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ABSTRACT

Offline reinforcement learning (RL) bears the promise to learn effective control
policies from static datasets but is thus far unable to learn from large databases
of heterogeneous experience. The multi-task version of offline RL enables the
possibility of learning a single policy that can tackle multiple tasks and allows the
algorithm to share offline data across tasks. Recent works indicate that sharing
data between tasks can be highly beneficial in multi-task learning. However, these
benefits come at a cost – for data to be shared between tasks, each transition must
be annotated with reward labels corresponding to other tasks. This is particularly
expensive and unscalable, since the manual effort in annotating reward grows
quadratically with the number of tasks. Can we retain the benefits of data sharing
without requiring reward relabeling for every task pair? In this paper, we show
that, perhaps surprisingly, under a binary-reward assumption, simply utilizing
data from other tasks with constant reward labels can not only provide substantial
improvement over only using the single-task data and previously proposed success
classifiers, but it can also reach comparable performance to baselines that take
advantage of the oracle multi-task reward information. We also show that this
performance can be further improved by selectively deciding which transitions to
share, again without introducing any additional models or classifiers. We discuss
how these approaches relate to each other and baseline strategies under various
assumptions on the dataset. Our empirical results show that it leads to improved
performance across a range of different multi-task offline RL scenarios, including
robotic manipulation from visual inputs and ant-maze navigation.

1 INTRODUCTION

Offline reinforcement learning (RL) provides the promise of a fully data-driven framework for
learning performant policies. To avoid costly active data collection and exploration, offline RL
methods utilize a previously collected dataset to extract the best possible behavior, making it feasible
to use RL to solve real-world problems where active exploration is expensive, dangerous, or otherwise
infeasible (Zhan et al., 2021; de Lima & Krohling, 2021; Wang et al., 2018; Kalashnikov et al., 2018).
However, this concept is only viable when a significant amount of data for the target task is available
in advance. A more realistic scenario might allow for a much smaller amount of task-specific data,
combined with a large amount of task-agnostic data, that is not labeled with task rewards and some of
which may not be relevant. For example, if our goal is to train a robot to perform a new manipulation
task (e.g., cutting an onion), we might have some data of the robot (suboptimally) attempting that
task, perhaps collected under human teleoperation and manually labeled with rewards, combined
with plentiful data of other tasks, some of which might be structurally related (e.g., picking up an
onion, or cutting a carrot). This scenario presents several questions: How do we decide which prior
data should be included when learning the new task? And how do we determine which reward labels
to use for this prior data?

Prior methods have offered several potential answers to these two questions, typically in isolation. For
the first question, it has been recently observed that a naı̈ve sharing strategy of sharing data from all
tasks can be highly suboptimal (Kalashnikov et al., 2021), and some works have proposed both man-
ual (Kalashnikov et al., 2021) and automated (Yu et al., 2021a; Eysenbach et al., 2020) data-sharing
strategies that prioritize the most structurally similar prior data. Most such methods assume that this
shared data can be automatically relabeled with the reward function for the new task (Kalashnikov
et al., 2021; Yu et al., 2021a; Eysenbach et al., 2020), but the assumption that we have access to the
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functional form of this reward is a strong one: for example, in many real-world settings, the reward
might require human labeling or human-provided examples (Cabi et al., 2019; Finn et al., 2016b). To
this end, some prior works have proposed learning classifiers for reward labeling (Fu et al., 2018b;
Xie et al., 2018; Singh et al., 2019), or other automated mechanisms (Konyushkova et al., 2020). But
these mechanisms themselves add complexity and potential brittleness to the pipeline. Thus, we aim
to devise a simple unified method that determines which data to share and which rewards to use, with
minimal supervision and no additional modeling and learning.

In this paper, we make the potentially surprising observation that data from other tasks can be utilized
with naı̈ve constant reward labels, when the MDP consists of binary rewards. We show that this
simple method, which does not involve learning any additional models or classifiers, can outperform
more sophisticated techniques in practice. Our approach simply utilizes data from other tasks with a
constant reward label (e.g., r = 0), and uses a value-aware strategy to decide which prior transitions
to include for the new task. This strategy, based on the conservative data sharing (CDS) technique
proposed in prior work (which assumes oracle reward access) (Yu et al., 2021a), also does not require
learning any additional model and simply uses the Q-function that is already learned as part of the
RL process.

Our main contribution, which we call conservative unsupervised data sharing (CUDS), is a technique
for sharing data in multi-task offline RL that does not require any reward labels or reward function
access for the task-agnostic data, and requires no additional model or classifier. To achieve that,
our method assumes a particular form of the MDP that consists of binary rewards. We discuss the
behaviors of our methods, showing that, even without ground truth reward labels, our simple data
sharing scheme achieves Q-values that are lower-bounded by the Q-values obtained with sharing
all data with the ground-truth rewards and can be combined CDS to selectively filter out potentially
irrelevant data under different assumptions on the structure of the dataset. Our empirical evaluation
conducted over various multi-task offline RL scenarios such as robotic manipulation from visual
inputs and ant-maze navigation shows that this approach improves over the performance of more
sophisticated techniques that either learn the reward function explicitly, or utilize other methods to
propagate reward labels. In addition, we show that the proposed approach is comparable to an oracle
baseline that has access to true multi-task rewards.

2 RELATED WORK

Offline RL. Offline RL (Ernst et al., 2005; Riedmiller, 2005; Lange et al., 2012; Levine et al.,
2020) considers the problem of learning a policy from a static dataset without interacting with
the environment, which has shown promises in many practical applications such as robotic con-
trol (Kalashnikov et al., 2018; Mandlekar et al., 2020; Rafailov et al., 2021), NLP (Jaques et al.,
2019), healthcare (Shortreed et al., 2011; Wang et al., 2018), education (de Lima & Krohling, 2021),
electricity supply (Zhan et al., 2021) and UI design (Apostolopoulos et al., 2021). The main challenge
of offline RL is the distributional shift between the learned policy and the behavior policy (Fujimoto
et al., 2018; Kumar et al., 2019), which can cause erroneous value backups due to out-of-distribution
actions generated by the learned policy. To address this issue, prior methods have constrained the
learned policy to not deviate much from the behavior policy via policy regularization (Liu et al., 2020;
Jaques et al., 2019; Wu et al., 2019; Zhou et al., 2020; Kumar et al., 2019; Siegel et al., 2020; Peng
et al., 2019; Zhou et al., 2020; Kostrikov et al., 2021; Ghasemipour et al., 2021), conservative value
functions (Kumar et al., 2020; Sinha & Garg, 2021), an auxiliary behavioral cloning loss (Fujimoto &
Gu, 2021) and model-based training with conservative penalties (Yu et al., 2020d; Kidambi et al.,
2020; Argenson & Dulac-Arnold, 2020; Swazinna et al., 2020; Matsushima et al., 2020; Lee et al.,
2021; Yu et al., 2021b).

Multi-Task RL and data sharing. Multi-task RL (Wilson et al., 2007; Parisotto et al., 2015;
Teh et al., 2017; Espeholt et al., 2018; Hessel et al., 2019; Yu et al., 2020a; Xu et al., 2020; Yang
et al., 2020; Kalashnikov et al., 2021; Sodhani et al., 2021; Stooke et al., 2021) enables the goal of
learning a single policy that solves multiple skills efficiently. Despite the promising results, multi-
task RL suffers from three main challenges, optimization difficulties (Schaul et al., 2019; Hessel
et al., 2019; Yu et al., 2020a), effective weight sharing for learning shared representations (Parisotto
et al., 2015; Teh et al., 2017; Espeholt et al., 2018; Xu et al., 2020; D’Eramo et al., 2019; Sodhani
et al., 2021; Stooke et al., 2021), and sharing data across different tasks (Eysenbach et al., 2020;
Kalashnikov et al., 2021; Yu et al., 2021a). We consider the multi-task offline RL setting and focus
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on the challenge of sharing data across different tasks. Prior works share data across tasks based on
metrics such as learned Q-values (Eysenbach et al., 2020; Li et al., 2020; Yu et al., 2021a), human
domain knowledge (Kalashnikov et al., 2021), the distance to the target goals in goal-conditioned
settings (Andrychowicz et al., 2017; Pong et al., 2018; Nair et al., 2018; Liu et al., 2019; Sun et al.,
2019; Lin et al., 2019; Huang et al., 2019; Lynch & Sermanet, 2020; Yang et al., 2021; Chebotar
et al., 2021), and the learned distance with robust inference in the offline meta-RL setting (Li et al.,
2019). However, all of these either require access to the functional form of the reward functions of
each task in order to relabel the rewards or are limited to goal-conditioned settings. Therefore, they
are not applicable to the multi-task offline RL problem that we consider where only the reward label
of the originally-executed task is provided. Our work addresses this issue via simply relabeling the
data shared from other tasks with a constant value and uses the conservative data sharing strategy (Yu
et al., 2021a) to further improve the performance.

RL with unlabeled data. Prior works tackle the problem of learning from data without reward
labels via either directly imitating expert trajectories (Pomerleau, 1988; Ross & Bagnell, 2012; Ho &
Ermon, 2016), learning reward functions from expert data using inverse RL (Abbeel & Ng, 2004; Ng
& Russell, 2000; Ziebart et al., 2008; Finn et al., 2016a; Fu et al., 2018a;b; Konyushkova et al., 2020),
or learning a reward / value classifier that discriminates successes and failures (Xie et al., 2018; Singh
et al., 2019; Eysenbach et al., 2021). These algorithms require online data collection and do not
consider the offline RL setting. Singh et al. (2020) considers the single-task offline setting with both
task-specific datasets and task-agnostic prior datasets and relabel the unlabeled prior data as failures
since these prior transitions cannot solve the task. Our method is not limited to such single-task
settings and instead considers the more general multi-task offline RL with data-sharing problem.

3 PRELIMINARIES

Multi-task RL. Standard multi-task RL considers a multi-task Markov decision process (MDP),
M = (S,A, P, γ, {Ri, i}Ni=1), where S and A denote the state and action spaces respectively,
P (s′|s,a) denotes the dynamics, γ ∈ [0, 1) is the discount factor, and R1, · · · , RN correspond to
reward functions of different tasks i ∈ [N ] for total number of N tasks where [N ] is the shorthand for
{1, 2, . . . , N}. In our setting, we assume a binary per-task Ri ∈ {0, 1}, where 1 denotes success of
the task and 0 otherwise. Note that the dynamics are assumed to be the same across all tasks, which
is not entirely general but is indeed practical in many problem settings as noted in Yu et al. (2021a)
and stands as a common assumption in prior data sharing works (Yu et al., 2021a; Kalashnikov et al.,
2021; Eysenbach et al., 2020). Regardless, there are many practical scenarios with changing rewards
and invariant dynamics such as various object manipulation objectives (Xie et al., 2018), different
goal navigation tasks (Fu et al., 2020), and distinct user preferences (Christiano et al., 2017). The
goal of multi-task RL is to find a task-conditioned policy π(a|s, i) that expected return in a multi-task
MDP: π∗(a|s, ·) := arg maxπ Ei∼[N ]Eπ(·|·,i)[

∑
t γ

tRi(st,at)]. Note that it is possible to model the
policies for each task independently as {π1(a|s), · · · , πN (a|s)} without any weight sharing. In our
work, we use the single task-conditioned policy to study data sharing and do not consider the weight
sharing aspect, which is orthogonal to the focus of the paper, which is also noted in Yu et al. (2021a).

Multi-task offline RL and data sharing. Multi-task offline RL considers the problem of learning
the multi-task policy π(a|s, i) from a static multi-task dataset with D = ∪Ni=1Di where D〉 =

{(sj ,aj , s′j , rj)}Mj=1 is the per-task dataset. Di is generated by a behavior policy πβ(a|s), without
any interaction with the environment. The most straightforward approach to learn π(a|s, i) would
be train it for task i only using Di. However, sharing data from different tasks to task i has been
shown to be conducive in the multi-task offline RL setting (Kalashnikov et al., 2021; Yu et al., 2021a).
To do so, prior works (Eysenbach et al., 2021; Kalashnikov et al., 2021; Yu et al., 2021a) assume
access to the functional form of the reward ri, which is a rather strong assumption that is usually
impractical to specify in practical applications due to the challenge of reward specification. The next
straightforward approach is to naı̈vely sharing data across all tasks, denoted as Sharing All. Formally,
Sharing All defines the dataset of transitions relabeled from task j to task i as Dj→i and the method
can be then defined as Deff

i := Di ∪ (∪j 6=iDj→i), where Deff
i denotes the effective dataset for task

i. While Sharing All improves over not sharing data, as shown in Yu et al. (2021a), Sharing All
leads to distributional shift that could degrade performance in certain situations (Yu et al., 2021a).
In our work, we focus on the CDS (Yu et al., 2021a), which relabels data that aims to mitigate the

3



Under review as a conference paper at ICLR 2022

distributional shift introduced by sharing other task data. CDS addresses such an issue by proposing
a conservative data sharing strategy as follows:

Deff
i = Di ∪ (∪j 6=i{(sj ,aj , s′j , ri) ∈ Dj→i : ∆π(s,a) ≥ 0}), (1)

where sj ,aj , s′j denote the transition from Dj , ri denotes the reward of sj ,aj , s′j relabeled for task i,
π denotes the task-conditioned policy π(·|·, i), ∆π(sj ,aj) is the condition that shares data only if
the expected Q-value of the relabeled transition exceeds the top k-percentile of the Q-values of the
original task data, i.e.

∆π(s,a) := Q̂π(s,a, i)− Pk%

{
Q̂π(s′,a′, i): s′,a′ ∼ Di

}
. (2)

Beyond controlling the distributional shift introduced in data sharing, multi-task offline RL also needs
to address the main challenge in standard offline RL, which is the distributional shift between the
learned policy π and the behavior policy πβ . To handle both types of distributional shifts, CDS (Yu
et al., 2021a) combines the conservative data sharing and the constrained policy optimization problem
and arrives at the following objective:

∀i ∈ [N ], π∗(a|s, i) := arg max
π

JDeff
i

(π)− αD(π, πeff
β ), (3)

where πeff
β (a|s, i) is the effective behavior policy for task i denoted as πeff

β (a|s, i) :=

|Deff
i (s,a)|/|Deff

i (s)|, JDeff
i

(π) denotes the average return of policy π in the empirical MDP induced
by the effective dataset, and D(π, πeff

β ) denotes a divergence measure (e.g., KL-divergence (Jaques
et al., 2019; Wu et al., 2019), fisher divergence (Kostrikov et al., 2021), MMD distance (Kumar et al.,
2019) or DCQL from conservative Q-learning (Kumar et al., 2020)) between the learned policy π and
the effective behavior policy πeff

β . While optimizing Eq. 3 with Eq. 1 as the data sharing scheme is
able to mitigate distributional shift and improve over multi-task offline RL without sharing data and
naı̈vely sharing data across all tasks as shown in Yu et al. (2021a), it requires the assumption of the
access to the functional form of the reward functions, which is rather strong and make application of
data sharing to real-world applications impractical. We will instead present a simple yet effective
data sharing and relabeling scheme in the setting where we do not make such an assumption and
instead, only have the reward labels for originally commanded task in the following section.

4 DATA SHARING WITHOUT REWARDS IN MULTI-TASK OFFLINE RL

The goal of our method is to enable effective data sharing across different tasks without access to
the functional form of the reward functions for each task. Data from each task is only labeled for
that particular task, and we do not know a priori which data is relevant to each task. Effective data
sharing therefore requires resolving two questions: (i) which data from other tasks should we use for
a given task? and (ii) how do we label this data with rewards? One simple approach is to annotate
all available data from other tasks with some “proxy” reward signal, and treat it no differently from
data that is already labeled. That is, after relabeling with the proxy reward, we can simply put these
transitions into the replay buffer of a value-based offline RL method. But how can we obtain a reliable
proxy reward signal? Next, we will discuss two variants of our method in Section 4.1, understanding
of both variants in Section 4.2, and practical implementations in Section 4.3.

4.1 CONSERVATIVE UNSUPERVISED DATA SHARING

Prior work assumes that it is necessary to relabel prior data with some estimate of the true reward
function so that the proxy reward closely reflects the true reward. We take a different approach, and
instead argue that, under some assumptions, we can obtain many of the benefits of data sharing simply
by labeling the multi-task data with the lowest possible reward, which we assume to be 0 without
loss of generality in the binary-reward setting. We refer to this simple strategy as unsupervised data
sharing (UDS). Naı̈ve UDS prescribes sharing data from every task to every other task, and labels the
shared data with a reward value of 0. Formally, for each task i ∈ [N ], we define the UDS procedure
as follows:

Deff
i = Di ∪ {(sj ,aj , s′j , 0) ∈ Dj→i : ∀j ∈ [N ] \ {i}}. (4)
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Intuitively, UDS relabels data shared from other tasks with the lowest possible reward, hence making
the learned Q-functions more conservative that the data sharing scheme with the oracle rewards. We
will show that UDS learns Q-values that are lower-bounded by the Q-values learned by the naı̈ve
Sharing All scheme with true reward relabeling, and can be information-theoretically optimal in
offline RL thanks to such conservatism. Our empirical results in Section 5 also suggests that the
benefits from data sharing outweigh the downsides of reward bias in practice. Next, we move on
from the choice of proxy reward, to the choice of which data should be shared.

While UDS is simple yet effective in multi-task data sharing without reward relabing, naı̈vely sharing
data from all other tasks with zero rewards in the offline RL setting can result in overly conservative
Q-functions and policies. To further refine this strategy, we can adapt the CDS algorithm (Yu et al.,
2021a) detailed in Section 3 to filter out irrelevant transitions from other tasks, and only share those
transitions that are likely to be informative. We call this strategy conservative unsupervised data
sharing (CUDS). We define the CUDS strategy as follows:

Deff
i = Di ∪ {(sj ,aj , s′j , 0) ∈ Dj→i : ∆π(s,a) ≥ 0 ∀j ∈ [N ] \ {i}}. (5)

As we will discuss in the next subsection, CUDS is able to select potentially useful transitions under
certain structural assumptions on the multi-task offline dataset, and therefore produce Q-values that
are not as excessively conservative as those produced by UDS. As shown in Section 5, our empirical
evaluation further validates that CUDS improves over UDS and prior approaches.

Algorithm 1 (Conservative) Unsupervised Data Sharing
Require: Multi-task offline datasets ∪Ni=1Di.
1: Randomly initialize policy πθ(a|s, i).
2: for k = 1, 2, 3, · · · , do
3: Initialize Deff ← {}
4: for i = 1, · · · , N do
5: Deff

i =Di∪{(sj ,aj , s′j , 0) ∈ Dj→i ∀j ∈ [N ]\{i}} (UDS) orDeff
i =Di∪{(sj ,aj , s′j , 0) ∈ Dj→i :

∆π(s,a) ≥ 0 ∀j ∈ [N ] \ {i}} using Eq. 2 (CUDS).
6: Perform policy improvement by solving Eq. 3 by sampling data from Deff .

4.2 UNDERSTANDING THE BEHAVIOR OF UDS AND CUDS

In this section, we aim to understand the behavior of the UDS and CUDS. We first consider the
UDS scheme, which simply shares all available data from other tasks, and labels the reward for each
transition from other tasks as 0. When instantiated with CQL as the offline RL method, the Q-values
of a given policy learned by UDS for each task i are the fixed point of the recursion:

Q̂k+1(s,a, i)← r̂(s,a, i)+γEs′∼P̂ (s′|s,a),π(a′|s′,i)

[
Q̂k(s′,a′, i)

]
−α

(
π(a|s, i)
π̂β(a|s, i)

− 1

)
,(6)

where r̂(s,a, i) = 0 for all (s,a) ∈ Dj→i.j 6= i, and r̂(s,a, i) is equivalent to the empirical reward
observed otherwise (Kumar et al., 2020). We will now try to understand how UDS compares to
the No Sharing strategy, which only uses the labeled data for training. Note that this comparison is
non-trivial since, while UDS utilizes a larger dataset, it can induce significant reward bias during
training. However, by assumption, 0 is the lowest possible reward, we would intuitively expect that
UDS should be more conservative, compared to Sharing All that relabels with the true reward. While
we may surmise that being too conservative on unlabeled data may be suboptimal, conservatism has
been shown to be information-theoretically optimal (Jin et al., 2021; Rashidinejad et al., 2021) in
offline RL and bandit problems. Even though an unlabeled dataset provides us with information about
environment dynamics, it does not provide information about rewards, and any optimistic estimate of
reward on this data may lead to poor performance in the worst case.

We formally derive the performance guarantee for UDS in Proposition F.1 using the framework of
safe-policy improvement and discuss cases where it can perform better than No Sharing. We discuss
in Appendix F.2.3 that UDS can perform better than No Sharing in long horizon tasks as well as
in cases where the unlabeled dataset consists of similar proportions of various state-action pairs as
the labeled dataset. Please refer to this section for the theoretical results. Our bounds utilize a new
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technique that allows us to prove tighther, non-trivial bounds for UDS. despite the pessimism which
is discussed in Appendix F.2.1.

To understand the behavior of CUDS, we will consider a simple abstract model of CUDS-style
relabeling. In the tabular setting, this model updates the Q-function to match the target (conservative)
Q-value if the transition is selected for the update, and retains the old table entry otherwise. Formally,
consider a binary vector w ∈ R|S|×|A| that indicates whether a corresponding state-action pair (s,a)
is utilized for the backup or not. Then, our weighted scheme performs the following backups:

Q̂k+1(s,a, i) = w(s,a)

[
r̂(s,a, i)− α

(
π(a|s, i)
π̂β(a|s, i)

− 1

)
+ γEs′,a′∼P̂ (·|s,a),π(·|s′,i)

[
Q̂k(s′,a′, i)

]]
(7)

+ (1−w(s,a))Q̂k(s,a, i).

Equation 7 can be intuitively understood as performing a conservative backup from the actual
transition observed in the dataset when the binary weight w(s,a) = 1, and simply truncating
the Bellman backup and retaining the previous Q-values Q̂k(s,a, i), otherwise. For example,
CUDS performs a conservative backup with r̂(s,a, i) ≤ r̂Sharing All(s,a, i) only on transitions where
w(s,a) = I[∆π(s,a) ≥ 0].

To understand how this affects the resulting Q-function, we consider two structural conditions on
the offline dataset: (1) a scenario where no trajectory in the relabeled dataset for a given target task
Dj→i actually visits state-action tuples that were observed in Di, and (2) when trajectories in Dj→i
overlap with at least a fraction of state-action tuples in the original labeled data for this task Di. We
will abstract CUDS as utilizing wk(s,a) = I[Q̂k(s,a, i) ≥ ι] for some threshold ι (see Eqn. 2).
Remark 4.1 (CUDS reduces to no sharing under condition (1)). When the trajectories in the
unlabeled, relabeled dataset do not overlap with any trajectory in the labeled dataset for a given task,
any backup performed by CUDS on an unlabeled transition will eventually drive its Q-value to 0 as
k →∞. Thus, CUDS weights wk(s,a) will eventually take on 0 values for such transitions, and will
not be selected by the future weights, i.e., wj(s,a) = 0 ∀j ≥ k + 1.

Perhaps unsurprisingly, when the unlabeled data has no overlap with the labeled data, CUDS reduces
to no sharing. However, the more practically relevant case is when the unlabeled data overlaps with
the labeled data. We consider the scenario when UDS has been run initially to obtain a starting set of
Q-values, Q̂0(s,a, i), which defines the initial weight vector.
Remark 4.2 (CUDS selects more useful unlabeled transitions). Imagine a transitions (s,a, s′, 0) ∈
Dj→i for which the next state (and the next policy action) (s′,a′) are observed in the labeled dataset
(denoted Di). This transition will will attain large initial Q-values Q̂0(s,a, i) if executing the policy
after (s′,a′) eventually reaches the state that corresponds to a high reward of 1.0, due to the Bellman
backup component of CUDS. However, on the flip side, these backups performed by CUDS are
conservative, and performing more backups can reduce the Q-value. Two scenarios might then arise:
(i) the Q-values eventually decrease and CUDS is deactivated, i.e., ∃k, wk(s,a) = 0, in which case
this transition is discarded and not used for learning anymore as the backup in Equation 7 preserves
the Q-value (the second term) when wk(s,a) = 0, or (ii) the learning process reaches an equilibrium
where wk(s,a) = 1 ∀ k, meaning that this relabeled transition is used for learning.

We have now provided a theoretical analysis of CUDS and a comparison between CUDS and UDS in
Appendix F.2. Additionally, we provide several new experiments to build insight into why UDS and
CUDS work in Appendix G.

4.3 PRACTICAL IMPLEMENTATIONS

We present pseudocode for UDS and CUDS in Algorithm 1. We train the Q-values with CQL to
obtain conservative Q-values, and use the conservative Q-values to compute ∆π(s,a) defined in Eq. 2.
For CUDS, in practice, instead of computing the hard threshold of ∆π(s,a) ≥ 0 to determine data
sharing, we follow Yu et al. (2021a) and transform the condition ∆π(s,a) ≥ 0 into a soft weighting
scheme, with weights given by wCUDS(s,a; j → i) := σ

(
∆(s,a;j→i)

τ

)
, where τ is a hyperparameter

for the temperature of the sigmoid term in wCUDS that is automatically selected by the running
average of ∆(s,a; j → i). These weights are applied to both critic and actor training. For both UDS
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and CUDS, we train a policy π(a|s, i) where π(a|s, i) could either be a single task-conditioned task
with weight sharing or separate policies for each task without weight sharing. For more details of the
practice implementations, see Appendix B.

5 EXPERIMENTS

In this section, we present our empirical evaluation, which aims to answer the following questions: (1)
Can our simple approach outperform prior methods for utilizing unlabeled offline data on multi-task
offline datasets? (2) Can the conservative data sharing strategy further improve the results achieved
by our method? (3) Is our approach able to attain competitive result compared to the prior multi-task
offline RL algorithm that have access to the true rewards? (4) How does CUDS compare to prior
offline RL methods that directly learn representations from the multi-task offline dataset and run
offline training on top of the representation?

Comparisons. We compare UDS and CUDS to a number of prior methods. We first evaluate: No
Sharing, which performs applies standard offline RL algorithm to the multi-task setting without
sharing data across tasks, Reward Predictor, which learns a classifier that directly predicts the
reward using supervised learning, VICE (Fu et al., 2018c), an inverse RL method that learns a reward
classifier from the labeled data and then annotates the unlabeled data with the learned classifier, and
RCE (Eysenbach et al., 2021), a method similar to VICE except that RCE represents the Q-function
as a classifier and learns the reward for unlabeled data implicitly. We adapt VICE and RCE to the
multi-task offline RL setting by extracting transitions with reward labels equal to 1 and treating
these datapoints as positives to learn the classifier for each task. We also train VICE and RCE, but
adapt them to the offline setting using CQL, i.e. the same base offline RL method as in UDS and
CUDS. Finally, to answer question (4), we conduct empirical evaluations on ACL (Yang & Nachum,
2021), which is a recent offline RL algorithm that performs representation learning on the offline
dataset and trains the policy on top of the representation. For more details for experimental set-up and
hyperparameter settings, please see Appendix B. We also include evaluations of our methods under
different quality of the relabeled data in Appendix C, results of UDS and CUDS in dense-reward
settings in Appendix D, comparisons to model-based offline RL approaches in Appendix E, and
empirical analysis of the reasons that UDS and CUDS work in Appendix G.

5.1 MAIN EVALUATION

To answer questions (1), (2), and (3), we perform empirical evaluations on two state-based multi-task
robotic manipulation and navigation datasets and one image-based multi-task manipulation dataset
introduced in prior work (Yu et al., 2021a), which we will discuss below.

Figure 1: Environments (from left to right): Meta-World door and drawer open/close, AntMaze, and vision-
based pick-place tasks.

Tasks and Datasets. Following the experimental setup in prior work (Yu et al., 2021a), we consider
three domains shown in Fig. 1: (i) the Meta-World (Yu et al., 2020b) domain, which consists of
four tasks of opening and closing doors and drawers; (ii) the Antmaze (Fu et al., 2020) domain,
which consists of two sizes of mazes (medium and large) with 3 and 7 tasks respectively; and (iii)
the multi-task visual manipulation domain, which consists of 10 tasks with different combinations
of object-oriented grasping, with 7 objects (banana, bottle, sausage, milk box, food box, can and
carrot), and placing the picked objects onto one of three fixtures (bowl, plate and divider plate). For
all domains, we use binary rewards, where 1 denotes the successful completion of the task and 0
corresponds to failure. Note that for Meta-World, we use a fixed 200 timesteps for each episode
and do not terminate the episode when receiving a reward of 1 at an intermediate timestep. In
Antmaze, we terminate the episode upon seeing a reward of 1 with the maximum possible 1000
transitions per episode. We use the same datasets as prior work (Yu et al., 2021a). For Meta-World,
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Environment Tasks CUDS (ours) UDS (ours) VICE RCE No Sharing Reward Predictor
door open 61.3%±7.9% 51.9%±25.3% 0.0%±0.0% 0.0%±0.0% 14.5%±12.7 0.0%±0.0%
door close 54.0% ±42.5% 12.3%±27.6% 66.7%%±47.1% 0.0%±0.0% 4.0%±6.1% 99.3%±0.9%

Meta-World drawer open 73.5%±9.6% 61.8%±16.3% 0.0%±0.0% 0.0%±0.0% 16.0%±17.5% 13.3%±18.9%
drawer close 99.3%±0.7% 99.6%±0.7% 19.3%±27.3% 2.7%±1.7% 99.0%±0.7% 50.3%±35.8%
average 71.2% ± 11.3% 56.4%±12.8% 21.5%±0.7% 0.7%±0.4% 33.4%±8.3% 41.0%±11.9%

AntMaze medium maze (3 tasks) 31.5%±3.0% 26.5%±9.1% 2.9%±1.0% 0.0%±0.0% 21.6%±7.1% 3.8%±3.8%
large maze (7 tasks) 18.4%±6.1% 14.2%±3.9% 2.5%±1.1% 0.0%±0.0% 13.3% ± 8.6% 5.9%±4.1%

Table 1: Results for multi-task robotic manipulation (Meta-World) and navigation environments (AntMaze)
with low-dimensional state inputs. Numbers are averaged across 6 seeds, ± the 95%-confidence interval. We
take the results of No Sharing directly from Yu et al. (2021a). We include per-task performance for Meta-World
domains and the overall performance averaged across tasks (highlighted in gray) for all three domains. We bold
the highest score across all methods. Both CUDS and UDS outperforms prior vanilla multi-task offline RL
approach (No Sharing) and reward learning methods (Reward Predictor, VICE and RCE)

Task Name CUDS (ours) UDS No Sharing CDS (oracle) Sharing All (oracle)

lift-banana 55.9%±11.7% 48.6%±5.1% 20.0%±6.0% 53.1%±3.2% 41.8%±4.2%
lift-bottle 72.9%±12.8% 58.1%±3.6% 49.7%±8.7% 74.0%±6.3% 60.1%±10.2%
lift-sausage 74.3%±8.3% 66.8% ± 2.7% 60.9%±6.6% 71.8%±3.9% 70.0%±7.0%
lift-milk 73.5%±6.7% 74.5%±2.5% 68.4%±6.1% 83.4%±5.2% 72.5%±5.3%
lift-food 66.3%±8.3% 53.8%±8.8% 39.1%±7.0% 61.4%±9.5% 58.5%±7.0%
lift-can 64.9%±7.1% 61.0%±6.8% 49.1%±9.8% 65.5%±6.9% 57.7%±7.2%
lift-carrot 84.1%±3.6% 73.4%±5.8% 69.4%±7.6% 83.8%±3.5% 75.2%±7.6%
place-bowl 83.4%±3.6% 77.6%±1.6% 80.3%±8.6% 81.0%±8.1% 70.8%±7.8%
place-plate 86.2%±1.8% 78.7%±2.2% 86.1%±7.7% 85.8%±6.6% 78.7%±7.6%
place-divider-plate 89.0%±2.2% 80.2%±2.2% 85.0%±5.9% 87.8%±7.6% 79.2%±6.3%
average 75.0%±3.3% 67.3%±0.8% 60.8%±7.5% 74.8% ±6.4% 66.4%±7.2%

Table 2: Results for multi-task imaged-based robotic manipulation domains in (Yu et al., 2021a). Numbers are
averaged across 3 seeds, ± the 95% confidence interval. UDS outperforms No Sharing in 7 out of 10 tasks as
well as the average task performance, while performing comparably to Sharing All. CUDS further improves
the performance of UDS and outperforms No Sharing in all of the 10 tasks.
we use large datasets with wide coverage of the state space and 152K transitions for the door open
and drawer close tasks and datasets with limited (2K transitions), but optimal demonstrations
for the door close and drawer open tasks. For AntMaze, following Yu et al. (2021a), we
modify the datasets introduced by Fu et al. (2020) by equally dividing the large dataset into different
parts for different tasks, where each task corresponds to a different goal position. For image-based
manipulation, we directly use the dataset collected by Yu et al. (2021a), which contains a total of
100K RL episodes with 25 transitions for each episode, where the success rate is 40% and 80% for
the picking and placing tasks, respectively. Note that the success rate of placing is higher because the
robot is already holding the object at the start of the placing tasks, making the placing easier to solve.

Results of Question (1). The main results are in Table 1. UDS achieves better performance than
vanilla multi-task offline RL without data sharing and compared to reward learning methods, sug-
gesting that our simple relabeling method is effective in both multi-task manipulation and navigation
domains. Since the reward learning approaches obtain similar or worse results compared to no
sharing, we only compare our methods to No Sharing and the oracle methods in the image-based
experiments. As shown in Table 2. UDS outperforms No Sharing in 7 out of 10 tasks as well as the
average task performance by a significant margin. Therefore, UDS is able to effectively leverage
unlabeled data shared from other tasks and achieves potentially surprisingly strong results compared
to more sophisticated methods that handle unlabeled offline data, answering question (1).

Results of Question (2). In both the state-based and vision-based experiments shown in Table 1
and Table 2, we find that CUDS further improves upon the performance of UDS, which empirically
indicates that the less conservative policy learned from CUDS’s selective filtering scheme is more
performant in practice. Additionally, we measure the success rates of the relabeled data in Table 5
Appendix C, measured by the oracle multi-task reward function on the Meta-World and AntMaze
domain. We see that the success rates of the relabeled data are above 0% by a significant margin in
most of the tasks. This suggests that UDS and CUDS are not simply relabeling with the true reward,
since the relabeled data does not entirely consist of failures but rather has a significant number of
successful transitions.

Results of Question (3). We also show results for oracle methods that receive true reward labels:
Sharing All, which shares all data with ground truth rewards, and CDS, which uses the CDS
strategy (Yu et al., 2021a) with ground truth reward relabeling. We present the results in Table 3 for
state-based experiments and the last two columns on the right in Table 2 for the vision-based multi-
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Environment Tasks CUDS (ours) UDS (ours) CDS (oracle) Sharing All (oracle)
door open 61.3%±7.9% 51.9%±25.3% 58.4%±9.3% 34.3%±17.9%
door close 54.0% ±42.5% 12.3%±27.6% 65.3%±27.7% 48.3%±27.3%

Meta-World drawer open 73.5%±9.6% 61.8%±16.3% 57.9%±16.2% 55.1%±9.4%
drawer close 99.3%±0.7% 99.6%±0.7% 99.0%±0.7% 98.8%±0.7%
average 71.2% ± 11.3% 56.4%±12.8% 70.1%±8.1% 59.4%±5.7%

medium maze (3 tasks) 31.5%±3.0% 26.5%±9.1% 36.7%±6.2% 22.9%±3.6%
AntMaze large maze (7 tasks) 18.4%±6.1% 14.2%±3.9% 22.8% ± 4.5% 16.7% ± 7.0%

Table 3: Comparison between UDS / CUDS and the oracle data sharing strategies with access to the true reward
functions for relabeling. We take the results CDS and Sharing All directly from Yu et al. (2021a). CDS (Yu
et al., 2021a) and Sharing All (Kalashnikov et al., 2021). UDS / CUDS achieve competitive results compared
to CUDS and UDS.

Environment Tasks CUDS (ours) UDS (ours) ACL

door open 61.3%±7.9% 51.9%±25.3% 2.8%±2.0%
door close 54.0%±42.5% 12.3%±27.6% 0.0%±0.0%

Meta-World drawer open 73.5%±9.6% 61.8%±16.3% 83.2%±14.2%
drawer close 99.3%±0.7% 99.6%±0.7% 100.0%±0.0%
average 71.2%± 11.3% 56.4%±12.8% 46.4%±3.5%

Table 4: Comparison between UDS / CUDS and the ACL (Yang & Nachum, 2021) that performs representation
learning on the unlabeled data instead of data sharing. Both UDS and CUDS outperforms ACL by a significant
margin in the average task result, suggesting that sharing the unlabeled data is crucial in improving the multi-task
offline RL performance compared to only using the data for learning the representation.
task robotic manipulation problem. Both CUDS and UDS achieves competitive results compared to
CDS and Sharing All, indicating that our simple relabeling scheme is able to remove the dependence
of functional form of reward functions without much loss of performance due to lacking ground-truth
reward access. This addresses question (3).

Results of Question (4). Finally, to answer question (4), on the Meta-World environment, we
compare UDS and CUDS to ACL (Yang & Nachum, 2021). We use the version of ACL without
inputting reward labels. ACL can be viewed as an alternative to our unlabeled sharing data scheme,
which leverages unlabeled data for representation learning rather than sharing it directly. We show
the comparison to ACL in Table 4. UDS and CUDS outperform ACL in the average task performance
while ACL is only proficient on drawer-open and drawer-close, and it cannot solve door-open or
door-close. This indicates that sharing the unlabeled data conservatively across all tasks is important
in multi-task offline RL while pretraining representations on the whole multi-task offline dataset might
have limited benefit. We note that UDS / CUDS are complementary to ACL and these approaches
can be combined together to further improve performance, which we leave as future work.

6 CONCLUSION

In the paper, we present two new algorithms, UDS and CUDS, that handle the problem of how to
share data across tasks without access to the functional form of the multi-task reward function in
the multi-task offline RL setting. UDS lifts the strong assumption of having access to the reward
of all tasks at each transition in previous works in multi-task data sharing via simply sharing data
across all tasks and relabeling the reward of data from other tasks to the minimum reward in the
MDP, which indicates failure of the task. CUDS further improves over UDS via applying a more
sophisticated data sharing scheme (Yu et al., 2021a) that shares data only if the relabeled Q-values
improve over the expected Q-values of the original task data. We justify that UDS obtains Q-values
that are lower-bounded by the Q-values learned by data sharing with true reward labels and then
discuss that under certain structures of offline datasets, CUDS can selectively apply conservative
policy evaluation on only transitions with high Q-values, resulting in a less conservative algorithm.
Empirically, we show that both CUDS and UDS significantly outperform vanilla multi-task offline RL
without data sharing as well as more complex methods that learns the reward function either explicitly
or implicitly on a range of robotic manipulation and navigation domains. CUDS also improves over
UDS on all of the domains. Furthermore, CUDS and UDS achieve competitive results compared
to data sharing methods with access to the oracle rewards. While our method removes the strong
assumption on reward functions in data sharing for multi-task offline RL and enjoys both theoretical
guarantees and good empirical results, it does have a few limitations. For example, UDS and CUDS
are evaluated in MDPs with binary rewards. Exploring their effects in MDPs with continuous rewards
will be an exciting future avenue.
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REPRODUCIBILITY STATEMENT

We provided the code, data, and instructions needed to reproduce the main experimental results of the
experiments with low-dimensional inputs in the supplementary material. We include all assumptions
and derivations of all claims in Section 4.2 and Appendix A. For datasets used in our experiments,
we discuss the details of processing the datasets in Appendix B.
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Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott Reed, Rae
Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, et al. Scaling data-driven robotics
with reward sketching and batch reinforcement learning. arXiv preprint arXiv:1909.12200, 2019.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex
Irpan, Benjamin Eysenbach, Ryan Julian, Chelsea Finn, and Sergey Levine. Actionable models:
Unsupervised offline reinforcement learning of robotic skills. arXiv preprint arXiv:2104.07749,
2021.

Paul Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. arXiv preprint arXiv:1706.03741, 2017.

Leandro M de Lima and Renato A Krohling. Discovering an aid policy to minimize student evasion
using offline reinforcement learning. arXiv preprint arXiv:2104.10258, 2021.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing knowledge
in multi-task deep reinforcement learning. In International Conference on Learning Representa-
tions, 2019.

Yaqi Duan, Zeyu Jia, and Mengdi Wang. Minimax-optimal off-policy evaluation with linear function
approximation. In International Conference on Machine Learning, pp. 2701–2709. PMLR, 2020.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.
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A Q-VALUES LEARNED VIA UDS

Proposition A.1. For a policy π, let Q̂πUDS(·, ·, i) denote the fixed point of Eqn. 6. Then, Q̂πUDS(s,a)

lower-bounds the Q-function Q̂πSharing All that would be obtained had we used the true rewards.

Proof. Note that Q̂πUDS(s,a) at iteration k+ 1 is defined in Eq. 6, which we restate it for convenience:

Q̂k+1
UDS(s,a, i)← r̂(s,a, i)+γEs′∼P̂ (s′|s,a),π(a′|s′,i)

[
Q̂kUDS(s′,a′, i)

]
−α

(
π(a|s, i)
π̂β(a|s, i)

− 1

)
,(8)

whereas Q̂πSharing All(s,a) at iteration k + 1 is defined as

Q̂k+1
Sharing All(s,a, i)← r(s,a, i) + γEs′∼P̂ (s′|s,a),π(a′|s′,i)

[
Q̂kSharing All(s

′,a′, i)
]

(9)

− α
(
π(a|s, i)
π̂β(a|s, i)

− 1

)
. (10)

Assume Q̂0
Sharing All = Q̂0

UDS, i.e. same Q-value initialization and Q̂kSharing All ≥ Q̂kUDS. Using such
induction hypothesis and the fact that r̂(s,a, i) ≤ r(s,a, i) for all s,a, we can conclude that
Q̂πUDS(s,a) ≤ Q̂πSharing All(s,a). Therefore, UDS learns the Q-value that lower-bounds the Q-values
learned data sharing all tasks with the ground-truth rewards.

B DETAILS OF UDS AND CUDS

In this section, we include the details of training UDS and CUDS in Appendix B.1 as well as details
on the environment and datasets used in our experiments in Appendix B.2. Finally, we discuss the
compute information of UDS and CUDS in Appendix B.3. For additional details, please see our
anonymous website: https://sites.google.com/view/uds-cuds/.

B.1 DETAILS ON THE TRAINING PROCEDURE

Our practical implementation of UDS optimizes the following objectives for the Q-functions and the
policy:

Q̂k+1 ← arg min
Q̂

Ei∼[N ]

[
β
(
Ej∼[N ]

[
Es∼Dj ,a∼µ(·|s,i)

[
Q̂(s,a, i)

]
−Es,a∼Dj

[
Q̂(s,a, i)

]])
+

1

2
Ej∼[N ],(s,a,s′)∼Dj

[(
Q̂(s,a, i)−

(
r(s,a, i)1{j=i} + γQ(s′,a′)

))2
]]
,

and π ← arg max
π′

Ei∼[N ]

[
Ej∼[N ],s∼Dj ,a∼π′(·|s,i)

[
Q̂π(s,a, i)

]]
,

Similarly, CUDS optimizes the following objectives for training the critic and the policy with a soft
weight:

Q̂k+1 ← arg min
Q̂

Ei∼[N ]

[
β
(
Ej∼[N ]

[
Es∼Dj ,a∼µ(·|s,i)

[
wCUDS(s,a; j → i)Q̂(s,a, i)

]
−Es,a∼Dj

[
wCUDS(s,a; j → i)Q̂(s,a, i)

]])
+

1

2
Ej∼[N ],(s,a,s′)∼Dj

[
wCUDS(s,a; j → i)

(
Q̂(s,a, i)−

(
r(s,a, i)1{j=i} + γQ(s′,a′)

))2
]]
,

and π ← arg max
π′

Ei∼[N ]

[
Ej∼[N ],s∼Dj ,a∼π′(·|s,i)

[
wCDS(s,a; j → i)Q̂π(s,a, i)

]]
,

where β is the coefficient of the CQL penalty on distribution shift, µ is an action sampling distribution
that covers the action bound as in CQL. We follow all the CQL hyperparameters used in Yu et al.
(2021a).
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To compute the weight wCUDS(s,a; j → i) := σ
(

∆(s,a;j→i)
τ

)
, we pick τ , i.e. the temperature term,

using the exponential running average of ∆(s,a; j → i) with decay 0.995 for each task following Yu
et al. (2021a). Following Yu et al. (2021a) again, we clip the automatically chosen τ with a minimum
and maximum threshold, which we directly use the values from Yu et al. (2021a). We use [1, 50]
and [10,∞] as the minimum and maximum threshold for the multi-task Meta-World and AntMaze
domains respectively whereas the vision-based robotic manipulation domain does not require such
clipping.

Following the training protocol in Yu et al. (2021a), for experiments with low-dimensional inputs, we
use a stratified batch with 128 transitions for each task to train the Q-functions and the policy. We
also balance the numbers of transitions sampled from the original task and the number of transitions
drawn from other task data. Specifically, for each task i, we sample 64 transitions from Di and the
remaining 64 transitions from ∪j 6=iDj→i. In CUDS, for each task i ∈ [N ], we only apply wCUDS to
data shared from other tasks on multi-task Meta-World environments and multi-task vision-based
robotic manipulation tasks while we also apply the relabeling weight to transitions sampled from the
original task dataset Di with 50% probability in the multi-task AntMaze domain.

Regarding the choices of the architectures, for state-based domains, we use 3-layer feedforward neural
networks with 256 hidden units for both the Q-networks and the policy. We condition the policy on a
one-hot task ID, which is appended to the input state. In domains with high-dimensional image inputs,
we adopt the multi-headed convolutional neural networks used in Kalashnikov et al. (2021); Yu
et al. (2021a). We use images with dimension 472× 472× 3, extra state features (grobot status, gheight)
and the one-hot task vector as the observations similar Kalashnikov et al. (2021); Yu et al. (2021a).
Following the set-up in Kalashnikov et al. (2018; 2021); Yu et al. (2021a), we use Cartesian space
control of the end-effector of the robot in 4D space (3D position and azimuth angle) along with
two binary actions to open/close the gripper and terminate the episode respectively to represent the
actions. For more details, see Kalashnikov et al. (2018; 2021).

B.2 DETAILS ON THE ENVIRONMENT AND THE DATASETS

In this subsection, we include the discussion of the details the environment and datasets used for
evaluating UDS and CUDS. Note that all of our environment and offline datasets are from prior
work (Yu et al., 2021a). We will nonetheless discuss the details to make our work self-contained. We
acknowledge that all datasets with low-dimensional inputs are under the MIT License.

Multi-task Meta-World domains. We use the door open, door close, drawer open and
drawer close environments introduced in Yu et al. (2021a) from the public Meta-World (Yu
et al., 2020c) repo1. In this multi-task Meta-World environment, a door and a drawer are put on the
same scene, which ensures that all four tasks share the same state space. The environment uses binary
rewards for each task, which are adapted from the success condition defined in the Meta-World public
repo. In this case, the robot gets a reward of 1 if it solves the target task and 0 otherwise.

We direct use the offline datasets constructed in Yu et al. (2021a), which are generated by training
online SAC policies for each task with the dense reward defined in the Meta-World repo for 500
epochs. The medium-replay datasets use the whole replay buffer of the online SAC agent until 150
epochs while the expert datasets are collected by the final online SAC policy.

Multi-task AntMaze domains. Following Yu et al. (2021a), we use the antmaze-medium-play
and antmaze-large-play datasets from D4RL (Fu et al., 2020) and partitioning the datasets
into multi-task datasets in an undirected way defined in Yu et al. (2021a). Specifically, the dataset is
randomly splitted into chunks with equal size, and then each chunk is assigned to a randomly chosen
task. Therefore, under such a task construction scheme, the task data for each task is of low success
rate for the particular task it is assigned to and it is imperative for the multi-task offline RL algorithm
to leverage effective data sharing strategy to achieve good performance. In AntMaze, we also use a
binary reward, which provides the agent a reward of +1 when the ant reaches a position within a 0.5
radius of the task goal, which is also the reward used default by Fu et al. (2020). The terminal of an
episode is set to be true when a reward of +1 is observed.

1The Meta-World environment can be found at the open-sourced repo https://github.com/
rlworkgroup/metaworld
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Environment Tasks Oracle Success Rate of the Shared data
drawer open 47.4%
door close 99.2%

Meta-World drawer open 0.1%
drawer close 91.6%%
average 59.5%

medium maze (3 tasks) average 4.3%
AntMaze large maze (7 tasks) average 1.6%

Table 5: Success rate of the data shared from other tasks to the target task determined by the ground-truth
multi-task reward function.

Multi-task image-based robotic picking and placing domains. Following Kalashnikov et al.
(2021); Yu et al. (2021a), we use sparse rewards for each task. That is, reward 1 is assigned to
episodes that meet the success conditions and 0 otherwise. The success conditions are defined in
(Kalashnikov et al., 2021). We directly use the dataset used in Yu et al. (2021a). Such a dataset is
collected by first training a policy for each individual task using QT-Opt (Kalashnikov et al., 2018)
until the success rate reaches 40% and 80% for picking tasks and placing tasks respectively and then
combine the replay buffers of all tasks as the multi-task offline dataset. The dataset consists of a total
number of 100K episodes with 25 transitions for each episode.

B.3 COMPUTATION COMPLEXITY

We train UDS and CUDS on a single NVIDIA GeForce RTX 2080 Ti for one day on the state-based
domains. For the vision-based robotic picking and placing experiments, it takes 3 days to train it on
16 TPUs.

C ADDITIONAL DETAILS ON THE QUALITY OF DATA SHARED FROM OTHER
TASKS

We present the success rate of the data shared from other tasks to the target task computed by the
oracle multi-task reward function in both the multi-task Meta-World and AntMaze domains in Table 5.
Note that the success rate of drawer close and door close are particularly high since for
other tasks, the drawer / door is initialized to be closed and therefore the success rate of other task data
for these two tasks are almost 100% as defined by the success condition in the public Meta-World
repo. Apart from these two particularly high success rates, the success rates of the shared data are
consistently above 0% across all tasks in both domains. This fact suggests that UDS and CUDS are
not relabeling with the ground truth reward where the relabeled data are actually all failures but rather
performs the conservative bellman backups on relabeled data that is shown to be effective empirically.

To better understand the performance of UDS under different relabeled data quality, we evaluate the
UDS under different success rates of the data relabeled from other tasks in the multi-task Meta-World
domain. Specifically, we filter out data shared from other tasks to ensure that the success rates of
the relabeled data are 5%, 50% and 90% respectively. We compare the results of UDS on such data
compositions to the performance of UDS in Table 1 where the success rate of relabeled data is 59.6%
as shown in Table 5. The full results are in Table 6. UDS on relabeled data with 50% and 90%
success rates achieves similar results compared to original UDS whereas UDS on relabel data with
5% success rate is significantly worse. Hence, UDS can obtain good results in settings where the
relabeled data is of high quality despite incurring high reward bias, but is not helpful in settings where
the shared data is of low quality and does not offer much information about solving the target task.

D EMPIRICAL RESULTS OF UDS AND CUDS IN MORE GENERAL DENSE
REWARD SETTINGS

In this section, we evaluate UDS and CUDS in the dense reward setting in order to test if UDS and
CUDS work in more general reward settings and are not limited to binary rewards. We pick the
multi-task walker environment as used in prior work (Yu et al., 2021a), which consists of three tasks,
run forward, run backward and jump. The reward functions of the three tasks are r(s, a) =
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Environment Tasks UDS UDS-5% relabel success UDS-50% relabel success UDS-90% relabel success

drawer open 51.9%±25.3 0.0%±0.0% 57.3%±18.9% 73.3%±8.6%
door close 12.3%±27.6% 0.0%±0.0% 0.0%±0.0% 0.0%±0.0%

Meta-World drawer open 61.8%±16.3% 19.4%±27.3% 61.0%±12.7% 56.3%±20.3%
drawer close 99.6%±0.7% 66.0%±46.7% 99.7%±0.5% 100.0%±0.0%
average 56.4%±12.8% 21.4% ±16.1% 54.3% ±2.0% 57.4%±3.3%

Table 6: Performance of UDS under different actual success rates of the relabeled data.

Environment Tasks / Dataset type CUDS (ours) UDS (ours) No Sharing CDS (oracle) Sharing All (oracle)

run forward / medium-replay 880.1±108.8 665.0±84.9 590.1±48.6 1057.9±121.6 701.4±47.0
walker2d run backward / medium 717.8±78.3 689.3±16.3 614.7±87.3 564.8±47.7 756.7±76.7

jump / expert 1487.7±177.6 1036.0±247.1 1575.2±70.9 1418.2±138.4 885.1±152.9
average 1028.6±76.8 796.7±106.3 926.6±37.7 1013.6±71.5 781.0±100.8

Table 7: Results for multi-task walker experiment with dense rewards. CUDS and UDS are able to outperform
No Sharing while attaining competitive results compared to CDS and Sharing All with oracle rewards. This
suggests that CUDS and UDS are able to solve more general problems where rewards are not binary.

Environment Tasks CUDS (ours) UDS (ours COMBO (Yu et al., 2021b)

door open 61.3%±7.9% 51.9%±25.3% 0.0%±0.0%
door close 54.0% ±42.5% 12.3%±27.6% 1.1%±1.6%

Meta-World drawer open 73.5%±9.6% 61.8%±16.3% 15.7%±15.2%
drawer close 99.3%±0.7% 99.6%±0.7% 85.7%±13.3%
average 71.2% ± 11.3% 56.4%±12.8% 25.6%±6.2%

Table 8: On the multi-task Meta-World domain, we compare CUDS and UDS to the model-based offline RL
method COMBO (Yu et al., 2021b) that trains a dynamics model on all of the data and performs model-based
offline training using the learned model. CUDS and UDS are able to outperform COMBO by a large margin.

vx−0.001∗‖a‖22, r(s, a) = −vx−0.001∗‖a‖22 and r(s, a) = −‖vx‖−0.001∗‖a‖22+10∗(z−init z)
respectively where vx denotes the velocity along the x-axis and z denotes the z-position of the half-
cheetah and init z denotes the initial z-position. In UDS and CUDS, we relabel the rewards routed
from other tasks with the minimum reward value in the offline dataset of the target task. As shown in
Table 7, CUDS and UDS outperform No Sharing by a large margin while also performing comparably
to CDS and Sharing All. Therefore, CUDS and UDS are not limited to settings with binary rewards
but are able to be applied to more general cases, in particular, environments with dense rewards.

E COMPARISONS OF CUDS AND UDS TO MULTI-TASK MODEL-BASED
OFFLINE RL APPROACHES

In this section, we compare CUDS and UDS to a recent, state-of-the-art model-based offline RL
method COMBO (Yu et al., 2021b) in the Meta-World domain. We adapt COMBO to the multi-task
offline setting by learning the dynamics model on data of all tasks combined and and performing
vanilla multi-task offline training without data sharing using the model learned with all of the data.
As shown in Table 8, CUDS and UDS indeed outperform COMBO in the average task success rate.
The intuition behind this is that COMBO is unable to learn an accurate dynamics model for tasks
with limited data as in our Meta-World setting.
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F THEORETICAL ANALYSIS OF UDS AND CUDS
In this section, we will theoretically analyze UDS and CUDS to understand when these approaches
can perform well. We will first discuss our notation, then present our theoretical results, then discuss
the intuitive explanations of these results, and finally, provide proofs of the theoretical results.

F.1 NOTATION AND ASSUMPTIONS

Let πβ(a|s) denote the behavior policy for task i (note that index i was dropped from πβ(a|s; i)
for brevity). The dataset, Di is generated from the marginal state-action distribution of πβ , i.e.,
D ∼ dπβ (s)πβ(a|s). We define dπD as the state marginal distribution introduced by the dataset D
under π. For our analysis, we will abstract offline RL algorithms into a generic constrained policy
optimization problem (Kumar et al., 2020):

π∗(a|s) := arg max
π

JD(π)− α

1− γ
D(π, πβ). (11)

JD(π) denotes the average return of policy π in the empirical MDP induced by the transitions in
the dataset, and D(π, πβ) denotes a divergence measure (e.g., KL-divergence (Jaques et al., 2019;
Wu et al., 2019), MMD distance (Kumar et al., 2019) or DCQL (Kumar et al., 2020)) between the
learned policy π and the behavior policy πβ . Let DCQL(p, q) denote the following distance between
two distributions p(x) and q(x) with equal support X :

DCQL(p, q) :=
∑
x∈X

p(x)

(
p(x)

q(x)
− 1

)
.

Unless otherwise mentioned, we will drop the subscript “CQL” from DCQL and use D and DCQL
interchangeably. Prior works (Kumar et al., 2020; Yu et al., 2021a) have shown that the optimal
policy π∗i that optimizes Equation 11 attains a high probability safe-policy improvement guarantee,
i.e., J(π∗i ) ≥ J(πβ)− ζi, where ζi is:

ζi = O
(

1

(1− γ)2

)
E
s∼d

π∗
i
Di

[√
DCQL(π∗i , πβ)(s) + 1

|Di(s)|

]
− α

1− γ
D(π∗i , πβ). (12)

The first term in Equation 12 corresponds to the decrease in performance due to sampling error and
this term is high when the single-task optimal policy π∗i visits rarely observed states in the dataset
Di and/or when the divergence from the behavior policy πβ is higher under the states visited by
the single-task policy s ∼ dπ

∗
i

Di . We will show that UDS and CUDS enjoy safe policy improvement.
In our analysis, we assume r(s,a) ∈ [0, 1]. Finally, as discussed in Section 3, let Deff

i denote the
relabeled dataset for task i, which includes both Di and the transitions from other tasks relabeled
with a 0 reward.

Assumptions. To prove our theoretical results, following prior work (Kumar et al., 2020; Yu et al.,
2021a) we assume that the empirical rewards and dynamics concentrate towards their mean.
Assumption F.1. ∀ s,a, the following relationships hold with high probability, ≥ 1− δ

|r̂(s,a)− r(s,a)| ≤ Cr,δ√
|D(s,a)|

, ||P̂ (s′|s,a)− P (s′|s,a)||1 ≤
CP,δ√
|D(s,a)|

.

Similar to prior work (Kumar et al., 2020; Yu et al., 2021a), we also make a coverage assumption,
i.e., we assume that each state-action pair is observed in the dataset Di, but the rewards and transition
dynamics are stochastic, so, the occurrence of each state-action pair does not trivially imply good
performance. To relax this assumption, we can extend our analysis to function approximation (e.g.,
linear function approximation (Duan et al., 2020)), where such a coverage assumption is only required
on all directions of the feature space, and not all state-action pairs. This would not significantly
change the analysis, and hence we opt for the simple but illustrative analysis in a tabular setting here.

F.2 THEORETICAL RESULTS

We first provide a performance guarantee for UDS which is then used to show that under certain
conditions on the sizes of the labeled Di and the effective dataset, Deff

i , UDS attains a better policy
improvement guarantee than naı̈ve no sharing. We first briefly discuss a novel component of our
proof technique, then present the theoretical results, and then interpret it.
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F.2.1 OUR PROOF TECHNIQUE

While there are several techniques to provide guarantees for offline RL algorithms, we will build
on the line of safe-policy improvement bounds, previously used in Kumar et al. (2020); Yu et al.
(2021a). However, naı̈vely applying these guarantees to our UDS setting will give rise to very weak
bounds, since a number of these guarantees utilize a bound on the value difference of the policy in
the empirical MDP and the actual MDP (term (i)) as shown below:

J(π)− J(πβ) := J(π)− Ĵ(π)︸ ︷︷ ︸
(i)

+ Ĵ(π)− Ĵ(πβ)︸ ︷︷ ︸
(ii)

+ Ĵ(πβ)− Ĵ(πβ)︸ ︷︷ ︸
(iii)

.

Typically, term (i) depends on the sampling error on states that are visited by the learned policy π,
and decays to 0 with infinite samples, but UDS can learn quite pessimistic Q-values due to the reward
labeling procedure. However, this may not affect the policy performance since the relative ordering
of actions might still be the same. This is not accounted for in any prior analysis we are aware of.

Therefore, we introduce a novel analysis tool that, rather than decomposing J(π)− J(πβ) naı̈vely
using the return in the empirical MDP, decomposes it using the return of the policy π in the best
empirical MDP that still produces the policy π as its optimal policy. One simple way to obtain this
best empirical MDP is via affine transformations on the reward function that preserve optimality. So,
for strengthening our bound, we shall compute the bound similar to the above equation for different
affine transformations of the reward and pick the one that gives the tightest bound.

Formally, let g(·) be an affine function: g(x) = u · x+ v for some u > 0, u ∈ R and v ∈ R. Then
our decomposition looks like:

J(π)− J(πβ) := J(π)− g
(
Ĵ(π)

)
︸ ︷︷ ︸

(i)

+ g
(
Ĵ(π)

)
− g

(
Ĵ(πβ)

)
︸ ︷︷ ︸

(ii)

+ g
(
Ĵ(πβ)

)
− J(πβ)︸ ︷︷ ︸

(iii)

,

Then, to obtain a strong lower bound on J(π) − J(πβ), we can first bound each of the terms for
a given choice of g = (u, v), and then take the supremum over u and v. This is reflected in the
performance guarantee we present next.

F.2.2 PERFORMANCE GUARANTEE FOR UDS

Proposition F.1 (Policy improvement guarantee for UDS). Let π∗UDS denote the policy learned by
UDS for a given task i, and let πeff

β (a|s, i) denote the behavior policy for the combined dataset for
task i, Deff

i . Then with high probability ≥ 1− δ, π∗UDS is a ζ-safe policy improvement over πeff
β , i.e.,

J(π∗UDS) ≥ J(πeff
β )− ζ, where ζ is:

ζ = min
u>0,v

ζu,v

ζu,v =
1

1− γ

∣∣∣∣Es,a∼d
πβ

Deff
i

[1− f(s,a)]− v
∣∣∣∣︸ ︷︷ ︸

(a): reward bias, but modified for the best u

− αu

1− γ
D(π∗UDS, π

eff
β )︸ ︷︷ ︸

(b): policy improvement

+
2CP,δγ

(1− γ)2

√DCQL(π∗UDS, π
eff
β )(s) + 1

|Deff
i (s)|


︸ ︷︷ ︸

(c): dynamics sampling error

+
2uCr,δ
(1− γ)

Es,a∼dπDi

[
f(s,a)√
|Di(s,a)|

]
︸ ︷︷ ︸

(d): reward sampling error, but scaled down

,

where we use the notation f(s,a) := |Di(s,a)|
|Deff
i (s,a)| .

A proof of Proposition F.1 is provided in Appendix F.3. To intuitively interpret the various terms that
appear, we note that term (b) corresponds to the standard policy improvement that arises as a result
of using an offline RL algorithm, term (c) corresponds to sampling error that arises as a result of
performing offline RL on the dynamics induced by a finite dataset, but note that this term depends
on the size of the effective dataset, Deff

i and not only the labeled dataset Di for the task. Term (a)
corresponds to the bias incurred as a result of labeling various transitions with a 0 reward in the data,
and term (d) corresponds to the sampling error in the reward function, under the assumption of a
stochastic reward function.
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F.2.3 HOW DOES UDS COMPARE TO NO SHARING?

In the setting when no data is shared across tasks, we attain the guarantee shown in Equation 12.
Comparing Proposition F.1 to this guarantee, we note that under some scenarios, UDS yields a tighter
bound compared to No Sharing. Two such scenarios are given by:

1. Long-horizon tasks: Consider a scenario where tasks have a long horizon H = 1
1−γ and

|Deff
i (s)| = H2|Di(s)|. In this case, dynamics sampling error term (term (c)) consists of

one less factor of H when UDS is utilized, compared to when it is not. Since the dynamics
sampling error grows quadratically in the horizon, whereas other terms grow linearly, a
reduction in this term by increasing sample size (i.e., denominator) can lead to a stronger
guarantee for UDS than No Sharing. This reasoning does not even consider term (d), which
can be trivially upper-bounded by the corresponding term for No Sharing, even though UDS
reduces this term as well.

2. The fraction f(s,a) is identical for all state-action pairs in the labeled Di, i.e., the un-
labeled dataset consists of equal proportions state-action pairs as the labeled dataset.
Consider an extreme case when the unlabeled dataset consists of the trajectories in the
labeled dataset such that f(s,a) = c0 for all state-action tuples, just not annotated with
rewards. In this case, reward bias takes on a constant value across all the transitions in the
dataset, and by virtue of utilizing u and v in our bound in Proposition F.1, we note that the
overall effect of this reward bias disappears, since v can compensate for this bias.

F.2.4 EXTENSION TO CUDS

Finally, we extend Proposition F.1 to a performance guarantee for CUDS by integrating the technique
above with the analysis from Yu et al. (2021a). To analyze CUDS, we consider the abstract model of
the conservative data sharing scheme developed by Yu et al. (2021a). This model suggests that CUDS
approximates the following optimization in the empirical MDP generated by the relabeled dataset:

(π∗(a|s, i), π∗β(a|s, i)) := arg max
π,πβ∈Πrelabel

ĴDeff (π)− α

1− γ
D(π, πβ). (13)

Now, utilizing Proposition F.1 and Proposition 5.1 from Yu et al. (2021a), we obtain the following
guarantee for CUDS:
Corollary F.1. Let π∗CUDS(a|s, i) be the optimal policy found by CUDS (Equation 13) and let
π∗β(a|s, i) denote the behavior policy that optimizes Equation 13 for task i ∈ [N ]. Then, with high
probability ≥ 1− δ, π∗CUDS is a ζ-safe policy improvement over π∗β , i.e., J(π∗CUDS) ≥ J(π∗β)− ζCUDS,
where ζCUDS is given by:

ζCUDS = min
u>0,v

ζu,v

ζu,v =
1

1− γ

∣∣∣∣Es,a∼d
πβ

Deff
i

[1− f(s,a)]− v
∣∣∣∣︸ ︷︷ ︸

(a): reward bias

− αu

1− γ
D(π∗CUDS, π

∗
β)︸ ︷︷ ︸

(b): policy improvement

+
2CP,δγ

(1− γ)2

√DCQL(π∗CUDS, π
∗
β)(s) + 1

|Deff
i (s)|


︸ ︷︷ ︸

(c): dynamics sampling error

+ +
2uCr,δ
(1− γ)

Es,a∼dπDi

[
f(s,a)√
|Di(s,a)|

]
︸ ︷︷ ︸

(d): reward sampling error, but scaled down

.

Proof. The proof of this proposition follows directly from the proof of Proposition F.1 with the
exception that this argument must be applied against the optimized behavior policy π∗β .

Comparing the bounds for CUDS and UDS. We now interpret the bound in Corollary F.1 com-
paratively against the bound in Proposition F.1. First note that since the abstract model of CUDS
(Equation 13) optimizes the behavior policy π∗β , we first note from Equation 14 of Yu et al. (2021a)
that for any other behavior policy π′,

D(π∗CUDS, π
∗
β) ≤ D(π∗CUDS, π

′). (14)
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This means that the numerator of the sampling error term (term (c)) is smaller when CUDS is
utilized as compared to when UDS is utilized. In addition, since CUDS relabels unlabeled data
from Equation 13, this scheme also increases the dataset size, increasing the denominator of term
(c). On the other hand, note that while UDS increases the denominator |Deff

i |, it may also increase
the distributional shift D(π∗, πeff

β ) appearing in the numerator of the sampling error term. Our
practical version of CUDS (Equation 2), which approximates Equation 13 by relabeling only the top
k percentile of the unlabeled data based on the objective in Equation 2, gives us a control over the
effective dataset size after relabeling |Deff

i |, while still ensuring a reduced value of D(π∗, π∗β), and is
thus expected to reduce ζ compared to UDS.

Intuitively, note that the bounds in Proposition F.1 and Corollary F.1, guarantee safe-policy improve-
ment over different base policies πeff

β vs π∗β . Intuitively, we would expect that J(π∗β) ≥ J(πeff
β ) in

practice, especially for a large α, since CUDS optimizes the behavior policy towards high return,
compared to simply relabeling all unlabeled transitions. Therefore, CUDS not only reduces ζ com-
pared to UDS, but also, in practice, is expected to improve over π∗β , which performs better than πeff

β .
Thus, we would expect CUDS to be better in practice compared to UDS.

F.3 PROOF OF PROPOSITION F.1

As mentioned in the beginning of Section F.2.1, to strengthen the conventional safe policy improve-
ment bound, we instead utilize a different form of loss decomposition of the improvement of the
learned policy relative to the behavior policy with the affine transformation g:

J(π)− J(πβ) := J(π)− g
(
Ĵ(π)

)
︸ ︷︷ ︸

(i)

+ g
(
Ĵ(π)

)
− g

(
Ĵ(πβ)

)
︸ ︷︷ ︸

(ii)

+ g
(
Ĵ(πβ)

)
− J(πβ)︸ ︷︷ ︸

(iii)

.

Now we will discuss how to bound each of the terms: terms (i) and (ii) correspond to the divergence
between a transformed empirical policy return and the actual return. While usually, this difference
depends on the sampling error and distributional shift, in our case, it additionally depends on the
reward bias induced on the unlabeled data and the transformation g. We first discuss the terms that
contribute to this reward bias.

Bounding the reward bias. Denote the effective reward of a particular transition (s,a, r, s′) ∈ Deff
i ,

as r̂eff
i , which considers contributions from both the reward r̂(s,a) observed in dataset Di, and the

contribution of 0 reward from the relabeled dataset:

r̂eff
i (s,a) =

|Di(s,a)| · r̂(s,a) + |Deff
i (s,a) \ Di(s,a)| · 0

|Deff
i (s,a)|

(15)

Define f(s,a) := |Di(s,a)|
|Deff
i (s,a)| for notation compactness. Equation 15 and the form of the reward

transformation g(x) = u · x+ v can then be used to derive the following difference against the true
rewards:

ur̂eff
i (s,a) + v − r(s,a) = uf(s,a) (r̂(s,a)− r(s,a)) + (1− uf(s,a)) · (0− r(s,a)) + v (16)

≤ uf(s,a) · Cr,δ√
|Di(s,a)|

− (1− f(s,a)u) · r(s,a) + v (17)

≤ uf(s,a) · Cr,δ√
|Di(s,a)|

,

where the last step follows from the fact that the ground-truth reward r(s,a) ∈ [0, 1] and the fact that
v will be chosen to minimize this upper bound. Now, we lower bound the reward bias as follows:

ur̂eff
i (s,a) + v − r(s,a) = uf(s,a) · (r̂(s,a)− r(s,a)) + (1− f(s,a)u) · (−r(s,a)) + v (18)

≥ −uf(s,a) · Cr,δ√
|Di(s,a)|

− (1− f(s,a)u) + v,

where the last step follows from the fact that r(s,a) ≤ 1. To highlight the significance of this reward
transformation, note that in the last step, if ∀s,a, f(s,a) = c0, then the best reward transformation
would choose v = 1− c0, and that completely eliminates the excess bias induced in the bound.
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Upper bounding g
(
Ĵi(π)

)
− Ji(π). Next, using the upper and lower bounds on the reward bias,

we now derive an upper bound on the difference between the value of a policy computed under the
empirical MDP and the actual MDP. To compute this difference, we follow the following steps

g
(
Ĵi(π)

)
− Ji(π) =

1

1− γ
∑
s,a

(
d̂πDeff

i
(s)π(a|s)g

(
r̂eff
i (s,a)

)
− dπi (s)π(a|s)r(s,a)

)
(19)

≤ 1

1− γ
∑
s,a

d̂πDeff
i

(s)π(a|s)
(
g
(
r̂eff
i (s,a)

)
− r(s,a)

)
︸ ︷︷ ︸

:=∆1

+
1

1− γ
∑
s,a

(
d̂πDeff

i
(s)− dπ(s)

)
π(a|s)r(s,a)︸ ︷︷ ︸

:=∆2

Following Kumar et al. (2020) (Theorem 3.6), we can bound the second term ∆2 using:

|∆2| ≤
γCP,δ
1− γ

Es∼d̂π
Deff
i

(s)

[ √
|A|√

|Deff(s)|

√
D(π, π̂eff

β )(s) + 1

]
. (20)

To upper bound ∆1, we utilize the reward upper bound from Equation 16:

∆1 =
∑
s

d̂πDeff
i

(s)

(∑
a

π(a|s)
(
ur̂eff
i (s,a) + v − r(s,a)

))
(21)

≤
∑
s

d̂πDeff
i

(s)
∑
a

uf(s,a)
Cr,δ√
|Di(s)|

π(a|s)√
π̂β(a|s)︸ ︷︷ ︸

=∆′1

. (22)

Combining the results so far, we obtain, for any policy π:

Ji(π) ≥ g
(
Ĵi(π)

)
− |∆2|

1− γ
− |∆

′
1|

1− γ
. (23)

Lower bounding g
(
Ĵi(π)

)
− Ji(π). To lower bound this quantity, we follow the step shown in

Equation 19, and lower bound the term ∆2 by using the negative of the RHS of Equation 20, and
lower bound ∆1 by upper bounding its absolute value as shown below:

|∆1| =

∣∣∣∣∣∑
s

d̂πDeff
i

(s)

(∑
a

π(a|s)
(
ur̂eff
i (s,a) + v − r(s,a)

))∣∣∣∣∣ (24)

≤
∑
s

d̂πDeff
i

(s)
∑
a

uf(s,a)
Cr,δ√
|Di(s)|

π(a|s)√
π̂β(a|s)︸ ︷︷ ︸

=∆′1

+

∣∣∣∣∣∑
s

d̂πDeff
i

(s)
∑
a

π(a|s) · (1− f(s,a)u)− v

∣∣∣∣∣ .
(25)

This gives rise to the complete lower bound:

g
(
Ĵi(π)

)
≥ Ji(π)− |∆2|

1− γ
− 1

1− γ

∣∣∣∣∣∑
s,a

d̂πDeff
i

(s)π(a|s)(1− f(s,a)u)− v

∣∣∣∣∣− ∆′1
1− γ

. (26)

Policy improvement term (ii). Finally, the missing piece that needs to be bounded is the policy
improvement term (ii) in the decomposition of g (J(π))− g (J(πβ)). Utilizing the abstract form of
offline RL (Equation 11, we note that term (ii) is lower bounded as:

term (ii) ≥ αu

1− γ
D(π, πβ). (27)

Putting it all together. To obtain the final expression of Proposition F.1, we put all the parts together,
and include some simplifications to obtain the final expression. The bound we show is relative to the
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effective behavior policy πeff
β . Applying Equation 26 for term (i) on policy π, Equation 27 for term

(ii), and Equation 23 for the behavior policy πeff
β , we obtain the following:

J(π)− J(πeff
β ) = J(π)− g

(
Ĵ(π)

)
+ g

(
Ĵ(π)

)
− g

(
Ĵ(πeff

β )
)

+ g
(
Ĵ(πeff

β )
)
− J(πeff

β )

≥ − 2γCP,δ
(1− γ)2

Es∼d̂π
Deff
i

(s)

[ √
|A|√

|Deff(s)|

√
D(π, π̂eff

β )(s) + 1

]
− 2uCr,δ

1− γ
Es,a∼d̂π

Deff
i

[
f(s,a)√
|Di(s,a)|

]

− 1

1− γ

∣∣∣∣Es,a∼d
πβ

Deff
i

[1− f(s,a)u]− v
∣∣∣∣︸ ︷︷ ︸

:=∆3

+
αu

1− γ
D(π, πeff

β ).

Note that in the second step above, we upper bound the quantities ∆′1 and ∆2 corresponding to πeff
β

with twice the expression for policy π. This is because the effective behavior policy πeff
β consists of a

mixture of the original behavior policy π̂β with the additional data, and thus the new effective dataset
consists of the original dataset Di as its part. Upper bounding it with twice the corresponding term
for π is a valid bound, though a bit looser, but this bound suffices for our interpretations.

Finally to finish the proof, we can take the supremum over the best choice of (u, v). Thus, we obtain
the desired bound in Proposition F.1.

G EMPIRICAL ANALYSIS OF THE REASON THAT CUDS AND UDS WORK

In this section, we perform an empirical study on the Meta-World domain to better understand the
reason that UDS and CUDS work well. Our theoretical analysis suggests that UDS will help the
most on domains with limited data or narrow coverage or low data quality. To test these conditions in
practice, we perform empirical analysis on two domains as follows.

G.1 META-WORLD DOMAINS

We first choose the door open task with three different combinations of dataset size and data
quality of the task-specific data with reward labels:

• 2k transitions with the expert-level performance (i.e. high-quality data with limited
sample size and narrow coverage)

• 2k transitions with medium-level performance (i.e. medium-quality data with limited
sample size and narrow coverage)

• a medium-replay dataset with 152k transitions (i.e. medium-quality data with sufficient
sample size and broad coverage).

We share the same data from the other three tasks, door close, drawer open and drawer
close as in Table 1, which are . As shown in Table 9, both UDS and CUDS are able to outperform
No Sharing in the three settings, suggesting that increasing the coverage of the offline data as
suggested by our theory does lead to performance boost in wherever we have limited good-quality
data (expert), limited medium-quality data (medium) and abundant medium-quality data (medium-
replay). It’s worth noting that UDS and CUDS significantly outperform No Sharing in the limited
expert and medium data setting whereas in the medium-replay setting with broader coverage, CUDS
outperforms No sharing but UDS fails to achieve non-zero success rate. Such results suggest that
UDS and CUDS can yield greater benefit when the target task doesn’t have sufficient data and the
number of relabeled data is large. The fact that UDS is unable to learn on medium-replay datasets
also suggests that data sharing without rewards is less useful in settings where the coverage of the
labeled offline data is already quite broad.

G.2 D4RL HOPPER DATA QUALITY + COVERAGE DIAGNOSTIC STUDY

To further understand the sensitivity of UDS to the data coverage and the data quality of both target
task data (i.e. with reward labels) and relabeled data (i.e. without reward labels), we perform another
empirical study using the hopper environment from the D4RL (Fu et al., 2020) benchmark. We
consider the following 6 different combinations varying the quality and amount of the labeled and
unlabeled datasets:
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Environment Dataset type / size CUDS (ours) UDS (ours No Sharing

expert / 2k transitions 67.6% 58.8% 31.3%
Meta-World door open medium / 2k transitions 67.3% 74.2% 27.6%

medium-replay / 152k transitions 30.0% 0.0% 14.8%

Table 9: We perform an empirical analysis on the Meta-World door open task where we use varying data
quality and dataset size target task door open. We share the same dataset from the other three tasks in the
multi-task Meta-World environment, door close, drawer open and drawer close to the target task.
The numbers are averaged over three random seeds. CUDS and UDS are able to outperform No Sharing in most
of the settings except that UDS fails to achieve non-zero success rate in the medium-replay dataset with a large
number of transitions. Such results suggest that CUDS and UDS are robust to the data quality of the target task
and work the best in settings where the target task has limited data.

1. 10k labeled data from hopper-expert + unlabeled 1M data hopper-random (i.e.,
high-quality + narrow labeled data, low-quality + broad unlabeled data)

2. 10k labeled data from hopper-expert + unlabeled 1M data from hopper-medium
(i.e., high-quality + narrow labeled data, medium-quality + narrow unlabeled data)

3. 10k labeled data from hopper-medium + unlabeled 1M data from hopper-random
(i.e., medium-quality + narrow labeled data, low-quality + broad unlabeled data)

4. 10k labeled data from hopper-medium + unlabeled 1M data from hopper-expert
(i.e., medium-quality + narrow labeled data, high-quality + narrow unlabeled data)

5. 10k labeled data from hopper-random + unlabeled 1M data from hopper-medium
(i.e., low-quality + broad labeled data, medium-quality + narrow unlabeled data)

6. 10k labeled data from hopper-random + unlabeled 1M data from hopper-expert
(i.e., low-quality + broad labeled data, high-quality + narrow unlabeled data)

Results. In cases (1) and (2), adding the unlabeled random or medium data, should increase coverage,
since the labeled data only consists of expert transitions. Moreover, the induced reward bias due to
incorrect labeling of rewards on the medium unlabeled data should not hurt, since the 10k expert
transitions retain their correct labels, and the medium/random data should only serve as negatives.
Therefore, we expect the benefits of coverage to outweigh any reward bias, and as shown in Table 10,
we find that UDS does help.

In cases (4), (5) and (6), when the relabeled data is better compared to the labeled data (i.e., expert or
medium), we find that even if the rewards on these transitions are incorrect, behavior regularization
properties induced by offline RL algorithms allow UDS to attain better performance than no sharing
by utilizing the unlabeled data.

In case (3), we find that UDS hurts compared to No Sharing. This is because the target task data
as well as unlabeled data are both low-medium quality and medium data already provides decent
coverage (not as high as random data, but not as low as expert data). Therefore, in this case, we
believe that the addition of unlabeled data neither provides trajectories of good quality that can help
improve performance, nor does it significantly improve coverage, and only hurts by incurring reward
bias. We therefore believe that UDS may not help in such cases where the coverage does not improve,
and added data is not so high quality.

G.3 SUMMARY OF EMPIRICAL ANALYSIS

Given our results in Table 9 and Table 10, we summarize the applicability of UDS under different
scenarios in Table 11 below.
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Environment Labeled dataset type / size Unlabeled dataset type / size UDS (ours) No Sharing
expert / 10k transitions random / 1M transitions 90.8 77.1
expert / 10k transitions medium / 1M transitions 87.6 77.1

D4RL hopper (Fu et al., 2020) medium / 10k transitions random / 1M transitions 9.8 28.7
medium / 10k transitions expert / 1M transitions 106.1 28.7
random / 10k transitions medium / 1M transitions 51.9 9.6
random / 10k transitions expert / 1M transitions 97.0 9.6

Table 10: We perform an empirical analysis on the hopper environment from the D4RL (Fu et al., 2020)
benchmark to test the sensitivity of UDS under the data quality and data coverage for both the labeled task data
and unlabeled data. The numbers are averaged over three random seeds. UDS outperforms No Sharing in 5
out of 6 settings, suggesting that UDS is robust in different combinations of data quality and coverage of both
labeled and unlabeled data. Note that UDS fails in the setting where the labeled data is of medium data quality
and the unlabeled data is random, suggesting that sharing data in settings where the labeled data is limited and of
low quality and the unlabeled data is also of poor quality is not useful.

Scenarios UDS Intuition
L: limited + high-quality + narrow, U: abundant + low-quality + broad X increase coverage
L: limited + high-quality + narrow, U: abundant + medium-quality + narrow X more negatives
L: limited + medium-quality + narrow, U: abundant + low-quality + broad × reward bias outweighs high coverage
L: abundant + medium-quality + broad, U: abundant + medium-quality + broad × reward bias outweighs high coverage
L: limited + medium-quality + narrow, U: abundant + high-quality + narrow X increase data quality
L: limited + low-quality + broad, U: abundant + medium-quality + narrow X increase data quality
L: limited + low-quality + broad, U: abundant + high-quality + narrow X increase data quality

Table 11: Summary of scenarios where UDS is expected to work and where it is not expected to work. L
denotes the characteristics of labeled data, U denotes characteristics of unlabeled data. Limited/Abundant refers
to the relative amount of data available (note that these are not absolute numbers and hard to precisely quantify
without access to the problem domain, but a highly skewed ratio of the amount of labeled and unlabeled data
might help characterize it as limited/abundant). High-quality/medium-quality/low-quality refers to the actual
performance of the behavior policy generating the datasets. Narrow/broad refers to the relative state coverage of
the datasets that we study.
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