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Abstract

Submodular maximization subject to matroid constraints is a central problem with
many applications in machine learning. As algorithms are increasingly used in
decision-making over datapoints with sensitive attributes such as gender or race, it
is becoming crucial to enforce fairness to avoid bias and discrimination. Recent
work has addressed the challenge of developing efficient approximation algorithms
for fair matroid submodular maximization. However, the best algorithms known so
far are only guaranteed to satisfy a relaxed version of the fairness constraints that
loses a factor 2, i.e., the problem may ask for ℓ elements with a given attribute, but
the algorithm is only guaranteed to find ⌊ℓ/2⌋. In particular, there is no provable
guarantee when ℓ = 1, which corresponds to a key special case of perfect matching.
In this work, we achieve a new trade-off via an algorithm that gets arbitrarily close
to full fairness. Namely, for any constant ε > 0, we give a constant-factor approx-
imation to fair monotone matroid submodular maximization that in expectation
loses only a factor (1− ε) in the lower-bound fairness constraint. Our empirical
evaluation on a standard suite of real-world datasets – clustering, recommendation,
and coverage tasks – demonstrates the practical effectiveness of our methods.

The code for the paper is available at https://github.com/dj3500/
fair-matroid-submodular-neurips2025.

1 Introduction

Machine learning is increasingly deployed in high-stakes decision-making, raising concerns about
the propagation of bias and unfairness in automated systems. These challenges are especially acute
in domains such as education, law enforcement, hiring, and credit [MMD16; Whi22; Eur22]. In
response, a growing body of research has focused on developing algorithms that incorporate fairness
constraints for core problems including clustering [CKLV17], data summarization [CKSDKV18],
classification [ZVGG17], voting [CHV18], and ranking [CSV18].

This paper studies fairness in the context of monotone submodular maximization subject to matroid
constraints. Submodular functions, which capture the principle of diminishing returns, are funda-
mental to a range of machine learning applications such as recommender systems [EG11], feature
selection [DK11], active learning [GK11], and data summarization [LB11]. Matroids provide a
general framework for modeling independence constraints, encompassing cardinality, partition, graph
connectivity, and linear independence constraints.
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While numerous fairness definitions have been proposed, we adopt a widely used group fairness
model, which partitions the universe into disjoint groups and enforces lower and upper bounds on the
representation of each sensitive group in the selected set. See Section 2.1 for a precise definition. This
model generalizes several fairness notions, such as proportional representation [Mon95; BLS17], di-
versity constraints [CCRL13; Bid06], and statistical parity [DHPRZ12]. It has been used for both sub-
modular maximization [CSV18; CHV18; EMNTT20; EFNTT23; WFM21; TY23; YT23; ETNV24]
as well as a multitude of other optimization problems, such as clustering [CKLV17; KAM19; JNN20;
HMV23], voting [CHV18], data summarization [CKSDKV18], matching [CKLV19] or ranking
[CHV18].

In the absence of fairness constraints, monotone submodular maximization under a single matroid
constraint is very well understood, as a tight (1−1/e) ≈ 0.63-approximation is achievable [CCPV11;
Fei98]. The intersection of two matroid constraints (which we refer to as “matroid intersection”)
admits an almost 0.5-approximation [LSV10]. The fair variant has been primarily explored under
cardinality constraints [CHV18], where a tight (1 − 1/e)-approximation is also known. In the
(single-pass) streaming setting, there is a 0.3178-approximation [FLNSZ22] for the non-fair matroid
version; furthermore, since the intersection of cardinality constraint and fairness can be reduced to a
single matroid constraint [EMNTT20], the same approximation factor can be obtained for it.

However, the intersection of a matroid constraint and a fairness constraint seems significantly more
challenging, and is still poorly understood despite two recent works devoted to studying this problem
in the streaming [EFNTT23] and the classic offline [ETNV24] settings; our focus is on the latter.
Following [EFNTT23], we refer to the problem as Fair Matroid Monotone Submodular Maximization
(FMMSM). To appreciate its difficulty, consider a key special case, Monotone Submodular Perfect
Matching (MSPM), i.e., maximizing a monotone submodular function over the collection of all
perfect matchings in a bipartite graph (VG, EG).2 This collection of feasible sets is not downward-
closed, which invalidates known algorithmic approaches.3 The best known approximation factor for
MSPM is a trivial O(|VG|)-approximation; one can also apply the framework of [GHIM09] to obtain
an Õ(

√
|EG|)-approximation, which is superior for sparse graphs. In fact, this could possibly even

be tight, as it almost matches a surprising negative result of [ETNV24] who showed a family of sparse
graphs where the standard multilinear relaxation (commonly used in relax-and-round approaches for
submodular optimization) has an integrality gap of Ω(

√
|EG|). The existence of a constant-factor

approximation to MSPM was posed by [ETNV24] as an exciting open problem.

The algorithms given in [EFNTT23; ETNV24] for FMMSM circumvent the difficulty posed by the
lower bound constraints by relaxing them. They obtain the following two results:

Theorem 1.1 (Two-pass algorithm of [EFNTT23]) There is a polynomial-time algorithm for
FMMSM that violates lower bound constraints by a factor 2 and obtains α/2-approximation, where
α is the approximation ratio of an algorithm for maximizing a monotone submodular function under
a matroid intersection constraint.

We can have α be almost 1/2 [LSV10] and thus get an almost 1/4-approximation. ([EFNTT23] work
in the streaming setting and instead use the streaming algorithm for matroid intersection of [GJS21];
this results in a 1/11.66-approximation in two passes.) Here, violating lower bound constraints by a
factor 2 means that, if a color has a lower bound of ℓ, the solution is guaranteed to have at least ⌊ℓ/2⌋
elements of that color. Note that in MSPM we have ℓ = 1 and thus ⌊ℓ/2⌋ = 0.

Theorem 1.2 ([ETNV24]) There is a polynomial-time algorithm for FMMSM that satisfies lower
and upper bound constraints in expectation rather than exactly, and obtains a (1−1/e)-approximation
in expectation.

2To see why MSPM is a special case of FMMSM, set EG as the universe, consider a partition matroid that
encodes that every vertex on the left shall have degree at most 1 in the solution, and set fairness constraints so
that every vertex on the right shall have degree at least 1 and at most 1.

3Of course, a proper subset of a perfect matching is not a perfect matching. But more importantly, the
collection of all subsets of perfect matchings (which is downward-closed) does not belong to any of the families
that are known to make approximate submodular maximization tractable. In particular, it is not a matroid, an
intersection of few matroids, or a so-called p-extendible set system or a p-system [CCPV11] for p = O(1).
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Theorem 1.2 also guarantees certain two-sided tail bounds on the violation of each fairness constraint
which apply if ℓ is large enough. It is the only algorithm considered in this paper that violates the
upper bounds. The algorithm proceeds by solving and rounding the multilinear relaxation.

If we consider a relaxed version of MSPM where instead of a perfect matching we want a large
matching that also has high submodular function value, then a simple greedy algorithm will yield
a 1/3-approximation (Theorem 2.5) and construct a maximal matching, thus getting 1/2 of the
maximum possible size. The results in Theorems 1.1 and 1.2 give no improvement upon this. While
one can try to generalize this simple approach to FMMSM, it faces another issue that is salient in the
context of fairness motivations: while at least half of the total lower bound mass will be satisfied,
there could be “unlucky” colors (marginalized groups) that never get represented in the solution; this
is precisely the reason why we seek fair algorithms in the first place.

1.1 Our contributions

In this work we provide an algorithm that satisfies the fairness constraints within a factor better than
2, while also giving guarantees for every individual group (rather than only in aggregate like the
simple greedy strategy discussed above). To achieve the former, we trade off part of the objective
value; to achieve the latter, we employ randomization.

Theorem 1.3 (informal version of Theorem 3.4) For every ε ∈ (0, 1) there is a polynomial-time
algorithm for FMMSM whose output

• satisfies the matroid constraint,

• satisfies fairness upper bound constraints,

• for a group with fairness lower bound ℓ, has in expectation at least (1− ε)ℓ elements from
that group,

• has expected size at least (1− ε) times the maximum size of any feasible solution,

• satisfies Chernoff-style high-probability bounds on size, as well as total fairness violation,

• has expected submodular function value at least 0.499 · ε ·OPT.

Our bound on the submodular function value is actually shown with respect to a more powerful
optimum, namely, an optimal set that satisfies the matroid and upper-bound constraints, but not
necessarily the lower-bound constraints. If one wants to compare to this optimum, then the O(ε)
factor loss in value is unavoidable. To see this, consider MSPM in a graph P3 ×N consisting of a
disjoint union of N paths of length 3, with a linear objective function assigning values 0, 1, 0 to each
path’s edges. A perfect matching of size 2N has 0 value, and a maximal matching of size N has
value N ; one can interpolate between these smoothly.

We note that by instantiating ε = 1/2 we obtain an almost 1/4-approximation while violating lower
bounds by a factor 2, which is similar to the bounds of Theorem 1.1 ([EFNTT23]).

As a second contribution, we also employ our techniques to obtain a deterministic algorithm. There are
several variants that we could formulate; we choose to show a general setting of matroid intersection,
where the trade-off is between size and objective value. The relation to fairness is that an algorithm
that finds a solution of maximum size that is an α-approximation to the objective value would imply
an α-approximation algorithm for FMMSM (see [EFNTT23], Proposition C.6).

Theorem 1.4 For every ε ∈ (0, 1) there is a deterministic polynomial-time algorithm for the problem
of maximizing a monotone submodular function subject to two matroid constraints whose output
has size at least (1− ε) times the maximum size of any feasible solution minus one, and obtains a
(0.499 · ε)-approximation to the submodular function value.

Experimental results. We show the effectiveness of our algorithm empirically against prior work
and natural baselines on a suite of standard benchmarks. We measure the submodular objective
value and total fairness violation. Our algorithms produce solutions whose value is competitive with
the highest-value baseline, which completely ignores the lower bound constraints and accordingly
has the highest fairness violations. In two out of three scenarios, our algorithms dominate prior
work [EFNTT23]. Finally, a key strength of our approach is the flexibility given by ε, allowing users
to tune the balance between utility and fairness.
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Our techniques. Let us begin with the simple setting of perfect matchings (MSPM). Consider the
symmetric difference of a high-value matching Y and a perfect matching P . This decomposes into a
collection of vertex-disjoint alternating cycles and augmenting paths.

One possible algorithm is to ignore the cycles, and choose some of the augmenting paths to apply to Y ,
so that its size grows to at least (1− ε)|P |. We can do this by computing the marginal contribution of
the elements that Y would lose in each path, and taking the least damaging paths; by submodularity,
this loses at most a (1− ε) fraction of value in Y .

While this does ensure a large matching, some ε fraction of vertices can still be “unlucky” and end
up unmatched. Deterministically this would be hard to avoid (short of solving MSPM/FMMSM
completely, with no fairness violation); our next idea is to choose the paths randomly in the above
solution. This will work for MSPM, as long as we take care to select a (1−ε) fraction of the |P |−|Y |
many augmenting paths, even if we already have |Y | ≥ (1− ε)|P |. Then every vertex that was not
matched in Y has a (1− ε) probability of being matched in the new solution.

However, there are two main challenges when trying to generalize the above approach to matroid
and fairness constraints. Firstly, having fairness bounds with ℓc < uc means that Y can have fewer
elements than P in some colors but more elements in other colors, and can even have |Y | = |P |
while still violating many fairness lower bounds. This means that we need to find and apply not only
augmenting paths, but also alternating paths that exchange an element of an oversaturated color for
one of an undersaturated color, without increasing the solution size. We show that as long as the total
fairness violation is large, there are many such disjoint paths, which implies that applying a random
fraction of them still retains enough value.

The second, larger obstacle arises due to dealing with general matroids. We are able to use tools
from matroid theory to show the existence of many disjoint alternating or augmenting paths in an
appropriate matroid intersection exchange graph whose vertices correspond to elements of Y and P
(which were edges in the case of MSPM). We need to carefully refine the paths via an asymmetric
shortcutting process to ensure that applying them leaves the solution independent in the matroid while
also not disrupting the counts of elements in the colors not being exchanged. Moreover, in general,
multiple augmenting paths in matroids cannot be applied simultaneously. We deal with this using an
iterative framework where we apply a single path, rebuild the exchange graph, and find a new large
collection of disjoint paths; we then bound the loss in value after each step.

Paper organization. In Section 2 we introduce all necessary notation, definitions, and useful facts.
In Section 3 we describe our algorithms and prove their properties. Section 4 is devoted to the
experimental evaluation. We conclude and discuss the limitations and broader impact of our work in
Section 5. Additional related work is discussed in Section 1.2 in the full version (in the supplementary
materials), which also contains all omitted content and skipped proofs.

2 Preliminaries

We denote the symmetric difference (X \ Y ) ∪ (Y \X) of two sets X and Y by X△Y .

Submodular functions. We consider functions f : 2V → R+ defined on a ground set V . We say that
f is submodular if f(Y ∪ {e})− f(Y ) ≥ f(X ∪ {e})− f(X) for any two sets Y ⊆ X ⊆ V and
any element e ∈ V \X . Moreover, f is monotone if f(Y ) ≤ f(X) for any two sets Y ⊆ X ⊆ V .
We assume that f is given as an oracle that computes f(S) for given S ⊆ V ; we consider the running
time of this oracle to be O(1).

The following fact is folklore. We provide a proof in the full version (see the supplementary material).

Fact 2.1 Let f be a non-negative submodular function and X1, X2, ..., Xk ⊆ X be disjoint subsets
of X . Then

k∑
i=1

f(X \Xi) ≥ (k − 1)f(X).

Matroids. A matroid is a set family I ⊆ 2V with the properties:

• Downward-closedness: if X ⊆ Y and Y ∈ I, then X ∈ I;
• Augmentation: if X,Y ∈ I and |X| < |Y |, then there exists e ∈ Y with X + e ∈ I.
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We abbreviate X ∪ {e} as X + e and X \ {e} as X − e. We assume that the matroid is given as an
oracle that, for a given S ⊆ V , answers whether S ∈ I; we consider the running time of this oracle
to be O(1). We say that a set S ⊆ V is independent if S ∈ I.

Matroid exchange graph. Let I be a matroid on universe V and Y , Z be two independent sets.

Definition 2.2 We define the exchange graph for Y and Z with respect to I as the bipartite graph

(Y \ Z,Z \ Y, {(y, z) : Y − y + z ∈ I}).

Lemma 2.3 ([Sch03], Corollary 39.12a) If |Y | = |Z|, then the exchange graph for Y and Z with
respect to I contains a perfect matching.

2.1 Fair Matroid Monotone Submodular Maximization (FMMSM)

The universe V is partitioned into C sets: V = V1 ∪ V2 ∪ ... ∪ VC , where Vc denotes elements of
color c. Every element has exactly one color. The set of colors is denoted by [C] = {1, 2, ..., C}. For
every color c ∈ [C] we have fairness bounds: lower bound ℓc and upper bound uc.

The set of upper bounds gives rise to a partition matroid that we will denote by U . That is,

U = {S ⊆ V | |S ∩ Vc| ≤ uc ∀c ∈ [C]}.
It is well-known that such a collection of sets forms a matroid. We will call a set S ∈ U upper-fair.

If a set satisfies both the lower and the upper bounds, we say that it is fair. That is, we define the
family of fair sets C as follows:

C = {S ⊆ V | ℓc ≤ |S ∩ Vc| ≤ uc ∀c ∈ [C]} .

The FMMSM problem asks to find a set S ∈ I ∩C (i.e., fair and independent S) that maximizes f(S).
We use OPT for the optimal value, i.e., OPT = maxS∈I∩C f(S). We assume that there exists a fair
and independent set, i.e., I ∩ C ̸= ∅. We say that an algorithm is an α-approximation if it outputs a
set S with f(S) ≥ α ·OPT.

For any set S ⊆ V we define its fairness violation fav(S) :=
∑

c max{|S∩Vc|−uc, ℓc−|S∩Vc|, 0}.
Note that if S is upper-fair, then fav(S) =

∑
c max{ℓc − |S ∩ Vc|, 0}.

Lemma 2.4 ([EFNTT23], Appendix C) There is an exact polynomial-time algorithm for FMMSM
for the case when f is a linear function.

Matroid intersection. Given two matroids and a monotone submodular function f defined on V ,
we can define the problem of maximizing a submodular function subject to a matroid intersection
constraint similarly to FMMSM. In particular, if we ignore the lower bounds completely, FMMSM
turns into the above matroid intersection problem for matroids I and U .

Theorem 2.5 ([CCPV11]) The greedy algorithm gives a 1/3-approximation to this problem.

Theorem 2.6 ([LSV10]) For any δ > 0 there is a polynomial-time algorithm that gives a (0.5− δ)-
approximation to this problem.

3 Our algorithm

In this section we describe our algorithms: randomized (Theorem 3.4) and deterministic (Section 3.1).
We first need to introduce some notions. The proof of Theorem 3.4 will begin by constructing a
maximum-cardinality independent and fair set P , which will stay unchanged throughout the execution.
We also construct an independent and upper-fair set Y of high f -value. We will use P as a source of
fairness and iteratively trade off Y ’s value for P ’s elements in colors that are undersaturated by Y .

Definition 3.1 Given Y and P as above, we say that a color c ∈ [C] is undersaturated if |Y ∩ Vc| <
|P ∩ Vc|, and oversaturated if |Y ∩ Vc| > |P ∩ Vc|.

The technical crux of the proof of Theorem 3.4 is Lemma 3.3, in which we show the existence of
many disjoint structures, each of which can be used to advance our fairness objective.
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Definition 3.2 Let Y be an independent and upper-fair set, and let X ⊆ V . Define the result Y ′ of
applying X to Y as the symmetric difference Y ′ = Y△X . We say that X is alternating (with respect
to Y ) if Y ′ is independent (Y ′ ∈ I) and there is exactly one undersaturated color c′ ∈ [C] and one
oversaturated color c′′ ∈ [C] such that for all c ∈ [C],

|Y ′ ∩ Vc| = |Y ∩ Vc|+


1 for c = c′,
−1 for c = c′′,
0 for c ̸= c′, c′′.

We say that X is augmenting if all the above conditions are satisfied, except that there is no color c′′.
In both cases, we say that X increases c′.

Note that we have |Y ′| = |Y | if X is alternating and |Y ′| = |Y |+ 1 if X is augmenting. Also, Y ′ is
upper-fair, since the only color where it has more elements than Y is c′, and we have |Y ′ ∩ Vc′ | =
|Y ∩ Vc′ |+ 1 < |P ∩ Vc′ |+ 1 (and P is fair).

Lemma 3.3 Let Y and P be two independent and upper-fair sets with |Y | ≤ |P |. Denote

k =
∑
c∈[C]

max(0, |P ∩ Vc| − |Y ∩ Vc|) .

Then we may find in polynomial time a collection X1, ..., Xk of disjoint subsets of Y ∪P , of which at
least |P |− |Y | many are augmenting and the rest are alternating. Moreover, for every undersaturated
color c, exactly |P ∩ Vc| − |Y ∩ Vc| many of the paths increase c.

The full proof can be found in the full version (see the supplementary material).

Proof sketch. We consider the so-called (directed) matroid intersection exchange graph for Y and
P with respect to I and U . Inside this graph we carefully construct a subgraph consisting of two
matchings M← and M→. M← is obtained by invoking Lemma 2.3 on a subgraph, whereas we
construct M→ manually by matching elements of the same colors between Y and P . We then
algorithmically construct the k paths between appropriately defined sets of sources and sinks in
M← ∪M→. Next, we carry out an asymmetric shortcutting process, whose aim is to make sure that
the new solution will be independent in the matroid, but also not disrupt the color structure. This
allows us to prove that the paths following this postprocessing satisfy Definition 3.2. □

Theorem 3.4 There is a randomized polynomial-time algorithm for FMMSM parametrized by
ε ∈ (0, 1) that outputs a set S ∈ I ∩ U (i.e., independent and upper-fair) such that

• E[|S|] ≥ (1− ε)N with a high-probability tail bound:
for δ > 0, P[|S| < (1− δ)(1− ε)N ] ≤ exp(−Ωδ(N))

• E[f(S)] ≥ 0.499 · ε ·OPTMatInt

• for every c ∈ [C] we have E[|S ∩ Vc|] ≥ (1− ε)ℓc

• with a high-probability tail bound on the total fairness violation:
for δ > 0, P[fav(S) > (1 + δ)ε

∑
c ℓc] ≤ exp (−Ωδ (

∑
c ℓc))

where N is the maximum size of a set in I ∩ U , and OPTMatInt is the maximum f -value of a set in
I ∩ U (clearly we have OPTMatInt ≥ OPT as C ⊆ U).

We stress that S is upper-fair with probability 1, not only in expectation. We also remark that one can
show a similar tail bound for every individual ℓc, though the right-hand side exp(−Ωδ(ℓc)) may not
be meaningful unless ℓc is large. On the other hand, no such bound can be shown for the f -value,
which in the worst case can be concentrated on a single element of the universe.

The guarantee E[f(S)] ≥ 0.499 · ε · OPTMatInt of the second bullet point comes from using the
local search algorithm of Theorem 2.6 as a subroutine. We can instead use the simpler algorithm
of Theorem 2.5 to get a slightly worse guarantee of E[f(S)] ≥ 1

3 · ε ·OPTMatInt; we do so in our
experimental evaluation.

We give a brief sketch; the full proof can be found in the full version (see the supplementary material).
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Proof sketch of Theorem 3.4. As the first step, we compute a maximum-cardinality fair and indepen-
dent set P , which may be done in polynomial time by Lemma 2.4. By invoking Lemma 3.3
we can show that |P | = N . As the second step, we compute a high-value independent and
upper-fair set Y0. Using the algorithm of Theorem 2.6 ([LSV10]) (with δ = 10−3) we get that
f(Y0) ≥ 0.499 ·OPTMatInt. We denote

k(Y ) =
∑
c∈[C]

max(0, |P ∩ Vc| − |Y ∩ Vc|)

for any solution Y , and k := k(Y0) to shorten notation. We will perform a number I of iterations
which will be (1 − ε)k in expectation. More precisely, let us set I = ⌈(1 − ε)k⌉ with probability
(1− ε)k − ⌊(1− ε)k⌋, and ⌊(1− ε)k⌋ otherwise.

We perform I iterations. In the i-th iteration, we apply Lemma 3.3 to Yi−1 (and P ) to obtain a
collection X1

i , ..., X
k(Yi−1)
i of augmenting or alternating sets. We choose one of them, Xi, uniformly

at random, and apply it to obtain a new solution Yi = Yi−1△Xi. Finally, we return S := YI .

All solutions Y0, ..., YI are independent and upper-fair. The properties of fairness lower bounds
intuitively follow because at every iteration one random fairness violation is removed, and the
number of iterations is ≈ (1− ε) times the initial number of fairness violations k = k(Y0). Since at
least |P | − |Yi−1| of the sets at iteration i are augmenting, the claim about the size of the solution
follows similarly. We can also show tail bounds by invoking Chernoff-Hoeffding style bounds for
hypergeometric distributions. As for the objective value, we prove that at every step, the expected
loss is only a 1/(k − i + 1) fraction of the current f -value, as we select randomly from among
k − i+ 1 disjoint augmenting or alternating sets. After I ≈ (1− ε)k iterations we then end up with
a telescoping product that simplifies to εk

k f(Y0). □

3.1 Deterministic algorithm

Now we turn to our deterministic result, Theorem 1.4. It is powered by a lemma that is an analogue
of Lemma 3.3. Their proofs are deferred to the full version (in the supplementary material).

Lemma 3.5 For any two matroids I1, I2, let Y, P ∈ I1 ∩ I2 be two sets in their intersection, with
|Y | ≤ |P |. Then we may find in polynomial time a collection X1, ..., X|P |−|Y | of disjoint subsets of
Y ∪ P such that for each set Xi we have Y△Xi ∈ I1 ∩ I2 and |Y△Xi| = |Y |+ 1.

4 Experimental evaluation

We evaluate the performance of our algorithms empirically against prior work and natural baselines
closely following the experimental setup of prior work [EMNTT20; EFNTT23], on a suite of
benchmarks that are standard in the field: graph coverage, clustering, and recommender systems,
under different fairness and matroid constraint settings. Our metrics are the submodular objective
value f(S) and total fairness violation fav(S). All of the considered algorithms return sets that are
independent and upper-fair, so the measured fairness violations are all with respect to the lower
bounds. LLMs were used to assist in coding. We compare the following algorithms:

• OUR(ε) – our algorithm of Theorem 3.4, for a range of settings of ε ∈ {0.2, 0.5, 0.8}. To compute
a high-value solution Y , we run the natural greedy algorithm, which obtains a 1/3-approximation
(Theorem 2.5), as the local search algorithm of Theorem 2.6 is impractical. The large fair set P is
obtained via augmenting paths, ignoring f .

• TWOPASS – the algorithm of [EFNTT23] (Theorem 1.1). Since it was originally developed for
the streaming setting, to get a fair comparison we simplify away the parts (namely the first pass)
whose purpose was ensuring low memory usage. The first step of the algorithm obtains a fair set
via augmenting paths (ignoring f ). This is then divided in two, and each half is extended to an
independent and upper-fair solution using a matroid intersection subroutine. For this we employ
the greedy algorithm (the original implementation of [EFNTT23] used a swapping algorithm to
ensure low memory and linear runtime, but it obtains inferior values).

• LBMI (Lower Bound Matroid Intersection) – an algorithm that always returns a fair set, with no
theoretical guarantee on the value. It starts by building a fair set via augmenting paths, ignoring f ,
and then extends to a maximal solution using the greedy algorithm.
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Figure 1: Our experimental results. Each column corresponds to one experiment; the top plot shows
the objective value of each algorithm for a range of solution scale factors r, and the bottom plot shows
fairness violations. For randomized algorithms we report averages, with error bars that correspond to
sample standard deviation.
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Figure 2: For each experiment and algorithm we take the average objective value and fairness
violation over all r-values, and plot this as a single point. For randomized algorithms, the colored
rectangles correspond to standard deviations. The dashed line corresponds to the Pareto frontier of
the trade-off between objective value and fairness violation.

• UBMI (Upper Bound Matroid Intersection) – an algorithm that ignores lower bound constraints
and just solves the matroid intersection problem for I and U (similar in spirit to MATROID-
INTERSECTION from [EFNTT23]). Also here we use the greedy algorithm.

• RANDOM – an algorithm that randomly shuffles the universe and then adds each element if this
keeps the solution independent and upper-fair.

For a fair comparison of the main underlying ideas, we made sure that the compared algorithms,
particularly OUR and TWOPASS, use the same subroutines for similar tasks; the implementations
could likely benefit from heuristically taking f into account rather than ignoring f when building large
fair sets, or from some local-search based postprocessing of the final solution. We do not compare to
the algorithm of [ETNV24] (Theorem 1.2) as solving the multilinear extension makes it impractical.
We repeat the randomized algorithms 40 times. All experiments can be run on commodity hardware
(CPU only, single-threaded; we do not report runtimes) and take several hours to finish.
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The code for the paper is available at https://github.com/dj3500/
fair-matroid-submodular-neurips2025.

We outline the experimental scenarios below. In each experiment we vary a solution size scaling
factor r, which roughly corresponds to the rank of the matroid I.

Computational complexity. We start with the complexity of the general randomized algorithm of
Theorem 3.4. Firstly, the runtime of constructing P (a maximum-cardinality fair and independent set)
via augmenting paths is O(N1.5|V |) (by [Sch03], Chapter 41.2 Notes). To construct Y (an upper-fair
and independent set of high f -value), we expend O(N |V |) time using the greedy algorithm.

Next, at each of the I iterations, we must (1) recompute the exchange graph between Yi and P , (2)
find M← and M→ as the subgraph of interest, (3) decompose M← ∪M→ into paths, and (4) shortcut
these paths. Step (1) takes O(N2) time, since we query if a directed edge exists between y and p for
all y ∈ Y and p ∈ P . Finding perfect matchings in step (2) takes at most O(N3) time (in a practical
implementation we could use the Hopcroft-Karp algorithm). Decomposing the resulting subgraph
into paths takes at most O(N) time. And lastly, shortcutting the paths again takes at most O(N2)
time. Since I can be Θ(N), the total runtime is at most O(N4).

A more efficient implementation is possible if I is a partition matroid. The intersection of two
partition matroids can be naturally interpreted as a bipartite multigraph (the colors, i.e., parts of U are
one side, the parts of I are the other side, and an element corresponds to an edge between the two
parts it belongs to). In this case, we may look at the following exchange graph: direct the edges of Y
from left to right, and the edges of P from right to left. This directed graph may be decomposed into
paths. These paths are simultaneously feasible, and so we do not need to recompute an exchange
graph at every step (or shortcut). Since there are O(N) edges, the runtime to decompose this directed
graph is O(N). Over the I iterations, we have a total runtime of at most O(N2).

Graph coverage. We use the Pokec social network [LK14]. Given a digraph G = (V,E)
of users and their friendships, we select a subset S ⊆ V to maximize coverage, defined by
f(S) =

∣∣⋃
v∈S N(v)

∣∣, where N(v) is the neighborhood of v. User profiles include age, gender,
height, and weight. We impose a partition matroid on body mass index (BMI). Profiles miss-
ing height or weight or with implausible data are removed, yielding a graph with 582,289 nodes
and 5,834,695 edges. Users are partitioned into four BMI categories (underweight, normal, over-
weight, obese), with upper bounds ⌈ |Vi|

|V | r⌉ for each group Vi. We also enforce fairness by age,

with 7 groups: [1, 10], [11, 17], [18, 25], [26, 35], [36, 45], [46+], no age. We set ℓc = ⌊0.9 |Vc|
|V | r⌋ and

uc = ⌈1.5 |Vc|
|V | r⌉. We use r from 10 to 200.

Exemplar-based clustering. We use a dataset of 4521 phone calls from a Portuguese bank mar-
keting campaign [MCR14]. The goal is to select a representative subset S ⊆ V for service quality
assessment. Each record e ∈ V is represented as xe ∈ R7 using 7 numeric features, includ-
ing age and account balance. We impose a partition matroid on account balance, with 5 groups:
(−∞, 0), [0, 2000), [2000, 4000), [4000, 6000), [6000,∞). Each group Vi has upper bound r/5. Fair-
ness is enforced by age, with 6 groups: [0, 29], [30, 39], [40, 49], [50, 59], [60, 69], [70+], and bounds
ℓc = 0.1r + 2, uc = 0.4r for each c. We maximize the monotone submodular function [GK10]:
f(S) =

∑
e′∈V

(
d(e′, 0)−mine∈S∪{0} d(e

′, e)
)

where d(e′, e) = ∥xe′ − xe∥22 and x0 is the origin.
We use r from 30 to 60.

Recommender system. We simulate a movie recommendation system using the Movielens 1M
dataset [HK16], with about one million ratings for 3900 movies by 6040 users. As in prior work [MB-
NTC17; NTMZMS18; EMNTT20; EFNTT23], we compute a low-rank completion of the user-movie
matrix [TCSBHTBA01], yielding wu ∈ R20 for each user u and vm ∈ R20 for each movie m. The
product w⊤u vm estimates user u’s rating for movie m. For user u, the monotone submodular utility
for a set S of movies is f(S) = α ·∑m′∈M max

(
maxm∈S

(
v⊤mvm′

)
, 0
)
+(1−α) ·∑m∈S w⊤u vm,

with parameter α = 0.85 balancing coverage and personalized user score. We enforce proportional
representation of movies by release date using a partition matroid with 9 decade groups (1911–2000),
with upper bounds ⌈1.2 |Vd|

|V | r⌉ for each decade Vd. Movies are also partitioned into 18 genres c

(colors), with fairness bounds ℓc = ⌊0.8 |Vc|
|V | r⌋ and uc = ⌈1.4 |Vc|

|V | r⌉. We use r from 10 to 200.
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4.1 Results and discussion

Our results are depicted in Figs. 1 and 2. Similarly as prior work, we observe that enforcing fairness
does come at some cost in the utility value, and that the utility values of the algorithms are much
better in practice than the theoretical bounds guarantee.

In all three experiments, our algorithms produce solutions whose value is relatively competitive
with UBMI, which completely ignores the lower bound constraints and accordingly has the highest
fairness violations. In two of the three scenarios (coverage and movies), all OUR algorithms produce
a higher f -value than all the other baselines (RANDOM, LBMI, and TWOPASS); in particular,
TWOPASS is dominated by both OUR(0.2) and OUR(0.5) with respect to both metrics. For clustering
the situation is somewhat unclear, but TWOPASS generally does better. In terms of violation of the
lower bound fairness constraints, our different settings of ε, as expected, provide a smooth tradeoff.
The baseline that guarantees no fairness violations, LBMI, does relatively poorly in terms of f -value.

This tunability of ε is a key strength of our approach, allowing users to select an operating point that
best matches their specific requirements for the balance between utility and fairness.

5 Conclusion, limitations, broader impact, and future work

In this work we gave an improved algorithm for FMMSM which, for any ε > 0, returns an approxi-
mate solution that satisfies an expected (1− ε) fraction of each fairness lower bound while satisfying
the matroid constraint and the fairness upper bound constraints exactly; the returned solution is also
large in size and enjoys high-concentration guarantees. Recent studies have shown that automated
algorithms used in decision-making can introduce bias and discrimination. We make progress towards
mitigating such effects in problems that can be formulated as submodular maximization under a
matroid constraint, which are relevant to a range of applications such as forming representative
committees or curating content for news feeds. We show the strong performance of our algorithm
empirically on several real-world tasks. As in prior work, we observe a balance between fairness
and utility value; however, this “price of fairness” should not be interpreted as fairness leading to
inferior outcomes, but rather as a trade-off between two valuable metrics. The parametric nature of
our algorithm (the tunable ε parameter) provides a new tool to help in navigating this balance.

Our work leaves open the exciting question of the approximability of FMMSM (without violations of
fairness constraints) and MSPM. Is there a constant-factor approximation algorithm for MSPM? Or is
there a superconstant hardness of approximation for FMMSM? (As remarked in [ETNV24], the latter
result would give a negative answer to a fundamental question posed by Vondrák [Von13].) We also
do not consider non-monotone objective functions or the streaming setting in this work. Finally, it is
important to note that the fairness notion we employ, though standard and general, does not capture
some notions of fairness considered in the literature (see e.g. [CR18; TWRTZ19]). No universal
definition of fairness exists; the choice of which definition to apply is application-dependent and an
active area of research.
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A Supplementary Material

We provide a full version of the paper with all omitted content, skipped proofs etc. together with the
supplementary material.
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paper’s contributions and scope?

Answer: [Yes]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, particularly in Section 5.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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• If applicable, the authors should discuss possible limitations of their approach to
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to make their results reproducible or verifiable.
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of a large language model), releasing of a model checkpoint, or other means that are
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Yes, we provide the full source code in the supplementary material, zipped
together with all relevant datasets for ease of execution. We will also open-source release
the code together with the camera-ready version.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we report sample standard deviation error bars in the plots (and in the
result files in the supplementary material). These correspond to the randomness used by the
algorithm.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments can be run on commodity hardware (CPU only, single-
threaded) and take several hours to finish. We mention this in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

19

paperswithcode.com/datasets


Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We release no new assets (except code, which is discussed elsewhere).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Guidelines:
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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