, and therefore, we excluded
supervised downstream tasks for the training. However, if someone wants to use this framework for a specific
downstream task, it would be beneficial to fine-tune the model for that particular downstream task.

The task proposed in the Skipthought model (Kiros et al., 2015) and used by many other succeeding models
predicts the next and previous sentences. This resembles our task of predicting the neighbouring context.
However, in our case, instead of predicting the entire sentences, we predict neighbours of each word, phrase,
and sentence in the constituency-parse tree using a recursive neural network and thereby define our context
based on the syntactic information from the parse tree. Our tasks are more syntactic and therefore guide the
model to learn more syntactic information. The task proposed by the CPHRASE model (Pham et al., 2015)
is also similar to our proposed model tasks because both tasks are to predict (or decode) the context from
all levels of the parse tree. However, rather than selecting a fixed context window for each node in different
levels of the parse tree, our model uses the neighbouring phrase in the parse tree as the context. This enables
the model to make sure that the context has a linguistic boundary and that it is syntactically related to
the target phrase. Also, instead of predicting words in a context, we generate the context phrase using a
decoder as in the Skipthought model (Kiros et al., 2015). Along with the context phrase of each phrase, we
generate the phrase itself, and in this way, we integrate the information within a phrase and information
from the context of the phrase when training the compositional operators to generate the representation of
the phrase.

We train our model using multiple tasks simultaneously, and therefore it is a multi-task learning problem.
For this multi-task learning, we generate and minimise a single aggregate loss from syntactic and semantic
tasks. To generate the aggregate loss, we take a weighted sum of each loss from tasks by using learnable
weight parameters. To avoid trivial solutions, we followed Liebel & Körner (2018) and added a regularisation
term. The final aggregate loss (Lagg) function is shown in the equation 1.

Lagg =
∑

t

1
2c2

t + ϵ
Lt + ln(1 + c2

t ) (1)

where Lt is the loss and ct is the learnable weight parameter corresponding to a task t. ϵ is a small positive
real constant to make sure that the denominator will not be 0.

3.2 Compositional Operator

As an initial basis for our work, we selected a Tag-Guided Hyper-Tree-LSTM compositional operator pro-
posed by Shen et al. (2020), in which the syntactic compositional operator is a regular Tree-LSTM and
the semantic compositional operator is a modified Tree-LSTM in which the parameters are generated by
the syntactic embedding. The state of each node in the Tree-LSTM is a tuple (h, c) where h is the hidden
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state and c is the cell state of the node 2. The regular Tree-LSTM architecture of the syntactic composition
operator (⊕) takes the state of both the left child (Xl = (h̄l, c̄l)) and the right child (Xr = (h̄r, c̄r)) from the
syntactic recursive network as its input if the node is not a leaf node. If it is a leaf node, then it will take
the syntactic leaf embedding (x) as its input. These two cases can be combined and considered Xl, Xr, and
x as the input to the syntactic compositional operator, in which x is set to 0 if the node is not a leaf node
and both Xl and Xr are set to 0 if the node is a leaf node. The syntactic compositional operator outputs
the state of the parent (Xp = (h̄p, c̄p)), and the operation is mathematically described below.

⊕ : ((h̄l, c̄l), (h̄r, c̄r), x) −→ (h̄p, c̄p)
h̄p = σ(ōp) ⊙ tanh(c̄p),
c̄p = σ(̄ip) ⊙ tanh(ūp) + σ(f̄l) ⊙ c̄l + σ(f̄r) ⊙ c̄r,

īp = V̄ipx + W̄ l
iph̄l + W̄ r

iph̄r + b̄ip,

f̄l = V̄flx + W̄ l
flh̄l + W̄ r

flh̄r + b̄fl,

f̄r = V̄frx + W̄ l
frh̄l + W̄ r

frh̄r + b̄fr,

ōp = V̄opx + W̄ l
oph̄l + W̄ r

oph̄r + b̄op,

ūp = V̄upx + W̄ l
uph̄l + W̄ r

uph̄r + b̄up,

In the semantic compositional operator (⊗), along with the state of the left child (El = (hl, cl)), the right
child (Er = (hr, cr)), and the leaf embedding (e), it takes the state of the parent from the syntactic recursive
network (Xp = (h̄p, c̄p)) and outputs the semantic representation of the parent (Ep = (hp, cp)). The semantic
compositional operator is mathematically described as:

⊗ : ((hl, cl), (hr, cr), e; (h̄p : c̄p)) −→ (hp, cp)
hp = σ(op) ⊙ tanh(cp),
cp = σ(ip) ⊙ tanh(up) + σ(fl) ⊙ cl + σ(fr) ⊙ cr,

ip = zv
ip ⊙ Vipe + zw

ip ⊙ (W l
iphl + W r

iphr) + zb
ip,

fl = zv
fl ⊙ Vfle + zw

fl ⊙ (W l
flhl + W r

flhr) + zb
fl,

fr = zv
fr ⊙ Vfre + zw

fr ⊙ (W l
frhl + W r

frhr) + zb
fr,

op = zv
op ⊙ Vope + zw

op ⊙ (W l
ophl + W r

ophr) + zb
op,

up = zv
up ⊙ Vupe + zw

up ⊙ (W l
uphl + W r

uphr) + zb
up,

zj
i = U j

i h̄p + aj
i

Note that, in the semantic compositional operator, we are using a similar set of parameters as in the syntactic
compositional operator and then scaling each output with z, and this z is generated from the syntactic
embedding of the parent. Through this scaling, we are allowing the model to modify the parameters of the
semantic compositional operator depending on the syntactic embedding of the parent.

4 Training

We experimented with two different off-the-shelf language models–GloVe Pennington et al. (2014) and
RoBERTa Liu et al. (2019)–as a means of initialising the semantic leaf embedding. In both cases, we
used a learnable embedding layer for initialising the syntactic leaf embedding. We fixed the dimension of
the syntactic embedding as 643, which resulted in 20K parametered syntactic compositional operators for
both the GloVe-based and the RoBERTa-based models. The dimension of the semantic embedding is fixed

2We can concatenate both h and c to treat it as a single input vector.
3Shen et al. (2020) used 50 as the dimension of syntactic embedding in their hypernetwork architecture, so we ensured that

the dimension we use is greater than 50.
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as 10244, which resulted in semantic compositional operators with 3.7M parameters on the GloVe-based
model and 4.9M parameters on the RoBERTa-based model. For the classification tasks (4 out of 6), we
selected a simple multi-layer perceptron model with one 100-dimensional hidden layer and ReLU hidden
layer activation. For the two text generation tasks, we used a simple LSTM-based auto-regressive decoder
by setting its hidden dimension and token embedding dimension to the same as the model dimension. This
model iteratively generates tokens by using the semantic embedding of the node and the embedding of the
previous token as input to the LSTM cell.

For training the model, we used 100,000 sentences with 2,280,900 tokens from the Wikipedia dataset5. We
parsed each sentence using the benepar parser (Kitaev & Klein, 2018) to generate the constituency parse tree
and syntactic categories. We trained the model for 5 epochs with Adam optimiser (Kingma & Ba, 2014) with
learning rate scheduling (initial learning rate 0.001) and a batch size of 8. The model training, excluding
parsing and preprocessing, finished within 20 hours for the GloVe-based model and within 26 hours for the
RoBERTa-based model on a single A100 GPU.

5 Analysis of Sentence Representation

We first analysed whether the sentence representation generated by our model encodes more linguistic
information, as compared with a number of standard sentence encoder models. Probing is one of the standard
approaches for investigating whether a representation encodes linguistic information in it. Conneau et al.
(2018) proposed a set of 10 standard probing tasks to test the presence of various linguistic information, and
we selected these tasks for our analysis.

The first two tasks in the standard probing tasks are the Sentence Length (SentLen), which is to predict
the number of words in the sentence, and the Word Content (WC ), which is to predict the presence of 1000
preselected words in the sentence. These two tasks are to measure the presence of surface-level information
about the sentence. The next set of tasks is the Bigram Shift (Bshift), Tree Depth (TreeDepth), and Top
Constituent (TC ), which are to measure the presence of syntactic information in the sentence representation.
The Bshift task is to detect the inverted sentences in which two randomly selected adjacent words are
swapped. The TreeDepth is the task to predict the depth of the parse tree of the sentence, and the TC is
the task to predict the categories of top constituents (i.e., sequence of categories of constituents immediately
below the root node of the parse tree, e.g., “ADVP NP VP”). The final set of tasks–Past Present (PP),
Subject Number (Subj), Object Number (Obj), Semantic Odd Man Out (SOMO), and Coordination Inversion
(CI )–is to measure the presence of semantic information in the sentence representation. The PP is to predict
the tense (past or present) of the main clause of the sentence. Subj and Obj are to predict the number (NN
or NNS) of the subject and the object of the main clause. The SOMO is to detect modified sentences in
which a random noun or verb in the sentence is replaced with another noun or verb. The final task, CI, is
to detect sentences in which the order of clauses is inverted.

We selected Skip-Thought Kiros et al. (2015), Infersent Conneau et al. (2017), and SBERT-WK Wang & Kuo
(2020), as three well-known baseline sentence representation models from the literature that have shown best
performance. Note that within these baseline models, Skip-Thought and Infersent are RNN-based (GRU
and BiLSTM) models, and SBERT-WK is a Transformer-based model. In terms of tasks, Skip-Thought is
based on a self-supervised task (next and previous sentence prediction), Infersent is based on a supervised
task (SNLI), and SBERT-WK is not based on any extra learning task (it generates sentence representation
from BERT representation by doing subspace analysis).

We first parsed all sample sentences from all the datasets by using benepar parser and then generated the
sentence representation by using the trained model (representations of the root node, i.e., the concatenation
of semantic and syntactic embeddings of the root node). Note that both the Bshift and the SOMO datasets
contain non-fluent samples, which can affect the parsing of the sentence. Our sentence representation gener-
ation relies on a valid parse tree, and therefore, on both of these datasets, we can not expect a good quality
sentence representation by using our model. We also generated baseline sentence representations by taking

4We ensured that the semantic embedding has more dimensions than the initialised leaf embeddings. Specifically, in our
experiments, we used 300-dimensional and 768-dimensional leaf embeddings.

5enwiki-20240620-pages-articles-multistream.xml.bz2
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the average of all semantic leaf embeddings. Then, for each task, we trained a probing model, a simple
MLP model with one hidden layer with 100 nodes and ReLU hidden activation function, with corresponding
training samples and reported the accuracy on the corresponding test samples.

Table 1: Accuracy on 10 standard probing tasks
SentLen WC TreeDepth TC Bshift PP Subj Obj SOMO CI

Skip-thought 0.8603 0.7964 0.4122 0.8277 0.7019 0.9005 0.8606 0.8355 0.5474 0.7189
Infersent 0.8425 0.8974 0.4513 0.7814 0.6274 0.8802 0.8613 0.8231 0.6023 0.7034
SBERT-WK 0.9240 0.7750 0.4540 0.7920 0.8787 0.8888 0.8645 0.8453 0.6601 0.7187
Avg GloVe 0.5936 0.8669 0.3477 0.6553 0.5062 0.8427 0.7822 0.7467 0.5422 0.5468
Ours+GloVe 0.9553 0.4436 0.4784 0.8756 0.6790 0.8809 0.9036 0.8794 0.5211 0.6895
Avg RoBERTa 0.8213 0.6260 0.4290 0.7496 0.9002 0.8759 0.8645 0.8417 0.6726 0.7322
Ours+RoBERTa 0.9480 0.4090 0.4879 0.8712 0.8434 0.8837 0.9164 0.8867 0.6189 0.7387

Our results shown in Table 1 are really promising. Adding our model to GloVe or RoBERTa results in a
significant performance improvement over the corresponding baseline GloVe or RoBERTa representations
on 7 of the 10 tasks, the three exceptions being Bshift, SOMO, and WC. Interestingly, these 3 tasks are
distinct in that Bshift and SOMO have shuffled sentences (shuffled input sentences may affect the parsing,
one of the core parts of our model) and the WC task, which has 1000 target labels (such a large number
of target labels can increase the chance of overfitting). Moreover, our model, in combination with GloVe or
RoBERTa outperforms other sentence representation models in the literature on 6 of the 10 tasks (SentLen,
TreeDepth, TC, Subj, Obj, and CI ). Most interestingly, we note that even in combination with a non-neural
language model, GloVe, our model achieves better performance than the RoBERTa averaged baseline and
other neural state-of-the-art sentence representation models such as SBERT-WK Wang & Kuo (2020) on 5 of
the 10 tasks (SentLen, TreeDepth, TC, Subj, Obj). This indicates that the sentence representation generated
by our model encodes more linguistic information than baseline representations and other state-of-the-art
representations. From our analysis, we also observed that the performance of our model is limited if the
input sentence is ill-formed or non-fluent and which highlights the dependency of our model on good quality
input sentences.

6 Analysis of Compositional Operator

In our model, we are applying the compositional operator recursively to generate the representations of
phrases and sentences. The cumulative effect of this recursive composition may lead to the case where some
of the properties of the sentence representation can vanish or explode if the constituency parse tree is deep.
To evaluate how robust our model is to such pitfalls, we measured some properties of representations of
nodes in the constituency parse tree. Then we analysed how these properties vary with varying heights of
the node. Note that the height of a node is the same as the number of times the compositional operator is
applied to generate the node’s representation, and therefore, if some properties are decreasing or increasing
rapidly with the increasing height, this indicates that the property is likely to vanish or explode for deeper
constituency trees.

One of the interesting properties of vector representations is their isotropy. Isotropy is the measure of how
uniformly the representation vectors are distributed in the embedding space, and it indicates how well the
model utilises the embedding space. If we apply composition recursively, the generated representations can
become more and more skewed and shrink to smaller and smaller representational subspaces. If the set of
all representations lies in a smaller subspace of embedding space or if it is distributed skewedly towards
some direction, then it limits its capacity to encode various information. Different approaches to measure
the isotropy of representations are used in the literature Mu et al. (2018); Cai et al. (2021); Rudman et al.
(2022). Of these approaches, we use the measure called IsoScore proposed by Rudman et al. (2022) because
it has become relatively standard in the literature and has the properties of being mean agnostic and rotation
invariant. Another interesting property of vector representations is the norm of the generated representation.
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Figure 2: IsoScores and Norms across varying height of nodes

If we apply composition recursively, one potential risk is that the composed representations shrink to the
origin or explode.

We analysed both the isotropy and the norm of representations of nodes (semantic embedding concatenated
with syntactic embedding) with varying height. For the analysis, we selected 10,000 sample sentences from
the Wikipedia dataset. To avoid any possible bias of our model towards the dataset used for training, we
ensured that none of the samples used for this analysis were from the data used to train our models. The
norm (minimum, maximum and mean values) and the isotropy of nodes with varying height are presented
in Figure 2. Although there is a slight trend of increasing norm length and decreasing isotropy during the
initial compositions, both properties stabilise for higher values of height. This rules out the possible issue of
vanishing or exploding values of norm or isotropy on longer sentences (or deeper parse trees).

6.1 Sensitivity of Semantic Composition on Syntactic Embedding

An interesting question is to what extent the semantic composition operation is affected by the syntactic
information fed into it via the hypernetwork architecture. To analyse this, we measure the sensitivity of the
semantic compositional operator to changes in the syntactic embeddings. If the operator is not sensitive to
changes in its syntactic embedding, this would indicate that the hypernetwork architecture does not affect
the semantic composition and vice versa.

El Er

⊗ Xp + X̄p ∼ N (0, I)

Yp ∼ Ep?

Figure 3: Sensitivity of Semantic Compositional Operator on Syntactic Embedding

To measure the sensitivity of the learned semantic compositional operator to the syntactic embedding it
receives as input, we systematically altered the syntactic embedding (Xp) and measured how much change is
present in the output of the semantic operator in comparison with its normal output (Ep) when the syntactic
embedding is not modified. Our framework for this analysis is shown in Figure 3. The change in the output
can be measured either in terms of isotropy (whether these output variants are distributed uniformly across
all dimensions?) or in terms of its spread (how close are these output variants to the normal output Ep?).

10



Under review as submission to TMLR

S
N

P
U

nk V
P

P
P

U
C

P
SB

A
R

C
O

N
JP

A
D

V
P

A
D

JP
N

M
L

SI
N

V
Q

P
LS

T
P

R
N

0

1

2

3

4
·10−2

GloVe
RoBERTa

Category

Is
oS

co
re

GloVe
RoBERTa

S
N

P
U

nk V
P

P
P

U
C

P
SB

A
R

C
O

N
JP

A
D

V
P

A
D

JP
N

M
L

SI
N

V
Q

P
LS

T
P

R
N

0

2

4

GloVe
RoBERTa

Category

Sp
re

ad

GloVe
RoBERTa

Figure 4: Category-wise IsoScore and Spread of Semantic Compositional Operator to Changes in Syntactic
Embedding

To measure the isotropy, we used the method of IsoScore proposed by Rudman et al. (2022), and to measure
the spread, we calculated the average Euclidean distance from the normal output.

For this analysis, we selected all non-leaf nodes from 100 sample sentences from the Wikipedia dataset
(ensuring that the selected samples were not used for the training). Then, for each node, we generated
10,000 altered variants of its syntactic embedding (Xp) by adding a random embedding (X̄p) sampled from a
multivariate normal distribution with zero mean and identity standard deviation. Then we generated 10,000
semantic embeddings of the node (Yp) from the semantic embeddings of its left child (El) and right child (Er)
by using the semantic compositional operator (⊗) with each of the 10,000 altered variants of the syntactic
embedding (Xp + X̄p). Then the IsoScore and spread are calculated from these 10,000 altered variants of
the semantic embeddings of the node (Yp). We averaged the IsoScore and spread of nodes according to the
syntactic category of the node.

To get an idea about the goodness of these IsoScores and spreads, and in turn the sensitivity of semantic
compositional operator to syntactic embedding, we calculated the baseline IsoScore and the baseline spread
values from semantic embeddings (non-perturbed) of all the nodes used for this analysis (total 2162 non-leaf
nodes from the selected 100 Wikipedia sample sentences). The spread of semantic embeddings is calculated
by taking the average Euclidean distance from its centroid. If the average IsoScore or spread of a category
is greater than (or at least comparable to) these baseline scores, then that indicates that, for that category,
the semantic compositional operator is sensitive to the changes in the syntactic embedding.

The average IsoScores and spreads of the semantic nodes broken down by their corresponding syntactic
categories along with the baseline values are plotted in Figure 4. We found that, on both GloVe-based and
RoBERTa-based compositional operators, the average spread values of all syntactic categories are notably
larger than the baseline spread, and the average IsoScores of almost all categories are larger than the
baseline IsoScore. The only exceptions to this are the average IsoScores of CONJP (Conjunction Phrase),
QP (Quantifier Phrase; used within NP), and LST (List marker) categories on RoBERTa-based compositional
operator, and even for these three categories, the differences in IsoScores are not very large (Compared to
0.0236, the CONJP has 0.0179, the QP has 0.0192, and the LST has 0.0201 IsoScores). This indicates that,
regardless of the syntactic category, the semantic compositional operator is sensitive to changes in syntactic
embeddings.

A possible interpretation of these results is that, for less frequent categories (less exposed to the model), the
semantic compositional operator can have a lower sensitivity to the syntactic embedding due to insufficient
training. To investigate this possibility, we calculated the frequencies of syntactic categories in the training
data and calculated the correlations with the IsoScores and spreads. We found that the Pearson correlation
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coefficient of the IsoScore with the frequency is 0.05931 on the GloVe-based compositional operator and
0.26544 on the RoBERTa-based compositional operator. These correlation scores suggest that, in general, less
frequent categories are less sensitive to the syntactic embedding in terms of IsoScore. While this impact is very
small on the GloVe-based operator, the RoBERTa-based operator has shown relatively more impact. The
Pearson correlation coefficient of the spread with the frequency of the GloVe-based compositional operator
is -0.31309, and the RoBERTa-based compositional operator is -0.32843. This negative correlation implies
the less frequent categories have a relatively high spread, even though they have a relatively low IsoScore.
In summary, even if the altered variants of semantic embedding of less frequent categories lie in a smaller
subspace, they disperse more across this space. This implies that even for an extremely infrequent category,
the semantic compositional operator does not become insensitive to the syntactic embedding.

7 Conclusion and Future Work

We proposed a self-supervised recursive hypernetwork architecture to generate sentence representations that
encode more linguistic information within the generated embeddings. We validated that the generated
sentence representations encode more linguistic information than the standard average-based baselines and
state-of-the-art sentence representation models. Our analysis of the composition operator verified the sta-
bility of our framework with increasing length of sentence (more precisely, the depth of the parse tree).
We also observed that the hypernetwork architecture has an impact on our framework, and our semantic
compositional operator has adaptability depending on the syntactic category of the node.

Our approach for generating sentence representations has a broader impact on the performance of sentence-
level tasks, because generating a representation with more linguistic information will likely be useful for
downstream tasks. Also, in that case, fine-tuning our framework for specific downstream tasks will likely
result in further performance improvement. More importantly, our framework can be used with any language
model, and such scalability opens up the potential benefit of our framework with more recent language models
for generating better sentence representations that can lead to better performance.

Compared to pretrained language models, our framework is generally lightweight with a few million param-
eters, and can be trained with a relatively small dataset (we trained the model with 100,000 sentences).
Yet, we observed that our model, even with a relatively simple GloVe representation, encodes more linguis-
tic information than RoBERTa’s average baseline. This indicates that our model has implications from an
efficiency perspective.

One of the limitations of the recursive neural network is its dependence on the constituency parse tree of
each input. Sachan et al. (2021) observe that there is a significant performance improvement by using gold
standard parse trees instead of trees generated by the off-the-shelf stanza parser. In our model, we used
another off-the-shelf parser, called benepar, to generate parse trees. We haven’t explored other parsers for
this task, and we are expecting a better performance with a better parser. We propose such exploration for
future work.

Another limitation of our work is that we experimented with our model only on the English language.
Indeed, our model can be applied to any language; however, the requirement of a good quality parser can be
a major limitation. Maillard et al. (2017) and Hu et al. (2022) learned the parse tree along with the sentence
representation by considering all possible branching of the parse tree and selecting the best branching to
apply composition. Expanding our experiment to other languages by adopting such techniques to overcome
the requirement of the parser is also proposed for future work.
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