Under review as a conference paper at ICLR 2025

SEMI-AUTOREGRESSIVE DECODING
FOR EFFICIENT LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Inference in large language models (LLMs) is often slow due to their autoregres-
sive nature. In this work, we formulate a semi-autoregressive decoding paradigm
for LLMs that delegates part of the expensive computation from the original large
model to a smaller, more efficient autoregressive model. The core of our design
lies in the separate modeling of token dependencies, where the large model han-
dles long-term dependencies on distant tokens, while the smaller model addresses
short-term dependencies on recent tokens. When employed as a draft model in
speculative decoding, our method allows for substantial reuse of computation in
the LLM without missing any token dependencies, thereby striking a good balance
between draft quality and drafting speed. Experiments on text summarization,
medical QA, code generation, and mathematical reasoning tasks demonstrates the
efficacy of our method.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse natural
language processing tasks (OpenAl, 2024; Dubey et al., 2024). However, their deployment in real-
world applications is often hindered by the substantial inference latency. The autoregressive nature
of LLMs exacerbates this issue, as generating n tokens requires n sequential passes through the
model, each of which involves expensive computation of stacked attention layers (Vaswani, 2017).

To address the latency challenges, several approaches (Ding et al., 2024; Jiang et al., 2024; Leviathan
et al., 2023) have been introduced to improve LLM inference efficiency by delegating parts of the
computation to smaller models. Among these innovations, speculative decoding (Leviathan et al.,
2023) has emerged as a particularly promising technique. This method leverages the observation that
certain tokens within the same inference run are easier to predict and can be handled by a smaller
model. Speculative decoding employs a smaller draft model to generate draft tokens, which are then
verified and refined by the larger target model. Compared to other approaches, speculative decoding
offers a distinct advantage by guaranteeing generation quality, as it always falls back to the target
model if necessary. Since its introduction, speculative decoding has proven effective across a wide
range of generation tasks and has become a widely adopted tool for efficient LLM inference.

The acceleration achieved by speculative decoding, however, hinges on two factors: (i) the accep-
tance rate of the draft tokens, as well as (ii) the latency of the draft model itself. As such, a key in-
gredient in speculative decoding has been the design of the draft model. Existing work has explored
several designs of the draft model, including the use of a separate transformer model (Leviathan
et al., 2023; Chen et al., 2023; Kim et al., 2024), training additional modules to predict multiple
tokens simultaneously (Cai et al., 2024; Luk et al., 2024; Bhendawade et al., 2024), or leveraging
selected layers of the target model itself as the draft model (Elhoushi et al., 2024; Bae et al., 2023;
Zhang et al., 2024b). Despite reported successes, these designs often involve a trade-off between
acceptance rate and latency: some designs achieve a high acceptance rate but with compromises on
latency (Elhoushi et al., 2024; Bae et al., 2023; Zhang et al., 2024b; Leviathan et al., 2023), whereas
others may offer low latency but at the expense of draft quality (Cai et al., 2024; Luk et al., 2024;
Bhendawade et al., 2024; Fu et al., 2024; Gloeckle et al., 2024). The reason for this trade-off stems
from the fact that proposing good draft tokens requires the draft model to be complex enough to
competently process token dependencies, which in turn leads to considerable drafting latency.

Under review as a conference paper at ICLR 2025

once upon A once upon a time that there A
once upon a time that once upon a time there is a big

Figure 1: Overview of the pipeline of semi-autoregressive decoding. Red: tokens generated and
verified by the LLM. : draft tokens generated by the semi-autoregressive draft model. /\: the
representation of the current sentence computed by the LLM. The draft model generates the draft
token in an autoregressive way conditioned on the representation /A computed by the LLM.

In this work, we propose a new draft model design that achieves both a high acceptance rate as well
as low inference latency. We begin by introducing a unified probabilistic modeling framework to
analyze the trade-off between the two metrics both conceptually and empirically — a key piece that
is missing in existing literature. Through this analysis, we identify that the optimal trade-off hinges
on the efficient and effective modeling of the dependencies over recent and distant tokens. Moti-
vated by this insight, we develop a new draft design, semi-autoregressive drafting, which separately
addresses the dependencies over distant and recent tokens of different-sized models. This approach
effectively balances draft quality and latency, resulting in considerable acceleration. In summary,
our main contributions are as follows.

* We propose a unified probabilistic framework for draft model design in speculative decoding,
where we systematically compare their trade-off between acceptance rate and inference latency;

* Building upon this framework, we develop a new draft model that works in a semi-autoregressive
fashion, serving as a high-quality yet computationally cheap draft model for speculative decoding.
A systematic study in the trade-offs in different implementations of this model is also conducted;

* Focusing on downstream LLM applications (realized via fine-tuning after model pretraining), we
validate our method across four text generation tasks with three models in two training modes,
demonstrating its advantages in terms of acceleration, memory cost, and training convenience.

2 PRELIMINARIES

2.1 LARGE LANGUAGE MODEL

A large language model assigns a probability p(w) to a sequence of words w = (wq, ..., wr). This
joint probability is usually factorized using the chain rule:

T
p(w) = [[p(wilwy, ..., wi 1) (1)
i=1

which reduces language modeling to the problem of estimating the conditional probability of the
next word given the history of all preceding words, hence autoregressive. This autoregressive prop-
erty imposes a sequential constraint on the decoding process, requiring n sequential passes through
the model to generate n tokens, which limits the speed of generation.

2.2 SPECULATIVE DECODING

To accelerate inference in autoregressive language models, speculative decoding (Leviathan et al.,
2023) leverages a more efficient approximation model, i.e. the draft model M, to generate K draft
tokens {dy, ..., dx } from an approximate distribution ¢(w) = p(w). The larger target model M,, is
then used to validate or override the draft tokens.

Specifically, a draft token w; ~ q(w;|w<;) is accepted if ¢ provides a sufficiently close approx-
imation to the target distribution p. In this work, we enforce a greedy acceptance criterion: the
draft token is accepted if w; = arg max, p(v|w;). Otherwise, the draft token is rejected, and the
larger model overrides the draft by generating a new token from w; ~ p(w;|w<;). If a draft token
is rejected, all subsequent draft tokens are also discarded, and the generation process reverts to the
newest token generated by M),

Under review as a conference paper at ICLR 2025

N

PN S Q,,\
@ (di) (dy) @ @ {dy }»da)

(a) Block autoregressive model (b) Pruned autoregressive model (c) Semi-autoregressive model

Figure 2: The graphical models of different draft model designs. Non-dashed nodes: tokens already
generated and verified by the LLM. Dashed nodes: draft tokens to be generated by the draft model.

This process speeds up inference by exploiting parallelism in the draft token verification stage while
retaining accuracy by falling back to the target model. Hence, the acceleration depends on the
acceptance rate f3, i.e. the probability of accepting d;, as well as the latency of the draft model.

3 A UNIFIED FRAMEWORK FOR DRAFT MODEL

In this section, we present a unified view incorporating various draft model designs in speculative
decoding as special cases, focusing on the different considerations for token dependency modeling.
In the following, we use ¢ to denote the output distribution of draft model My, h,(-) and hy(-) to
represent the hidden states of the last layer of the target model M, and the draft model M, computed
for the input tokens, respectively.

Drafting as sampling from ¢. Consider a draft model M, in speculative decoding. Drafting the next
K tokens d = {dy, ...d } € N can be seen as sampling from its output distribution g conditioned
on previously accepted tokens w<;:

K
d~g(dr, - drlwe) =] a;(d;ld<;, wei) 2
j=1

To improve decoding efficiency, we usually consider three desirable properties when designing M:
(1) high acceptance rate: distribution g should well approximate the target distribution p of the
LLM; and (ii) fast drafting: sampling from g should be faster than sampling from p; (iii) g is a
low-dimensional distribution, meaning that K is small. The last property is important in our design.

One way to meet the aforementioned requirements is to focus on a powerful yet computationally
cheap mechanism for modeling dependencies among the tokens d«;, w<;. Specifically, there are
two distinct types of dependencies: (i) the dependencies on distant tokens w<;, i.e., the tokens
already accepted and verified by p; and (ii) the dependencies on recent tokens d;, i.e., the draft
tokens sampled from ¢. In fact, many previous works can be categorized by how they handle these
dependencies. For example:

* Block autoregressive model (Cai et al., 2024; Luk et al., 2024; Gloeckle et al., 2024) focuses on
maximizing fast drafting by ignoring the dependencies of recent tokens and parallelizing draft
token inference. In this case, the draft tokens d;, and d; are conditionally independent given w<;,
ie., dp L dj|w<; (Fig. 2a), leading to:

qj(djld<j, w<i) = q;(dj|hp(W<i)) 3)

where each ¢;(-) is a different LM head implemented as an independent multilayer perceptron
(MLP) and h,(-) represents the hidden states of the last layer of the target model.

* Pruned autoregressive model (Elhoushi et al., 2024; Zhang et al., 2024b) aims to achieve a balance
between fast drafting and high acceptance rate. Unlike the block autoregressive model, it proposes
to model all token dependencies with a pruned version of the target model M,,, denoted as M,
(Fig. 2b):

q;(djld<j, w<i) = qo(d;lhp (d<j, Wei)))
where go(-) is the LM head for the draft model and h,/(-) is the hidden representation of a ‘trun-
cated’ LLM, which can be either the first few attention layers of the target model M,, (Elhoushi
et al., 2024) or replacement of full attention with approximate attention (You et al., 2024). This
pruned model can capture token dependencies and can be directly accelerated on commodity hard-
ware depending on the type of pruning scheme employed.

Under review as a conference paper at ICLR 2025

Summary. The above two dependency modeling designs differ in terms of (a) acceptance rate and
(b) drafting speed. In particular, block autoregressive model ignores the dependencies among recent
tokens d . ;, which enables the reuse of hidden states h,, to achieve highly efficient parallel decoding.
However, this simplification harms the acceptance rate. In contrast, pruned autoregressive model
captures all token dependencies through a pruned LLM, aiming to balance fast sampling (through
pruning) and high draft quality (through dependency modeling). However, its accuracy is highly
dependent on the pruned model. Furthermore, it processes both recent and distant tokens together
without distinguishing them, leading to a sub-optimal design. To address these issues, we propose
a new design based on the unified view of the draft model. This approach improves the balance
between drafting speed and accuracy by separately modeling the two types of token dependencies.

4 METHODOLOGY

4.1 HIGH-LEVEL DESIGN

The core intuition of our proposal is to combine the advantages of the two previous models, i.e.,
maximizing hidden state re-use while effectively modeling token dependencies. Specifically, we
propose to model distant token and recent token dependencies separately, using the target model M,
for distant tokens, and a tiny language model! (TLM) M, for recent tokens.

* Distant token dependency. These tokens determine the context and the semantics for drafting sub-
sequent tokens. For these tokens, we process them with the original LLM M,,, where we reuse the
hidden state i, (w1, ...w;) computed by the LLM. This hidden state represents the LLM’s under-
standing of the text context. Similar to the block autoregressive model, this context representation
only needs to be computed once and is reused throughout the drafting process.

* Recent token dependency. These tokens correspond to the K -gram generated by the draft model.
To reduce the cost, we use a small model to compute the hidden states hy(d1, ..., d;_1). These
hidden states encode the local status of the draft. Since K is relatively small, a very simple model
for M, suffices, which we refer to as a TLM.

By combining these two design choices, we can model recent token dependencies, as opposed to
the block autoregressive model, while incurring small or negligible additional computation cost
compared to the pruned autoregressive model, through the use of a TLM. This approach unifies the
strengths of LLMs and TLMs for draft generation. While LLMs are powerful in understanding text
semantics, they are known to be expensive to run. We thereby use them sparingly, calling them only
when the context of the text is likely to have changed. In contrast, TLMs are much cheaper to run,
though they struggle to parse complex semantics. We thereby only use them to handle short phrases
and K-grams, conditioned on the semantic understanding provided by the LLM. In this way, we
achieve both high efficiency and good draft quality.

This design leads to what we call the semi-autoregressive draft model (see Fig. 2c), which is formally
defined as follow:

Definition 1. (Semi-autoregressive draft model). Let d = {di,...,dk} be the draft tokens and
w<; = {w1,...,w;} be the tokens generated and already verified by M,. A semi-autoregressive
draft model is a probabilistic model defined by the following probabilistic distribution:

K

g(dw<;) = [ao(djlhp(w<i), hy(d<;)) (5)
j=1

where hy,(-) and hg(-) are the hidden states of an LLM and that of a TLM, respectively.

Inference. As discussed, sampling from the above model is highly efficient: while the compu-
tation of h,(W<;) is expensive, it only needs to be computed once and can be reused for all draft
tokens. On the other hand, 4(d<;) must be recomputed for each j, but this is cheap due to the
light-weighted nature of M, which normally requires even significantly less computation than a
single decoding layer of a transformer.

"We use the term tiny language models here to highlight that these models are extremely cheap to run.

Under review as a conference paper at ICLR 2025

WH1 |ws| Pr J+1 |dsj wsl

//<\ m

Q-LoRA Q-LoRA
r=32 A r=4096
| Attention x L || TLM |
A A A A
Wi Wy ... w; dy d,

Figure 3: The architecture of the semi-autoregressive draft model, which separately models distant
tokens {w, ...w; } and recent tokens {d;, ...d i } with the hidden representations of the original LLM
hy, and a tiny language model (TLM) h,. Note that w;11 = d;. The two models can be learned
either jointly or separately using distinct Q-LoRA ranks.

4.2 IMPLEMENTATION

In this section, we discuss the detailed implementations of A, and the training procedure of the
proposed model. Additional details on tree attention and KV caching can be found in Appendix A.

Realization of 1, and ¢,. We consider the following two implementations of the tiny language
model M, for processing recent tokens d. Both implementations are motivated by the fact that the
number of recent tokens K is small, so we only need to model short-range dependencies. Therefore,
simple models are sufficient in this case, making our method significantly cheaper than conventional
speculative decoding, which uses more expensive draft models.

» Simplified transformer. The first design is a one-layer transformer with hard-coded attention
weights. Specifically, let e(w) be the word embedding of a token w. We implement the network
hy(-) as follows:

>1_ uMLP(e(dy))
21:1 R
where @ = {ay,...ax} € (0,1)X are learnable parameters and MLP is a multi-layer perceptron

with two hidden layers. While fixed attention weights may be inadequate for processing long
context, it exhibits as an effective method for handling short texts (Raganato et al., 2020).

he(d<;) = (6)

* Recurrent networks. The second design involves using an LSTM (Hochreiter, 1997) or even a
vanilla RNN (Hochreiter, 1997) to model the local dependencies of the draft tokens?:

he(d<;) = LSTM(e(dh), ..., e(d;)) ()

The LSTM consists of two hidden layers, and its output is the hidden state of the last draft token.
While LSTMs may struggle in long-context modeling due to their fixed-sized hidden state in
contrast to transformers, they are well-suited to capture short-term dependencies.

The LM head ¢ is implemented as a simple MLP model with two hidden layers, and its input is the
concatenation of h, and h,. More details about the network architecture are given in Appendix A.

Training procedure. We now address the question of how to train the TLM. Focusing on fine-
tuning scenarios, we finetune the original LLM M), and learn the semi-autoregressive model M, by
maximizing the following objective:

—k k

1

‘C(p7 Q) = (1 - [Zz;logp wz|w<z :| + AE [E ; 2:: 0g q wz+]|w<(z+7))} ()
(Wit W< (iry)) = qo(Witjlhp(wr, ..., wi), hg(Wig, ... wiv;))

The expectation is taken over the fine-tuned dataset. 7" is the number of tokens in a sample from

the dataset and A € (0,1) is a factor that balances the learning of p and ¢. Similar to existing
literature (Cai et al., 2024), we consider two training setups:

>When implemented as an RNN, the design is similar to the model proposed in Zhang et al. (2024a).

Under review as a conference paper at ICLR 2025

* Separate training. In this mode, we train p and ¢ in two stages, where we set A = 0 and A = 1 in
the respective stages. In each stage, we freeze the parameters of p when training the ¢, and vice
versa. This guarantees that the learning of ¢ will not affect p;

* Joint training. This corresponds to the case where we train p and ¢ in one stage using a single A.
This mode allows us to learn a p whose representation is also useful for predicting more future
tokens, which can potentially lead to better draft quality. However, the learning of ¢ may also
‘drag’ that of p, leading to a potential degradation of p’s quality.

We use Q-LoRA (Dettmers et al., 2024) to train p and q, where we assign different ranks to the
parameters in p and ¢: (a) For the parameters 6, in p, which include both the network A, (-) and the
original LM head, we use a LoRA rank 7, that is much smaller than the matrix size (e.g. r, = 32);
(b) For the parameters 6, in the TLM ¢, which include both the network h,(-) and the new LM head
o, we use a LoRA rank r, that is relatively larger (e.g. 7, = 4096). See Figure 3 for more details.

5 RELATED WORKS

Efficient inference schemes in LLMs (Bai et al., 2024; Xu et al., 2024; Zhou et al., 2024) have
received significant attention recently due to the ever-increasing size of such models. Approaches to
improving efficiency range from static methods, such as pruning (Men et al., 2024) and quantization
(Ashkboos et al., 2024), which reduce overall model size and hence computational requirements, to
dynamic methods, such as early-exiting (Schuster et al., 2022; Bae et al., 2023) and hybrid models
(Kag et al., 2022; Ding et al., 2022; 2024), which accelerate inference by adjusting the amount of
computation based on the (estimated) difficulty of a given token or prompt. Our work is complemen-
tary to these general efficiency efforts (e.g., our semi-autoregressive scheme can be easily applied
on top a quantized model). Note, however, that unlike our work and other speculative decoding
frameworks, such classic approaches cannot guarantee that LLM’s outputs remain identical.

Non-autoregressive decoding (NAR) accelerates inference by eliminating or relaxing the sequen-
tial dependencies between tokens (Gu et al., 2018). However, NAR often suffers from reduced
accuracy compared to its autoregressive counterparts. Current efforts to improve performance fo-
cus on reintroducing some degree of conditional dependence between tokens, for instance, through
generative flows (Ma et al., 2019) and conditional random fields (Sun et al., 2019). Additional re-
finements include iterative decoding strategies (Lee et al., 2018; Ghazvininejad et al., 2019), as well
as improvements to training data and loss functions (Ding et al., 2021; Du et al., 2021).

Speculative Decoding (Leviathan et al., 2023) is a widely used framework for accelerating LLM
inference. It employs a (smaller) draft model to propose multiple tokens at once, which are then
verified by a (larger) target model. Initially, a separate transformer-based language model was used
as the draft model (Leviathan et al., 2023; Chen et al., 2023; Kim et al., 2024). More recent work has
shifted toward using (part of) the target model itself for drafting (i.e., self-speculative decoding). For
example, Medusa Decoding (Cai et al., 2024; Gloeckle et al., 2024) combines non-autoregressive
(NAR) techniques with speculative decoding by training multiple LM heads conditioned on the
target model’s final layer to generate draft tokens in parallel. Techniques like LayerSkip (Elhoushi
etal., 2024) and FREE (Bae et al., 2023) integrate early-exit strategies by drafting with earlier layers
and verifying with later layers, while Zhang et al. (2024b) adaptively skips intermediate layers for
drafting. Recent works have explored the use of more light-weighted model as draft models, such
as a n-gram model (Fu et al., 2024) and a small RNN (Zhang et al., 2024a), as discussed below.

Light-weighted draft model design. Like our work, concurrent works have also explored taking
the draft model as a small autoregressive model conditioned on the hidden states of the original
LLM (Ankner et al., 2024; Zhang et al., 2024a; Li et al., 2024; Nair et al., 2024). Among these
works, Zhang et al. (2024a) is similar to one of the implementations in our design. Apart from
differences in practical implementation details, the major differences to these works are (a) unlike
these works which focus on specific implementations, our works focuses on high-level design, which
naturally connects different implementations. The disentanglement of specific implementations and
high-level design allows us to explore different architecture choices with various trade-offs in draft-
ing efficiency and draft quality; (b) Unlike existing works which primarily focus on learning the
draft model on pre-trained dataset e.g. ShareGPT (2023), our work focus on fine-tuning scenarios,
where the draft model is trained on specific domain data jointly or separately with the original LLM.

Under review as a conference paper at ICLR 2025

SQL-context SAMSUM GSMSK ChatDoctor
Domain code generation text summarization math reasoning medical QA
examples ~90k ~10k ~8k ~50k
draft tokens 4 3 3 4
LLM considered Phi-3 LLama2-13B Mistral-7B Mistral-7B

Table 1: Summary of the tasks considered. A smaller subset of ChatDoctor is used in experiments.

6 EXPERIMENTS

Baselines. We compare the proposed semi-autoregressive method (denoted as ‘semi’ henceforth)
with the following two representative methods in (self-)speculative decoding, both of which can be
seen as different implementations of the framework specified in Eq. 2.

* Block autoregressive decoding (block). Widely known as Medusa decoding (Cai et al., 2024),
this corresponds to the case where we implement the draft model as Eq. 3, which ignores the
dependence between the draft tokens.

* Skip-layer decoding (skip). This corresponds to the case where we implement the draft model as
a single transformer model with fewer layers (Elhoushi et al., 2024), as in Eq. 4. Here we use 8
layers, following the setups in Elhoushi et al. (2024).

* Recurrent drafter (redraft). This corresponds to the design in (Zhang et al., 2024a), which can be
seen as implementing A, in the proposed semi-autoregressive draft model (eq.5) as a RNN.

In addition to the above comparison, we also compare different implementations of the network h,
in the proposed semi-autoregressive draft model. Some of these implementations are closely related
to state-of-the-art methods such as Hydra (Ankner et al., 2024) and EAGLE (Li et al., 2024).

Evaluation metrics. We compare different (self-)speculative methods from the following angles:

* Acceleration. This metric is defined as the ratio between the wall time ¢ when decoding a sentence
without speculative decoding and the wall time ¢’ when decoding with speculative decoding:

t
Acceleration := 7
* Token acceptance rate. This metric measures how many tokens drafted by the draft model M, are
accepted by the original LLM M,,, which directly reflects the quality of the draft model M,.

* Extra memory cost. This metric is defined as the ratio between the number of additional parame-

ters 6’ introduced in a specific design of ¢ and the number of parameters 6 in the original LLM:
0/
MemoryCost := |W|| x 100%

* Generation quality of the target model. Finally, when we compare joint learning and separate
learning, we also investigate how different designs of the draft model M|, will affect the generation
quality of the original model. Theoretically, the draft model should have no impact on the original
model M, in speculative decoding. However, when M,, and M, are trained jointly, the training of
M, may have an impact on p, as discussed in §4.2. Here, we measure generation quality by the
Rouge-L score between models’ generation and the ground truth.

Tasks and models. A summary of the tasks and models considered is given in Table 1. Specifically,
we use the following datasets: SQL-context (b-mc2, 2023) for SQL code generation based on user
queries, SAMSUM (Gliwa et al., 2019) for text summarization, GSM8k that include 8k grade school
math questions and answers, and ChatDoctor (Yunxiang et al., 2023) which is a dialogue dataset for
conversations between a doctor and a patient. For ChatDoctor, we use a subset of 50k in experiments.

Computing resource. Results on SQL-context, SAMSUM, and GSM8K are computed using two
A10 GPUs in under a day. Results on ChatDoctor are computed with a single A100 GPU in a day.

Under review as a conference paper at ICLR 2025

skip block semi redraft skip block semi redraft

acceleration (1) 1.94x 3.76x 3.71x 3.68x acceleration (1) 1.32x 1.71x 2.02x 2.07x

token accrate (1) 75.1% 73.8% 74.4% 74.6% tokenaccrate (1) 45.1% 43.6% 51.2% 52.3%

+memory (1) 438% 12.4% 851% 9.52% +memory (1) 2.20% 4.45% 3.09% 3.55%
(a) SQL-context (b) SAMSUM

skip block semi redraft skip block semi redraft

acceleration (1) 1.51x 2.55x 2.63x 257X acceleration (1) 1.61x 1.78x 2.53x 2.51x

token accrate (1) 57.8% 63.6% 65.4% 64.6% tokenaccrate (1) 60.1% 48.3% 62.4% 61.0%

+memory ({) 1.33% 5.12% 2.21% 2.44% +memory () 1.04% 3.18% 1.69% 1.95%
(c) GSMSK (d) ChatDoctor

Table 2: The performance of different (self-)speculative decoding algorithms. Skip: the skip-layer
decoding method by (Elhoushi et al., 2024). Block: the block autoregressive decoding method by
(Cai et al., 2024). This method is also known as Medusa. Semi: the proposed semi-autoregressive
decoding method (implemented with a simplified transformer). Redraft: the method in (Zhang et al.,
2024a) which implements h, as a RNN. Our method offers highest acceleration on the majority of
the tasks while requiring a reasonable memory cost.

Training setups. We employ the same training procedure for all methods, as outlined in §4.2. For
joint training, we set A in the objective function (Eq. 8) to 0.25. This ensures that the learning of
p predominates the training process, so as to guarantee the generation quality of the original LLM.
Other details such as model architecture and optimizer settings can be found in Appendix B.

Inference setups. During inference, we enable KV caching but disable tree attention (Cai et al.,
2024). We disable tree attention (Cai et al., 2024) to focus our evaluation on the quality of the draft
model itself, though our method is fully compatible with tree attention.

Number of draft tokens. We look ahead 3 - 4 tokens for all speculative decoding methods consid-
ered, depending on the task. Looking further ahead doesn’t result in any acceleration improvement.

When presenting the results, we report the results from the simplified transformer design for h, (see
Eq. 6) in the main table. The LSTM design described in Eq. 7 achieves a similar performance and a
comparison between the two implementations is provided in Figure 4.

6.1 MAIN RESULTS

Comparison with other decoding methods. Table 2 compares the proposed semi-autoregressive
decoding method with two baseline approaches. Overall, our method consistently achieves the high-
est acceleration in three out of the four tasks considered, with the exception of the SQL-context
dataset, where block decoding marginally outperforms our method. We hypothesize that this is due
to the nature of SQL code, where the fixed syntax allows block decoding to be equally effective by
ignoring the draft token dependencies. We expand on this further in § 6.2.

The superior acceleration observed in the other tasks can be attributed to two factors: (i) the high
draft quality of our method, as reflected by its higher acceptance rate comparable to or even exceed-
ing that of a pruned transformer (as seen in skip-layer decoding); and (ii) its low drafting latency,
which is negligible compared to even a single decoding layer in a transformer. A more detailed
analysis of execution time is presented in Fig. 4a. These results demonstrate that our method strikes
a better balance between draft quality and drafting latency.

In terms of memory cost, our method has an advantage over the block decoding method, as it elimi-
nates the need to maintain multiple language model (LM) heads for the draft model. However, our
method is less memory efficient than skip-layer decoding, as it requires additional memory to store
the TLM for processing the draft tokens d;. This introduces a minor memory overhead.

Comparison among different implementation of /. To gain further insight into the trade-off be-
tween draft quality (i.e. the acceptance rate) and inference latency of the draft model, we compare
different implementations of , with varying complexity, as shown in Fig. 4. We specifically com-
pare to the case where h,, is realized as a standard transformer with varying number of layers. Al-

Under review as a conference paper at ICLR 2025

—
=

e

time w.r.t full model (%)

S N

o N & O ®

—&— Transformer

Simplified Transformer

v LSTM
medusa

012
0.08
0.04

acceptance rate

o
o
o

o
@
=)

14
S
®

o
s
>

o
=
=

-~
= Hydra

< = EAGLE

acceleration

N
o

.
©

-
@

-
<

-
o

(a) Inference latency

3
attn layers

o
&
5}

0 1

2 3 4
attn layers

5

(b) Acceptance rate

6

(c) Acceleration

attn layers

Figure 4: Comparison of different implementations of h,(-) on SAMSUM, including Medusa, sim-
plified transformer, LSTM, and standard transformer (denoted as Transformer) with varying number
of layers. In the standard transformer implementation, the zero-layer case corresponds to taking the
embedding e(d;) of the last token d; as the transformer’s output, which is similar to Hydra (Ankner
et al., 2024); see Appendix C for further details.

though not identical, this implementation is closely related to two existing methods Hydra (Ankner
et al., 2024) and EAGLE (Li et al., 2024); see Appendix C for a discussion. These results are
collected from the first 200 samples of the test set in the SAMSUM dataset.

The results clearly indicate that implementing h, as either a simplified transformer or an LSTM
achieves a good trade-off between the two metrics: the inference latency in these two models is
negligible even compared to a single transformer layer (see Fig. 4a), yet offering an acceptance rate
comparable to a 6-layers transformer (see Fig. 4b). This leads to considerable acceleration as shown
in Fig. 4c. This result verifies our hypothesis that even simple models are competent in handling a
small number of draft tokens. On the other hand, although increasing the number of attention layers
in a transformer does improve the acceptance rate owing to the increased capacity, it fails to deliver
satisfactory acceleration due to higher inference latency. These results confirm our hypothesis that
using standard transformer layers might be unnecessary to process a small number of (draft) tokens,
and simpler designs like ours are sufficient.

Another interesting result emerges when comparing our method with a transformer that has zero
attention layers, which directly takes the embedding e(d;) of the last draft token as the transformer’s
output, i.e. hq(d<;) = e(d;). Unlike our approach, this setup only considers the last draft token
d; while ignoring all previous draft token d«; when predicting d;1, resulting in a comparatively
lower acceptance rate. This finding highlights the importance of considering the entire draft token
sequence dy, ...d; rather than solely considering d; for predicting d; 1. It also justifies our design of
a lightweight LSTM or a simplified transformer to process the draft tokens, which is able to handle
draft sequence of varying lengths while remaining computationally efficient.

6.2 FURTHER ANALYSIS

Structured vs. unstructured data. From the results in Table 2, we find that the acceleration gap
between our method and the block decoding method is small on code generation and math reasoning
tasks. This could be due to: (i) model differences; see Table 1; and (ii) data differences, with the
data in these tasks being more structured compared to others. For example, in the SQL generation
task, the decoding space is smaller, making the additional dependencies introduced by our method
less impactful’.

To further investigate this, we conduct a more extensive comparison between our method and the
block decoding method on tasks with highly structured data, where we eliminate the impact of model
differences. The results in Table 3 indicate that our method only marginally improves acceleration
on these tasks for both Mistral-7B and Phi-3. Specifically, while our method consistently achieves a
higher acceptance rate for both models, the improvement is marginal (< 5%), suggesting that there
are no substantial benefits for additionally considering the dependencies between the draft tokens in
tasks with constrained syntax, which results in a marginal gain in acceleration.

3For example, in SQL generation task, given the token ‘SELECT" at the first position, the tokens ‘FROM’
and ‘TABLE’ are likely to appear in subsequent positions, so the token ‘TABLE’ does not depend on ‘FROM’.

Under review as a conference paper at ICLR 2025

4. 80 1.2

P

N = Block = Ge

70 S~ ——
N ~e
3.0 RN 60
25 © 50
0.6 6
2.0 40 M
e e —
4
15 30 04 A A

A

14 20 02
Joint Learning Separate Learning Joint Learning Separate Learning Joint Learning Separate Learning Joint Learning Separate Learning

(a) Acceleration (b) Token acc. rate (%) (c) Rouge-L score (d) Training VRAM (%)

Figure 5: Comparison between joint and separate training. Joint training typically offers a better
acceptance rate and hence better acceleration, but may incur a slight drop in accuracy.

acceleration token acc rate acceleration token acc rate

block semi block semi block semi block semi

Mistral 3.44x 3.39x 692% 70.4% Mistral 2.55x 2.63x 63.6% 65.4%
Phi-3 3.76x 3.71x T73.8% T4.4% Phi-3 1.74x 1.78x 582% 63.2%

(a) SQL-context (b) GSMSK

Table 3: A more detailed comparison with the block method on tasks with highly structured data.

Joint vs. separate training. We conducted experiments to compare these two training modes on
the SAMSUM and SQL-context datasets. The key questions are: (a) how does joint training affect
final acceleration, and (b) to what extent does joint training affect generation quality?

Fig. 5 presents a comparison of joint and separate training from four perspectives. Overall, joint
training consistently achieves a significantly higher token acceptance rate and faster acceleration
(Fig. 5a and Fig. 5b), particularly for the SQL generation task. This improvement can be attributed
to better coordination p and ¢ in joint training, where the model M), learns a representation that not
only predicts the next token but also aids in predicting subsequent tokens. At the same time, we see
that joint training does have a small impact on generation quality, as measured by the Rouge-L score
(Fig. 5¢). This minimal quality loss may be explained by our use of a relatively small factor A in the
objective function (Eq. 8), where the training of the main model M, dominates the learning process.

Fig. 5d further compares the VRAM usage during training. The VRAM usage corresponds to the
number of parameters in the LoORA weights. The VRAM usage of joint training mode is slightly
higher than that of the separate training mode, as the former needs to simultaneously store the LoORA
weights of the target model M), and that of the draft model M,.

Based on the above results, we recommend to use joint training whenever possible, but with careful
attention to any potential drop in accuracy. However, we found this drop to be negligible in practice.

7 CONCLUSION

In this work, we proposed a unified probabilistic framework for token dependency modeling and
classified existing literature based on how they attempted to model the recent and distant token de-
pendencies. We then analyzed the trade-off regarding drafting speed and acceptance rate explored
in prior works. Based on these insights, we proposed an improved semi-autoregressive draft model,
that processes the distant and recent tokens by the original LLM and TLM respectively for fast
drafting while retaining a high acceptance rate. We proposed two variants of our scheme based on
(i) a simplified transformer, and (ii) an LSTM. We validated the design of our draft model via exper-
iments on four distinct applications, realized via model finetuning, where our model outperformed
other competing methods in 3 out of 4 settings, and performed on par in the structured prediction
task where the modeling of recent token dependencies carry negligible value. We further analyzed
the reasons for these improvements, and highlighted several interesting avenues for future work.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding.
arXiv preprint arXiv:2402.05109, 2024.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024.

b-mc2. sql-create-context dataset, 2023. URL https://huggingface.co/datasets/
b-mc2/sqgl-create—context. This dataset was created by modifying data from the fol-
lowing sources: Zhong et al. (2017); Yu et al. (2018).

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting
framework for autoregressive language models with synchronized parallel decoding. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics, 2023.

Guangji Bai, Zheng Chai, Chen Ling, Shiyu Wang, Jiaying Lu, Nan Zhang, Tingwei Shi, Ziyang Yu,
Mengdan Zhu, Yifei Zhang, et al. Beyond efficiency: A systematic survey of resource-efficient
large language models. arXiv preprint arXiv:2401.00625, 2024.

Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry Mason, Mohammad Rastegari, and Mah-
yar Najibi. Speculative streaming: Fast llm inference without auxiliary models. arXiv preprint
arXiv:2402.11131, 2024.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple 1lm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv: 2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Dujian Ding, Sihem Amer-Yahia, and Laks VS Lakshmanan. On efficient approximate queries over
machine learning models. arXiv preprint arXiv:2206.02845, 2022.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks VS
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query
routing. arXiv preprint arXiv:2404.14618, 2024.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F. Wong, Dacheng Tao, and Zhaopeng Tu. Under-
standing and improving lexical choice in non-autoregressive translation. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
ZTFeSBIX9C.

Cunxiao Du, Zhaopeng Tu, and Jing Jiang. Order-agnostic cross entropy for non-autoregressive
machine translation. In International conference on machine learning, pp. 2849-2859. PMLR,
2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, and Others. The llama 3 herd of models,
2024. URL https://arxiv.org/abs/2407.21783.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen,
and Carole-Jean Wu. LayerSkip: Enabling early exit inference and self-speculative decoding.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 2024.

11

https://huggingface.co/datasets/b-mc2/sql-create-context
https://huggingface.co/datasets/b-mc2/sql-create-context
https://openreview.net/forum?id=ZTFeSBIX9C
https://openreview.net/forum?id=ZTFeSBIX9C
https://arxiv.org/abs/2407.21783

Under review as a conference paper at ICLR 2025

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of 1lm infer-
ence using lookahead decoding, 2024.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 6112-6121, 2019. doi: 10.18653/v1/
D19-1633. URL https://aclanthology.org/D19-1633.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summarization. In Proceedings of the 2nd Workshop
on New Frontiers in Summarization, pp. 70-79, Hong Kong, China, November 2019. Association
for Computational Linguistics. doi: 10.18653/v1/D19-5409. URL https://www.aclweb.
org/anthology/D19-54009.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Syn-
naeve. Better & faster large language models via multi-token prediction. arXiv preprint
arXiv:2404.19737, 2024.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive
neural machine translation. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B118Bt1Ch.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Anil Kag, Igor Fedorov, Aditya Gangrade, Paul Whatmough, and Venkatesh Saligrama. Efficient
edge inference by selective query. In The Eleventh International Conference on Learning Repre-
sentations, 2022.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. Advances in Neural
Information Processing Systems, 36, 2024.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 1173-1182, 2018.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proceedings of the 40th International Conference on Machine Learning, ICML’ 23,
2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

Wayne Luk, Ka Fai Cedric Yiu, Rui Li, Konstantin Mishchenko, Stylianos I Venieris, Hongxiang
Fan, et al. Hardware-aware parallel prompt decoding for memory-efficient acceleration of 1lm
inference. arXiv preprint arXiv:2405.18628, 2024.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neubig, and Eduard Hovy. Flowseq: Non-
autoregressive conditional sequence generation with generative flow. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 42824292, 2019.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Pranav Ajit Nair, Yashas Samaga, Toby Boyd, Sanjiv Kumar, Prateek Jain, Praneeth Netrapalli, et al.
Tandem transformers for inference efficient llms. arXiv preprint arXiv:2402.08644, 2024.

12

https://aclanthology.org/D19-1633
https://www.aclweb.org/anthology/D19-5409
https://www.aclweb.org/anthology/D19-5409
https://openreview.net/forum?id=B1l8BtlCb

Under review as a conference paper at ICLR 2025

OpenAl. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Alessandro Raganato, Yves Scherrer, and Jorg Tiedemann. Fixed encoder self-attention patterns in
transformer-based machine translation. In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pp. 556-568, 2020.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456—-17472, 2022.

Inc ShareGPT. ShareGPT dataset. https://sharegpt.com/, 2023.

Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, and Zhihong Deng. Fast structured
decoding for sequence models. Advances in Neural Information Processing Systems, 32, 2019.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi, Daliang Xu, Qipeng Wang, Bingyang Wu,
Yihao Zhao, Chen Yang, Shihe Wang, et al. A survey of resource-efficient llm and multimodal
foundation models. arXiv preprint arXiv:2401.08092, 2024.

Haoran You, Yichao Fu, Zheng Wang, Amir Yazdanbakhsh, et al. When linear attention meets
autoregressive decoding: Towards more effective and efficient linearized large language models.
arXiv preprint arXiv:2406.07368, 2024.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Li Yunxiang, Li Zihan, Zhang Kai, Dan Ruilong, and Zhang You. Chatdoctor: A medical chat model
fine-tuned on llama model using medical domain knowledge, 2023.

Aonan Zhang, Chong Wang, Yi Wang, Xuanyu Zhang, and Yunfei Cheng. Recurrent drafter for fast
speculative decoding in large language models. arXiv:2403.09919, 2024a. doi: 10.48550/arXiv.
2403.09919. URL https://arxiv.org/abs/2403.099109.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft&
verify: Lossless large language model acceleration via self-speculative decoding. In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, 2024b.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024.

13

https://arxiv.org/abs/2303.08774
https://sharegpt.com/
https://arxiv.org/abs/2403.09919

Under review as a conference paper at ICLR 2025

A FURTHER IMPLEMENTATION DETAILS

Tree attention. Tree attention is a technique originally used in multi-tokens generation to further
accelerate inference. It works by considering multiple candidate tokens concurrently rather than
focusing solely on the most likely candidate. Similar to prior methods (Cai et al., 2024; Luk et al.,
2024; Ankner et al., 2024; Li et al., 2024), our approach is fully compatible with tree attention due
to the negligible computational cost of the draft model.

KV Caching. Key-Value (KV) caching is a crucial technique for optimizing the efficiency of at-
tention mechanisms by avoiding the recompution of previous KV pairs when generating subsequent
tokens. In our approach, the KV caches for the draft tokens d , ..., dx ~ g generated by the proposal
model q are absent in the draft LLM, posing challenges for continued generation. To address this,
we simply recompute the missed caches during the verification stage of speculative decoding. This
process can be done in parallel for all draft tokens, which remains highly efficient®.

Network architectures. We provide details about the LSTM and the MLP used in the proposed
semi-autoregressive draft model. Below, we use H and V' to denote the size of the hidden states
of the LLM and the vocabulary size respectively. Note that this size is the same as the size of the
token’s embedding.

* MLP in the simplified transformer. This MLP has two layers, each of which has H/2 neurons.
The activation function in the MLP is the same as the activation function in the LLM. Therefore
the output of the simplified transformer hy(d1, ..., dx) € RH/2,

* LSTM. The LSTM has two layers, where the hidden states are of size H/2. We use tanh as the
activation function in the LSTM. We take the hidden states corresponding to the last token as the
output of the LSTM. Therefore the output of the LSTM hy(dy, ..., dx) € RH/2,

* MLP in the LM head. Recall that this MLP takes both h, and h, as inputs to predict the next
draft token. The MLP f computes the output as f(h,, hq) = W5 o(concat(W, by, W, hq) + bs,
where the weight matrices W, € RH*1924 and W, € RH/2x1024 The matrix W3 € R2048xV,
Here o (-) is the activation function, which is the same as the activation function in the LLM.

B FURTHER EXPERIMENT DETAILS

SAMSUM SQL-context GSMSK ChatDoctor

LoRA rank of p 8 32 16 32
LoRA rank of q 0.75H 0.75H 0.35H 0.bH

training epochs 4 2 2 2
effective bs 4 8 4 16
Optimizer used adamw-fused adamw-fused adamw-fused adamw-fused
learning rate le-4 2e-4 le-4 2e-4
GPU 2 x Al10 2 x A10 2 x Al10 1 x A100

Table 4: Summary of the detailed training setups.

*Under the setup of KV caching, speculative decoding does not reduce the overall number of arithmetic
operations, as the KV caches corresponding to the draft tokens must still be recomputed eventually. However,
the memory bandwidth of the GPU is significantly improved, as it can now process multiple draft tokens
simultaneously rather than handling them sequentially. This is akin to the principles of Flash Attention.

14

Under review as a conference paper at ICLR 2025

C CONNECTION TO RELATED METHODS

In section 6.1, we compare several implementations of the network h, for processing draft tokens
dy, ...d; in the proposed semi-autoregressive draft model. One implementation we considered is a
transformer with varying number of layers. We discuss here how this implementation is related to
wo state-of-the-art draft model designs: Hydra (Ankner et al., 2024) and EAGLE (Li et al., 2024).

Connection to Hydra (Ankner et al., 2024). Given previously accepted tokens w<; and previous
draft tokens d<; = {dy,...d;}, Hydra predicts the next draft token by jointly sending the embed-
dings of all current draft tokens {e(d1), ...e(d;)} and the hidden states h,(w<;) from the original
LLM to a LM head (with a total of K LM heads). The mentioned implementation of h, as a standard
transformer with zero decoding layers can be viewed as a simplified version of Hydra, where the
model only uses the embedding of the most recent draft token e(d;) and the hidden states h,(w<;)
from the original LLM in prediction, ignoring e(dy), ...e(d;j—1). This setup, while being slightly
less flexible due to the lost in draft token dependence, is more memory efficient as it only requires
storing one LM head instead of K different LM heads.

Connection to EAGLE (Li et al., 2024). Given previously accepted tokens w<; and previous draft
tokens d<; = {ds, ...d; }, EAGLE predict the next draft token d;1 by using a transformer decoder
layer which takes inputs as both the hidden states of the current sentence and also the draft tokens.
The output of this decoding layer, combined with the original hidden states, is then passed to an
LM head to predict the next draft token. When we implement h, as a standard transformer with
one decoding layer, it can be seen as a simplified and more streamlined version of EAGLE, where
attention is only applied among the draft tokens.

15

	Introduction
	Preliminaries
	Large language model
	Speculative decoding

	A unified framework for draft model
	Methodology
	High-level design
	Implementation

	Related works
	Experiments
	Main results
	Further analysis

	Conclusion
	Further implementation details
	Further experiment details
	Connection to related methods

