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ABSTRACT

Along with the success of multi-modal learning, the robustness of multi-modal
learning is receiving attention due to real-world safety concerns. Multi-modal
models are anticipated to be more robust due to the possible redundancy between
modalities. However, some empirical results have offered contradictory conclu-
sions. In this paper, we point out an essential factor that causes this discrepancy:
The difference in the amount of modality-wise complementary information. We
provide an information-theoretical analysis of how the modality complementarity
affects the multi-modal robustness. Based on the analysis, we design a metric for
quantifying how complementary the modalities are to others and propose an effec-
tive pipeline to calculate our metric. Experiments on carefully-designed synthetic
data verify our theory. Further, we apply our metric to real-world multi-modal
datasets and reveal their property. To our best knowledge, we are the first to identify
modality complementarity as an important factor affecting multi-modal robustness.

1 INTRODUCTION

Recently, deep neural networks have proved successful in various areas, such as image recognition (He
et al., 2015; Krizhevsky et al., 2012), speech recognition (Chorowski et al., 2015) and neural machine
translation (Wu et al., 2016). The revolution is also happening in multi-modal research, e.g. RGB-D
semantic segmentation (Wang et al., 2016), audio-visual learning (Zhao et al., 2018), and visual
question answering (Antol et al., 2015). Intuitively, multi-modal models are anticipated to be more
robust due to the potential redundancy between modalities. When one of the modalities is corrupted,
others can compensate for the loss. This intuition is supported by both psychological studies of the
human perception system (Sumby & Pollack, 1954) and deep learning practices (Zhang et al., 2019b;
Qian et al., 2021; Wang et al., 2020).

However, some recent studies cast doubt on this belief. From a theoretical perspective, the multi-
modal models usually have a larger input dimension than uni-modal models, and the increase of
input dimensions significantly degrades model robustness (Ford et al., 2019; Simon-Gabriel et al.,
2019). From an empirical view, some experiments suggest that multi-modal integration may be more
vulnerable to attacks or corruptions than uni-modal models (Yu et al., 2020; Tian & Xu, 2021; Ma
et al., 2022).

What causes this contradiction in multi-modal robustness? We notice that the conclusions above
are drawn under assorted multi-modal task settings ranging from action classification to question
answering, which vary in the presence and type of modality interconnections (Liang et al., 2022).
Therefore, a question arises naturally:

What aspects of modality interconnection affect the multi-modal robustness?

We hypothesize that the complementarity of modalities plays an essential role. If the complementary
part of each modality is negligible, the corruption of one modality would not severely damage the
model performance. Otherwise, the multi-modal model could perform even worse than a uni-modal
model. For the visual question answering task, the two modalities are highly complementary: Only
perceiving either the question or the image could not lead to an ideal answer (Agrawal et al., 2018).
For the action classification task, the RGB and optical flow are less complementary since each of
them can suggest a roughly correct answer (Feichtenhofer et al., 2016b).
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To validate the above hypothesis, we first demonstrate the key role of modality complementarity to
model robustness through theoretical analysis. Following previous work (Tsai et al., 2020; Sun et al.,
2020; Sridharan & Kakade, 2008; Tosh et al., 2021), we use an information-theoretical framework
for multi-modal learning and study how the complementary information affects robustness under
missing and noisy modality settings. Based on the analysis, we design a novel metric and a practical
calculation pipeline built on Mutual Information Neural Estimator (MINE) (Belghazi et al., 2018) to
quantify the complementarity of modalities in multi-modal datasets.

With the specially designed metric and pipeline on hand, we verify our theory and the effectiveness of
our proposed metric on synthetic data and a carefully-designed toy dataset AAV-MNIST. The results
are consistent with the model robustness in modality missing, noisy modality, and adversarial attack
settings on the datasets we test on. Then we apply our metric to real-world multi-modal datasets
to further investigate the modality complementarity in different settings. To our best knowledge,
we are the first to identify and prove the important role of modality complementarity in multi-
modal robustness. Hence, for future research, we recommend that researchers consider the modality
complementarity as a control variable for a fairer comparison of multi-modal robustness.

The main contributions are highlighted as follows:

• We point out the effect of modality complementarity on multi-modal model robustness
through information-theoretical analysis.

• We propose a dataset-wise metric to qualitatively evaluate how complementary the modalities
are in each multi-modal dataset, and also design a pipeline for computing the metric in
real-world datasets.

• We create a synthetic dataset and a toy dataset (AAV-MNIST) to test our metric and pipeline.
These datasets cover various complementary situations of different modalities and are used
to verify the effectiveness of our pipeline.

• We further reveal the modality complementarity and its relationship with model robustness
in real-world multi-modal datasets, which could lead to a less biased comparison for multi-
modal robustness.

2 RELATED WORK

Multi-modal learning. Various multi-modal learning tasks and models are proposed in recent
years (Baltrusaitis et al., 2017; Liang et al., 2021), such as multi-modal reasoning (Yi et al., 2019;
Johnson et al., 2016), cross-modal retrieval (Gu et al., 2017; Radford et al., 2021), and cross-modal
translation (Ramesh et al., 2021). Among these settings, we mainly focus on the supervised multi-
modal classification setting. The theoretical understanding of multi-modal learning is relatively
under-explored, with (Huang et al., 2021) deriving generalization error bounds and (Sun et al., 2020)
comparing with the Bayesian posterior classifiers. A concept close to multi-modal learning is the
multi-view learning (Xu et al., 2013). The theory of multi-view learning has long been studied both
theoretically (Zhang et al., 2019a; Tosh et al., 2021) and empirically (Sindhwani et al., 2005; Ding
et al., 2021; Amini et al., 2009; Tian et al., 2019). Earlier work (Kakade & Foster, 2007; Sridharan
& Kakade, 2008) proposes the multi-view assumption: Each modality suffices to predict the label.
Recently, many multi-view analyses adopted this assumption (Han et al., 2021; Tsai et al., 2020; Lin
et al., 2021; Federici et al., 2020; Lin et al., 2022). However, as pointed out by (Huang et al., 2021;
2022), this might not hold in the multi-modal learning setting.

Model robustness. Model robustness under data missing (Ramoni & Sebastiani, 2001), random
corruption (Hendrycks & Dietterich, 2019), and adversarial attacks (Madry et al., 2017) is constantly
been concerned in consideration of real-world safety issues. For uni-modal models, several methods
are proposed to strengthen model robustness (Papernot et al., 2015; Huang et al., 2015; Meng &
Chen, 2017). For multi-modal models, some papers regard the use of multi-modality as a way to
improve robustness (Zhang et al., 2019b; Qian et al., 2021; Wang et al., 2020), while others continue
to improve multi-modal models’ robustness by designing new network architectures and fusion
methods (Kim & Ghosh, 2019a; Tsai et al., 2018; Yang et al., 2021) and training routines (Eitel et al.,
2015; Ma et al., 2021). When dealing with known missing patterns, researchers explore additional
ways: data imputation through available modalities or views (Tran et al., 2017; Lin et al., 2021), or
training different models for different availability of modalities (Yuan et al., 2012). Our analysis
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Figure 1: Illustration of relationships between the inputs and the target of a multi-modal task in
different cases. X and Z are random variables representing the input of two modalities. Y is the
target we would like to infer. The Info Loss refers to the loss of Y -relevant information provided by
inputs, which is caused by missing or corruption of modality Z.

points out the upper bound of these methods. Apart from improving robustness, another line of
work aims to analyze or estimate the robustness of existing uni-modal methods (Cohen et al., 2019;
Carlini et al., 2019; Mahmood et al., 2021) and multi-modal methods (Yu et al., 2020; Tian & Xu,
2021; Ma et al., 2022; Rosenberg et al., 2021; Li et al., 2020). We in this work analyze one factor of
multi-modal model robustness both theoretically and empirically.

Mutual information in deep learning. Mutual information is tightly related to deep learning through
multiple ways, including information bottleneck method (Tishby et al., 2000), analysis of learning
methods (Wu & Verdu, 2012; Tsai et al., 2020; Shwartz-Ziv & Tishby, 2017), and new learning
methods based on mutual information (Hjelm et al., 2018; Bachman et al., 2019; Sun et al., 2020). On
the other hand, learning methods help to estimate the amount of mutual information. Representative
work includes Mutual Information Neural Estimator (MINE) (Belghazi et al., 2018), CPC (van den
Oord et al., 2018), DIM (Hjelm et al., 2018), and DoE estimator (McAllester & Stratos, 2018). We
apply the MINE to our calculation pipeline for its simplicity and effectiveness.

3 THEORETICAL ANALYSIS

In this section, we first build an information-theoretical framework for multi-modal learning and
show the impact of complementary information to model robustness in modality missing and single
noisy source cases, which are commonly studied in previous work (Kim & Ghosh, 2019a; Tian & Xu,
2021) and widely encountered in practice, e.g., some sensors are broken, prone to noise (e.g. cameras
in foggy environments), or expensive to use(e.g. X-ray data for medical analysis). An illustration of
these cases is plotted in Figure 1.

3.1 PRELIMINARIES

Notations. We use H(A) to represent the entropy of a random variable A, H(A|B) for the conditional
entropy given another variable B, I(A;B) for the mutual information between random variable A
and B, I(A;B|C) for the conditional mutual information conditioned on random variable C, and
I(A;B;C) for the interaction information (i.e., mutual information of three variables, possibly a
negative value).

Multi-modal learning formulation. We adopt the formulation for multi-modal learning problem
proposed in (Huang et al., 2021) Denote the M -modality input space as X = X1 × X2 × . . .XM

and the target space as Y . Each data point (X1, X2, . . . , XM , Y ) is sampled from an unknown
distribution on X × Y . Our goal is that, based on the random input variables X1, X2, . . . , XM from
M modalities, we would like to infer the target Y . In classification tasks, Y is a discrete random
variable, while in regression tasks Y is continuous. For instance, considering audio-visual action
recognition (Gao et al., 2019; Feichtenhofer et al., 2016a), let X1 be the audio part and X2 be the
frames of a video clip, and we want to infer the label Y , i.e., what kind of action is performed in the
clip. In the subsequent analysis, we will focus on the common case M = 2 (Feichtenhofer et al.,
2016a) for simplicity, and we denote the two modalities as X ∈ X and Z ∈ Z respectively. Notice
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that our analysis and results can be extended to cases with more than two modalities at the expense of
notations.

Complementary information. Now we define the complementary information in the following,
which is essential through our theoretical analysis.
Definition 1 (complementary information). For input variables X , Z and the target Y , define the
complementary information provided by X , Z as follows

ΓX,Y = I(X;Y |Z)

ΓZ,Y = I(Z;Y |X)

When the target is clear from the context, we omit the Y in the subscript.

Mathematically, I(X;Y |Z) represents the information in the target Y that is accessible for X but
not predictable for Z. Thus ΓX can characterize the unique label information owned by modality X ,
and similarly for ΓZ . Hence ΓX together with ΓZ can determine the complementarity of modality X
and Z. Clearly, larger ΓX and ΓZ imply higher complementary information content.

From the standard derivation in information theory, we can obtain the following relation:
I(X,Z;Y ) = ΓX + ΓZ + I(X;Y ;Z) (1)

Previous theoretical analyses of multi-view learning Sridharan & Kakade (2008); Xu et al. (2013);
Tosh et al. (2021) usually adopt the multi-view assumption that each view is redundant in terms of
predicting the target, i.e. ΓX and ΓZ are both small. However, this assumption does not always hold
in the multi-modal learning setting Antol et al. (2015). In the following subsections, we will show
how the complementary information ΓX and ΓZ affect the model robustness in missing modality and
noise settings. Motivated by this theoretical observation, we will propose a metric to evaluate the
modality complementarity and a pipeline for calculation in Section 4.

Bayes error rate. We introduce the Bayes error rate Fukunaga & Hummels (1987) to measure the
model performance, which is the lowest possible error for any arbitrary classifier or predictor from
the multiple modalities to infer the target. Formally, given two modalities X and Z, the multi-modal
Bayes errors for classification Pec and regression Per are defined as follows:

Pec := Ex,z∼PX,Z
[1−max

y∈Y
P (Y = y|x, z)]

Per := Ex,z,y∼PX,Z,Y
[(y − E[Y |x, z])2]

The Bayes error rate helps us focus on the interconnection among modalities X , Z and target Y in
each multi-modal task and omit other factors’ effects on model robustness, e.g. dataset size, training
routines, and network architectures.

3.2 MISSING MODALITY

We first consider the missing modality scenario and assume modality Z is missing w.l.o.g.. Then the
Bayes error rates for missing modality, denoted as PMiss

ec and PMiss
er become

PMiss
ec = Ex∼PX

[1−max
y∈Y

P (Y = y|x)]

PMiss
er = Ex,y∼PX,Y

[(y − E[Y |x])2].
Now we establish the following theoretical guarantees to quantify differences between the Bayes
error rate of multi-modal and missing-modality.
Theorem 3.1. For random variables X,Z and discrete random variable Y , we have

H(Y |X,Z)− log 2

log |Y |
≤ Pec ≤ 1− exp(−H(Y |X,Z)) (2)

H(Y |X,Z) + ΓZ − log 2

log |Y |
≤ PMiss

ec ≤ 1− exp(−H(Y |X,Z)− ΓZ) (3)

For continuous random variable Y , if we further assume that Y takes value in [−1, 1], then we have

PMiss
er − Per ≤

1

2
ΓZ (4)
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Remark 1. The gap between PMiss
ec (best model performance in modality missing setting) and Pec

(best model performance in normal setting) reflects the best model robustness against modality
missing. For the classification task, when ΓZ = 0, i.e., there is no complementary information of
Z, the information from Z can be covered by the information from X for predicting Y . In this case,
the PMiss

ec shares the same lower and upper bound with Pec , so the performance of the best model
would not be affected by modality missing. As the ΓZ increases, the bounds for PMiss

ec rise, while the
bounds for Pec is fixed, indicating that the best model performance drops under modality missing, i.e.
the robustness decays. Considering the extreme case when ΓZ is large enough, the lower bound of
PMiss
ec is greater than the upper bound of Pec , so the missing modality performance is provably worse

than normal performance.
Remark 2. For the regression task, the closer PMiss

er and Per are, the robust the best model is. From the
result above, the gap between two Bayes optimal predictors is bounded above by the complementary
information, hence increased by ΓZ . So the model robustness under modality missing is worsened
along with the increase of ΓZ .

3.3 SINGLE NOISY MODALITY

The modality corrupted by noise is another situation that we often encounter in practice, e.g., the
foggy weather results in noisy RGB images in autonomous driving. In this section, we study the
case that one of the modalities has additional noise, which can be easily extended to the case that
all modalities are noisy at the expense of notations. Formally, we consider that Gaussian noise N is
added to the input modality Z (Zheng et al., 2016; Kim & Ghosh, 2019b). We use RN (Z) = Z +N
to denote the modality Z after adding Gaussian noise. By (Cover, 1999) we can obtain the following
characterization for the mutual information between Z and RN (Z)

Proposition 1. If Z,N ∈ R, assuming that 0 < E[Z2] ≤ pZ , N ∼ N (0, σ), and N is independent
of Z, then we have

I(Z;RN (Z)) ≤ 1

2
log(1 +

pZ
σ
) (5)

Remark 3. When the noise is heavy, i.e., the σ is large, the upper bound of I(Z;RN (Z)) decays,
indicating that it is harder to recover Z from RN (Z) and thus harder to infer Y from RN (Z). When
the noise becomes very heavy, I(Z;RN (Z)) will be near zero and RN (Z) is close to pure Gaussian
noise, as if the modality Z is missing, which suits our intuition. In this extreme case, we can refer to
the analysis in section 3.2.

In this setting, the Bayes error rate for classification denoted as PNo
ec can be written as:

PNo
ec = Ex,z∼PX,Z

[1−max
y∈Y

P (Y = y|x,RN (z))]

Then we can provide the lower bound for PNo
ec .

Theorem 3.2. For random variables X,Y, Z,N , if E[Z2] ≤ pZ , N ∼ N (0, σ), then

PNo
ec ≥

H(Y |X,Z) + ΓZ + I(X;Y ;RN (Z))− 1
2 log(4 +

4pZ

σ )

log |Y |
(6)

Remark 4. Similar to the analysis in modality missing setting, the gap between PNo
ec (best model

performance in noisy modality setting) and Pec (best model performance in normal setting) reflects
the best model robustness against noisy modality. For the classification task, the lower bound of PNo

ec

increases as ΓZ or σ increases. Since the bounds of Pec are fixed, the gap between PNo
ec and Pec

becomes larger, and the model robustness under noisy setting is worse. Therefore, if the ΓZ is larger,
the best predictor become more vulnerable to the added noise.

4 METRIC

In this section, we propose a dataset-wise metric based on the complementary information to quantify
the modality complementarity. We also bring our metric to practical use by leveraging the existing
mutual information estimator, Mutual Information Neural Estimator (MINE) (Belghazi et al., 2018).

5



Under review as a conference paper at ICLR 2023

Modality 1

Modality 2

Feature Extractor 1

Feature Extractor 2

Pre-trained
Network 1

Pre-trained
Network 2

Feature 1

Mutual Information Estimator

One-hot Label

𝑻𝜽

Update by 𝑳(𝜽)

MLP

Middle-fusion

Feature 2

Figure 2: Pipeline to calculate the metric: First extract the features of the input data from two modal-
ities by pre-trained models. Then apply the MINE to estimate the mutual information I(Z;Y,X),
I(X;Y,Z), or I(X;Z).

4.1 METRIC DESIGN

From the above analysis, it is natural to use ΓX + ΓZ as the metric since they represent how much
complementary information the modalities X and Z can provide exclusively about the target Y .

However, ΓX + ΓZ is not enough for comparing among datasets. According to equation 1, the same
amount of ΓX +ΓZ could indicate different situations if the total information I(X,Z;Y ) is different.
Therefore, to make the metric comparable among datasets, we need to perform normalization by
dividing it with I(X,Z;Y ), written as

ΓX + ΓZ

I(X,Z;Y )

Now, our metric becomes the “proportion” of ΓX + ΓZ in I(X,Z;Y ). When our metric is large,
the modalities are more complementary to each other and more indispensable for the task. Note that
this “proportion” could be greater than 1 because I(X;Y ;Z) = I(X,Z;Y ) − ΓX − ΓZ may be
negative. This happens when Z (or X) greatly increases the correlation strength between X (or Z)
and Y . Without Z (or X), the other modality becomes nearly uncorrelated with the target Y . Hence,
when the metric is greater than 1, it can still reflect the modality complementarity and reveals more
about the interconnection between the modalities and the target.

4.2 CALCULATION

Now we consider how to calculate our metric. ΓX and ΓZ are in the form of conditional mutual
information and could not be computed directly. We notice that

ΓZ = I(Z;Y |X) = I(Z;Y,X)− I(Z;X)

ΓX = I(X;Y |Z) = I(X;Y,Z)− I(X;Z)

So we transform the metric into
ΓX + ΓZ

I(X,Z;Y )
=

I(X;Y,Z) + I(Z;Y,X)− 2I(X;Z)

I(X,Z;Y )

Additionally, considering that most real-world datasets roughly satisfy the realizability assumption,
i.e., there exists a function in the hypothesis space that can predict Y given X and Z with zero
population risk, we could approximate I(X,Z;Y ) = H(Y )−H(Y |X,Z) with H(Y ) because the
second term is close to zero. H(Y ) is easier to compute given the distribution of Y , especially when
we focus on the classification task with discrete labels.

For each mutual information term with the form I(A;B), we design a two-phase pipeline for
computation (See Figure 2):

• In the first phase, we reduce the dimension of the high-dimensional input A and B to
accelerate the computation by pre-trained feature extractors. The pre-trained models are
shared among the calculation of all three terms.
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• In the second phase, we use the extracted features as inputs for MINE (Belghazi et al.,
2018) to compute the mutual information. Specifically, we calculate the value through
optimization converging to a lower bound of the mutual information. For each iteration,
we sample an m-sample batch {(a(i),b(i))}mi=1 from the joint distribution P (A,B) and an
m-sample batch {b′(i)}mi=1 from the marginal distributions P (B). Denote the estimator
network as T and its parameters as θ. We evaluate the lower bound L as follows and the
moving average of gradients of L(θ) for updating the network parameters.

L(θ) =
1

m

m∑
i=1

Tθ(a
(i),b(i))− log(

1

m

m∑
i=1

exp(Tθ(a
(i),b′(i))))

We adjust the original MINE by adding the following trick: The calculation of I(X;Y, Z)
and I(Z;Y,X) involve the target Y , so we concatenate the one-hot encoding label with
the extracted feature in a middle-fusion fashion and ensure that the estimator network T
could combine the two information sources. For more details, please see the supplementary
material.

We believe that modality complementarity is crucial to the analysis of multi-modal robustness.
Without controlling this factor, we cannot fairly compare experimental results on various multi-
modal datasets, and thus we cannot derive a universal conclusion on multi-modal robustness. By
calculating our metric on multi-modal datasets, we will better understand their difference in modality
complementarity, leading to less biased comparisons and conclusions.

5 EXPERIMENTS

We conduct experiments to verify the validity of our analysis and the effectiveness of our pipeline.
We first introduce the training and testing settings and then show the results on the synthetic
dataset, Additive AV-MNIST dataset, and real-world datasets. Unless otherwise specified, the
missing/noise/adversarial robustness mentioned in the following subsections refers to the average
accuracy under two sources of missing/noise/adversarial attack, divided by the model accuracy in the
clean setting. For more detailed settings and results, please see the Appendix B and C.

Training setting. We use an MLP as the estimator. For different datasets, the structure of the MLP
varies to match the input size. We train the estimator on the training set since in reality we only
have access to it, and we assume that the validation set is i.i.d. sampled from the same distribution
as the training set. For the pre-trained feature extractors, we use Resnet18 (He et al., 2015) and
AudioNet (1-D CNN) (Tian & Xu, 2021) for Kinetics-Sounds and AVE, LeNet5 (LeCun et al., 1998)
and an 2-D CNN for AAV-MNIST, and Resnet152 (He et al., 2015) and BERT (Devlin et al., 2019)
for Hateful-Meme dataset. For the models tested for robustness, we use late fusion models for
AVE, Kinetics-Sounds, and AV-MNIST, and we apply MMBT (Kiela et al., 2019) for Hateful-Meme
dataset.

Test setting. We test the model robustness under two settings discussed above: missing modality and
single noisy modality. We also explore the model robustness under adversarial attack. For the missing
image or audio, we substitute them with the average of all inputs in the training set. For the missing
text, we use a blank sentence <SOS><EOS> as the input. Note that the inputs are all scaled to the
range [−1, 1] (spectrogram) or [0, 1] (image). For noisy image and audio, we add a Gaussian noise
N ∼ N (0, 0.5) to each dimension. For noisy text, we replace each word by a random word with a
probability 0.5. For adversarial attack on image and audio, we use FGSM (Goodfellow et al., 2014)
with step size ϵ = 0.03. We use the results of missing text for adversarial text.

5.1 SYNTHETIC DATASET

We first test our analysis on a well-designed synthetic dataset since we can adjust the degree of
its modality complementarity. Inspired by previous work (Hessel & Lee, 2020) and (Huang et al.,
2021), we generate a set of synthetic data (x, z, y). First, we sample random projection PX ∈ Rd1×d,
PZ ∈ Rd2×d, and P ∈ Rd×d from a uniform distribution U(−0.5, 0.5). Then we repeat following
steps:1

1We sample 5000 data points with 80/20 train/val split and ⟨d, d1, d2, δ⟩ = ⟨50, 200, 100, 0.25⟩.
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Figure 3: Two line plots showing the mean value of estimated metric (blue line) with error bars
(standard variances) of three independent repeated experiments and tested robustness (orange line)
on the synthetic dataset (left) and AAV-MNIST dataset (right). The x-axis is the parameter used
in data generation. For the synthetic dataset, we plot α. For AAV-MNIST, we plot −σ for unity.
As the overlap of two modalities becomes larger, they are less complementary and our metric
correspondingly goes down. Meanwhile, the tested robustness increases in all three settings. The
variance and trend of each mutual information term can be found in the supplementary material.

Step 1. Sample x, z ∈ Rd ∼ N (0, 1).
Step 2. Set z ← (1− α)z + αx; Then do projection z ← Pz.
Step 3. Normalize x, z to unit length; if |x · z| ≤ δ, return to the Step 2.
Step 4. Generate the label y: If x ·z > 0, then y = 1; else y = 0. Return the tuple (PXx, PZz, y).

The α used in data generation controls the overlap between the two modalities X,Z. When α = 0,
the modalities are independent and complementary in predicting the label Y . When α = 1, they
are redundant for prediction. Viewing the synthetic dataset with different α as different datasets,
we calculate our metric using the pipeline in section 4 and test the robustness of simple two-layer
perceptron neural networks 2 trained on these datasets. The results are shown in the plot 3. In each
dataset, our pipeline can estimate the proposed metric and quantify the complementarity of the two
modalities. Further, the model robustness decreases as the complementarity increases, which verifies
our analysis.

5.2 ADDITIVE AV-MNIST

To show that our pipeline can effectively estimate the modality complementarity of more complex
datasets, we further design a toy dataset named Additive AV-MNIST (AAV-MNIST) adapted from
the AV-MNIST dataset (Vielzeuf et al., 2018). The modality complementarity can be controlled
by a parameter σ in the data generation process. Below, we show how to generate AAV-MNIST
dataset from the original AV-MNIST dataset. The following steps are repeated for every image i in
AV-MNIST:

Step 1. Let x be the label of i. Sample δ ∈ R ∼ N (0, σ) and round δ to the nearest integer.
Step 2. Set y ← (x+ δ) mod 10. Uniformly sample a spectrogram s from all spectrograms in

AV-MNIST with label y.
Step 3. Calculate the new label t← (x+ y)/2. Round t to the nearest integer. Return the tuple

(i, s, t).

The AAV-MNIST dataset is an extension of AV-MNIST dataset. When σ = 0, AAV-MNIST dataset
is equivalent to AV-MNIST dataset where each image and its paired spectrogram represent the same
number. As σ increases, each image become less correlated with its paired spectrogram, so they
become more complementary for predicting the label t.

We show in the plot 3 that our metric reflects the complementarity of the AAV-MNIST dataset with
different σ, indicating that our pipeline is effective in more complex settings beyond the synthetic

2Each achieves accuracy > 96% on corresponding validation sets. The neural network structure and more
training settings can be found in the supplementary materials.
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Dataset Our metric Clean Missing Noisy Adversarial

AAV-MNIST(σ = 2.0) 0.9212 0.6435 0.3368 0.5399 0.1612
Hateful-Meme 0.2403 0.3249 0.1005 0.5171 0.3144

AV-MNIST 0.0490 0.9969 0.5666 0.6478 0.6012
Kinetics-Sounds 0.0455 0.6387 0.5540 0.6098 0.2672

AVE 0.0126 0.7637 0.4838 0.5831 0.3355

Table 1: Our estimated metric and tested robustness of real-world datasets: Kinetics-Sounds, AVE,
AV-MNIST, and Hateful-Meme. Since the Hateful-Meme Challenge is a binary classification task, we
use F1 score for evaluation instead of accuracy. We also provide results in clean setting for reference.

dataset. Further, the robustness in the three settings verifies our conclusion that with other conditions
unchanged, the more complementary the modalities are, the less robust the best model will be.

5.3 REAL-WORLD DATASETS

Now we apply our pipeline to real-world datasets to investigate their modality complementarity. Our
results on AVE (Tian et al., 2018), Kinetics-Sounds (Carreira & Zisserman, 2017; Arandjelovic &
Zisserman, 2017), and Hateful-Meme dataset (Kiela et al., 2020a) are shown in the table 1. The
details of these datasets are described in the Appendix B. We also list results on the AV-MNIST
dataset and AAV-MNIST (σ = 2.0) for reference.

The low value in our metric of AVE, Kinetics-Sounds, and AV-MNIST indicates that they possess
relatively little modality complementarity, revealing the heavy redundancy between the two modalities.
On the contrary, the modalities in the Hateful-Meme dataset are more complementary. This finding
suits our intuition: In the Hateful-Meme dataset, altering the paired text of an image probably changes
the label (Kiela et al., 2020b). Hence, only perceiving the image would not derive the right answer.
For the event classification task defined by Kinetics-Sounds or AVE, the audio and frames both lead
to a rough answer.

The tested robustness demonstrates how the modality complementarity affects model robustness.
The missing case affects AAV-MNIST(σ = 2.0) and Hateful-Meme far more than the other three
datasets. They are also more vulnerable in single source noisy case than other datasets. Hence, to
compare model robustness among these datasets, we should take modality complementarity into
account. For instance, we only compare robustness among datasets with a similar degree of modality
complementarity, or we can normalize the results by our metric. We show an analysis of the existing
measure of modality missing robustness by applying our metric in the Appendix C.3.

Furthermore, the model robustness, especially the adversarial robustness, is also affected by factors
other than modality complementarity. For instance, the model adversarial robustness of AVE and
Kinetics-Sounds dataset is significantly lower than that of AV-MNIST dataset. We conjecture that
this is related to the number of robust features in each modality of the datasets, which requires future
work to confirm.

6 CONCLUSIONS

In this work, we partly explain the contradiction in previous conclusions on multi-modal robustness by
pointing out the importance of the modality complementarity through information-theoretical analysis
and carefully-designed experiments. As a reflection of modality interconnection, our proposed metric
provides a basis for better understanding various multi-modal datasets/tasks and can be used beyond
analyzing multi-modal robustness.

REPRODUCIBILITY STATEMENT

We provide the source code and configuration for the key experiments, including instructions on
generating data, training the models, and evaluating the robustness. We thoroughly checked the code
implementations and empirically verified the effectiveness of our method. All proofs are stated in the
appendix with explanations and underlying assumptions.
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