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Abstract
Deep generative models have recently achieved
superior performance in 3D molecule generation.
Most of them first generate atoms and then add
chemical bonds based on the generated atoms in a
post-processing manner. However, there might be
no corresponding bond solution for the temporally
generated atoms as their locations are generated
without considering potential bonds. We define
this problem as the atom-bond inconsistency prob-
lem and claim it is the main reason for current ap-
proaches to generating unrealistic 3D molecules.
To overcome this problem, we propose a new dif-
fusion model called MolDiff which can generate
atoms and bonds simultaneously while still main-
taining their consistency by explicitly modeling
the dependence between their relationships. We
evaluated the generation ability of our proposed
model and the quality of the generated molecules
using criteria related to both geometry and chem-
ical properties. The empirical studies showed
that our model outperforms previous approaches,
achieving a three-fold improvement in success
rate and generating molecules with significantly
better quality.

1. Introduction
Small molecule drugs perform biological functions by bind-
ing to particular protein pockets based on their 3D structures.
Recently, both academia and industry started to focus on
designing small molecule drugs in the 3D space instead of
only using 2D graphs (Gebauer et al., 2019; Luo & Ji, 2022;
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Hoogeboom et al., 2022). For instance, deep learning mod-
els have been proposed to generate multiple 3D molecule
conformations which have the potential to be further devel-
oped as drugs (Xu et al., 2022; Guan et al., 2022) or can
directly bind given protein pockets(Luo et al., 2021; Li et al.,
2021; Liu et al., 2022; Peng et al., 2022).

The current 3D drug generation models have limited success
rates in producing realistic molecules. This is mainly due
to the way atoms and bonds are generated, where most
models first predict atom types and positions and then add
chemical bonds based on a lookup table of canonical bond
lengths. However, this two-step process can introduce biases
and lead to unrealistic topologies, such as extra-large ring
structures that are uncommon in real molecules or violate
atom valency constraints (1(a, b)). Additionally, ignoring
bonds during training can make the model less robust to
noise. For example, small errors may cause the lookup table
to reject the correct aromatic bonds, as shown in Figure
1(c), where atom i should be connected to j and k to form a
benzene ring.

Additionally, the chemical bonds are not determined solely
by the distances and types of atoms. For instance, as shown
in the left pane of Fig. 1(d), even though both bonds are
carbon-carbon single bonds, their lengths could be different
depending on whether they connect aromatic atoms or not.
The right pane of Fig. 1(d) shows that both the nitrogen-
oxygen single bond and the aromatic bond can have the same
length. Another evidence is that Hoogeboom et al. (2022)
found that their 3D molecule diffusion model, named EDM,
made more errors for bond predictions on the drug-like
dataset GEOM-Drug than on the QM9 dataset which only
contains molecules with up to nine heavy atoms, indicating
that post-processing bond types are difficult for large drug-
like molecules. To demonstrate the influence of this sub-
optimal procedure, we list multiple typically unrealistic 3D
molecules generated by EDM (Hoogeboom et al., 2022) in
Fig. 1(e).

To address this atom-bond inconsistency problem, we pro-
pose a new 3D molecule design model, named MolDiff,
which can jointly sample atoms and bonds based on a proba-
bilistic diffusion model. The difficulty of applying the diffu-
sion model is that even adding small noise to atoms makes
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Figure 1. The atom-bond inconsistency problem. (a)-(c) Typical
biases introduced by adding bonds in the post-processing manner.
(d) Distributions of bond lengths in the GEOM-Drug subset. Left
panel: lengths of single bonds connecting two carbon atoms. The
upper and lower letters C and c represent non-aromatic and aro-
matic carbons, respectively. Right panel: lengths of single, double,
and aromatic (symbols “-”, “=”, and “:”, respectively) bonds con-
necting nitrogen and carbon atoms. (e) Unrealistic 3D molecules
generated by EDM.

the atom distances deviate from the real bond lengths so the
training algorithm does not evolve a process of gradually
recovering the chemical bonds from a random distribution.
There might exist plenty of bonds whose lengths are far
from the true lengths in the intermediate molecules during
diffusion, which makes it less meaningful to learn such
distributions of bond types. To solve the problem, we add
different levels of noise to perturb bonds and atoms. In ad-
dition, we design a new diffusion model in which the atom
generation process receives guidance from the gradient of
a bond predictor such that the generated atoms are more
suitable to place chemical bonds. We also propose a new
E(3)-equivariant neural network in which both atom and
bond representations are updated in the message passing.
Finally, we find most of the previous popular metrics are in-
herited from 2D molecule generation tasks, which could not
fully measure the qualities of generated molecules. There-
fore, we also propose more metrics focusing on the drug-
likeness properties, geometric properties, and rationality of
generated molecules.

2. Related work
Molecule Generation The most common molecular rep-
resentation is 1D SMILES (Weininger, 1988), based on
which many sequence-based generative models can be ap-
plied (Gómez-Bombarelli et al., 2018; Kusner et al., 2017;
Segler et al., 2018). A more widely used representation is
the 2D molecular graph thanks to the great progress in graph

neural networks (Liu et al., 2018; Shi et al., 2020; Jin et al.,
2018; 2020; You et al., 2018; Zhou et al., 2019). However,
the lack of spatial information makes them difficult to be
applied in real scenarios where biologists want to fit the
3D structures of molecules into protein pockets. Recently,
researchers start to focus on designing 3D molecules, which
can be divided into two categories: autoregressive models
and non-autoregressive models. In autoregressive models,
atoms are sequentially generated based on previously gener-
ated atoms. The bonds are added using separate algorithms
after all atoms are generated (Gebauer et al., 2019; Luo &
Ji, 2022) or directly predicted after each atom is generated
(Peng et al., 2022; Roney et al., 2022). However, the in-
trinsic weakness of the autoregressive approach such as the
unawareness of global information has hindered their gen-
eration abilities. In non-autoregressive models, molecules
are represented as either atomic density grids or 3D point
clouds, and VAE (Ragoza et al., 2020), flow (Satorras et al.,
2021a) or diffusion (Hoogeboom et al., 2022) models are
applied to generate 3D molecules. They only add bonds
after all atoms have been determined and cannot include the
bond information during the generation process.

Diffusion Models for Small Molecule-Related Task The
diffusion and score-based models (Ho et al., 2020; Song &
Ermon, 2019; Song et al., 2020) have achieved remarkable
success in image generation (Nichol & Dhariwal, 2021;
Ramesh et al., 2022). They have also been applied to
molecule-related tasks, such as molecular conformation gen-
eration (Xu et al., 2022), de novo molecule design (Hooge-
boom et al., 2022; Guan et al., 2023; Schneuing et al., 2022;
Lin et al., 2022; Wu et al., 2022) and linker design (Igashov
et al., 2022). However, 3D molecules were over-simplified
as point clouds in these models, that is, only atoms are con-
sidered in the diffusion model. The chemical bond informa-
tion is either given as contexts or added in a post-processing
manner.

Diffusion Models for Graph Generation With the suc-
cess of diffusion models in continuous space, a growing
number of work has begun to focus on diffusion models in
discrete space and more challenging data structures such
as graphs. Niu et al. (2020) proposed the first score-based
model for graph generation by thresholding a continuous
value to indicate edges. Other similar works (Jo et al., 2022;
Song et al., 2020; Vignac et al., 2022; Haefeli et al., 2022)
leverage different diffusion technologies to generate graphs.
However, all of these models operate on 2D graphs and only
consider permutation invariance. Our study presents the
first E(3)-equivariant diffusion model capable of producing
high-quality 3D molecular graphs and effectively tackling
the atom-bond inconsistency problem. While undergoing
review, we noticed another study that also aimed to gener-
ate molecular graphs with 3D conformations(Vignac et al.,
2023). However, their research focused on distinct aspects
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compared to ours.

3. Method
We first introduce the forward and reverse processes of our
diffusion framework in Sec. 3.1 and the backbone archi-
tecture of the E(3)-equivariant model in Sec. 3.2. In Sec.
3.3, we describe a new noise schedule for atom and bond
diffusion during training. Finally in Sec. 3.4, we introduce
our new bond-guided 3D molecule generation process.

3.1. 3D Molecule Diffusion Framework

Notation A 3D small molecule is described by the atom (el-
ement) types, atom positions (coordinates in the space), and
covalent chemical bonds. A molecule with N atoms can be
represented as M = {A,R,B}, where A = {ai}N ∈ AN

is the atom types, R = {ri}N ∈ RN×3 is the atom posi-
tions, and B = {bij}N×N ∈ BN×N is the chemical bonds.
Here A and B represent the spaces of atom types and chem-
ical bonds, respectively. In this work, we selected seven
popular element types (C, N, O, F, P, S, and Cl) and five
chemical bond types including four real bond types (single,
double, triple, and aromatic bonds) and one dummy type
none-type. Note that the hydrogen atoms are not considered
because they can be easily inferred based on other atoms.

3.1.1. FORWARD PROCESS

A diffusion model defines two Markov random processes.
The forward process gradually adds noise to the data based
on a pre-defined noise schedule and the reverse process uti-
lizes neural networks to remove noise and finally recover the
real data from the noise. Let superscript t denote the vari-
ables at time step t (t = 0, 1, . . . T ), and M0 represents the
3D molecules in the real distribution. M t is sampled from
the distribution q(M t|M t−1) only conditioned on M t−1.
For atom types and bond types, since both of them are dis-
crete, we represent them using categorical distributions. The
forward process is formulated as follows,

q(rti|rt−1
i ) :=N (rti|

√
1− βtrt−1

i , βtI)

q(ati|at−1
i ) :=C(ati|(1− βt)at−1

i + βt
1k)

q(btij |bt−1
ij ) :=C(btij |(1− βt)bt−1

ij + βt
1k′),

(1)

where βt ∈ [0, 1] is the pre-defined noise scaling schedule,
I ∈ R3×3 is the identity matrix and 1k represents a one-hot
vector with one at the kth position and all the others zeros.
For the atom positions we gradually add scaled standard
Gaussian noise, and for atom types or bond types, we add
more probability mass to the kth or k′th type so that in the
forward process the atom types or bond types will gradually
be perturbed to become those types. We call it absorbing
type because it works like all atom (or bond) types are
gradually absorbed to this specific type (Hoogeboom et al.,

2021; Austin et al., 2021). For the atom type, we add one
more type to the original element space as the absorbing
type. For the bond type, we directly choose the none-type
as the absorbing type. Note that the previous 3D molecule
diffusion model EDM (Hoogeboom et al., 2022) regarded
the atom types as continuous vectors and perturbed them
with Gaussian noise. However, using discrete values to
model atom and bond types is a more natural way and also
showed better performance (see results in Sec. 4.1). Note in
Eq. 1, the pre-defined noise scaling βt for the atom types,
atom positions, and bond types can be different but we do
not differentiate them in the equation for clarity.

By leveraging the Markov property, M t could be directly de-
rived from the original sample M0 (i.e., q(M t|M0)) based
on Eq. 1. If we define αt := 1 − βt and ᾱt :=

∏t
s=1 α

s,
the sample M t can be derived as:

q(rti|M0) = N (rti|
√
ᾱtr0i , (1− ᾱt)I)

q(ati|M0) = C(ati|ᾱta0i + (1− ᾱt)1k)

q(btij |M0) = C(btij |ᾱtb0ij + (1− ᾱt)1k′).

(2)

From this equation, it is obvious that the values of ᾱt can
be interpreted as how much information from the real data
is still preserved at step t. We call ᾱt Information level and
it can be determined by the noise level βt (we discuss how
to choose them in Sec. 3.3).

As t→∞, we get q(ati|M0)→ 1k, q(rti|M0)→ N (0, I),
and q(btij |M0) → 1k′ according to Eq. 2, indicating that
for large T , the atom positions approximately follow the
standard Gaussian distribution, and the atom and bond types
place all the probability mass on the absorbing types for
t = T . These distributions, called prior distributions, will
serve as the starting distributions of the reverse process.

3.1.2. REVERSE PROCESS

In the reverse process, we reverse the Markov chain to recon-
struct the true sample from prior distributions and use E(3)-
equivariant neural networks to parameterize the transition
pθ(M

t−1|M t). Specifically, we model the predicted atom
positions as Gaussian distribution N (rt−1

i |µθ(M
t, t),Σt),

the atom and bond type as Categorical distributions
C(at−1

i |Hθ(M
t, t)) and C(bt−1

ij |H ′
θ(M

t, t)), respectively.
Here µθ, Hθ and H ′

θ are all neural networks and Σt is set
as βt. During training, we add noise to data and train the
neural network to recover M t−1 from M t by optimizing
the predicted distributions pθ(M

t−1|M t) to approximate
the true posterior q(M t−1|M t,M0) (the true posterior can
be derived from Eq. 1 and 2, see Appendix A.2). Here both
M t−1 and M t are collected in the forward process. The
loss function is defined as follows,

Lt−1 = Lt−1
pos + λ1L

t−1
atom + λ2L

t−1
bond
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Lt−1
pos =

1

N

∑
i

∥rt−1
i − µθ(M

t, t)i∥22

Lt−1
atom =

1

N

∑
i

DKL[q(a
t−1
i |M t,M0)∥pθ(at−1

i |M t)]

Lt−1
bond =

1

N2

∑
ij

DKL[q(b
t−1
ij |M

t,M0)∥pθ(bt−1
ij |M

t)],

where λ1 and λ2 are pre-defined constants. During train-
ing, we randomly sample a step t and optimize the neural
network by minimizing the loss Lt−1. After the training pro-
cess, to generate new molecules, we first sample MT from
the prior distributions p(MT ) and then repeatedly sample
from pθ(M

t−1|M t) for t = T, T − 1, . . . , 1 to gradually
remove noise. The prior distribution p(MT ) is the standard
Gaussian distribution N (0, I) for atom positions and the
Categorical distributions with all probability mass on the
absorbing types for atom types and bond types.

3.2. Equivariant Graph Neural Networks

An important property the neural network should possess
for modeling 3D molecules is E(3)-equivariance, i.e., the
outputs of the network should be equivariant to any 3D rota-
tion, translation, and reflection. The previous model EDM
utilized the E(3)-equivariant network EGNN (Satorras et al.,
2021b) to update atom representations by passing messages
between atoms. However, as we focus on the atom-bond
inconsistency problem, we need to design a new equivari-
ant network architecture and message passing algorithms
involving both atoms and bonds. Formally, for an input
molecule M = {{ai}N , {ri}N , {bij}N×N}, we construct
a complete graph with coordinates in which vertices are
the atoms and all vertices are connected. We use notations
vi ∈ Rd and eij ∈ Rd′

to denote the hidden representations
for vertex i and edge ⟨i, j⟩, respectively. The input vertex
features are the one-hot encoding of atom types and the
input edge features are the one-hot encoding of bond types.
Then the updating of vectors vi, eij and coordinates ri is
defined as follows,

ẽij ← ϕd(eij , ∥ri − rj∥2)

vi ← Linear(vi) +
∑
j

ϕv(vj , ẽij , t)

eij ←
∑
k

ϕe(vk, ẽki, t) +
∑
k

ϕe(vk, ẽjk, t)

+ Linear(vi) + Linear(vj) + Linear(ẽij)

ri ← ri +
∑
j

ϕr(vi,vj , ẽij , t)
ri − rj
∥ri − rj∥22

,

(3)

where Linear(·) represents linear transformations of the in-
puts, and ϕd, ϕv, ϕe, ϕr are neural networks made up of dif-

ferent multilayer perceptrons (MLPs) (the detailed architec-
tures can be found in Appendix A.3). The main difference
between the proposed model and the previous models (e.g.,
EGNN) is that we address the importance of edges. The
edges also propagate messages with other edges and nodes
to update their representations. This model is specifically
designed for this diffusion framework where the features of
both nodes and edges are used to predict the atom and bond
types. After multiple rounds of updates, we take the coordi-
nates ri as the predicted mean of the atom positions µθ and
apply another two MLPs followed by softmax activations
to translate the feature vectors vi and eij to probabilities of
atom and bond types as:

p(at−1
i |M t) = C(ai|softmax(MLP(vi)))

p(bt−1
ij |M

t) = C(bij |softmax(MLP(eij + eji))).
(4)

Note that the bond type bij is determined by both the edge
features eij and eji for symmetry.

3.3. The Atom and Bond Noise Schedule

There is a unique factor in the diffusion generation of 3D
molecules. Since the bond types of the molecules have a
strong relationship with the atom distances and atom types,
if the bond types use the same noise schedules as the atom
types and the atom positions, the noised data distribution
will suffer from the inconsistency of atoms and bonds. More
specifically, as more noise is added to the molecule, the dis-
tances of atom pairs that originally form chemical bonds
will easily deviate from the bond lengths and there is no
need to further perturb the bonds. For instance, if two car-
bon atoms form a single bond in a molecule, during the
diffusion process it is quite possible that their distance be-
comes larger than 3Å which cannot form any chemical bond.
In this case, it is meaningless to ask the neural network to
learn that two atoms that are so far away from each other
can form a single bond. More formally, the distribution
of real molecules p(M) = p(A,R,B) can be decomposed
as p(M) = p(A,R)p(B|A,R). For any diffusion step t,
the conditional distribution p(Bt|At, Rt) could greatly shift
from the true distribution p(B0|A0, R0). Therefore, the in-
termediate molecules M t = (At, Rt, Bt) contains biased
relationship between atoms and bonds.

To address this problem, we propose a new diffusion strategy
by separating the diffusion processes of bonds and atoms
and dividing the forward diffusion process into two stages.
In the first stage, we make the bond types diffuse to the prior
distribution and all bonds gradually become the absorbing
none-bond type. In this stage, the atom types and positions
are only slightly perturbed. Note that it is important to inject
little noise to atom types and positions instead of fixing
all of them and only learning to recover the bonds. In this
way, the model becomes more robust and can acquire the
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knowledge that a chemical bond needs to be added when
the distance of two atoms is within a certain range instead
of a fixed value. At the next timestamp, the model can
also learn to adjust the coordinates of atoms to satisfy the
chemical constraints based on the bond just recovered. At
the end of the first stage, almost all bonds are labeled as
none-type and reach the prior distribution. In the second
stage, we keep perturbing the atom types and positions
to arrive at their corresponding prior distributions. Since
the atom positions have greatly changed in this stage, it
is reasonable that no real chemical bonds still exist in the
molecules and thus the model focuses on the learning of
atom types and positions. Overall, this strategy keeps the
relationship between the bonds and atoms more similar to
the true one during diffusion.

We implement this by designing a new noise schedule for
the bonds and atoms. As shown in Fig. 2(a), we set different
βt for the atoms (types and positions) and bond types so
that the information level ᾱt of bond types decay to zeros
much faster than the atoms during the diffusion process.
In the first stage, the atoms are only marginally perturbed
and the model pays more attention to denoise the bond
types. In the second stage, almost all real bonds have been
removed and the model only focuses on the prediction of
atoms. In this way, the model does not need to learn the
bond types when the atom distances have obviously deviated
from the canonical bond lengths. More details can be found
in Appendix A.4.

3.4. Guidance of Bond Predictor

As shown in Fig. 1(d), the lengths of real chemical bonds are
within a very small range. For instance, the nitrogen-oxygen
single bonds (N-O) have a canonical length around 1.35Å
and seldom lower than 1.31Å or greater than 1.39Å. If the
generative model happens to generate an N-O atom pair with
distance 1.25Å, the model should fix the atom positions so
that the bond length falls into the correct distance range
of N-O bonds. Therefore, we can also take advantage of
the strong relationship between the bond types and bond
lengths to guide the generation of atom positions so that our
model could place the atoms in the correct positions and
thus generate accurate 3D structures of the molecules.

To achieve this intuition, we train another equivariant
graph neural network F (At, Rt, t) which takes the atom
types and positions as input and predicts all the bonds
for the molecule, i.e., a neural-network-based bond pre-
dictor. Assume the predicted logits of the bond types for
bond ⟨i, j⟩ are F (At, Rt, t)ij , and we define a function
c[F (At, Rt, t)ij ] to quantify the confidence of the predic-
tions for bond ⟨i, j⟩. The confidence for all bonds based on

Figure 2. Model Illustration. (a) The curves of the information
level ᾱt w.r.t t and an illustration of the diffusion process for the
original simple (synchronized) noise schedule and our proposed
(bond first) noise schedule. (b) The guidance of the bond predictor
for the generation step.

atom sets {A,R} is

C(At, Rt, t) =
∏
ij

c[F (At, Rt, t)ij ]. (5)

If the sampled atom positions are not accurate, the confi-
dence of the bond predictor C(At, Rt, t) will be low, and
vice versa. Then the gradient of the logC(At, Rt, t) with
respect to Rt provides us the direction to improve the confi-
dence and thus guide the determination of atom positions.
Formally, with the guidance, the reverse generation of the
atom positions pθ(rt−1

i |M t) can be revised as:

N
(
rt−1
i

∣∣µθ(M
t, t) + s∇ logC(At, Rt, t), Σt

)
, (6)

where s is a hyper-parameter and set as 1 × 10−4. The
intuition comes from the classifier guidance in diffusion
generative models (Dhariwal & Nichol, 2021), where a clas-
sifier is utilized to guide the generated samples to optimize
the specific property. But here we are not using the bond
predictor to improve some specific property but we want
to improve the confidence of the bond predictor which is
equivalent to rendering more accurate bond lengths and
thus more accurate atom positions. The bond predictor
F (At, Rt, t) needs to be separately trained. To adapt it for
the noised molecules, we train the bond predictor which
takes the noised atom types At, noised atom positions Rt,
and step t as input and then predicts the ground truth bond
types B0. More details about the bond predictor are shown
in Appendix A.5.
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Now we discuss the choice of confidence function
c[F (At, Rt, t)ij ]. If the outputs of a classifier are logits,
the exponential logits of the Categorical distribution can be
regarded as the parameters of its conjugate prior distribution
Dirichlet distribution (Malinin & Gales, 2018). Therefore,
the uncertainty of the prediction can be derived from logits
and the confidence function is defined as the reciprocal of
the uncertainty. If we represent F (At, Rt, t)ij as y, the
confidence function is:

c(y) =
∑
k

exp(yk) + 1. (7)

where yk is the logit for the kth type.

4. Results
We first compare the generation abilities of MolDiff with
multiple baseline models in Sec. 4.1. Then in Sec. 4.2, we
expand the comparison to multiple new metrics which are
usually neglected in previous 3D molecule generation tasks.
Finally, we analyze the effectiveness of our design through
an ablation study (Sec. 4.3) and model analysis (Sec. 4.4)
to explore the contribution of each component.

4.1. Generation Ability

Dataset We utilized the GEOM-Drug dataset to train and
assess our models, and included details about the data pre-
processing in Appendix B. To better reflect the real drug
design scenario, we only considered molecules with major
elements (C, N, O, F, P, S, and Cl) and excluded hydrogen
atoms. However, we also conducted additional evaluations
that accounted for minor element types (B, Br, I, Si, and
Bi) or still kept hydrogen atoms, and additionally, we made
a comparison with more baselines in another widely used
dataset QM9, which are further elaborated in Appendix D.

Baselines and Setup We compared MolDiff with EDM
and multiple variants of our MolDiff model. EDM is the first
diffusion model for 3D molecule generation, which applied
continuous diffusion for atom types and positions and added
bond types using a lookup table in a post-processing manner.
To highlight the importance of bonds in the diffusion model,
we provided three variants of MolDiff that did not involve
any bond information during diffusion and predicted bonds
using three different strategies after generating the atoms,
including 1) using the lookup table (same as EDM), 2) train-
ing another neural network as the bond predictor, and 3)
adopting the chemical toolbox Open Babel (O’Boyle et al.,
2011). We provided another two variants of MolDiff that
used continuous embedding to encode atom and bond types
to demonstrate the performance difference against using
discrete embedding. One of the variants implemented the
strategy of EDM which added additional scaling to the con-
tinuous features (Hoogeboom et al., 2022). Moreover, we

provided another baseline model which added an additional
loss to minimize the real bond lengths of the predicted one
and the ground truth, a seemingly natural and simple way to
generate better bond lengths. For each model, we sampled
1000 valid and complete 3D molecules and repeated this
procedure for three times. We reported the average of the
metrics in the main text and postponed the standard devia-
tions in Appendix C.4. More details about the settings of
these baselines can be found in Appendix C.1.

Metrics We defined three metrics to evaluate the basic
learning abilities of the models: (1) Validity is the ratio of
valid molecules (can be parsed by RDKit) among all gen-
erated molecules; (2) Connectivity is the ratio of complete
molecules (in which all atoms should be connected) among
all valid molecules; (3) Success rate is the ratio of valid and
complete molecules among all generated molecules, which
is equivalent to validity multiplied by connectivity. These
three metrics are the most important ones because they mea-
sure whether the models learn basic chemical rules such as
valence constraint and completeness of molecules. Next,
among the valid and complete molecules, we measure the
similarities from four different aspects: (1) Novelty is the
ratio of generated molecules that do not exist in the training
set; (2) Diversity is the average molecular fingerprint simi-
larities of all pairs of generated molecules; (3) Uniqueness
is the ratio of unique molecules among all generated ones;
(4) Similarity with validation set is the average similarities
between the generated molecules and the validation set.

The comparison results are shown in Tab. 1. For the validity,
connectivity, and success rate, MolDiff outperformed EDM
by a large margin, indicating that MolDiff better captured
the chemical constraints of the 3D molecules. Furthermore,
the success rate of MolDiff approximated to one, suggesting
that almost all generated molecules were complete and thus
MolDiff are ready to be applied to real downstream tasks.
In comparison with other variants of MolDiff, we found the
exclusion of bonds during diffusion harmed the learning
and generation abilities of the models. Tab. 1 also sug-
gested that the diffusion of atom and bond types in discrete
space achieved better performance than in continuous space.
Adding bond lengths as an additional loss did not improve
the performance either. One possible reason is that it might
harm the learning of the noised positions during diffusion.

Among the valid molecules, MolDiff exceeded EDM and all
variants for the diversity and similarity with the validation
set, indicating that MolDiff generated not only more diverse
molecules but also more similar ones to the real molecules.
As for novelty and uniqueness, MolDiff did not achieve
the best values but the values were good enough since both
of them approximated to one. Overall, we concluded that
MolDiff had much better learning and generation ability
than EDM, and the inclusion of bonds during diffusion and
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Table 1. The generation abilities of EDM, MolDiff, and variants of MolDiff

Validity Connectivity Succ. rate Novelty Diversity Uniqueness Sim. Val.
EDM 0.447 0.830 0.371 1.000 0.729 1.000 0.441
MolDiff 0.997 0.996 0.993 0.972 0.769 0.986 0.634
Predict bond (Lookup table) 0.297 0.937 0.278 1.000 0.751 0.999 0.434
Predict bond (NN Predictor) 0.956 0.978 0.935 0.984 0.768 0.999 0.592
Predict bond (Openbabel) 0.992 0.969 0.961 0.986 0.762 0.999 0.576
Conti. diffusion 0.914 0.885 0.808 0.999 0.752 1.000 0.513
Conti. diffusion (scaling) 0.972 0.934 0.907 0.997 0.759 1.000 0.511
Add bond length loss 0.998 0.959 0.958 0.986 0.752 0.998 0.590

treating atom/bond types as discrete variables were both
necessary components for the generation of 3D molecules.

4.2. Quality of 3D Molecules

The above metrics only focused on whether the generated
molecules are reasonable or diverse. Here we dived into the
quality related to 3D geometries and chemical properties of
the molecules. These metrics are significant for a sampled
molecule to be further selected as a drug candidate and
used for real-world applications. We analyzed the valid and
complete molecules of EDM and MolDiff from four aspects:
drug-likeness, 3D structures, bonds, and rings.

Table 2. The qualities of the generated 3D molecules

Group Metrics EDM MolDiff

Drug-
likeness

QED (↑) 0.558 0.668
SA (↑) 0.568 0.874
Lipinski (↑) 4.923 4.986

3D
structures

RMSD (↓) 1.321 0.939
JS. bond lengths (↓) 0.246 0.365
JS. bond angles (↓) 0.282 0.155
JS. dihedral angles (↓) 0.328 0.162

Bonds

JS. #bonds per atoms (↓) 0.139 0.115
JS. basic bond types (↓) 0.306 0.093
JS. freq. bond types (↓) 0.378 0.163
JS. freq. bond pairs (↓) 0.396 0.136
JS. freq. bond triplets (↓) 0.449 0.125

Rings
JS. #rings (↓) 0.106 0.062
JS. #n-sized rings (↓) 0.107 0.092
#Intersecting rings (↑) 3.667 8.000

Val.

Val.

MolDiff

EDM

Figure 3. The most frequent ten rings among molecules in the
validation set, generated by EDM, and generated by MolDiff.

Drug-likeness We evaluated drug-likeness of the generated
molecule using the following metrics: (1) QED is the abbre-
viation of quantitative estimation of drug-likeness; (2) SA

represents the synthetic accessibility score (higher values
indicate easier for drug synthesis); (3) Lipinski measures
how many rules the molecule follows the Lipinski’s rule of
five (details in Appendix C.2). As shown in Tab. 2, MolDiff
outperformed EDM by a large margin, suggesting that the
molecules of MolDiff were better candidates for drugs.

3D structures A main difference between the 3D genera-
tion and 2D molecule graph generation is the determination
of atom positions, and thus it is necessary to measure their
accuracy. First, we calculated the minimal RMSDs between
the generated 3D molecules and 100 possible conforma-
tions predicted by the RDKit toolkit. Next, we selected the
most frequent bonds, bond pairs, and bond triplets in the
validation set (the exact types are listed in Appendix C.2).
We calculated the bond lengths, bond angles, and dihedral
angles for the generated molecules and the ones in the vali-
dation set. We then used the Jensen-Shannon(JS) divergence
to measure the differences in the distributions between the
generated molecules and the validation set. As shown in Tab.
2, MolDiff had much lower RMSDs, JS divergence of bond
angles, and dihedral angles, indicating that the 3D structures
of molecules generated by MolDiff were much closer to the
ground truth. We also noticed that the MolDiff performed
worse in terms of JS divergence of bond lengths. This was
not surprising because EDM added bonds by comparing the
bond lengths with a pre-defined lookup table and thus their
lengths were closer to the canonical lengths. But overall,
MolDiff better captured the entanglement of 3D information
of molecules than EDM.

Bonds As we particularly addressed the bond informa-
tion during generation, here we analyzed the bond-related
properties of the generated molecules. First, we analyzed
whether models generated excessive or insufficient bonds
by comparing the distributions of counts of bonds per atom
between generated molecules and the validation set. Next,
we analyzed the distributions of different bond types, in-
cluding the basic bond types (single, double, triple, and
aromatic bonds) and frequent bond types, bond pairs, and
bond triplets that were used in the evaluation of 3D structure.
As shown in Tab. 2, MolDiff showed lower JS divergence
than EDM for all the distributions, which indicated that the
molecules of MolDiff not only had more realistic counts but
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Table 3. Ablation study (metrics of 3D structures, bonds and rings).

Metrics
Mol-
Diff

No
Gui.

No
Sche. Neither

RMSD 0.939 1.027 1.005 1.126
JS. bond lengths 0.365 0.378 0.461 0.468
JS. bond angles 0.155 0.162 0.224 0.209
JS. dihedral angles 0.162 0.202 0.177 0.204
JS. #bonds per atoms 0.115 0.154 0.219 0.196
JS. basic bond types 0.093 0.054 0.039 0.087
JS. freq. bond types 0.163 0.148 0.161 0.184
JS. freq. bond pairs 0.136 0.107 0.107 0.141
JS. freq. bond triplets 0.125 0.102 0.112 0.150
JS. #rings 0.062 0.105 0.176 0.159
JS. #n-sized rings 0.092 0.102 0.092 0.119
#Intersecting rings 8.000 7.667 6.000 6.000

also exhibited more balanced ratios among different bonds.

Rings An erroneous generation of bonds will violate the
graph topology of the molecules and easily result in biased
ring distributions. For instance, adding unnecessary bonds
will lead to redundant or unrealistic rings. We thus further
extended the analysis of bonds to rings. First, we compare
the distributions of counts of rings in each molecule between
generated molecules and the validation set. Next, we com-
pared the distributions of counts of n-sized rings between
generated molecules and validation set using JS divergence
and then averaged all JS divergence for n ∈ {3, 4, . . . , 9}.
Real molecules usually have plenty of 6-sized rings but
much fewer large or small rings and thus we want to check
whether the model learned such underlying design princi-
ples. Finally, we found out the most frequent ten types of
rings in the validation set and generated molecules respec-
tively, and calculated the numbers of frequent rings existing
in both the validation set and the generated molecules. As
shown in Tab. 2, MolDiff produced better distributions of
counts of rings and n-sized rings. Regarding the ring types,
MolDiff generated much more realistic ones. We also dis-
played the most frequent ten rings among molecules in the
validation set, generated by EDM and by MolDiff in Fig.
3, where it is obvious that most rings generated by EDM
were unrealistic as a result of erroneous bonds while those
generated by MolDiff were similar with the validation set.

4.3. Analyses of the Noise Schedule and the Guidance

To study the importance of different components, we con-
ducted an ablation study to show the effectiveness of the
guidance and the special noise schedule. We compared the
complete MolDiff with three variants: (1) the model without
the guidance of the bond predictor; (2) the model without
using the newly proposed noise schedule, and 3) the model
with neither of these two techniques. Tab. 3 demonstrated
that both the guidance and new noise schedule could greatly

(a) (b)

(c)
(d)

Perturbation of the atom position Perturbation of the atom position

Figure 4. Model Analysis. (a) The numbers of bonds out of range
for different noise schedules. (b)-(d) An example demonstrat-
ing how the confidence function and gradient change as an atom
(shown in cyan) is perturbed.

boost the determination of 3D structures. The two strategies
also contributed to more realistic counts of bonds. We also
found that they had no effect on balancing different bond
types. Another observation was that both strategies can
benefit the arrangement of the count of rings and different
ring types. Therefore, we conclude that the guidance of the
bond predictor and the new noise schedule are necessary
components to generate molecules with better 3D structures
and distributions of bonds and rings. In addition, we found
these two strategies did not harm the basic metrics such as
generation abilities and drug-likeness as shown in Appendix
C.3.

4.4. Model Analysis

Finally, we explored how the noise schedule and the guid-
ance worked. As we mentioned above, the new noise sched-
ule diffused the bond types earlier to avoid the irrational
relationship between bonds and atoms during diffusion. We
first calculated the ranges of bond lengths of real molecules
in the validation set and then counted real bonds whose
lengths were out of the range at different steps during the
diffusion process. As shown in Fig. 4(a), the noise sched-
ule of MolDiff induced much fewer bonds that were out of
range. Actually, these bonds were unnecessary to learn at
the current moment, and thus the noise schedule of MolD-
iff enabled the model to focus on more meaningful data
distributions. As for the guidance of the bond predictor,
we showed an example demonstrating how it guided the
generation of positions in Fig. 4(b)-(d). We perturbed the
position of one atom of a molecule in the dataset along the
y-axis (Fig. 4(b)) and calculated the values logC(A,R, 0)
and their scaled gradients w.r.t perturbations (Fig. 4(c,d)).
We found that as the atom deviated from the ground truth
position, the confidence values decreased and the gradients
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also deviated from zero. Therefore, the gradients of the
confidence function assisted to push the atoms to the right
positions. In conclusion, both the schedule and guidance fa-
cilitate MolDiff to better learn and generate molecules with
more accurate 3D structures and more realistic distributions
of bonds and rings.

5. Conclusion
In this work, we propose a 3D molecule generation model to
simultaneously address the generation of atoms and bonds of
molecules. Experimental results demonstrate that the model
has greatly improved the generation ability and the quality
of the generated molecules. Further work can explore more
sophisticated noise schedules and more advanced guidance
strategies, and analyze its potential for downstream real
tasks.
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A. More Details about the Model
A.1. Hyper-parameters of the Neural Networks and Training

We set the embedding dimensions of node types and edge types as 256 and 64, respectively and all intermediate hidden
dimensions are constant. The time embedding dimensions are 10. The graph neural networks contain six layers. We
trained the diffusion network using AdamW optimizer with a learning rate 1 × 10−4 and batch size 256 for 110, 000
iterations. For the weights of the atom loss and bond loss, i.e., λ1 and λ2, we set λ1 = λ2 = 100 so that the losses of
atom types, atom positions, and bond types were almost in the same magnitude. The source codes will be provided at
https://github.com/pengxingang/MolDiff.

A.2. Details about the Diffusion Process

By applying Bayes’ theorem, we derive the posterior q(M t−1|M t−1,M0) from Eq. 1 and Eq. 2 as:

q(a
t−1
i |ati, a0i ) = C(at−1

i ; Θ(ati, a
0
i ))

q(r
t−1
i |rti, r0i ) = N (rt−1

i |µ̃t(r0i , r
t
i), β̃

t)

q(b
t−1
ij |b

t
ij , b

0
ij), = C(bt−1

ij ; Θ(btij , b
0
ij)),

(8)

where

µ̃t(r0i , r
t
i) : =

√
ᾱt−1βt

1− ᾱt
r0i +

√
αt(1− ᾱt−1)

1− ᾱt
rti

β̃t : =
1− ᾱt−1

1− ᾱt
βt

Θ(ati,a
0
i ) ∝

[
αtati + (1− αt)1k)

]
·
[
ᾱt−1ati + (1− ᾱt−1)1k)

]
Θ(bt

ij ,b
0
ij) ∝

[
αtbt

ij + (1− αt)1k′)
]
·
[
ᾱt−1bt

ij + (1− ᾱt−1)1k′)
]
,

(9)

and the symbol “·” means element-wise multiplication of two vectors.

A.3. Details about the Model Architectures

Here we detailedly describe the architectures of the neural networks defined in Eq. 3, i.e., ϕd, ϕv , ϕe, and ϕr.

The network ϕd takes as input the edge feature vector eij and the edge lengths ∥ri − rj∥. It applies RBF kernels to the
distance and then combines them with the input feature vector. Finally, it applies a linear layer to process the concatenated
feature to the new feature vector ẽij .

The network ϕv takes as input the vertex feature vectors vj , the edge feature vector ẽij , and the step t and outputs the
message from vertex j to vertex i (denoted as mij):

v′
j = MLP(vj)

ẽ′ij = MLP(ẽij)

gij = MLP(concat(vj , ẽij , t))

mij = Linear(v′
j · ẽ′ij) · sigmoid(gij),

(10)

where concat(·) means concatenating along the feature dimension and sigmoid(·) is the sigmoid activation function.

The network ϕe takes as input the vertex feature vectors vi, the edge feature vector ẽij , and the step t and outputs the
message from the edge ij (denoted as mij):

m′
ij = MLP(Linear(vi) · Linear(ẽij))

gij = MLP(concat(vi, ẽij , t))

mij = m′
ij · gij .

(11)

Finally, the network ϕr takes as input the vertex feature vectors vi,vj , the edge feature vector ẽij and step t and outputs a
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scalar mij :
v′
i = MLP(vi)

v′
j = MLP(vj)

mij = ϕe(v
′
i · v′

j , ẽij , t)

(12)

A.4. Details about the Noise Schedule

The cosine noise schedule is a popular schedule that defines the schedule of ᾱt using a cosine function and achieves
better performance than other schedules (Nichol & Dhariwal, 2021). However, the cosine schedule only has one tuneable
hyper-parameter and thus it is hard to adapt the shape and the range of the schedule curve of ᾱt. We define a new schedule
scheme that utilizes the sigmoid function and possess three tuneable hyper-parameters s1, sT , w to adapt the schedule curve.
The schedule is defined as:

s = (sT − s1)/(sigmoid(−w)− sigmoid(w))
b = 0.5× (s1 + sT − s)

ᾱt = s× sigmoid(−w(2t/T − 1)) + b.

(13)

The parameters s1 and sT represent the values of ᾱ1 and ᾱT , respectively, controlling the range of the noise. The parameter
w influences the slope at medium steps and controls how fast ᾱt changes at the beginning and the end of the diffusion
process. We show how the parameter w influences the shapes in Fig. 5.
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Figure 5. The noise level ᾱ curves with different parameter w

In our implementation, we chose the parameters s1 = 0.9999, sT = 0.0001, w = 3 for atom types and atom positions for
the whole diffusion process t ∈ [1, T ]. For the bond type, we used s1 = 0.9999, sT = 0.001, w = 3 during diffusion steps
[1, 600] in the first stage and s1 = 0.001, sT = 0.0001, w = 2 during steps [600, 1000] in the second stage. The curves of
MolDiff are shown in Fig. 6
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Figure 6. The noise level ᾱ curves used by MolDiff

A.5. Details about the Bond Predictor

The bond predictor has almost the same architecture as the main diffusion neural networks except for two differences. First,
the bond predictor does not need the position updates. Second, the initial input edge features do not contain the bond types
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of the edge. Instead, we provide the atom types of the two ends of the edges as the initial edge features.

The bond predictor was trained using the same dataset as the diffusion network. The training uses the same noise schedules
of the atom positions and atom types. At step t, the bond predictor takes as input the noised atom positions Rt, atom types
At and step t and predicts the bond types at step 0, i.e., B̂0. The loss function is the cross-entropy between the predicted
bond types and the ground truth. We trained the bond predictor using AdamW optimizer with a learning rate 1× 10−4 and
batch size 256 for 300, 000 iterations.

B. Preprocessing of the Geom-Drug Dataset
We downloaded the GEOM-Drug from the database website (Axelrod & Gómez-Bombarelli, 2022). We filtered the
molecules through the following criterion: (1) can be parsed by the RDKit package; (2) not broken; (3) the number of heavy
atoms within [8, 60]; (4) not contain the elements other than H, C, N, O, F, P, S, and Cl; (5) not contain chemical bonds other
than single, double, triple and aromatic bonds. After filtering, we removed the hydrogen atoms and constructed the training,
validation, and testing datasets with 231523, 28941, and 28940 molecules, respectively.

C. More Details and Results about the Experiments
C.1. Details about the Experiment Settings and Baselines

In all experiments, we kept generating molecules until there were 1000 valid and complete molecules and then calculated
metrics according to their definitions. We repeated this for three times and reported the average values in the main text and
standard deviations in the Appendix C.4.

We re-trained the baseline EDM using our splittings of the GEOM-Dataset dataset. For the variants of MolDiff that did
not incorporate the bond types during diffusion, we removed the edge updates in Eq. 3, and the initial edge embedding
did not contain the information of bond type. Three different bond post-predicting strategies were considered for three
different models: First, a lookup table that was the same as the one used by EDM was utilized to match the bond lengths
with the atom distances. Second, the NN-based bond predictor that was originally used for the guidance was applied to
predict the bond types after diffusion. Third, the chemical toolkit Open Babel was applied to add the chemical bonds. For
the variants of MolDiff that used continuous diffusion for both atom and bond types, they regarded the one-hot embedding
of the types as continuous values in the latent spaces and added Gaussian noise. The scaling for continuous diffusion was to
divide the one-hot embedding of the atom and bond types by scalars before diffusion, which was proposed by the authors of
EDM. We set the scaling for the atom types, atom positions, and bond types as 1, 4, and 8, respectively. For the variant with
bond length loss, we further added an MSE loss to minimize the difference between the real bond lengths ∥rt−1

i − rt−1
j ∥2

with the predicted ones ∥µθ(M
t, t)i − µθ(M

t, t)j∥2 for ij pairs that b0ij were not none-type, which is a simple method to
attempt to generate more accurate bond lengths. Note all these variants did not use the newly proposed noise schedule and
the guidance.

C.2. Details about the Metrics

For the metric of drug-likeness, we borrowed the evaluation code from Pocket2Mol (Peng et al., 2022). For the analyses of
bond lengths, the SMARTS (SMILES arbitrary target specification) of considered bond types were: c:c, [#6]-[#6], [#6]-[#7],
[#6]-O, c:n, [#6]=O, [#6]-S, O=S, c:o, c:s, [#6]-F, n:n, [#6]-Cl, [#6]=[#6], [#7]-S, [#6]=[#7], [#7]-[#7], [#7]-O, [#6]=S, and
[#7]=O. For the analyses of bond angles, the SMARTS of considered bond pairs were: c:c:c, [#6]-[#6]-[#6], [#6]-[#7]-[#6],
[#7]-[#6]-[#6], c:c-[#6], [#6]-O-[#6], O=[#6]-[#6], [#7]-c:c, n:c:c, c:c-O, c:n:c, [#6]-[#6]-O, and O=[#6]-[#7]. The SMARTS
of considered bond triplets were: c:c:c:c, [#6]-[#6]-[#6]-[#6], [#6]-[#7]-[#6]-[#6], [#6]-c:c:c, [#7]-[#6]-[#6]-[#6], [#7]-c:c:c,
O-c:c:c, [#6]-[#7]-c:c, [#7]-[#6]-c:c, n:c:c:c, [#6]-[#7]-[#6]=O, [#6]-[#6]-c:c, c:c-[#7]-[#6], c:n:c:c, and [#6]-O-c:c.

C.3. Details and More Results of the Ablation Study

For the variant without guidance, we removed the guidance term in Eq. 6 during generation. For the variant without the
new noise schedule, the schedule ᾱt of bond type was the same as that of the atoms. In Tab. 4, we reported the generation
abilities and the drug-likeness properties of the ablation study, which indicated that the our proposed noise schedule and the
guidance of the bond predictor did not damage these basic properties.
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Table 4. More metrics of the ablation study.

Validity Connec-
tivity

Succ.
rate

Novelty Diversity Unique-
ness

Sim.
Val.

QED SA Lipinski

MolDiff 0.997 0.996 0.993 0.972 0.769 0.986 0.634 0.668 0.874 4.986
No Gui. 0.992 0.964 0.956 0.983 0.763 0.995 0.603 0.680 0.825 4.985
No Sche. 1.000 0.993 0.993 0.985 0.766 0.998 0.639 0.692 0.862 4.951
Neither 0.999 0.971 0.970 0.990 0.764 0.999 0.628 0.710 0.822 4.941

C.4. Standard Deviations of the Values in the Main Text.

To facilitate the comparison of the metric values of different models, here we provided the standard deviations of those
values in the tables of the Sec. 4 (i.e., Tab. 1, 2, and 3) in Tab. 5, 6, and 7.

Table 5. The standard deviations of the generation abilities of the models.

Validity Connectivity Novelty Diversity
EDM 0.0002 0.0068 0.0000 0.0033
MolDiff 0.0012 0.0014 0.0024 0.0004
Predict bond(Lookup table) 0.0035 0.0075 0.0000 0.0045
Predict bond(NN Predictor) 0.0016 0.0027 0.0065 0.0025
Predict bond(Openbabel) 0.0023 0.0043 0.0037 0.0024
Conti. Diffusion 0.0116 0.0142 0.0004 0.0010
Conti. Diffusion(scaling) 0.0014 0.0027 0.0005 0.0039
Add bond length loss 0.0008 0.0030 0.0021 0.0028

Table 6. The standard deviations of the qualities of the generated molecules

Group Metrics EDM MolDiff

Drug-likeness
QED 0.0059 0.0050
SA 0.0038 0.0021
Lipinski 0.0076 0.0029

3D structures

RMSD 0.0121 0.0156
JS. bond lengths 0.0033 0.0079
JS. bond angels 0.0120 0.0070
JS. dihedral angles 0.0031 0.0027

Bonds

JS. #bonds per atoms 0.0187 0.0051
JS. basic bond types 0.0016 0.0027
JS. freq. bond types 0.0012 0.0019
JS. freq. bond angles 0.0028 0.0025
JS. freq. bond triplets 0.0043 0.0025

Rings
JS. #rings 0.0179 0.0040
JS. #n-sized rings 0.0034 0.0020
#Intersecting rings 0.4714 0.0000

C.5. More Examples of Generated Molecules

We showed the 3D conformations and the 2D graphs of several molecules generated by MolDiff in Fig. 7 and Fig. 8.

D. Additional evaluations on more datasets
In the main text, we assessed models on the molecules only containing major elements in the GEOM-Drug dataset and
removed hydrogen atoms when training and evaluation. Here, we conducted additional experiments on three more datasets:
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Figure 7. Example of 3D molecules generated by MolDiff

Figure 8. Examples of the graphs of the molecules generated by MolDiff
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Table 7. The standard deviations of the values in the ablation study

Metrics No Gui. No Sche. Neither Metrics No Gui. No Sche. Neither
Validity 0.0009 0.0005 0.0000 JS. bond lengths 0.0152 0.0066 0.0133
Connectivity 0.0025 0.0008 0.0049 JS. bond angels 0.0052 0.0060 0.0057
Novelty 0.0012 0.0038 0.0005 JS. dihedral angles 0.0034 0.0041 0.0043
Diversity 0.0012 0.0023 0.0014 JS. #bonds per atoms 0.0008 0.0051 0.0108
Uniqueness 0.0016 0.0017 0.0000 JS. basic bond types 0.0026 0.0019 0.0017
Sim. Val 0.0023 0.0018 0.0012 JS. freq. bond types 0.0023 0.0038 0.0024
QED 0.0024 0.0016 0.0052 JS. freq. bond angles 0.0026 0.0031 0.0032
SA 0.0040 0.0004 0.0030 JS. freq. bond triplets 0.0041 0.0029 0.0033
Lipinski 0.0016 0.0028 0.0048 JS. #rings 0.0067 0.0056 0.0032
RMSD 0.0174 0.0056 0.0093 JS. #n-sized rings 0.0033 0.0017 0.0048

#Intersecting rings 0.4714 0.0000 0.0000

1) molecules in the GEOM-Drug dataset containing major elements but with hydrogens reserved; 2) molecules in the
GEOM-Drug dataset containing all elements; 3) a different dataset QM9 dataset. Note in these experiments, the sampling of
MolDiff did not use the guidance of bond predictor.

D.1. Evaluation on Molecules with Hydrogens Reserved

The reason that we removed the hydrogens was from a practical perspective because hydrogens can be easily speculated
from the heavy atoms and were often omitted in molecule representations in practical scenarios. However, the inclusion of
hydrogens resulted in bigger graphs for a more rigid benchmark, which can help us understand the behaviors of models.
Therefore, we have added an experiment to incorporate all hydrogen atoms.

As shown in Tab. 8, compared to the performance without hydrogens (the result of one repeat in our original dataset), MolDiff
performed worse in the dataset with hydrogens, especially the connectivity and thus the success rate. This discrepancy was
caused by the fact that the inclusion of hydrogens made the average number of atoms per molecule raised from around 24 to
around 45, resulting in much more complicated molecular graphs. But the success rate of MolDiff with hydrogens (0.739)
was still higher than EDM even without hydrogens (0.371 in Tab. 1) and the qualities of the generated molecules were not
obviously influenced by the inclusion of hydrogens.

Table 8. Evaluation of MolDiff on molecules with or without hydrogens

Dataset With hydrogen Without hydrogen
Validity 0.993 0.957

Connectivity 0.961 0.772
Succ. Rate 0.954 0.739

Novelty 0.983 1.000
Uniquness 0.997 1.000
Diversity 0.761 0.427
Sim. Val. 0.603 0.695

QED 0.677 0.688
SA 0.821 0.806

Lipinski 4.983 4.868
RMSD. 1.005 1.032

JS. bond lengths 0.374 0.414
JS. bond angles 0.168 0.182

JS. dihedral angles 0.205 0.244
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D.2. Comparison between MolDiff and EDM on Molecules with All Elements

Previously, we excluded some minor element types (B, Br, I, Si, Bi) from the GEOM-Drug dataset during data processing
because they are not commonly used in drug design compared to other elements (C, N, O, F, P, S, Cl). Additionally, the
generation of molecules containing these minor elements may bring more difficulties in subsequent biochemical experiments.
Moreover, these minor elements accounted for less than 0.2% of the GEOM-drug dataset, making it difficult for the models
to properly learn their features. For instance, there were only 12 Si atoms in the entire GEOM-Drug dataset, and it was
challenging for a model to learn how to generate Si atoms from these samples.

However, it is interesting to see how the model performs on the complete dataset. Therefore, we added an experiment to
train our model on the complete GEOM-Drug dataset (i.e., all elements were used and hydrogens were not removed). The
comparison of MolDiff and EDM on this complete dataset was shown in Tab. 9.

The performances of both MolDiff and EDM decreased compared to those in the original filtered dataset (i.e., the dataset
used in the main text). But MolDiff still had high generation ability with a success rate of 0.860. However, the EDM model
had a much lower success rate of 0.014, indicating that 100 samples resulted in about one valid and complete molecule,
which was of little use for practical applications. Therefore, EDM cannot work on this complete GEOM-Drug dataset
while MolDiff still worked well. Regarding the qualities of generated molecules, the superiority of MolDiff over EDM in
the complete was the same as that in the filtered dataset. Therefore, working on the complete dataset, MolDiff performed
slightly worse than in the filtered dataset but still much better than EDM.

Table 9. Performance comparison on GEOM-Drug molecules with all elements

Model MolDiff EDM
Validity 0.947 0.029

Connectivity 0.908 0.484
Succ. Rate 0.860 0.014

Novelty 1.000 1.000
Uniquness 1.000 1.000
Diversity 0.422 0.455
Sim. Val. 0.696 0.668

QED 0.700 0.536
SA 0.805 0.624

Lipinski 4.874 4.839
RMSD. 0.963 1.103

JS. bond lengths 0.472 0.439
JS. bond angles 0.178 0.435

JS. dihedral angles 0.228 0.605

D.3. Comparison on QM9 dataset

QM9 dataset was widely adopted to benchmark previous 3D molecule generation models. We did not adopt it as our
main dataset because the molecules are simpler and less drug-like than those in the GEOM-Drug dataset. Here we add a
comparison on the QM9 dataset with more baselines, including EDM(Hoogeboom et al., 2022), EN-flow(Satorras et al.,
2021a), G-Schnet(Gebauer et al., 2019), and G-SphereNet(Luo & Ji, 2022). We followed the setup of EDM to split the QM9
dataset with train/validation/test size as 100k/18k/13k.

We compared the generation abilities and the accuracy of 3D geometries of these methods, as shown in Tab. 10. MolDiff
showed the best generation ability (with the highest validity, connectivity, and success rate), indicating that MolDiff
generated more valid and complete molecules than the others. Although EDM showed better performance in the QM9
dataset than it in the GEOM-Drug dataset, it still showed a relatively weaker generation ability than MolDiff. Regarding
the novelty, diversity, uniqueness, and similarity with the validation set, these methods achieved similar performance. For
3D geometries, MolDiff achieved the best performance in terms of RMSD and the JS. divergence of dihedral angles and
was second-best for the JS. divergence of bond lengths and bond angles, with the differences among methods being less
significant. Overall, MolDiff maintained its superior generation abilities and accuracy of 3D geometries on the QM9 dataset,
although the margin over other methods was smaller due to the relative simplicity of molecules in QM9 compared to those
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in the GEOM-Drug dataset.

Table 10. Comparison on QM9 dataset

MolDiff EDM EN-flow G-SchNet G-SphereNet
Validity 0.970 0.925 0.407 0.876 0.161

Connectivity 0.998 0.992 0.604 0.997 0.998
Succ. rate 0.968 0.918 0.246 0.873 0.161
Novelty 1.000 1.000 1.000 1.000 1.000
Diversity 0.894 0.893 0.892 0.875 0.658

Uniqueness 0.991 0.999 0.999 0.995 0.225
Sim. Val. 0.705 0.602 0.490 0.628 0.732
RMSD 0.193 0.249 0.587 0.278 0.199

JS. bond lengths 0.340 0.231 0.513 0.342 0.367
JS. bond angles 0.158 0.105 0.367 0.193 0.334

JS. dihedral angles 0.368 0.383 0.713 0.492 0.721
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