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Abstract

Two different approaches exist to handle miss-
ing values for prediction: either imputation, prior
to fitting any predictive algorithms, or dedicated
methods able to natively incorporate missing val-
ues. While imputation is widely (and easily) used,
it is unfortunately biased when low-capacity pre-
dictors (such as linear models) are applied after-
ward. However, in practice, naive imputation ex-
hibits good predictive performance. In this pa-
per, we study the impact of imputation in a high-
dimensional linear model with MCAR missing
data. We prove that zero imputation performs an
implicit regularization closely related to the ridge
method, often used in high-dimensional problems.
Leveraging on this connection, we establish that
the imputation bias is controlled by a ridge bias,
which vanishes in high dimension. As a predictor,
we argue in favor of the averaged SGD strategy,
applied to zero-imputed data. We establish an up-
per bound on its generalization error, highlighting
that imputation is benign in the d ≫

√
n regime.

Experiments illustrate our findings.

1. Introduction
Missing data has become an inherent problem in modern
data science. Indeed, most real-world data sets contain miss-
ing entries due to a variety of reasons: merging different
data sources, sensor failures, difficulty to collect/access data
in sensitive fields (e.g., health), just to name a few. The
simple, yet quite extreme, solution of throwing partial ob-
servations away can drastically reduce the data set size and
thereby hinder further statistical analysis. Specific meth-
ods should be therefore developed to handle missing values.
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Most of them are dedicated to model estimation, aiming at
inferring the underlying model parameters despite missing
values (see, e.g., Rubin, 1976). In this paper, we take a
different route and consider a supervised machine learning
(ML) problem with missing values in the training and test
inputs, for which our aim is to build a prediction function
(and not to estimate accurately the true model parameters).

Prediction with NA A common practice to perform su-
pervised learning with missing data is to simply impute
the data set first, and then train any predictor on the com-
pleted/imputed data set. The imputation technique can be
simple (e.g., using mean imputation) or more elaborate
(Van Buuren & Groothuis-Oudshoorn, 2011; Yoon et al.,
2018; Muzellec et al., 2020; Ipsen et al., 2022). While such
widely-used two-step strategies lack deep theoretical foun-
dations, they have been shown to be consistent, provided
that the approximation capacity of the chosen predictor is
large enough (see Josse et al., 2019; Le Morvan et al., 2021).
When considering low-capacity predictors, such as linear
models, other theoretically sound strategies consist of de-
composing the prediction task with respect to all possible
missing patterns (see Le Morvan et al., 2020b; Ayme et al.,
2022) or by automatically detecting relevant patterns to
predict, thus breaking the combinatorics of such pattern-
by-pattern predictors (see the specific NeuMiss architecture
in Le Morvan et al., 2020a). Proved to be nearly optimal
(Ayme et al., 2022), such approaches are likely to be robust
to very pessimistic missing data scenarios. Inherently, they
do not scale with high-dimensional data sets, as the variety
of missing patterns explodes. Another direction is advocated
in Agarwal et al. (2019) relying on principal component re-
gression (PCR) in order to train linear models with missing
inputs. However, out-of-sample prediction in such a case
requires to retrain the predictor on the training and test sets
(to perform a global PC analysis), which strongly departs
from classical ML algorithms massively used in practice.

In this paper, we focus on the high-dimensional regime of
linear predictors, which will appear to be more favorable to
handling missing values via simple and cheap imputation
methods, in particular in the missing completely at random
(MCAR) case.
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High-dimensional linear models In supervised learning
with complete inputs, when training a parametric method
(such as a linear model) in a high-dimensional framework,
one often resorts to an ℓ2 or ridge regularization technique.
On the one hand, such regularization fastens the optimiza-
tion procedure (via its convergence rate) (Dieuleveut et al.,
2017); on the other hand, it also improves the generalization
capabilities of the trained predictor (Caponnetto & De Vito,
2007; Hsu et al., 2012). In general, this second point holds
for explicit ℓ2-regularization, but some works also empha-
size the ability of optimization algorithms to induce an im-
plicit regularization, e.g., via early stopping (Yao et al.,
2007) and more recently via gradient strategies in interpo-
lation regimes (Bartlett et al., 2020; Chizat & Bach, 2020;
Pesme et al., 2021).

Contributions For supervised learning purposes, we con-
sider a zero-imputation strategy consisting in replacing input
missing entries by zero, and we formalize the induced bias
on a regression task (Section 2). When the missing va-
lues are said Missing Completely At Random (MCAR), we
prove that zero imputation, used prior to training a linear
model, introduces an implicit regularization closely related
to that of ridge regression (Section 3). This bias is exem-
plified to be negligible in settings commonly encountered
in high-dimensional regimes, e.g., when the inputs admit
a low-rank covariance matrix. We then advocate for the
choice of an averaged stochastic gradient algorithm (SGD)
applied on zero-imputed data (Section 4). Indeed, such a
predictor, being computationally efficient, remains particu-
larly relevant for high-dimensional learning. For such a
strategy, we establish a generalization bound valid for all
d, n, in which the impact of imputation on MCAR data is
soothed when d ≫

√
n. These theoretical results legitimate

the widespread imputation approach, adopted by most prac-
titioners, and are corroborated by numerical experiments in
Section 5. All proofs are to be found in the Appendix.

2. Background and motivation
2.1. General setting and notations

In the context of supervised learning, consider n ∈ N in-
put/output observations ((Xi, Yi))i∈[n], i.i.d. copies of a
generic pair (X,Y ) ∈ Rd × R. By some abuse of notation,
we always use Xi with i ∈ [n] to denote the i-th observation
living in Rd, and Xj (or Xk) with j ∈ [d] (or k ∈ [d]) to
denote the j-th (or k-th) coordinate of the generic input X
(see Section A for notations).

Missing values In real data sets, the input covariates
(Xi)i∈[n] are often only partially observed. To code for
this missing information, we introduce the random vector
P ∈ {0, 1}d, referred to as mask or missing pattern, and
such that Pj = 0 if the j-th coordinate of X , Xj , is missing

and Pj = 1 otherwise. The random vectors P1, . . . , Pn are
assumed to be i.i.d. copies of a generic random variable
P ∈ {0, 1}d and the missing patterns of X1, . . . , Xn. Note
that we assume that the output is always observed and only
entries of the input vectors can be missing. Missing data
are usually classified into 3 types, initially introduced by
(Rubin, 1976). In this paper, we focus on the MCAR as-
sumption where missing patterns and (underlying) inputs
are independent.

Assumption 1 (Missing Completely At Random - MCAR).
The pair (X,Y ) and the missing pattern P associated to X
are independent.

For j ∈ [d], we define ρj := P(Pj = 1), i.e., 1 − ρj
is the expected proportion of missing values on the j-th
feature. A particular case of MCAR data requires, not only
the independence of the mask and the data, but also the
independence between all mask components, as follows.

Assumption 1’ (Ho-MCAR: MCAR pattern with indepen-
dent homogeneous components). The pair (X,Y ) and the
missing pattern P associated to X are independent, and the
distribution of P satisfies P ∼ B(ρ)⊗d for 0 < ρ ≤ 1, with
1− ρ the expected proportion of missing values, and B the
Bernoulli distribution.

Naive imputation of covariates A common way to han-
dle missing values for any learning task is to first impute
missing data, to obtain a complete dataset, to which standard
ML algorithms can then be applied. In particular, constant
imputation (using the empirical mean or an oracle constant
provided by experts) is very common among practitioners.
In this paper, we consider, even for noncentered distribu-
tions, the naive imputation by zero, so that the imputed-by-0
observation (Ximp)i, for i ∈ [n], is given by

(Ximp)i = Pi ⊙Xi. (1)

Risk Let f : Rd → R be a measurable prediction function,
based on a complete d-dimensional input. Its predictive
performance can be measured through its quadratic risk,

R(f) := E
[
(Y − f (X))

2
]
. (2)

Accordingly, we let f⋆(X) = E[Y |X] be the Bayes predic-
tor for the complete case and R⋆ the associated risk.

In the presence of missing data, one can still use the pre-
dictor function f , applied to the imputed-by-0 input Ximp,
resulting in the prediction f(Ximp). In such a setting, the
risk of f , acting on the imputed data, is defined by

Rimp(f) := E
[
(Y − f(Ximp))

2
]
. (3)

For the class F of linear prediction functions from Rd to R,
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we respectively define

R⋆(F) = inf
f∈F

R(f), (4)

and
R⋆

imp(F) = inf
f∈F

Rimp(f), (5)

as the infimum over the class F with respectively complete
and imputed-by-0 input data.

For any linear prediction function defined by fθ(x) = θ⊤x
for any x ∈ Rd and a fixed θ ∈ Rd, as fθ is completely de-
termined by the parameter θ, we make the abuse of notation
of R(θ) to designate R(fθ) (and Rimp(θ) for Rimp(fθ)).
We also let θ⋆ ∈ Rd (resp. θ⋆imp) be a parameter achieving
the best risk on the class of linear functions, i.e., such that
R⋆(F) = R(θ⋆) (resp. R⋆

imp(F) = Rimp(θ
⋆
imp)).

Imputation bias Even if the prepocessing step consisting
of imputing the missing data by 0 is often used in prac-
tice, this imputation technique can introduce a bias in the
prediction. We formalize this imputation bias as

Bimp(F) := R⋆
imp(F)−R⋆(F). (6)

This quantity represents the difference in predictive perfor-
mance between the best predictor on complete data and that
on imputed-by-0 inputs. In particular, if this quantity is
small, the risk of the best predictor on imputed data is close
to that of the best predictor when all data are available. Note
that, in presence of missing values, one might be interested
in the Bayes predictor

f⋆
mis(Ximp, P ) = E[Y |Ximp, P ]. (7)

and its associated risk R⋆
mis.

Lemma 2.1. Assume that regression model Y = f⋆(X)+ϵ
is such that ϵ and P are independent, then R⋆ ≤ R⋆

mis.

Intuitively, under the classical assumption ε ⊥⊥ P (see Josse
et al., 2019), which is verified under Assumption 1, missing
data ineluctably deteriorates the original prediction problem.
As a direct consequence, for a well-specified linear model
on the complete case f⋆ ∈ F ,

Rimp(F)−R⋆
mis ≤ Bimp(F). (8)

Consequently, in this paper, we focus our analysis on the
bias (and excess risk) associated to impute-then-regress
strategies with respect to the complete-case problem (right-
hand side term of (8)) thus controlling the excess risk of
imputation with respect to the missing data scenario (left-
hand side term of (8)).

In a nutshell, the quantity Bimp(F) thus represents how
missing values, handled with zero imputation, increase the

difficulty of the learning problem. This effect can be tem-
pered in a high-dimensional regime, as rigorously studied
in Section 3. To give some intuition, let us now study the
following toy example.
Example 2.2. Assume an extremely redundant setting in
which all covariates are equal, that is, for all j ∈ [d], Xj =
X1 with E

[
X2

1

]
= 1. Also assume that the output is such

that Y = X1 and that Assumption 1’ holds with ρ = 1/2.
In this scenario, due to the input redundancy, all θ satisfying∑d

j=1 θj = 1 minimize θ 7→ R(θ). Letting, for example,
θ1 = (1, 0, ..., 0)⊤, we have R⋆ = R(θ1) = 0 but

Rimp(θ1) = E
[
(X1 − P1X1)

2
]
=

1

2
.

This choice of θ1 introduces an irreducible discrepancy be-
tween the risk computed on the imputed data and the Bayes
risk R⋆ = 0. Another choice of parameter could actually
help to close this gap. Indeed, by exploiting the redundancy
in covariates, the parameter θ2 = (2/d, 2/d, ..., 2/d)⊤

(which is not a minimizer of the initial risk anymore) gives

Rimp(θ2) = E
[(

X1 −
2

d

d∑
j=1

PjXj

)2
]
=

1

d
,

so that the imputation bias Bimp(F) is bounded by 1/d,
tending to zero as the dimension increases. Two other im-
portant observations on this example follow. First, this
bound is still valid if EX1 ̸= 0, thus the imputation by 0 is
still relevant even for non-centered data. Second, we remark
that ∥θ2∥22 = 4/d, thus good candidates to predict with im-
putation seem to be of small norm in high dimension. This
will be proved for more general settings, in Section 4.

The purpose of this paper is to generalize the phenomenon
described in Example 2.2 to less stringent settings. In light
of this example, we focus our analysis on scenarios for
which some information is shared across input variables: for
linear models, correlation plays such a role.

Covariance matrix For a generic complete input X ∈
Rd, call Σ := E

[
XX⊤] the associated covariance matrix,

admitting the following singular value decomposition

Σ =

d∑
j=1

λjvjv
⊤
j , (9)

where λj (resp. vj) are singular values (resp. singular vec-
tors) of Σ and such that λ1 ≥ ... ≥ λd. The associated
pseudo-norm is given by, for all θ ∈ Rd,

∥θ∥2Σ := θ⊤Σθ =

d∑
j=1

λj(v
⊤
j θ)

2.
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For the best linear prediction, Y = X⊤θ⋆ + ϵ, and the
noise satisfies E[ϵX] = 0 (first order condition). Denoting
E[ϵ2] = σ2, we have

EY 2 = ∥θ⋆∥2Σ + σ2 =

d∑
j=1

λj(v
⊤
j θ

⋆)2 + σ2. (10)

The quantity λj(v
⊤
j θ

⋆)2 can be therefore interpreted as the
part of the variance explained by the singular direction vj .
Remark 2.3. Note that, in the setting of Example 2.2, Σ has
a unique positive singular values λ1 = d, that is to say, all
of the variance is concentrated on the first singular direction.
Actually, our analysis will stress out that a proper decay of
singular values leads to low imputation biases.

Furthermore, for the rest of our analysis, we need the fol-
lowing assumptions on the second-order moments of X .

Assumption 2. ∃L < ∞ such that, ∀j ∈ [d], E[X2
j ] ≤ L2.

Assumption 3. ∃ℓ > 0 such that, ∀j ∈ [d], E[X2
j ] ≥ ℓ2.

For example, Assumption 2 and 3 hold with L2 = ℓ2 = 1
with normalized data.

3. Imputation bias for linear models
3.1. Implicit regularization of imputation

Ridge regression, widely used in high-dimensional settings,
and notably for its computational purposes, amounts to form
an ℓ2-penalized version of the least square estimator:

θ̂λ ∈ argmin
θ∈Rd

{
1

n

n∑
i=1

(Yi − fθ(Xi))
2
+ λ ∥θ∥22

}
,

where λ > 0 is the penalization parameter. The associated
generalization risk can be written as

Rλ(θ) := R(θ) + λ ∥θ∥22 .

Proposition 3.1 establishes a link between imputation and
ridge penalization.

Proposition 3.1. Under Assumption 1, let V be the co-
variance matrix of P (Vij = Cov(Pi, Pj)) and H =
diag(ρ1, . . . , ρd), with ρj = P(Pj = 1). Then, for all
θ,

Rimp(θ) = R (Hθ) + ∥θ∥2V⊙Σ .

In particular, under Assumptions 1’, 2 and 3 when L2 = ℓ2,

Rimp(θ) = R (ρθ) + L2ρ(1− ρ) ∥θ∥22 . (11)

This result highlights the implicit ℓ2-regularization at work:
performing standard regression on zero-imputed ho-MCAR
data can be seen as performing a ridge regression on com-
plete data, whose strength λ depends on the missing values

proportion. More precisely, using Equation (11), the optimal
predictor θ⋆imp working with imputed samples verifies

θ⋆imp =
1

L2ρ
argmin
θ∈Rd

{
R (θ) + λimp ∥θ∥22

}
,

with λimp := L2
(

1−ρ
ρ

)
. We exploit this correspondence in

Section 3.2 and 3.3 to control the imputation bias.

3.2. Imputation bias for linear models with ho-MCAR
missing inputs

When the inputs admit ho-MCAR missing patterns (As-
sumption 1’), the zero-imputation bias Bimp(F) induced in
the linear model is controlled by a particular instance of the
ridge regression bias (see, e.g., Hsu et al., 2012; Dieuleveut
et al., 2017; Mourtada, 2019), defined in general by

Bridge,λ(F) := inf
θ∈Rd

{Rλ(θ)−R⋆(F)} (12)

= λ ∥θ⋆∥2Σ(Σ+λI)−1 . (13)

Theorem 3.2. Under Assumption 1’, 2, and 3, one has

Bridge,λ′
imp

(F) ≤ Bimp(F) ≤ Bridge,λimp
(F),

with λ′
imp := ℓ2

(
1−ρ
ρ

)
and λimp = L2

(
1−ρ
ρ

)
.

As could be expected from Proposition 3.1, the zero-
imputation bias is lower and upper-bounded by the ridge
bias, with a penalization constant depending on the fraction
of missing values. In the specific case where ℓ2 = L2 (same
second-order moment), the imputation bias exactly equals
a ridge bias with a constant L2(1 − ρ)/ρ. Besides, in the
extreme case where there is no missing data (ρ = 1) then
λimp = 0, and the bias vanishes. On the contrary, if there is
a large percentage of missing values (ρ → 0) then λ′

imp →
+∞ and the imputation bias amounts to the excess risk of
the naive predictor, i.e., Bimp(F) = R(0Rd)−R⋆(F). For
the intermediate case where half of the data is likely to be
missing (ρ = 1/2), we obtain λimp = L2.

Thus, in terms of statistical guarantees, performing linear re-
gression on imputed inputs suffers from a bias comparable
to that of a ridge penalization, but with a fixed hyperpa-
rameter λimp. Note that, when performing standard ridge
regression in a high-dimensional setting, the best theoretical
choice of the penalization parameter usually scales as d/n
(see Sridharan et al., 2008; Hsu et al., 2012; Mourtada &
Rosasco, 2022, for details). If ρ ≳ L2 n

d+n (which is equiva-
lent to λimp ≲ d

n ), the imputation bias remains smaller than
that of the ridge regression with the optimal hyperparameter
λ = d/n (which is commonly accepted in applications). In
this context, performing zero-imputation prior to applying a
ridge regression allows handling easily missing data without
drastically increasing the overall bias.
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In turns out that the bias of the ridge regression in random de-
signs, and thus the imputation bias, can be controlled, under
classical assumptions about low-rank covariance structures
(Caponnetto & De Vito, 2007; Hsu et al., 2012; Dieuleveut
et al., 2017). In all following examples, we consider that
Tr(Σ) = d, which holds in particular for normalized data.
Example 3.3 (Low-rank covariance matrix with equal singu-
lar values). Consider a covariance matrix with a low rank
r ≪ d and constant eigenvalues (λ1 = · · · = λr = d

r ).
Then Σ(Σ + λimpI)

−1 ⪯ λ−1
r Σ = r

dΣ and Theorem 3.2
leads to

Bimp(F) ≤ λimp
r

d
∥θ⋆∥2Σ .

Hence, the imputation bias is small when r ≪ d (low-rank
setting). Indeed, for a fixed dimension, when the covariance
is low-rank, there is a lot of redundancy across variables,
which helps counterbalancing missing information in the
input variables, thereby reducing the prediction bias.

Note that Example 3.3 (r ≪ d) is a generalization of Exam-
ple 2.2 (in which r = 1), and is rotation-invariant contrary
to the latter.
Remark 3.4. A first order condition (see equation (29))
implies that ∥θ⋆∥2Σ + σ2 = EY 2 = R (0Rd), which is
independent of the dimension d. Thus, in all our upper
bounds, ∥θ⋆∥2Σ can be replaced by EY 2, which is dimension-
free. Consequently, we can interpret Example 3.3 (and the
following examples) upper bound as follows: if r ≪ d,
then the risk of the naive predictor is divided by d/r ≫ 1.
As a consequence, Bimp tends to zero when the dimension
increases and the rank is fixed.
Example 3.5 (Low-rank covariance matrix compatible with
θ⋆ ). Consider a covariance matrix with a low rank r ≪ d
and assume that ⟨θ⋆, v1⟩2 ≥ · · · ≥ ⟨θ⋆, vd⟩2 (meaning that
θ⋆ is well represented with the first eigendirections of Σ),
Theorem 3.2 leads to

Bimp(F) ≲ λimp
r(log(r) + 1)

d
∥θ⋆∥2Σ .

This result is similar to Example 3.3 (up to a log factor),
except that assumptions on the eigenvalues of Σ have been
replaced by a condition on the compatibility between the
covariance structure and θ⋆. If θ⋆ is well explained by the
largest eigenvalues then the imputation bias remains low.
This underlines that imputation bias does not only depend
on the spectral structure of Σ but also on θ⋆.
Example 3.6 (Spiked model, Johnstone (2001)). In this
model, the covariance matrix can be decomposed as Σ =
Σ≤r +Σ>r where Σ≤r corresponds to the low-rank part of
the data with large eigenvalues and Σ>r to the residual high-
dimensional data. Suppose that Σ>r ⪯ ηI (small operator
norm) and that all non-zero eigenvalues of Σ≤r are equal,
then Theorem 3.2 gives

Bimp(F) ≤ λimp

1− η

r

d
∥θ⋆∥2Σ + η ∥θ⋆>r∥

2
2
,

where θ⋆>r is the projection of θ⋆ on the range of Σ>r.
Contrary to Example 3.3, Σ is only approximately low rank,
and one can refer to r as the “effective rank” of Σ (see
Bartlett et al., 2020). The above upper bound admits a
term in O(r/d) (as in Example 3.3), but also suffers from
a non-compressible part η ∥θ⋆>r∥

2
2
, due to the presence of

residual (potentially noisy) high-dimensional data. Note
that, if θ⋆>r = 0 (only the low-dimensional part of the
data is informative) then we retrieve the same rate as in
Example 3.3.

3.3. Imputation bias for linear models and general
MCAR settings

Theorem 3.2 holds only for Ho-MCAR settings, which ex-
cludes the case of dependence between mask components.
To cover the case of dependent variables P1, . . . , Pd un-
der Assumption 1, recall ρj := P(Pj = 1) the probability
that the component j is not missing, and define the matrix
C ∈ Rd×d associated to P , given by:

Ckj :=
Vk,j

ρkρj
, (k, j) ∈ [d]× [d]. (14)

Furthermore, under Assumption 2, define

Λimp := L2λmax(C). (15)

The following result establishes an upper bound on the
imputation bias for general MCAR settings.

Proposition 3.7. Under Assumption 1 and 2, we have

Bimp(F) ≤ Bridge,Λimp
(F).

The bound on the bias is similar to the one of Theorem 3.2
but appeals to λ = Λimp which takes into account the cor-
relations between the components of missing patterns. Re-
mark that, under Assumption 1’, there are no correlation
and Λimp = L2 1−ρ

ρ , thus matching the result in Theo-
rem 3.2. The following examples highlight generic sce-
narios in which an explicit control on Λimp is obtained.
Example 3.8 (Limited number of correlations). If each miss-
ing pattern component is correlated with at most k− 1 other
components then Λimp ≤ L2kmaxj∈[d]

{
1−ρj

ρj

}
.

Example 3.9 (Sampling without replacement). Missing pat-
tern components are sampled as k components without re-
placement in [d], then Λimp = L2 k+1

d−k . In particular, if one
half of data is missing (k = d

2 ) then Λimp ≤ 3L2.

In conclusion, we proved that the imputation bias is con-
trolled by the ridge bias, with a penalization constant Λimp,
under any MCAR settings. More precisely, all examples of
the previous section (Examples 3.3, 3.5 and 3.6), relying
on a specific structure of the covariance matrix Σ and the
best predictor θ⋆, are still valid, replacing λimp by Λimp.
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Additionally, specifying the missing data generation (as in
Examples 3.8 and 3.9) allows us to control the imputation
bias, which is then proved to be small in high dimension,
for all the above examples.

4. SGD on zero-imputed data
Since the imputation bias is only a part of the story, we need
to propose a proper estimation strategy for θ⋆imp. To this aim,
we choose to train a linear predictor on imputed samples,
using an averaged stochastic gradient algorithm (Polyak &
Juditsky, 1992), described below. We then establish general-
ization bounds on the excess risk of this estimation strategy.

4.1. Algorithm

Given an initialization θ0 ∈ Rd and a constant learning rate
γ > 0, the iterates of the averaged SGD algorithm are given
at iteration t by

θimp,t =
[
I − γXimp,tX

⊤
imp,t

]
θimp,t−1 + γYtXimp,t,

(16)
so that after one pass over the data (early stopping), the final
estimator θ̄imp,n is given by the Polyak-Ruppert average
θ̄imp,n = 1

n+1

∑n
t=1 θimp,t. Such recursive procedures are

suitable for high-dimensional settings, and indicated for
model miss-specification (induced here by missing entries),
as studied in Bach & Moulines (2013). Besides, they are
very competitive for large-scale datasets, since one pass over
the data requires O(dn) operations.

4.2. Generalization bound

Our aim is to derive a generalization bound on the predic-
tive performance of the above algorithm, trained on zero-
imputed data. To do this, we require the following extra
assumptions on the complete data.

Assumption 4. There exist σ > 0 and κ > 0 such that
E[XX⊤ ∥X∥22] ⪯ κTr(Σ)Σ and E[ϵ2 ∥X∥22] ≤ σ2κTr(Σ),
where ϵ = Y −X⊤θ⋆.

Assumption 4 is a classical fourth-moment assumption
in stochastic optimization (see Bach & Moulines, 2013;
Dieuleveut et al., 2017, for details). Indeed, the first state-
ment in Assumption 4 holds, for example, if X is a Gaussian
vector (with κ = 3) or when X satisfies ∥X∥2 ≤ κTr(Σ)
almost surely. The second statement in Assumption 4 holds,
for example, if the model is well specified or when the noise
ε is almost surely bounded. Note that if the first part holds
then the second part holds with σ2 ≤ 2E[Y 2] + 2E[Y 4]1/2.

Our main result, establishing an upper bound on the risk of
SGD applied to zero-imputed data, follows.

Theorem 4.1. Under Assumption 4, choosing a constant

learning rate γ = 1
κTr(Σ)

√
n

leads to

E
[
Rimp

(
θ̄imp,n

)]
−R⋆(F)

≲
κTr(Σ)√

n

∥∥θ⋆imp − θ0
∥∥2
2
+

σ2 + ∥θ⋆∥2Σ√
n

+Bimp(F),

where θ⋆ (resp. θ⋆imp) is the best linear predictor for com-
plete (resp. with imputed missing values) case.

Theorem 4.1 gives an upper bound on the difference between
E[Rimp

(
θ̄imp,n

)
], the averaged risk of the estimated linear

predictor with imputed missing values (in both train and test
samples) and R⋆(F), the risk of the best linear predictor
on the complete case. Interestingly, by Lemma 2.1 and
under a well-specified linear model, the latter also holds
for E

[
Rimp

(
θ̄imp,n

)]
−R⋆

mis. The generalization bound in
Theorem 4.1 takes into account the statistical error of the
method as well as the optimization error. More precisely, the
upper bound can be decomposed into (i) a bias associated to
the initial condition, (ii) a variance term of the considered
method, and (iii) the aforementioned imputation bias.

The variance term (ii) depends on the second moment of
Y (as ∥θ⋆∥2Σ ≤ EY 2) and decreases with a slow rate 1/

√
n.

As seen in Section 3, the imputation bias is upper-bounded
by the ridge bias with penalization parameter λimp, which
is controlled in high dimension for low-rank data (see exam-
ples in Section 3.2).

The bias (i) due to the initial condition is the most critical.
Indeed, Tr(Σ) = E[∥X∥22] is likely to increase with d, e.g.,
under Assumption 2, Tr(Σ) ≤ dL2. Besides, the starting
point θ0 may be far from θ⋆imp. Fortunately, Lemma 4.2
establishes some properties of θ⋆imp.

Lemma 4.2. Under Assumptions 1 and 3, let V be the
covariance matrix of P defined in Proposition 3.1. If V is
invertible, then ∥∥θ⋆imp

∥∥2
2
≤ Bimp(F)

ℓ2λmin(V )
. (17)

In particular, under Assumption 1’,∥∥θ⋆imp

∥∥2
2
≤ Bimp(F)

ℓ2ρ(1− ρ)
. (18)

Lemma 4.2 controls the norm of the optimal predictor θ⋆imp

by the imputation bias: if the imputation bias is small, then
the optimal predictor on zero-imputed data is of low norm.
According to Section 3, this holds in particular for high-
dimensional settings. Thus, choosing θ0 = 0 permits us to
exploit the upper bound provided by Lemma 4.2 in Theorem
4.1. With such an initialization, the bias due to this initial
condition is upper bounded by κTr(Σ)√

n
∥θ⋆imp∥22. Intuitively,

as θ⋆imp is in an ℓ2-ball of small radius, choosing θ0 within
that ball, e.g. θ0 = 0 is a good choice.
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Taking into account Lemma 4.2, Proposition 4.3 establishes
our final upper bound on SGD on zero-imputed data.

Proposition 4.3. Under Assumptions 1’, 2, 3 and 4, the
predictor θ̄imp,n resulting from the SGD strategy, defined in
Section 4.1, with starting point θ0 = 0 and learning rate
γ = 1

dκL2
√
n

, satisfies

E
[
Rimp

(
θ̄imp,n

)]
−R⋆(F)

≲

(
L2

ℓ2
κd

ρ(1− ρ)
√
n
+ 1

)
Bimp(F) +

σ2 + ∥θ⋆∥2Σ√
n

.

In this upper bound, the first term encapsulates the imputa-
tion bias and the one due to the initial condition, whilst the
second one corresponds to the variance of the training pro-
cedure. As soon as d ≫ ℓ2

L2

ρ(1−ρ)
√
n

κ then the imputation
bias is negligible compared to that of the initial condition.

4.3. Examples

According to Examples 3.3 and 3.6, Bimp(F) decreases
with the dimension, provided that Σ or β are structured.
Strikingly, Corollary 4.4 highlights cases where the upper
bound of Proposition 4.3 is actually dimension-free.

Corollary 4.4. Suppose that assumptions of Proposition 4.3
hold. Recall that λ1 ≥ . . . ≥ λd are the eigenvalues of Σ
associated with the eigenvectors v1, . . . , vd.

(i) (Example 3.3 - Low-rank Σ). If Σ has a low rank r ≪ d
and equal non-zero singular values, then

E
[
Rimp

(
θ̄imp,n

)]
−R⋆(F)

≲
L2

ℓ2

(
L2

ℓ2
κ

ρ
√
n
+

1− ρ

d

)
r ∥θ⋆∥2Σ

ρ
+

σ2

√
n
.

(ii) (Example 3.6 - Spiked model). If Σ = Σ≤r +Σ>r with
Σ>r ⪯ ℓ2ηI , Σ≤r has a low rank r ≪ d with equal
non-zero singular values, and the projection of θ⋆ on the
range of Σ>r satisfies θ⋆>r = 0, then

E
[
Rimp

(
θ̄imp,n

)]
−R⋆(F)

≲
L2

ℓ2

(
L2

ℓ2
κ

ρ
√
n
+

1− ρ

d

)
r ∥θ⋆∥2Σ
ρ(1− η)

+
σ2

√
n
.

Corollary 4.4 establishes upper bounds on the risk of SGD
applied on zero-imputed data, for some particular structures
on Σ and θ⋆. These bounds take into account the statistical
error as well as the optimization one, and are expressed as
function of d and n. Since ∥θ⋆∥2Σ is upper bounded by EY 2

(a dimension-free term), the risks in Corollary 4.4 can also
be upper bounded by dimension-free quantities, provided
d > ℓ2

L2

ρ(1−ρ)
√
n

κ .

Besides, Corollary 4.4 shows that, for d ≫ ℓ2

L2

ρ(1−ρ)
√
n

κ ,
the imputation bias is negligible with respect to the stochas-
tic error of SGD. Therefore, for structured problems in
high-dimensional settings for which d ≫ ℓ2

L2

ρ(1−ρ)
√
n

κ , the
zero-imputation strategy is consistent, with a slow rate of
order 1/

√
n.

Remark 4.5 (Discussion about slow rates). An important
limitation of coupling naive imputation with SGD is that fast
convergence rates cannot be reached. Indeed, in large dimen-
sions, the classical fast rate is given by Tr(Σ(Σ+λI)−1)/n
with λ the penalization hyper-parameter. The quantity
Tr(Σ(Σ + λI)−1), often called degrees of freedom, can
be negligible w.r.t. d (for instance when Σ has a fast eigen-
value decay). However, when working with an imputed
dataset, the covariance matrix of the data is not Σ anymore,
but Σimp = EXimpX

⊤
imp. Therefore, in the case of Assump-

tion 1’ (Ho-MCAR), all the eigenvalues of Σimp are larger
than ρ(1 − ρ) (preventing the eigenvalues decay obtained
when working with complete inputs). By concavity of the
degrees of freedom (on positive semi-definite matrix), we
can show that Tr(Σimp(Σimp + λI)−1) ≥ dρ(1−ρ)

1+λ , hinder-
ing traditional fast rates.

Link with dropout Dropout is a classical regularization
technique used in deep learning, consisting in randomly
discarding some neurons at each SGD iteration (Srivastava
et al., 2014). Regularization properties of dropout have
attracted a lot of attention (e.g., Gal & Ghahramani, 2016).
Interestingly, setting a neuron to 0 on the input layer is
equivalent to masking the corresponding feature. Running
SGD (as in Section 4) on a stream of zero-imputed data is
thus equivalent to training a neural network with no hidden
layer, a single output neuron, and dropout on the input layer.
Our theoretical analysis describes the implicit regularization
impact of dropout in that very particular case. Interestingly,
this can also be applied to the fine-tuning of the last layer of
any regression network structure.

Other imputations In this paper, we proved that impu-
tation by zero reduces the impact of missing data in high-
dimensional settings by acting as an implicit regularization
method. Our results are valid for more generic imputation
procedures as soon as (i) the mean values of the imputation
functions x 7−→ E[Ximp|X = x, P = p] are linear (for all
missing patterns p) and (ii) there exists a constant l such that
E[(X − E[Ximp|X])2] ≥ l2. Condition (i) is necessary to
preserve the linearity of predictors after imputation, which is
at the core of our analysis. Condition (ii) is more surprising,
as it states that the imputation is inaccurate on average. Such
a property is the cornerstone of the implicit regularization
provided by imputation methods. In particular, our analysis
can be extended to classical imputation strategies such as
imputations by the mean or by a standard Gaussian.

7
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5. Numerical experiments
Data simulation We generate n = 500 complete input
data according to a normal distribution with two different
covariance structures. First, in the low-rank setting (Ex. 3.3
and 3.5), the output is formed as Y = β⊤Z+ϵ, with β ∈ Rr,
Z ∼ N (0, Ir) and ϵ ∼ N (0, 2), and the inputs are given
by X = AZ + µ, with a full rank matrix A ∈ Rd×r and
a mean vector µ ∈ Rd. Note that the dimension d varies
in the experiments, while r = 5 is kept fixed. Besides,
the full model can be rewritten as Y = X⊤θ⋆ + ϵ with
θ⋆ = (A†)⊤β where A† is the Moore-Penrose inverse of A.
Secondly, in the spiked model (Ex. 3.6), the input and the
output are decomposed as X = (X1, X2) ∈ Rd/2 × Rd/2

and Y = Y1 + Y2, where (X1, Y1) is generated according
to the low-rank model above and (X2, Y2) is given by a
linear model Y2 = θ⊤2 X2 and X2 ∼ N (0, Id/2), choosing
∥θ2∥ = 0.2.

Two missing data scenarios, with a proportion ρ of observed
entries equal to 50%, are simulated according to (i) the Ho-
MCAR setting (Assumption 1’); and to (ii) the self-masking
MNAR setting, which departs significantly from the MCAR
case as the presence of missing data depends on the underly-
ing value itself. More precisely, set α ∈ Rd such that, for all
j ∈ [d], P(Pj = 1|X) = (1 + e−αjXj )−1 and E[Pj ] = 0.5
(50% of missing data on average per component).

Regressors For two-step strategies, different imputers are
combined with different regressors. The considered imput-
ers are: the zero imputation method (0-imp) complying with
the theoretical analysis developed in this paper, the optimal
imputation by a constant for each input variable (Opti-imp),
obtained by training a linear model on the augmented data
(P ⊙X,1d×1 − P ) (see Le Morvan et al., 2020b, Proposi-
tion 3.1), and single imputation by chained equations (ICE)
(Van Buuren & Groothuis-Oudshoorn, 2011)1. The subse-
quent regressors, implemented in scikit-learn (Pedregosa
et al., 2011), are either the averaged SGD (SGD, package
SGDRegressor) with θ0 = 0 and γ = (d

√
n)−1 (see

Proposition 4.3, or the ridge regressor (with a leave-one-out
cross-validation, package ridge). Two specific methods
that do not resort to prior imputation are also assessed: a
pattern-by-pattern regressor (Le Morvan et al., 2020b; Ayme
et al., 2022) (Pat-by-Pat) and a neural network architecture
(NeuMiss) (Le Morvan et al., 2020a) specifically designed
to handle missing data in linear prediction.

Numerical results In Figure 1 (a) and (b), we consider
Ho-MCAR patterns with Gaussian inputs with resp. a low-
rank and spiked covariance matrix. The 2-step strategies
perform remarkably well, with the ICE imputer on the top of
the podium, highly appropriate to the type of data (MCAR

1IterativeImputer in scikit-learn (Pedregosa et al., 2011).

Gaussian) in play. Nonetheless, the naive imputation by zero
remains competitive in terms of predictive performance and
is computationally efficient, with a complexity of O(nd),
especially compared to ICE, whose complexity is of order
n2d3. Regarding Figure 1 (b), we note that ridge regres-
sion outperforms SGD for large d. Note that, in the regime
where d ≥

√
n, the imputation bias is negligible w.r.t. to

the method bias, the latter being lower in the case of ridge
regression. This highlights the benefit of explicit ridge regu-
larization (with a tuned hyperparameter) over the implicit
regularization induced by the imputation.

In practice, missing data are not always of the Ho-MCAR
type, we compare therefore the different algorithms on self-
masked data. In Figure 1 (c), we note that specific methods
remain competitive for larger d compared to MCAR settings.
This was to be expected since those methods were designed
to handle complex missing not at random (MNAR) data.
However, they still suffer from the curse of dimensionality
and turns out to be inefficient in large dimension, compared
to all two-step strategies.

6. Discussion and conclusion
In this paper, we study the impact of zero imputation in high-
dimensional linear models. We demystify this widespread
technique, by exposing its implicit regularization mecha-
nism when dealing with MCAR data. We prove that, in
high-dimensional regimes, the induced bias is similar to that
of ridge regression, commonly accepted by practitioners. By
providing generalization bounds on SGD trained on zero-
imputed data, we establish that such two-step procedures are
statistically sound, while being computationally appealing.

Theoretical results remain to be established beyond the
MCAR case, to properly analyze and compare the different
strategies for dealing with missing data in MNAR settings
(see Figure 1 (c)). Extending our results to a broader class
of functions (escaping linear functions) or even in a classi-
fication framework, would be valuable to fully understand
the properties of imputation.
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A. Notations
Notations For two vectors (or matrices) a, b, we denote by a ⊙ b the Hadamard product (or component-wise product).
[n] = {1, 2, ..., n}. For two symmetric matrices A and B, A ⪯ B means that B −A is positive semi-definite. The symbol
≲ denotes the inequality up to a universal constant. Table 1 summarizes the notations used throughout the paper.

Table 1. Notations
P Mask
F Set of linear functions
Bimp Imputation bias
Σ EXX⊤

λj eigenvalues of Σ
vj eigendirections of Σ
ΣP EPP⊤

L2 the largest second moments maxjEX2
j (Assumption 2)

ℓ2 the smallest second moments minjEX2
j (Assumption 3)

θ⋆ Best linear predictor on complete data
θ⋆imp Best linear predictor on imputed data
r Rank of Σ
ρj Theoretical proportion of observed entries for the j-th variable in a MCAR setting
V Covariance matrix associated to the missing patterns
C Covariance matrix V renormalized by (ρj)j defined in (14)
κ Kurtosis of the input X

B. Proof of the main results
B.1. Proof of Lemma 2.1

The proof is based on the definition of the conditional expectation, and given that

R⋆ = E
[
(Y − E [Y |X])

2
]
.

Note that E [Y |X,P ] = E [f⋆(X) + ϵ|X,P ] = E [f⋆(X)|X,P ] = f⋆(X) (by independence of ϵ and P ). Therefore,

R⋆ = E
[
(Y − f⋆(X))

2
]

≤ E
[
(Y − E [Y |X,P ])

2
]

≤ E
[
(Y − E [Y |Ximp, P ])

2
]

≤ R⋆
mis,

using that E [Y |Ximp, P ] is a measurable function of (X,P ).

B.2. Preliminary lemmas

Notation Let Xa be a random variable of law La (a modified version of the law of the underlying input X) on Rd, and for
f ∈ F define

Ra(f) = E
[
(Y − f(Xa))

2
]
,

the associate risk. The Bayes risk is given by

R⋆
a(F) = inf

f∈F
E
[
(Y − f(Xa))

2
]
,

if the infimum is reached, we denote by f⋆
a ∈ argminf∈F Ra(f). The discrepancy between both risks, involving either the

modified input Xa or the initial input X , can be measured through the following bias:

Ba = R⋆
a(F)−R⋆(F).
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General decomposition The idea of the next lemma is to compare Ra(f) with the true risk R(f).

Lemma B.1. If (Xa ⊥⊥ Y )|X , then, for all θ ∈ Rd,

Ra (fθ) = R (gθ) + ∥θ∥2Γ ,

where gθ(X) = θ⊤E [Xa|X] and Γ = E
[
(Xa − E [Xa|X])(Xa − E [Xa|X])⊤

]
the integrated conditional covariance

matrix. In consequence, if there exists an invertible linear application H such that, E [Xa|X] = H−1X , then

• For all θ ∈ Rd, gθ is a linear function and

R⋆
a(F) = inf

θ∈Rd

{
R (fθ) + ∥θ∥2H⊤ΓH

}
. (19)

• If λmax(HΓH⊤) ≤ Λ, then

Ba(F) ≤ inf
θ∈Rd

{
R(fθ) + Λ ∥θ∥22

}
= Bridge,Λ. (20)

• If λmin(Γ) ≥ µ > 0, then

∥θ⋆a∥
2
2 ≤ Ba(F)

µ
. (21)

Remark B.2. Equation (21) is crucial because a bound on the bias Ba(F) actually gives a bound for ∥θ⋆a∥
2
2 too. This will be

of particular interest for Theorem 4.1.

Proof.

Ra (fθ) = E
[(
Y − θ⊤Xa

)2]
= E

[
E
[(
Y − E

[
θ⊤Xa|X

]
+ E

[
θ⊤Xa|X

]
− θ⊤Xa

)2 ∣∣∣X]]
= E

[(
Y − E

[
θ⊤Xa|X

])2]
+ E

[
E
[(
E
[
θ⊤Xa|X

]
− θ⊤Xa

)2 ∣∣∣X]]
= E

[
(Y − gθ(X))

2
]
+ E

[
E
[(
E
[
θ⊤Xa|X

]
− θ⊤Xa

)2 ∣∣∣X]]
= R(gθ) + E

[
E
[(
E
[
θ⊤Xa|X

]
− θ⊤Xa

)2 ∣∣∣X]]
.

since E
[
E
[
θ⊤Xa|X

]
− θ⊤Xa|X

]
= 0. Furthermore,

E
[
E
[(
E
[
θ⊤Xa|Z

]
− θ⊤Xa

)2 |X]]
= θ⊤E

[
(E [Xa|X]−Xa) (E [Xa|X]−Xa)

⊤
]
θ

= E
[
θ⊤E

[
(E [Xa|X]−Xa) (E [Xa|X]−Xa)

⊤ |X
]
θ
]

= E
[
∥θ∥2E[(E[Xa|X]−Xa)(E[Xa|X]−Xa)

⊤|X]

]
= E

[
∥θ∥2Γ

]
.

Finally,

Ra (fθ) = R(gθ) + ∥θ∥2Γ.

Assume that an invertible matrix H exists such that gθ(X) = θ⊤H−1X , thus gθ is a linear function. Equation (19) is then
obtained by using a change of variable: θ′ = (H−1)⊤θ = (H⊤)−1θ and θ = H⊤θ′. Thus, we have gθ′(X) = θ⊤X =
fθ(X) and

Ra (fθ′) = R(fθ) + ∥H⊤θ′∥2Γ
= R(fθ) + ∥θ′∥2HΓH⊤ .
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Then using HΓH⊤ ⪯ ΛI proves (20). Note that, without resorting to the previous change of variable, the bias can be
written as

Ba(F) = R
(
gθ⋆

a

)
−R (fθ⋆) + ∥θ⋆a∥

2
Γ . (22)

By linearity of gθ⋆
a
, R

(
gθ⋆

a

)
≥ R (fθ⋆) = R⋆(F) (because gθ⋆

a
∈ F).

Thus, ∥θ⋆a∥
2
Γ ≤ Ba(F). Assuming µI ⪯ Γ gives (21), as

µ ∥θ⋆a∥
2 ≤ ∥θ⋆a∥

2
Γ ≤ Ba(F).

B.3. Proof of Section 3

We consider the case of imputed-by-0 data, i.e.,
Ximp = P ⊙X.

Under the MCAR setting (Assumption 1),
E [Ximp|X] = H−1X,

with H = diag(ρ−1
1 , ..., ρ−1

d ) (variables always missing are discarded) and (ρj)j∈[d] the observation rates associated to
each input variable.

Proof of Proposition 3.1. For i, j ∈ [d],

Γij = E
[(
(Ximp)i − E

[
(Ximp)i |X

]) (
(Ximp)j − E

[
(Ximp)j |X

])]
= E [XiXj(Pi − EPi)(Pj − EPj)]

= E [XiXj ] Cov(Pi, Pj),

= ΣijVij (23)

since P and X are independent and with V defined in Proposition 3.1. Therefore, applying Lemma B.1 with Γ = Σ⊙ V
proves the first part of Proposition 3.1. Regarding the second part, under the Ho-MCAR assumption, one has V = ρ(1−ρ)I ,
thus Γ = ρ(1− ρ)diag(Σ). Furthermore, if L2 = ℓ2, then diag(Σ) = L2I which gives Γ = L2ρ(1− ρ)I .

Proof of Theorem 3.2 and Proposition 3.7. Under Assumption 1, since H is a diagonal matrix,

H⊤ΓH = Σ⊙ C,

where C is defined in Equation (14).

• Under Assumption 1’, the matrix C satisfies C = 1−ρ
ρ I . Moreover, under Assumption 2 (resp. Assumption 3), one has

Σ⊙ C ⪯ 1−ρ
ρ L2I = λimp (resp. Σ⊙ C ⪰ 1−ρ

ρ ℓ2I = λ′
imp) using (19), we obtain

inf
θ∈Rd

{
R (θ) + λ′

imp ∥θ∥
2
2

}
≤ R⋆

imp ≤ inf
θ∈Rd

{
R (θ) + λimp ∥θ∥22

}
.

Subtracting R⋆(F), one has
Bridge,λ′

imp
≤ Bimp ≤ Bridge,λimp ,

which concludes the proof of Theorem 3.2.

• Under Assumption 1, we have HΓH⊤ = Σ⊙ C. Using Lemma E.2, we obtain for all θ,

∥θ∥2HΓH⊤ = ∥θ∥2Σ⊙C ≤ λmax(C) ∥θ∥2diag(Σ) .

Under Assumption 2, we have diag(Σ) ⪯ L2I , thus

∥θ∥2HΓH⊤ ≤ L2λmax(C) ∥θ∥22 .

This shows that λmax(HΓH⊤) ≤ L2λmax(C) = Λimp We conclude on Proposition 3.7 using Equation (19).

13



Naive imputation implicitly regularizes high-dimensional linear models.

B.4. Proof of Lemma 4.2

Proof. Using (23), we have Γ = V ⊙ Σ. Using that λmin(V )I ⪯ V , by Lemma E.1, we obtain

λmin(V )I ⊙ Σ ⪯ Γ,

and equivalently λmin(V )⊙ diag(Σ) ⪯ Γ. Under Assumption 3, we have ℓ2I ⪯ diag(Σ), thus

ℓ2λmin(V )I ⪯ Γ.

Therefore, λmin(Γ) ≥ ℓ2λmin(V ). Thus, using (21), we obtain the first part of Lemma 4.2:

ℓ2λmin(V )
∥∥θ⋆imp

∥∥2
2
≤ Bimp(F). (24)

Under Assumption 1’, λmin(V ) = ρ(1− ρ), so that

ℓ2ρ(1− ρ)
∥∥θ⋆imp

∥∥2
2
≤ Bimp(F), (25)

which proves the second part of Lemma 4.2.

C. Stochastic gradient descent
C.1. Proof of Theorem 4.1

Lemma C.1. Assume (xn, ξn) ∈ H×H are Fn-measurable for a sequence of increasing σ-fields (Fn), n ⩾ 1. Assume that

E [ξn | Fn−1] = 0,E
[
∥ξn∥2 | Fn−1

]
is finite and E

[(
∥xn∥2 xn ⊗ xn

)
| Fn−1

]
≼ R2H , with E [xn ⊗ xn | Fn−1] = H

for all n ⩾ 1, for some R > 0 and invertible operator H . Consider the recursion αn = (I − γxn ⊗ xn)αn−1 + γξn, with
γR2 ⩽ 1. Then:

(
1− γR2

)
E [⟨ᾱn−1, Hᾱn−1⟩] +

1

2nγ
E ∥αn∥2 ⩽

1

2nγ
∥α0∥2 +

γ

n

n∑
k=1

E ∥ξk∥2 .

Proof. The idea is to use Lemma C.1 with

• xk = Ximp,k, yk = Yk

• H = Σimp = E
[
Ximp,kX

⊤
imp,k

]
= ΣP ⊙ Σ where ΣP = E

[
PP⊤]

• αk = θimp,k − θ⋆imp

• ξk = Ximp,k(Yk −X⊤
imp,kθ

⋆
imp)

• γ = 1
2R2

√
n

• R2 = κTr(Σ)

We can show, with these notations, that recursion (16) leads to recursion αn = (I − γxn ⊗ xn)αn−1 + γξn with α0 =
θ0 − θ⋆imp. Now, let’s check the assumption of Lemma C.1.

• Let show that E
[
XimpX

⊤
imp ∥Ximp∥22

]
⪯ R2Σimp. Indeed,

E
[
XimpX

⊤
imp ∥Ximp∥22

]
⪯ E

[
XimpX

⊤
imp ∥X∥22

]
,

14



Naive imputation implicitly regularizes high-dimensional linear models.

using that ∥Ximp∥22 ≤ ∥X∥22, and 0 ≼ XimpX
⊤
imp. Then,

E
[
XimpX

⊤
imp ∥X∥22

]
= EE

[
XimpX

⊤
imp ∥X∥22 |P

]
= EE

[
PP⊤ ⊙XX⊤ ∥X∥22 |P

]
= E

[
ΣP ⊙XX⊤ ∥X∥22

]
= ΣP ⊙

(
E
[
XX⊤ ∥X∥22

])
.

According to Assumption 4, E
[
XX⊤ ∥X∥22

]
⪯ R2Σ, and Lemma E.1 lead to

E
[
XimpX

⊤
imp ∥Ximp∥22

]
⪯ R2ΣP ⊙ Σ = R2Σimp.

• Define ϵimp = Y −X⊤
impθ

⋆
imp = X⊤θ⋆ + ϵ−X⊤

impθ
⋆
imp . First, we have ϵ2imp ≤ 3

((
X⊤θ⋆

)2
+ ϵ2 +

(
X⊤

impθ
⋆
imp

)2)
,

then

E
[
∥ξ∥22

]
= E

[
ϵ2imp ∥Ximp∥22

]
≤ 3E

[((
X⊤θ⋆

)2
+ ϵ2 +

(
X⊤

impθ
⋆
imp

)2) ∥Ximp∥22
]

≤ 3
(
E
[(
X⊤θ⋆

)2 ∥X∥22
]
+ E

[
ϵ2 ∥X∥22

]
+ E

[(
X⊤

impθ
⋆
imp

)2 ∥Ximp∥22
])

Let remark that, using Assumption 4

E
[(
X⊤θ⋆

)2 ∥X∥22
]
= E

[
θ⋆⊤

(
XX⊤ ∥X∥22

)
θ⋆
]
∥θ⋆∥2Σ

≤ R2θ⋆⊤Σθ

= R2 ∥θ⋆∥2Σ .

Using the first point, by the same way, E
[(
X⊤

impθ
⋆
imp

)2 ∥Ximp∥22
]
≤

∥∥θ⋆imp

∥∥2
Σimp

. By Assumption 4, we have also

than E
[
ϵ2 ∥X∥22

]
≤ σ2R2. Thus,

E
[
∥ξ∥22

]
≤ 3R2

(
σ2 + ∥θ⋆∥2Σ +

∥∥θ⋆imp

∥∥2
Σimp

)
≤ 3R2

(
σ2 + 2 ∥θ⋆∥2Σ

)
,

because ∥θ⋆∥2Σ = R (θ⋆) ≤ Rimp

(
θ⋆imp

)
=

∥∥θ⋆imp

∥∥2
Σimp

.

Consequently we can apply Lemma C.1, to obtain(
1− 1

2
√
n

)
E
[〈
θ̄imp,n − θ⋆imp,Σimp(θ̄imp,n − θ⋆imp)

〉]
+

1

2nγ
E
∥∥θimp,n − θ⋆imp

∥∥2 ⩽
1

2nγ

∥∥θ⋆imp − θ0
∥∥2+γ

n

n∑
k=1

E ∥ξk∥2 .

The choice γ = 1
2R2

√
n

leads to

E
∥∥θ̄imp,n − θ⋆imp

∥∥2
Σimp

⩽
2R2

√
n

∥∥θ⋆imp − θ0
∥∥2 + 4

σ2 + 2 ∥θ⋆∥2Σ√
n

.

We conclude on Theorem 4.1 using that,

E
[
Rimp

(
θ̄imp

)]
−R⋆ = E

[
Rimp

(
θ̄imp

)]
−R⋆

imp +R⋆
imp −R⋆ = E

∥∥θ̄imp,n − θ⋆imp

∥∥2
Σimp

+Bimp.
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Naive imputation implicitly regularizes high-dimensional linear models.

C.2. Proof of Proposition 4.3 and Corollary 4.4

Proof of Proposition 4.3. First, under Assumption 2, Tr(Σ) ≤ dL2. Then, initial conditions term with θ0 = 0,

κTr(Σ)√
n

∥∥θ⋆imp

∥∥2
2
≤ κL2d√

nℓ2ρ(1− ρ)
Bimp(F), (26)

using Lemma 4.2. We obtain Proposition 4.3 using inequality above in Theorem 4.1.

proof of Corollary 4.4. We obtain the upper bounds considered that: according to Theorem 3.2, Bimp ≤ Bridge,λimp
; under

Assumption 3, Tr(Σ) ≥ dℓ2. Then, we put together Proposition 4.3 and ridge bias bound (see Appendix D).

C.3. Miscellaneous

Proposition C.2. If X statisfies E
[
XX⊤ ∥X∥22

]
⪯ κTr(Σ)Σ, then E

[
ϵ2 ∥X∥22

]
≤ σ2κTr(Σ) with σ2 ≤ 2E[Y 2] +

2E[Y 4]1/2.

Proof.

E
[
ϵ2 ∥X∥22

]
= E

[(
Y −X⊤θ⋆

)2 ∥X∥22
]

≤ 2E
[((

X⊤θ⋆
)2

+ Y 2
)
∥X∥22

]
≤ 2E

[
Y 2 ∥X∥22

]
+ 2E

[(
X⊤θ⋆

)2 ∥X∥22
]
.

First term: by Cauchy Schwarz,

E
[
Y 2 ∥X∥22

]2
≤ E

[
Y 4

]
E
[
∥X∥42

]
≤ E

[
Y 4

]
E
[
Tr

(
XX⊤ ∥X∥22

)]
≤ E

[
Y 4

]
κTr(Σ)2.

Second term:

E
[(
X⊤θ⋆

)2 ∥X∥22
]
= E

[
(θ⋆)⊤XX⊤ ∥X∥22 θ

⋆
]

≤ κTr(Σ)E
[
(θ⋆)⊤Σθ⋆

]
≤ κTr(Σ) ∥θ⋆∥22 .

E
[
ϵ2 ∥X∥22

]
≤ E

[
Y 4

] 1
2 κTr(Σ) + κTr(Σ) ∥θ⋆∥2Σ ≤ σ2κTr(Σ) ∥θ⋆∥2Σ .

D. Details on examples
Recall that

Bridge,λ(F) = λ ∥θ⋆∥2Σ(Σ+λI)−1 (27)

= λ

d∑
j=1

λj

λj + λ
(v⊤j θ

⋆)2. (28)
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D.1. Low-rank covariance matrix (Example 3.3)

Proposition D.1 (Low-rank covariance matrix with equal singular values). Consider a covariance matrix with a low rank
r ≪ d and constant eigenvalues (λ1 = λ2 = ... = λr). Then,

Bridge,λ(F) = λ
r

Tr(Σ)
∥θ⋆∥2Σ .

Proof. Using that λ1 = · · · = λr and
∑r

j=1 λj = Tr(Σ), we have λ1 = · · · = λr = Tr(Σ)
r . Then Σ(Σ + λI)−1 ⪯

λ−1
r Σ = r

Tr(Σ)Σ. Thus,

Bridge,λ(F) = λ ∥θ⋆∥2Σ(Σ+λI)−1 = λ
r

Tr(Σ)
∥θ⋆∥2Σ .

D.2. Low-rank covariance matrix compatible with θ⋆ (Example 3.5)

Proposition D.2 (Low-rank covariance matrix compatible with θ⋆). Consider a covariance matrix with a low rank r ≪ d
and assume that ⟨θ⋆, v1⟩2 ≥ · · · ≥ ⟨θ⋆, vd⟩2, then

Bridge,λ(F) ≲ λ
r(log(r) + 1)

Tr(Σ)
∥θ⋆∥2Σ .

Proof. Recall that

∥θ⋆∥2Σ =

d∑
j=1

λj(v
⊤
j θ

⋆)2. (29)

Under the assumptions of Example 3.5, using that (λj)j and
(
(v⊤j θ

⋆)2
)
j

are decreasing, then for all k ∈ [r],

k∑
j=1

λj(v
⊤
k θ

⋆)2 ≤ ∥θ⋆∥2Σ.

Thus, for all k ∈ [r],

(v⊤k θ
⋆)2 ≤ ∥θ⋆∥2Σ∑k

j=1 λj

.

Using that
∑r

j=1 λj = Tr(Σ) and that eigenvalues are decreasing, we have
∑k

j=1 λj ≥ k
rTr(Σ) using Lemma E.3. Then

Bridge,λ(F) = λ

r∑
k=1

λk

λk + λ
(v⊤k θ

⋆)2

≤ λ

r∑
k=1

(v⊤k θ
⋆)2

≤ λ∥θ⋆∥2Σ
r∑

k=1

1∑k
j=1 λj

≤ λ

r∑
k=1

r

kTr(Σ)

≤ λ
r

Tr(Σ)

r∑
k=1

1

k

≲ λ
r

Tr(Σ)
(log(r) + 1),

by upper-bounding the Euler-Maclaurin formula.
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D.3. Spiked covariance matrix (Example 3.6)

Proposition D.3 (Spiked model). Assume that the covariance matrix is decomposed as Σ = Σ≤r + Σ>r. Suppose that
Σ>r ⪯ ηI (small operator norm) and that all non-zero eigenvalues of Σ≤r are equal, then

Bridge,λ(F) ≤ r

Tr(Σ)− dη
∥θ⋆∥2Σ + η ∥θ⋆>∥

2
2
.

where θ⋆>r is the projection of θ⋆ on the range of Σ>r,

Proof. One has

Σ(Σ + λI)−1 = Σ≤(Σ + λI)−1 +Σ>(Σ + λI)−1

⪯ Σ≤(Σ≤ + λI)−1 +Σ>(Σ> + λI)−1

⪯ 1

µ
Σ≤ +

1

λ
Σ>,

where µ is the non-zero eigenvalue of Σ≤. Thus,

Bridge,λ(F) = ∥θ⋆∥2λΣ(Σ+λI)−1

≤ ∥θ⋆∥2λ
µΣ≤+Σ>

≤ λ

µ
∥θ⋆∥2Σ + ∥θ⋆∥2Σ>

.

Using that λmax(Σ>) ≤ η, we have

Bridge,λ(F) ≤ λ

µ
∥θ⋆∥2Σ + η ∥θ⋆>∥

2
2
.

Using Weyl’s inequality, for all j ∈ [d], λj(Σ≤ +Σ>) ≤ λj(Σ≤) + η. Summing the previous inequalities, we get

Tr(Σ) ≤ rµ+ dη.

Thus,

µ ≥ Tr(Σ)− dη

r
.

In consequence,

Bridge,λ(F) ≤ r

Tr(Σ)− dη
∥θ⋆∥2Σ + η ∥θ⋆>∥

2
2
.

E. Technical lemmas
Lemma E.1. Let A,B, V be three symmetric non-negative matrix, if A ⪯ B then A⊙ V ⪯ B ⊙ V .

Proof. Let X ∼ N (0, V ) and θ ∈ Rd,

18
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∥θ∥2A⊙V = θ⊤A⊙ V θ

= θ⊤
((
EXX⊤)⊙A

)
θ

= E
[
θ⊤

((
XX⊤)⊙A

)
θ
]

= E

∑
i,j

θi
((
XX⊤)⊙A

)
ij
θj


= E

∑
i,j

θiXiXjAijθj


= E

∑
i,j

(θiXi) (θjXj)Aij


= E

[
∥X ⊙ θ∥2A

]
≤ E

[
∥X ⊙ θ∥2B

]
= ∥θ∥2B⊙V .

Lemma E.2. Let A,B be two non-negative symmetric matrices, then A⊙B is non-negative symmetric and, for all θ ∈ Rd:

∥θ∥2A⊙B ≤ λmax(B) ∥θ∥2diag(A) ,

where diag(A) is the diagonal matrix containing the diagonal terms of A.

Proof. Let X ∼ N (0, A), thus A = E
[
XX⊤], then for θ ∈ Rd

∥θ∥2A⊙B = θ⊤A⊙Bθ

= θ⊤
((
EXX⊤)⊙B

)
θ

= E
[
θ⊤

((
XX⊤)⊙B

)
θ
]

= E

∑
i,j

θi
((
XX⊤)⊙B

)
ij
θj


= E

∑
i,j

θiXiXjBijθj


= E

∑
i,j

(θiXi) (θjXj)Bij


= E

[
(X ⊙ θ)

⊤
B (X ⊙ θ)

]
≥ 0,
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using that B is positive. Thus A⊙B is positive. Furthermore,

∥θ∥2A⊙B = E
[
(X ⊙ θ)

⊤
B (X ⊙ θ)

]
≤ λmax(B)E

[
(X ⊙ θ)

⊤
(X ⊙ θ)

]
= λmax(B)E

[∑
i

θ2iX
2
i

]
= λmax(B)

∑
i

θ2iE
[
X2

i

]
= λmax(B)

∑
i

θ2iAii

= λmax(B) ∥θ∥2diag(A) .

Lemma E.3. Let (vj)j∈[d] a non-increasing sequence of positive number, and S =
∑d

j=1 vj , for all k ∈ [d],

k∑
j=1

vj ≥
k

d
S.

Proof. We use an apagogical arguments, if
∑k

j=1 vj <
k
dS. Then, using that (vj)j∈[d] is non-increasing,

kvk <
k

d
S.

Thus vk+1 < 1
dS, summing last elements,

d∑
j=r+1

vj <
d− r

d
S.

Then,

S =

k∑
j=1

vj =

r∑
j=1

vj +

d∑
j=r+1

vj <
k

d
S +

d− r

d
S = S.

Thus, this is absurd.

F. Additional experiments
To illustrate the influence of the input dimension and the missing data proportion on the bias, we consider the low-rank
setting described in Section 5, making the dimension d and the missing value proportion ρ vary (and keeping a fixed rank
r = 5). The imputation bias is estimated using 10 000 (complete) observations.
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Figure 2. Estimated imputation bias with n = 10000 observations in a low rank setting (r = 5).
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