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ABSTRACT

Although machine learning algorithms have achieved state-of-the-art status in
image classification, recent studies have substantiated that the ability of the models
to learn several tasks in sequence, termed continual learning (CL), often suffers
from abrupt degradation of performance from previous tasks. A large body of CL
frameworks has been devoted to alleviating this forgetting issue. However, we
observe that forgetting phenomena in CL are not always unfavorable, especially
when there is bias (spurious correlation) in training data. We term such type of
forgetting benign forgetting, and categorize detrimental forgetting as malignant
forgetting. Based on this finding, our objective in this study is twofold: (a) to
discourage malignant forgetting by generating previous representations, and (b)
encourage benign forgetting by employing contrastive learning in conjunction with
feature-level augmentation. Extensive evaluations of biased experimental setups
demonstrate that our proposed method, Learning without Prejudices, is effective
for continual unbiased learning.

1 INTRODUCTION

In continual learning (CL), a model learns a sequence of tasks to accumulate existing knowledge
for a new task. This is preferable in practice, where a model cannot retrieve previously used data,
owing to privacy, limited data capacity, or an online streaming setup. The main challenge in CL is to
alleviate "catastrophic forgetting,” whereby a model forgets prior information while training on new
information (McCloskey & Cohen, 1989). A line of recent works has been dedicated to mitigating
this issue. Regularization-based methods force a current model not to be far from the previous one by
penalizing changes in the parameters learned in previous tasks (Kirkpatrick et al., 2017; Chaudhry
et al., 2018; Aljundi et al., 2018; 2019a; Ahn et al., 2019; Dhar et al., 2019; Douillard et al., 2020).
Replay-based methods store samples of prior tasks in a buffer and employ them along with present
samples (Robins, 1995; Lopez-Paz & Ranzato, 2017; Buzzega et al., 2020; Aljundi et al., 2019b;
Mai et al., 2021; Lin et al., 2021; Madaan et al., 2021; Chaudhry et al., 2021; Bonicelli et al., 2022).
Generator-based methods generate prior samples and input them into current tasks (Shin et al., 2017;
Kemker & Kanan, 2017; Xiang et al., 2019; Ostapenko et al., 2019; Liu et al., 2020; Yin et al., 2020).

A common assumption of the above-mentioned existing methods is that the training dataset is well-
distributed. However, a source dataset is often biased, and a machine learning algorithm could
perceive the bias as meaningful information, thereby leading to misleading generalizability of the
model (Kim et al., 2019; Jeon et al., 2022). In the experiment in Section 3.1, we show that biased
distributions are detrimental to the robustness of models in existing CL scenarios. Thus, we propose
a new type of CL, termed "continual unbiased learning (CUL)", in which the dataset of each task has
a different bias. With CUL, we aim to make any model trained on any task unbiased, considering
all models as candidates for application. This is particularly desirable in practice, whereby a model
designed for a specific purpose is deployed for long periods and training datasets with divergent
distributions are fed sequentially to update the model.

*Equal contribution
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Even with CUL, forgetting past information ("malignant forgetting") degrades the generalizability of
a model. For instance, with Biased MNIST in Figure 1, the classifier perceives color as meaningful
information for prediction, although it is not a natural meaning associated with the number. If the
model clearly memorizes prior information that there are (red, 0) and (gray, 0) samples, it could know
that color is not the key factor for predicting numbers. Furthermore, we observe that forgetting is
not always malignant through the experiment in Section 3.2. Although information (derived from
prior data) itself can contribute to a model’s generalizability, it is beneficial to forget the misguidance
learned from biased datasets, and hence we term such a forgetting "benign forgetting". As an example,
suppose a classifier trained on the MNIST dataset is extremely biased toward the background color,
as in Section 3.2. It is unfavorable for the classifier to make a logic that color = number and thus
bet all the ‘blue’ images on ‘3’, for instance.
Therefore, we aim to discourage malignant forgetting and encourage benign forgetting. Toward this,
we design a novel method, named Learning without Prejudices (LwP), which employs
feature generator and contrastive learning. (i) Inspired by the research in Section 3.1 that the model
trained with a set of data from all the tasks does not suffer from malignant forgetting, we exploit the
capabilities of a feature generator. The feature generator generates feature maps containing previous
information via a generative adversarial network (GAN). Feature maps provide a larger range of
feature space (to be referenced to) than images, making the classifier more robust. (ii) The generated
features are fed into the model by contrastive learning (Grill et al., 2020), and then current data
are used for training in supervised mode. Because bias means a spurious correlation between some
particular attribute variables and label space, the model can learn representations free of bias, with
self-supervised learning that does not require labels. (iii) To optimize the classifier with generated
features effectively, we propose feature-level augmentation that spatially and channel-wise transforms
features. An extensive evaluation of biased datasets shows that our proposed framework is effective
for CUL. The main contributions of this study are summarized as follows:

• We present a novel framework, termed "continual unbiased learning", to address bias in
CL. Additionally, we propose continual unbiased learning benchmarks and an evaluation
protocol for future research.

• We find that forgetting phenomena in CL is not always catastrophic when the training dataset
exhibits the non-uniform distribution of features, e.g., a biased dataset, and hence categorize
them into malignant forgetting and benign forgetting.

• We propose a novel method, Learning without Prejudices (LwP), that em-
ploys a feature generator and contrastive learning, presenting feature-level augmentation to
bridge them. LwP contributes to models’ generalizability significantly.

2 PRELIMINARIES

2.1 PROBLEM STATEMENT

Bias. Let X be an input space and Y be a label space. We define an attribute variable attr as
an informative data feature of x ∈ X , possibly ranging from fine details (e.g., the pixel at (0, 0)
is black) to high-level semantics of the image (e.g., there is a cat). Thus, a set of attributes can
represent data x. Formally, let A be an attribute space and α : X → 2A, where 2A denotes
the power set of A. A function α extracts attribute variables attr ∈ A from input space X , i.e.,
α(x) = {attr1, attr2, . . . , attrn}. Among these attr, some might be very correlated to Y while
they are irrelevant to the natural meaning of the target object. We define this attr as "bias". As
machine learning algorithms (e.g., convolutional neural networks (CNNs)) are overly dependent on
training data distribution, the model could be biased, potentially leading to misleading generalizability
(Torralba & Efros, 2011; Tommasi et al., 2017; Jeon et al., 2022). For instance, according to Bahng
et al. (2020), the majority of frog images are captured in swamp scenes and many bird images are
captured in the sky, making the model consider the background as a dominating cue that often fails to
infer (frog, sky) and (bird, swamp) images correctly.

Continual learning. Consider a dataset D = {(x, y)|x ∈ X , y ∈ Y} for a classification problem.
"continual learning" is a learning type with a sequence of DS = {Dt = (Xt,Yt)}Tt=1 where each Xt

and Yt implicitly changes, expecting that f : Xt → Yt accumulates previous information without
forgetting while learning new tasks. Here, T means the number of tasks. A task t is predicting the
target label y with unseen feature variable x and learning a task means the procedure of optimizing a
classifier f : Xt → Yt with Dt to make a discriminative logic.
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Figure 1: Our experimental setup. (a) Biased MNIST. At each task, we change the bias (background
color) sliding each one by +1 for the label (0-9), and the color corresponding to 9 moves to 0. (b)
Distorted test set D̃S . We randomly choose pixels of α ratio on a single-colored image and then paint
them to ‘white’ setting α as the average ratios of all the number pixels, which are represented by
‘white’, in the MNIST. A more detailed dataset configuration is provided in the Appendix.

Continual unbiased learning. In addition to CL, we suppose Y1 = · · · = YT and each Dt has a
different bias. We aim at making the classifier f unbiased toward any of Dt in the sequence, and
term such type of learning as "continual unbiased learning". In practice, inconsistent distributions
with different biases could be fed over time for a model that is applied for long periods for the same
purpose. In this scenario, it is desirable for the model to be unbiased toward any of the datasets
encompassing all of these domains.

2.2 EVALUATING PROTOCOL AND METRICS

We set a bias attribute and define a dataset that has biases as a "biased dataset" and a dataset in which
the bias attribute is uniformly distributed across the labels as an "unbiased dataset". We randomly
split each biased dataset Dt = (Dtrain

t ,Dval
t ) ∈ DS into train and validation set to have the same

ratio of biased samples. We use one unbiased test data Dtest for evaluation. And, we define ft as the
model trained with {Dtrain

t }Tt=1 sequentially and denote F = {f1, · · · , fT }.
After training the model with a sequence of the differently biased datasets in favor of one attribute or
another, we evaluate its average accuracy following the conventional CL protocol: Acc(fT ,Dval

S ) =
1
T

∑T
t=1 acc(fT ,Dval

t ), where T denotes the number of tasks and acc(fT ,Dval
t ) denotes the accuracy

of the T -th model on the t-th task of the biased evaluation set. Additionally, we suggest an average
unbiased accuracy for an unbiased test set whenever each task is trained to estimate the generalizability
of all the models: Accub(F ,Dtest) = 1

T

∑T
t=1 acc(ft,Dtest), where acc(ft,Dtest) denotes the

accuracy of ft with unbiased test dataset. Using this metric, we can evaluate F = {f1, · · · , fT },
considering every model as a candidate for deployment.

3 MOTIVATING EXPERIMENTS

3.1 CONTINUAL LEARNING ON BIASED DATASETS

As a first step toward CUL, we investigate the learning tendency of a CNN-based classifier on biased
datasets. We exploit biased MNIST (Bahng et al., 2020) toward background color, as shown in Figure
1. The unbiased test set has a uniform distribution for background color overall targets. Using the
biased MNIST, we compare the average unbiased accuracy of the models trained with biased datasets
∪1≤t≤T (Dt) simultaneously, and in the sequence {D1, · · · ,DT }. Figure 2 (a) shows a significant
performance gap between these two learning scenarios. We suggest that this is because the prior
information is forgotten, e.g., although the model refers to (red, 0) in the first task, it still makes a
biased decision that gray = 0, considering only the (gray, 0) samples in the second task. We term
this type of forgetting "malignant forgetting".

3.2 A CLOSER LOOK AT FORGETTING

Setup. With our motivation for the study being that a classifier could learn unintended information
in biased conditions, hence forgetting such logic being desirable, we further conduct another moti-
vating experiment. We additionally construct shape-absent color images and their label (x̃, y) ∈ D̃
to investigate the model’s adaptability to a sequence of biased sets. The distorted dataset D̃ is
shown in Figure 1 (b). We estimate the benign forgetting rate (BFR), which quantifies the model’s
generalizability by calculating the forgetting rate of the previous biased logic during the training of
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Figure 2: Motivating experiments. (a) Investigation for CUL. Each line in the graph means the
performance of vanilla CNN for a sequence of Biased MNIST tasks with several different biased
degrees β. Biased degree β denotes the percentage of biased images in the dataset meaning ‘0.1’ as
an unbiased set with uniform distribution and ‘1’ as a completely biased one. We train all the tasks
from 1 to 10 concurrently and then represent its Accub by red line indicating the upper bound. (b)
Benign forgetting rate of models. We estimate BFR for the conventional CL model, the baseline, and
our model (LwP).

new biased tasks. With all the models F and all the datasets D̃S = {D̃1, · · · , D̃T−1}, BFR B(F , D̃S)
can be defined as

B(F , D̃S) =
1

T − 1

T−1∑
t=1

acc(ft, D̃t)− acc(ft+1, D̃t)

acc(ft, D̃t)− 1
n(Yt)

, (1)

where acc(ft, D̃t) denotes the accuracy of ft ∈ F for D̃t, and D̃t is the augmented images having
the same correlation between the background and target labels as the original colored MNIST
samples Dt. The function n(Yt) denotes the number of target labels, displaying 10 for MNIST
(0-9). Intuitively, the performance distance acc(ft, D̃t) − 1/n(Yt) is the degree of the model’s
dependence on the bias attribute (color) for predicting Yi because there is only ‘color’ information
in D̃t (Note that 1/n(Yt) is the lower limit of the model’s discrimination, meaning ft takes a guess
with unclear confidence). Thus, for the numerator acc(ft, D̃t)− acc(ft+1, D̃t) with offset 1/n(Yt),
if the classifier ft+1 still sustains the biased logic of ft (e.g., red = 0, . . . , grey = 9 for f1 in Figure
1), the difference acc(ft, D̃t)− acc(ft+1, D̃t) ≈ 0, whereas acc(ft, D̃t)− acc(ft+1, D̃t) increases
towards 1 otherwise. Denominator acc(ft, D̃t) − 1/n(Yt) is the scaling factor. This is because if
the model is relatively unbiased and thus acc(ft, D̃t) is initially small, the numerator takes a penalty,
making acc(ft, D̃t) − acc(ft+1, D̃t) small (and B(F , D̃S) becomes small), even though it forgets
the biased logic well.

We set the baseline using a simple CNN model and compare it with conventional CL models,
regularization-based (Kirkpatrick et al., 2017; Li & Hoiem, 2017), generator-based (Shin et al., 2017;
Liu et al., 2020; Smith et al., 2021) methods. We calculate Accub and B(F , D̃S) with β = 0.95.

Forgetting is not always malignant. First, by performing the experiment displayed in Figure 2
(b), we find that the BFR and generalization on biased datasets have a correlation; meaning that
forgetting is not always catastrophic. Confirming our assumption that forgetting previous biased
logic is preferable in CUL, we define such forgetting as "benign forgetting". Second, it is notable
that conventional CL methods are limited to CUL with insufficient BFR on biased MNIST, and
unsatisfactory accuracy on the unbiased test set, even when compared to the baseline. This is because
they are designed only to mitigate malignant forgetting and hence cannot adequately utilize benign
forgetting.

4 METHODOLOGY

We discourage malignant forgetting by generating previous representations and encourage benign
forgetting via contrastive learning. Although feature generator (Liu et al., 2020) and contrastive
learning (Cha et al., 2021; Fini et al., 2022) are dedicated to CL, we first employ both of them,
proposing feature-level augmentations to bridge the two methods. Additionally, we qualitatively and
quantitatively suggest that these methods are effective for CUL.
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4.1 DISCOURAGING MALIGNANT FORGETTING

Let f : X → Y be a classifier with L layers. For 1 ≤ l < L, classifier f can be split into
three sub-modules as f = {f[1,...,l], f[l+1,...,L−1], f[L]}, where [·] denotes the indices of the layers
included in the sub-modules. For convenience, we denote f[1,··· ,l] as fa and f[l+1,··· ,L−1] as f b, i.e.,
f = {fa, f b, f[L]}.
To address malignant forgetting, we intend to make the latent feature vector of l-th layer v ∈
RH×W×C that include prior information. Following the adversarial training of the GAN (Gulrajani
et al., 2017), we train (feature) generator G : Z → RH×W×C that maps the noise vector z ∼ Pz into
RH×W×C , and discriminator D : RH×W×C → [0, 1] that distinguishes real samples from Pr and
fake samples G(z). Thus, with fake features vf := G(z) and real features vr ∈ RH×W×C := fa(x),
feature generator G and discriminator D are optimized by

min
G

max
D

Ex∼Pr
[D(fa(x))]− Ez∼Pz [D(G(z)]. (2)

With G trained with prior tasks, f b receives both vr (current) and vf (previous) as input and hence
can memorize previous knowledge, i.e., discouraging malignant forgetting. When generating fake
images and inputting them as Shin et al. (2017); Kemker & Kanan (2017); Xiang et al. (2019);
Ostapenko et al. (2019), because they are only 3-channel aggregated features, the classifier may be
confused if the generator does not work well. However, the generated feature maps have a larger
range of feature space, providing the classifier with more information to be utilized selectively (please
consult the comparison experiment in the Appendix.). This is favorable for CUL because a biased
classifier results when the model is overly dependent on a certain few features, especially the bias
attribute variable.

4.2 ENCOURAGING BENIGN FORGETTING

To train f b, we apply bootstrap your own latent (BYOL) contrastive learning (Grill et al., 2020)
because the generator G does not provide target labels for fake features. Although pseudo-labels
can be obtained through a discriminator (Shin et al., 2017), auto-encoder-based generators (Kemker
& Kanan, 2017), or conditional GANs (Xiang et al., 2019; Ostapenko et al., 2019), under biased
conditions, few mislabeled samples could cause a large degradation in performance. Furthermore,
bias is fundamentally based on the correlation between label and attribute space. Thus, label-free
contrastive learning encourages the classifier to make representations independent of bias and hence
to be robust for bias by forgetting the biased logic, i.e., encouraging benign forgetting.

Following the two network designs of BYOL, let gonlineθ := {f b
θ , pθ, qθ} and gtargetξ := {f b

ξ , pξ}
be the online and target networks, where p, q denote additional embedding layers and θ, ξ are the
parameters of the online and target networks, respectively. The embedding layers p encode v and q
receives the output of p as input. We aim to train our objective network, gonlineθ , by learning to predict
the representations made by gtargetξ , i.e., knowledge distillation. The f b

ξ and pξ networks have the
same architecture as f b

θ = f[l+1,...,L−1] and pθ, respectively, but with different weight parameters ξ.

Since augmentations of input image space are not directly applicable in the feature space due to
distribution shift, we propose feature-level augmentation. For a given feature vector v, the transformed
features v′ = Dropout(v+ϵ′, γ) and v′′ = Dropout(v+ϵ′′, γ), where ϵ′, ϵ′′ ∈ RH×W×C sampled
from N (µ,Σ) are Gaussian noise vectors with the same shape as the feature v, and γ is the dropout
ratio. By adding noise vectors, the feature v is augmented spatially because adjacent pixels of
feature maps contain spatial information and are closely correlated. And, we apply the channel-wise
dropout technique (Tompson et al., 2015), which means channel-wise sampling of feature maps. With
augmented features v′ and v′′, contrastive loss can be formulated as:

Lcontra
θ,ξ (v′,v′′) :=

∥∥∥∥ gθ(v
′)

||gθ(v′)||
− gξ(v

′′)

||gξ(v′′)||

∥∥∥∥2 , (3)

where || · || denotes L2-norm. For the real and fake features, we optimize the online network gθ using
the contrastive loss Lcontra

θ,ξ (v′
f ,v

′′
f ) + Lcontra

θ,ξ (v′
r,v

′′
r ). The target network gξ is updated via the

moving average technique expressed as τξ + (1− τ)θ, where 0 < τ < 1 denotes the increase in the
target decay rate during training to adjust the weight updating ratio between gonlineθ and gtargetξ . After
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contrastive learning, only f b
θ is used in conjunction with fa and f[L]. Then, we train the classifier f

by cross-entropy loss with samples of the current task in supervised mode. The overall procedure for
the proposed approach is presented in Algorithm 1.

Algorithm 1: LwP: Learning without Prejudices

Inputs : Datasets for T tasks {Dt = (Xt,Yt)}Tt=1, classifier f = {fa, f b, f[L]}, online network
gonlineθ , target network gtargetξ , dropout ratio γ, target decay rate τ , Pz,N (µ,Σ)

1 for t = 1 to T do
2 while not converged do

// Train with GAN
3 (x, y) ∼ (Xt,Yt) and z ∼ Pz // sample real data and noise
4 vr ← fa(x) and vf ← G(z) // obtain real and fake features
5 Optimize G and D by (2) using vr,vf

// Train with Contrastive Learning
6 for v ∈ {vr,vf} do
7 ϵ′, ϵ′′ ∼ N (µ,Σ) // sample noises for augmentations
8 v′ ← Dropout(v + ϵ′, γ) // augment the feature vector
9 v′′ ← Dropout(v + ϵ′′, γ) // augment the feature vector

10 Calculate Lcontra
θ,ξ (v′,v′′) in (3) // calculate contrastive loss

11 θ ← Optimizer(∇θLcontra
θ,ξ (v′,v′′), θ) // optimize only θ and not ξ

12 ξ ← τξ + (1− τ)θ // update ξ by the moving average
13 end

// Train with Classifier
14 Optimize classifier f using CrossEntropy(f(x), y)
15 end
16 end

Output :classifier f

5 EXPERIMENTS

In this section, we experimentally evaluate the proposed method and compare it with several state-of-
the-art models. We used three biased datasets: Biased MNIST (Bahng et al., 2020), Biased CIFAR-10
(Hendrycks & Dietterich, 2019), and Biased CelebA-HQ modified from (Karras et al., 2017).

5.1 DATASETS

For Biased MNIST, we use the experimental setup in Section 3.1 to evaluate the model’s
generalizability. Following the bias planting protocol proposed by Nam et al. (2020), we
create the Biased CIFAR-10. For the types of corruption {Snow, Frost, Fog,Brightness,
Contrast, Spatter, Elastic, JPEG,P ixelate, Saturate}, we set each as a bias corresponding
to the target object. The biases are changed for each task in exactly the same way as the Biased
MNIST, indicating (airplane, snow), (automobile, frost), . . . , (truck, saturate) in the first task, and
(airplane, frost), (automobile, fog), . . . , (truck, snow) in the second task. The unbiased test set
exhibited a uniform distribution of corruption types along the target object. Thereby, the number of
training image samples for each task is 4,000, and the test set has 10,000 images. We set β = 0.85
for Biased MNIST and Biased CIFAR-10. Among the attributes of images in CelebA-HQ (Karras
et al., 2017), we set ‘gender’ as the target label and select ‘makeup’ and ‘hair color’ as the bias of
the first and second task, respectively, because they have a significant correlation with ‘gender’ in
the dataset. We name this sampled dataset as Biased CelebA-HQ. Thus, randomly sampled images
for training are {(HeavyMakeup, Female), (NoMakeup,Male)} and {(BlondHair, Female),
(BlackHair,Male)} for each task, respectively. We additionally set the bias of the third task by
‘hair length’ utilizing the public annotation provided by Jeon et al. (2022); hence, the training set
consists of {(LongHair, Female), (ShortHair,Male)} images. All pairs of (attribute, gender)
for training have 2,000 samples, and the unbiased test set is composed of 100 images to be evenly
distributed. For CelebA-HQ, we do not split biased data for validation because there are not enough
biased pair samples. The detailed distribution of the training and test sets is presented in the Appendix.
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Table 1: Average accuracy Acc and average unbiased accuracy Accub all along the datasets. Base
denotes simple CNN for Biased MNIST and ResNet-18 for Biased CIFAR-10, and Biased CelebA-HQ
without any additional regularization for forgetting or unbiasing. Replay (200) means replay-based
approaches with 200 previous samples buffer. We display the best performance by bold and second
performance by underline. All experiments run on three different random seeds and we report the
means and standard deviations.

Dataset MNIST CIFAR-10 CelebA-HQ
Accub Acc Accub Acc Accub

Continual Unbiased Learning

Base 84.66(±2.41) 89.22(±6.05) 26.58(±0.45) 30.98(±0.41) 74.67(±1.15)

Regularization EWC 68.32(±4.35) 67.56(±2.59) 27.03(±0.68) 31.73(±1.17) 77.33(±1.45)
LwF 83.58(±0.71) 89.95(±1.80) 25.24(±0.57) 27.16(±1.51) 74.56(±0.51)

Generator
DGR 85.04(±1.32) 92.77(±0.16) 28.94(±2.61) 32.08(±7.00) 71.56(±2.87)
GFR 77.50(±2.78) 78.49(±1.90) 29.11(±0.48) 33.95(±1.00) 64.78(±4.07)
ABD 82.78(±1.05) 87.44(±0.72) 29.67(±0.61) 34.40(±0.89) 79.11(±4.17)

Unbiasing LfF 82.48(±2.45) 86.85(±3.89) 25.19(±0.77) 27.50(±2.52) 72.44(±3.34)

LwP (w/o buffer) 91.57(±0.82) 95.58(±0.46) 31.18(±0.29) 35.16(±2.88) 79.78(±1.90)

Continual Unbiased Learning with Replay Buffer

Replay (200)

HAL 82.40(±2.21) 77.08(±9.32) 23.50(±8.00) 26.48(±14.26) 74.56(±4.86)
DER 90.37(±1.33) 95.05(±0.29) 31.07(±0.53) 38.42(±0.64) 75.00(±6.77)

LiDER 89.44(±6.07) 96.88(±0.43) 28.02(±0.48) 30.89(±0.94) 77.44(±2.34)
LwP (w/ buffer) 92.34(±0.55) 96.02(±0.55) 32.06(±0.59) 30.99(±1.38) 80.89(±1.68)

5.2 EXPERIMENTAL SETUP

Competing models. Previous approaches to CL can be categorized into regularization, replay, and
generator-based approaches. We set all the categories on a competing line. We add an unbiasing
method, LfF (Nam et al., 2020), although it is not designed for CL, it can be applied for CUL. Thus,
we compare the proposed method with EWC (Kirkpatrick et al., 2017), LwF (Li & Hoiem, 2017), DGR
(Shin et al., 2017), GFR (Liu et al., 2020), ABD (Smith et al., 2021), HAL (Chaudhry et al., 2021),
DER (Buzzega et al., 2020), LiDER (Bonicelli et al., 2022) and LfF for all the datasets. We do not
consider previous samples during training for a new task in our model design. Because it cannot be
deployed when access to prior data is strictly limited due to privacy problems, e.g., personal medical
or credit information. Nonetheless, for a fair comparison to the replay-based method, we evaluate our
method with a buffer. We set the buffer size as 200.

Implementation details. For the Biased MNIST, we employ a simple CNN composed of four
convolutional layers and three fully connected layers as the baseline model and backbone network of
all competing models. For Biased CIFAR-10 and Biased CelebA-HQ, ResNet-18 (He et al., 2016)
is used as the backbone. For each experiment, we used the Adam optimizer (Kingma & Ba, 2014),
grid search learning rate (initial value and decay schedule), stopping criterion, and batch size. For
hyperparameters in competing models, we follow the same setting as that presented in this paper.
However, as we experimentally found that the learning rate is important in CUL, we fine-tune it and
display the result if better than the original setting. More implementation details are provided in the
Appendix. We set l by experiments reported in the Appendix.

5.3 EXPERIMENTAL RESULTS

Table 1 exhibits the evaluation results of LwP and state-of-the-art models on CUL. From the experi-
ments on three intentionally biased datasets, we find that regularization-based models are limited to
CUL, showing performance degradation from the Base model on some datasets. It is notable that the
generator-based methods show remarkable generalizability for some experiments. This implies that
generating prior samples and feeding them contribute to CUL. Nonetheless, utilizing only the gener-
ated prior samples is limited to encouraging benign forgetting (experiments on Biased CelebA-HQ).
Based on the generator-based approach, LwP significantly increase performance with contrastive
learning. This quantitatively demonstrates contrastive learning contributes for benign forgetting
(It is also demonstrated in Table 2). Further, it is noteworthy that LwP (w/o buffer) outperforms
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replay-based methods on some datasets (Biased MNIST, Biased CelebA-HQ). The unbiased learning
method, LfF, deteriorates the performance for all the datasets, exhibiting performance degradation
compared to Base.

5.4 ANALYSIS

Table 2: Ablation study on components of
LwP. We use Biased MNIST for evalua-
tion. The model with none of them applied
is the base model, simple CNN.

SSL ✓ ✓
GAN ✓

Accub 84.66(±2.41) 89.79(±1.26) 91.57(±0.82)

Table 3: Ablation study on self-supervised learning. We
use Biased MNIST for evaluation. All the architecture
and experimental setup except for SSL are exactly the
same.

SSL MoCo DINO Barlow Twins BYOL (Ours)

Accub 83.86(±0.71) 84.23(±0.39) 86.66(±0.66) 91.57(±0.82)

Analysis of LwP components. We conduct an ablation study to evaluate the contribution of each
presented component in section 4. Table 2 shows that the self-supervised technique (BYOL) and
feature generator contribute to the generalizability of the model.

Choice of self-supervised learning. We compare the performance of the models using different
self-supervised learning (SSL) approaches (He et al., 2020; Grill et al., 2020; Caron et al., 2021;
Zbontar et al., 2021). MoCo (He et al., 2020) requires large memory banks with contrastive loss,
called infoNCE (Oord et al., 2018). BYOL (Grill et al., 2020) proposed a metric learning approach
trained using a momentum encoder. DINO (Caron et al., 2021) complemented BYOL with similarity
matching loss and mean-teacher self-distillation (Tarvainen & Valpola, 2017). Barlow Twins (Zbontar
et al., 2021) proposed an objective function that measures the cross-correlation matrix between two
embeddings via an identical network from two different distorted samples. MoCo is limited in its
use because of the unacceptable computational costs of maintaining (positive, negative) pairs. We
decide on BYOL with our SSL technique through an experimental comparison between BYOL,
DINO, and Barlow Twins. Table 3 shows that the BYOL method outperforms other SSL methods.

Figure 3: Evaluations on various β. (a) Continual unbiased learning. (b) Continual unbiased learning
with replay buffer. We evaluate all the experiments with Biased MNIST.

Generalization of LwP on various β. In reality, the training dataset is biased to varying degrees.
Thus, we evaluate LwP on several β and compare it to state-of-the-art methods. In Figure 3, LwP
exhibits the best generalizability for all the β in both cases.

6 RELATED WORK

6.1 CONTINUAL LEARNING

Recent literature on continual learning can be categorized into regularization-based, replay-based,
and generator-based methods.

Regularization-based methods. EWC (Kirkpatrick et al., 2017) approximated the importance of
parameters from a probabilistic perspective and regularized the update of decisive ones training a
new task. LwF (Li & Hoiem, 2017) has multiple task-specific heads. It records probabilities obtained
from the previous task heads and uses them as targets of surrogate loss when learning a new task.
Chaudhry et al. (2018) regularized parameter updating in a current task such that the new conditional
likelihood is close to the previously learned one in terms of KL-divergence. Aljundi et al. (2018)
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presented memory-aware synapses (MAS) that estimate the importance of the parameters in a model
and then penalize changing them in new tasks. In further work, Aljundi et al. (2019a) investigated
how to transform MAS into an online setup where the data distribution changes and the tasks are not
specified. Dhar et al. (2019) presented an attention-based approach that incrementally learns new
classes by restricting divergence. Ahn et al. (2019) presented an uncertainty-regularized continual
learning framework based on Bayesian online learning. Douillard et al. (2020) proposed spatial-based
distillation loss applied throughout the model.

Replay-based methods. Inspired by the first replay-based approach for catastrophic forgetting and
experience replay (Robins, 1995), the majority of related studies have been devoted to replay-based
methods. Lopez-Paz & Ranzato (2017) united rehearsal methods with knowledge distillation and
regularization, making the model sufficiently close to the previous model. Aljundi et al. (2019b)
considered a sampling of prior tasks as a constraint reduction problem, resulting in maximizing the
diversity of samples. Mai et al. (2021) suggested that softmax classifiers could cause recency bias
in continual learning and hence exploited the nearest-class-mean classifier, instead. For preferable
clustering, data samples from previous tasks are saved and utilized in the current training step. Lin
et al. (2021) suggested continual contrastive self-supervised learning via a rehearsal method, which
preserves the feature vectors using k-means clustering from the previous dataset. Madaan et al.
(2021) presented a technique interpolating previous and current instances. DER (Buzzega et al.,
2020) exploited logits sampled during the optimization trajectory to encourage consistency with
its past. HAL (Chaudhry et al., 2021) complemented a new objective termed anchoring, where the
model is bi-level optimized. LiDER (Bonicelli et al., 2022), constrained the backbone network by its
layer-wise Lipschitz constants with respect to replay samples.

Generator-based methods. Although the replay-based method is an intuitive approach for tackling
catastrophic forgetting, it cannot be deployed if there is a privacy issue regarding data. As an
alternative, generator-based methods that do not directly store prior samples were presented. DGR
(Shin et al., 2017) obtained past information via a GAN, making pseudo-labels from the discriminator.
Kemker & Kanan (2017) generated prior informative images via auto-encoder, where the encoder
approximates pseudo labels, and the decoder makes images guided by reconstruction loss. Xiang et al.
(2019) exploited a GAN conditioned on the labeled features embedded by the discriminator, which
allows explicit supervised learning for the classifier. Ostapenko et al. (2019) presented dynamic
generative memory that employs an auxiliary classifier GAN with an increased number of parameters.
In each task, binary masks were applied to concentrate on influential parameters. GFR (Liu et al.,
2020) proposed a feature generator, reducing the complexity of generative replay and preventing the
imbalance problem. Yin et al. (2020) and ABD (Smith et al., 2021) applied ‘inversion’, which makes
class-conditional input images from random noise via a trained network.

6.2 UNBIASED LEARNING

Unbiased learning is a branch of robustness in machine learning. As machine-learning algorithms are
overly dependent on the distribution of training datasets, models are often biased, causing unreliable
generalization at inference (Torralba & Efros, 2011). A line of recent works has been dedicated
to mitigating this issue. Most of the studies assumed that the biases in datasets are known (e.g.,
color, texture) and exploited this information by designing various models (Kim et al., 2019; Geirhos
et al., 2019; Bahng et al., 2020; Gong et al., 2020; Adeli et al., 2021; Dhar et al., 2021). However,
with the motivation that a mechanism based on bias predefined by human knowledge is unsuited for
image datasets including countless sensory attributes, LfF (Nam et al., 2020) and Jeon et al. (2022)
addressed the challenge of unknown biases.

7 CONCLUSION AND FUTURE WORK

A large body of literature suggests that forgetting while learning a sequence of tasks is catastrophic.
However, in this study, we found that forgetting could encourage the generalizability of a model
if the dataset has bias. Based on this motivation, our proposed method, LwP, encourages benign
forgetting and regularizes malignant forgetting for continual unbiased learning via a feature generator
and contrastive learning in conjunction with feature-level augmentation. Experimentally, the LwP
contributes to generalization, while conventional CL methods are limited to unbiasing. In terms of
further work, extensive exploration of the relationship between forgetting and various incomplete
data distributions, e.g., imbalanced or mislabeled data distributions, are potentially value-adding
future research directions.
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A EXPLORATION ON THE DATA DISTRIBUTION

We construct the biased training set and unbiased test set from Background Colored MNIST, Corrupted
CIFAR-10, and CelebA-HQ to set up continual unbiased learning. Figure 4, 5, 6, 7 exhibit the overall
distribution of each task on each dataset. And, the examples of Biased CIFAR-10 and Biased CelebA
are displayed in Figure 8.

Figure 4: Distribution of Biased MNIST. (a) Training set (β = 0.85). We randomly sampled images
from MNIST to make ten subsets allocating them as training sets for ten tasks. Following the same
sampling scenario, we just slid bias (color) whenever the task is changed from 1 to 10. (b) Test set.
The colors are uniformly distributed for each label, denoted by an unbiased set.

Figure 5: Distribution of Biased CIFAR-10. (a) Training set (β = 0.85). We construct datasets in
exactly the same way as Biased MNIST. (b) Unbiased test set.
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Figure 6: Distribution of Biased CelebA-HQ training set. (a) Task1. 2,000 (Female, HeavyMakeup)
and 2,000 (Male, NoMakeup) images are randomly sampled. (b) Task2. 2,000 (Female, BloncHair)
and 2,000 (Male, BlackHair) images. (c) Task3. 2,000 (Female, LongHair) and 2,000 (Male,
ShortHair) images. However, as a face image include several attributes, we display all these pairs.

Figure 7: Distribution of CelebA-HQ test set. We randomly sampled test set to be uniform for all
the pairs. However, as the limited number of image samples, e.g., (Male, HeavyMakeup), and such
samples are biased, e.g., all the (Male, HeavyMakeup) have short hair, the distribution could not be
strictly uniform.
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Figure 8: Experimental dataset. (a) Biased CIFAR-10. (b) Biased CelebA-HQ. We display image
samples of the first task. For CIFAR-10, corruption is the bias attribute, e.g., all the airplanes are
corrupted by snow noise. Each time the task changes, the bias slides one by one. For CelebA-HQ, all
the women put on makeup, while the men do not. Hair color and hair length are bias for the second
and third tasks, respectively.

B EXPERIMENT DETAILS

B.1 ARCHITECTURE

Biased MNIST. The architecture of the classifier f for the Biased MNIST is composed of four
convolutional (CONV) layers, a global average pooling (GAP) layer, and 3 fully-connected (FC)
layers (please see Table 4). In this paper, We set l = 2 splitting f into {f[1,2], f[3,4,5,6,7], f[8]}. Hence,
fa and f b are f[1,2] and f[3,4,5,6,7], respectively. gonlineθ = {f b

θ , pθ, qθ} and gtargetξ = {f b
ξ , pξ} are

used for contrastive learning, where p and q are FC layers with 128 units. Since the generator, G
makes fake features with the same shape as the output of encoder fa, the generated features vf via G
belong to R28×28×32 as feature maps activated from the input image by 4 CONV layers. Note that l
denotes an l-th layer, e.g., l = 5 means GAP layer and l = 7 is the second FC layer.

Table 4: Classifier f , Simple CNN. CONV_n denotes the CONV layer and FC_n denotes the FC
layer for Simple CNN. H and W mean the height and width of input images.

l Layer Name Type Output Size

1 CONV_1 [3× 3, 16] H ×W × 16
2 CONV_2 [3× 3, 32] H ×W × 32
3 CONV_3 [3× 3, 64] H ×W × 64
4 CONV_4 [3× 3, 128] H ×W × 128
5 GAP · 128
6 FC_1 128 (units) 128
7 FC_2 128 (units) 128
8 FC_3 10 (units) 10

Biased CIFAR-10 and Biased CelebA-HQ. For Biased CIFAR-10 and Biased CelebA-HQ, we
use ResNet-18 as our classifier f as depicted in table 5. We modify the first CONV of ResNet-18 with
the kernel size 3× 3, instead of 7× 7. For convenience, we consider a block as a layer l. We split f
into {f[1], f[2,3,4,5], f[6]} resulting in fa = f[1] and f b = f[2,3,4,5] for Biased CIFAR-10 with l = 1

and set l = 2 for Biased CelebA-HQ. We choose l by ablation study. We set gonlineθ = {f b
θ , pθ, qθ}

and gtargetξ = {f b
ξ , pξ}, where p and q are FC layers with 512 units. Thus, the size of vf generated

by G is H ×W × 64 for Biased CIFAR-10 and H/2×W/2× 128 for Biased CelebA-HQ, where
H and W denotes the height and width of input images.

Generator G and discriminator D. We set the architecture of the feature generator G by one FC
layer and three CONV layers. During generating features, we increase the size of feature maps in G
with two interpolation layers. The discriminator D consists of four CONV layers and an FC layer to
distinguish whether input features are real or fake. The leaky ReLU activation layer follows every
CONV layer. We adjusted the number of units in the FC layer for G to fit the different shapes of the
target feature maps for the three datasets while maintaining the overall architecture.
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Table 5: Classifier f , ResNet-18. Block_n denotes the basic building block for ResNet. H and W
mean the height and width of input images.

l Layer Name Type Output Size

1 Block_1

[ 3 × 3, 64 ]

H ×W × 64
[

3×3, 128
3×3, 128

]
×2

2 Block_2
[

3×3, 128
3×3, 128

]
×2 H/2 ×W /2 × 128

3 Block_3
[

3×3, 256
3×3, 256

]
×2 H/4 ×W /4 × 256

4 Block_4
[

3×3, 512
3×3, 512

]
×2 H/8 ×W /8 × 512

5 GAP · 512
6 FC # of classes (units) # of classes

B.2 TRAINING PROCEDURE

To train the classifier f , for both supervised learning with samples of the current task and contrastive
learning with previous samples, we use Adam optimizer with learning rate 10−4, weight decay
5× 10−4, and (β1, β2) = (0.9, 0.999). To train the generator G and discriminator D, we use Adam
optimizers with learning rate 5× 10−5 for G and 2× 10−4 for D. We set (β1, β2) = (0.5, 0.999) for
Adam in G and D. To optimize the generator G and discriminator D, we use the WGAN-GP. We
set input image size as 28× 28 for Biased MNIST, 32× 32 for Biased CIFAR-10, and 128× 128
for Biased CelebA-HQ. The batch size and epochs per task are 32 and 20, respectively for all the
experiments.

For feature-level augmentation, we set channel-wise applied dropout rate γ = 0.2, and use µ = 0 and
Σ = 0.005 ∗ I for N (µ,Σ) when spatially augmenting. Following exactly the same setup of BYOL,
we set variable τ := 1− (1− 0.996)(cos(πk/K)+ 1)/2, where k denotes the current training epoch
and K denotes the total number of training epochs.

C EXPLORATION ON LWP

C.1 INVESTIGATION FOR ARCHITECTURAL PARAMETER, l

Splitting layer l is an important parameter in our model design. From the feature generator to online
and target networks, all the architectures of the networks are decided by the parameter l. Therefore,
we conduct a comparing experiment for l. By experiment in Table 6 and Table 7, we found all the
l show competitive generalizability compared to state-of-the-art CL methods. Among them, we
chose the best one, l = 2, for our model. We conducted the same ablation experiments for Biased
CIFAR-10 to choose l.

Table 6: Comparison for splitting layer l. We evaluate the models on Biased MNIST three times
and display the average of them with standard deviation.

l 1 3 4 2 (ours)

Accub 90.52(±0.15) 91.08(±1.24) 90.24(±0.90) 91.57(±0.82)
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Table 7: Comparison for splitting layer l. We evaluate the models on Biased CIFAR-10 three times
and display the average of them with standard deviation.

l 2 3 4 1 (ours)

Accub 29.79(±0.53) 26.39(±0.54) 25.59(±0.87) 31.18(±0.29)

C.2 CONTRIBUTION OF FEATURE GENERATOR

Although several conventional CL approaches employed image generators to memorize previous
samples, they are only 3-channel aggregated features. Thus, if the generator does not work well,
generated input image could disturb the desirable optimization of the classifier. Instead, generated
features can provide more information to be used selectively and hence make the classifier more
robust. Table 8 experimentally demonstrates our intuition.

Table 8: Comparison for image and feature generation. We evaluate all the models on Biased
MNIST three times and display the average of them with standard deviation.

Dataset Image Feature (ours)

Accub MNIST 88.80(±1.36) 91.57(±0.82)
Accub CIFAR-10 25.33(±0.74) 31.18(±0.29)

Choice of self-supervised learning. We compare the performance of the models using different
self-supervised learning (SSL) approaches MoCo, DINO, Barlow Twins, and BYOL for Biased
CIFAR-10 following the exactly same way as Biased MNIST.

Table 9: Ablation study on components of
LwP. We use Biased CIFAR-10 for evalua-
tion. The model with none of them applied
is the base model, ResNet-18.

SSL ✓ ✓
GAN ✓

Accub 26.58(±0.45) 30.36(±0.29) 31.18(±0.29)

Table 10: Ablation study on self-supervised learning. We
use Biased CIFAR-10 for evaluation. All the architecture
and experimental setup except for SSL are exactly the
same.

SSL MoCo DINO Barlow Twins BYOL (Ours)

Accub 31.00(±0.57) 27.81(±0.63) 30.61(±0.36) 31.18(±0.29)

C.3 MODEL SIZE

Generally, the number of parameters affects the performance of the model. Although simple compari-
son for the number of parameters is not fair because many methods for CL address malignant forget-
ting by regularization-based (additional operation for regularization) and replay-based (more training
iterations with buffer) approaches, which are not related to model size. Nonetheless, generator-based
methods can be compared for model size. Therefore, we compare the model size and present a tiny
version of LwP in Table 11. It is notable that LwP(tiny) also exhibits competitive performance.

C.4 REPLAY BUFFER

Learning with replay buffer can help the model to memorize previous information, discouraging
malignant forgetting. Although there are some special cases, where access to prior samples is
strictly limited (e.g., privacy data such as medical or financial data, with a short storage period), a
replay buffer is often available. Therefore, we compare the generalizability of LwP and replay-based
methods with small-sized (200) and big-sized buffers (2,000). As a result, Table 12 shows that our
method achieves the best performance in both scenarios.
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Table 11: Model size. We investigate the number of parameters for generator-based methods. Since
we set the classifier for all the models as ResNet18, we compare GAN models, generator G, and D.

Dataset DGR GFR ABD LwP LwP(tiny)

G
MNIST

2.30 M 0.44 M 6.50 M 6.52 M 0.38 M
D 2.76 M 0.34 M - 2.77 M 0.18 M

Total 5.06 M 0.78 M 6.50 M 9.29 M 0.56 M
Accub 85.04(±1.32) 77.50(±2.78) 82.78(±1.05) 91.57(±0.82) 91.33(±0.63)

G

CIFAR-10

3.58 M 0.63 M 8.42 M 8.46 M 2.07 M
D 2.76 M 0.54 M - 2.82 M 0.72 M

Total 6.34 M 1.17 M 8.42 M 11.28 M 2.79 M
Accub 28.94(±2.61) 29.11(±0.48) 29.67(±0.61) 31.18(±0.29) 30.65(±1.73)

Table 12: Buffer size. With small (200) and big (2,000) buffers, we estimate Accub and report them.

MNIST CIFAR-10

200 2,000 200 2,000
HAL 82.40(±2.21) 84.28(±0.75) 23.50(±8.00) 29.24(±0.48)
DER 90.37(±1.33) 89.84(±0.72) 31.07(±0.53) 34.15(±0.21)

LiDER 89.44(±6.07) 92.61(±2.14) 28.02(±0.48) 35.72(±0.76)
LwP 92.34(±0.55) 93.14(±0.95) 32.06(±0.59) 40.18(±0.37)

C.5 INVESTIGATION ON MORE VARIOUS β

Collecting data from the real world, the degree of bias β could be various. To investigate the
generalizability of LwP and competing models, we set β 0.1 ∼ 0.8 at intervals of 0.1 along with
0.8 ∼ 0.95 at intervals of 0.05. Figure C.5 shows that our method generalizes best for all β.

Figure 9: Evaluations on various β. (a) Continual unbiased learning. (b) Continual unbiased learning
with replay buffer. We evaluate all the experiments with Biased MNIST.
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