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Abstract

We introduce OpenVLThinker, one of the first open-source large vision—-language
models (LVLMs) to exhibit sophisticated chain-of-thought reasoning, achieving
notable performance gains on challenging visual reasoning tasks. While text-
based reasoning models (e.g., Deepseek R1) show promising results in text-only
tasks, distilling their reasoning into LVLMs via supervised fine-tuning (SFT)
often results in performance degradation due to imprecise visual grounding. Con-
versely, purely reinforcement learning (RL)-based methods face a large search
space, hindering the emergence of reflective behaviors in smaller models (e.g.,
7B LVLMs). Surprisingly, alternating between SFT and RL ultimately results
in significant performance improvements after a few iterations. Our analysis re-
veals that the base model rarely exhibits reasoning behaviors initially, but SFT
effectively surfaces these latent actions and narrows the RL search space, accel-
erating the development of reasoning capabilities. Each subsequent RL stage
further refines the model’s reasoning skills, producing higher-quality SFT data
for continued self-improvement. OpenVLThinker-7B consistently advances per-
formance across six benchmarks demanding mathematical and general reasoning,
notably improving MathVista by 3.8%, EMMA by 2.4%, and HallusionBench
by 1.6%. Beyond demonstrating the synergy between SFT and RL for com-
plex reasoning tasks, our findings provide early evidence towards achieving R1-
style reasoning in multimodal contexts. The code, model and data are held at
https://github.com/yihedeng9/0penVLThinker.
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Figure 1: Our OpenVLThinker-7B (in red) performs competitively to large proprietary multimodal
models such as GPT-40 and Claude-3.5 (in gray), especially in Math and Perceptron tasks. It
outperforms VL base models at the same scale (in blue) and other recently released VL reasoning
models (in purple).
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1 Introduction

Proprietary large language models (LLMs), notably OpenAl’s o-series [30] and Google’s Gemini-2.5
Pro [18], have demonstrated impressive multi-step reasoning abilities of planning, reflection, and
verification. Recent open-weight models [53, 28, 47, 84, 83] (e.g., DeepSeek-R1 [20] and smaller
LLMs like S1 [49] and QwQ-32B [63]) show that reinforcement learning (RL) with verifiable rewards
effectively reproduces these advanced capabilities, significantly boosting performance on challenging
mathematical and logical tasks.

Unlike text-only LLMs, it remains unclear whether open-source large vision-language models
(LVLMs) can effectively adopt similar sophisticated reasoning strategies. Modern LVLMs such as
LLaVA-NeXT [37] and Qwen2.5-VL [3] benefit from extensive vision-language pretraining and
demonstrate strong visual instruction-following capabilities. However, they rarely demonstrate
advanced reasoning behaviors like GPT-o1 or DeepSeek-R1.

Moreover, it is known that reasoning capabilities can generally be distilled from larger LLMs to
smaller ones through supervised fine-tuning (SFT) on chain-of-thought demonstrations [35, 32] for
text-only tasks. This recipe has been recently applied in distills demonstrations from DeepSeek-R 1
(LIMO [78], S1 [49] and OpenThinker [62]) followed by optional RL fine-tuning [79]. However,
adapting this method to LVLMs does not work. Proprietary LVLMs, such as OpenAl’s 01/03 and
Google’s Gemini, do not expose their internal reasoning paths, making their outputs unsuitable for
distillation. Therefore, most recent attempts are focusing on improving LVLMs through distillation
from text-only R1 reasoning models (see discussion in Section 2.2). Unfortunately, our experiments
show that naively fine-tuning LVLMs on reasoning paths generated from text-based DeepSeek-R1
with image captions leads to a non-trivial performance drop (see Figure 3), primarily due to a lack of
precise visual grounding. Similar observations can be found in [6, 76].

In this paper, we present OpenVLThinker-7B, one of the first open-weight LVLMs that exhibit
complex reasoning capabilities in complex vision-language tasks. Specifically, it is trained by
iterating between the following two steps:

1. Lightweight SFT. In the first iterations, we distill CoTs using a text-only Deep-Seek R1 given
the task question and the corresponding generated image caption. These CoT traces provide
demonstrations of reasoning actions, although they do not immediately improve LVLM’s accuracy.
For later iterations, we use the LVLM from the previous iteration to produce CoTs on 3,000 data
points. This small dataset is sufficient to progressively enhance the model’s reasoning depth.

2. Curriculum RL. In subsequent iterations, we further enhance the LVLM’s reasoning through RL
exploration with Group Relative Policy Optimization (GRPO) [56], which splits training into two
rounds to form a smooth curriculum.

We found that while the initial step of SFT leads to a performance drop, iteratively alternating between
SFT and RL eventually gradually yields a significant performance gain on both reasoning depth and
answer accuracy (Figure 2).

Our further analysis shows that the inference-time reasoning behaviors are often triggered by specific
tokens (e.g., "wait"). SFT serves as an inductive prior that highlights these reasoning actions.
Specifically, it demonstrates the tokens such as “first”, “wait”, “check”, that trigger the model’s
planning, reflection, and verification behaviors. Without this SFT step, launching RL from scratch
forces the model to search through a prohibitively large space, making reflective behaviors slow to
emerge — if they emerge at all. On the other hand, RL plays the critical role in learning the reasoning
behaviors, generalizing from training data, and offering a better foundation for the next SFT iteration.
The iterative cycle between SFT and RL collaboratively optimizes LVLM’s performance.

We highlight our contributions as follows:

* We introduce OpenVLThinker-7B, one of the first open-source LVLMs to demonstrate reliable
self-reflection, planning, and correction in visual contexts.

* We present a simple yet effective iterative SFT-RL loop that enables R1-style reasoning into
multimodal domains and steadily self-improves without requiring massive datasets.

* We analyse linguistic markers of complex reasoning and show that SFT can steer RL exploration
toward highlighted reasoning actions.

* On six challenging benchmarks, including MathVista and MathVerse, OpenVLThinker presents
remarkable improvements while reducing hallucination on HallusionBench.
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Figure 2: Illustration of OpenVLThinker-7B’s training process. We iteratively apply SFT and GRPO
to refine the LVLM using reasoning data generated from previous iterations. The data sources are
also progressively evolved to introduce more challenging questions over time.

2 Related Work

2.1 Complex Chain-of-Thought Reasoning

Since the introduction of OpenAI’s O1 model [30], researchers have shown strong interest in
reproducing and enhancing the complex reasoning capabilities of LLMs [53, 28, 47, 84, 83], partly due
to its superior performance on mathematical benchmarks. [20] introduce the open-source DeepSeek-
R1 model and investigate how RL with verifiable rewards can promote advanced chain-of-thought
reasoning and reflective behaviors. This development inspired a line of research focused on open-
source reproduction [45, 25, 85, 41, 62] and the analysis of such complex reasoning in mathematical
problem solving [79, 73, 78, 10]. In parallel, several recent studies have similarly explored the effects
of test-time scaling on encouraging more complex model reasoning behaviors [49, 55, 39, 17, 87, 60].
However, the majority of research have significantly advanced text-based reasoning, and development
of vision-language reasoning is much more initial.

2.2 Vision-Language Reasoning Model

Recent advancements in large vision-language models (LVLMs) stem from open-source LLMs [65,
606, 14, 75] and text-aligned image encoders [54, 36]. Integrating these components has enabled
LVLMs to follow diverse visual instructions and generate meaningful responses [38, 15, 16, 11, 37, 3].
Parallel to the model development, researchers have also been interested in eliciting CoT reasoning
chains from LVLMs via prompting [89, 90, 48, 26] or fine-tuning [21, 74, 64, 13]. These reasoning
models remain mostly on a shallow level of common step-by-step prompting, without self-reflections
or self-verifications.

Concurrent work. Very recently, many studies have started exploring how to equip LVLMs with
R1-like reasoning capabilities through distillation from text-only reasoning models [5, 76, 27, 33] or
directly rely on RL [91, 43] for self-exploration. Further advancements [57, 71, 6, 46, 72, 68, 40, 86]
have focused on improving performance in visual math reasoning, which marks the transition from
early-stage exploration to more effective complex vision-language reasoning. Please note that most of
these works are within the two months before the submission date, and some of them do not even have
associated technical reports available yet. Our work aligns with these studies and contributes unique
insights into the role of SFT for complex reasoning, along with an iterative SFT-RL framework to
further advance research in this direction.

3 Preliminaries

An LLM is defined by a probability distribution pg, parameterized by model weights 8. Given a
prompt sequence X = [z1, ..., 2y, the model generates a response sequence y = [y1,- .-, Ym),
where z; and y; represent individual tokens. The response y is sampled from the conditional
distribution pg(+|x), factorized as pg(y|x) = H;nzl Po(Y;|X, Y15+, Yj—1)-

Supervised Fine-Tuning (SFT). SFT is typically applied to specialize LLMs for a particular task or
domain. This process updates the model parameters 8 by providing example responses of desired



<think>

Okay, let's see. The question is asking what happens to
the supply of salmon if the number of ferns decreases.
First, I need to look at the connections in the food web
diagram. The ferns are shown as a food source for salmon.
So if there are fewer ferns, the salmon might have less
food. But wait, there's more. The diagram also shows that
salmon can eat fish. So the salmon's food sources are
pretty diverse. Hmm, let me check the other options.
Decrease sounds right because fewer ferns means less food
for salmon. Can't tell is out because we have a clear
connection. Stay same is unlikely because the ferns are a
direct food source. Increase is the opposite of what
we're looking for.

-==- Qwen2.5-VL-7B </think>
—— ~ The ferns are directly shown as a food source for salmon
64+ Qwen2VL _728 (reported) in the food web diagram. If the number of ferns
—e— OpenVLThinker-7B decreases, salmon will likely have less food available,
—— - - - which would decrease their supply. <answer>(A)</answer>
Distill Iterl Iter2 Iter3
Figure 4: An example of OpenVLThinker-7B

Figure 3: Iterative performance improvement reasoning. Question: In the diagram of the food
of our model on MathVista. We note that web shown, if the number of ferns decrease, the
Iter(i) is always fine-tuned from the base model supply of salmon will most likely? (A) decrease
Qwen2.5-VL-7B, with its training data gener-  (B) can’t tell (C) stay same (D) increase. Corre-
ated from Irer(i-1). sponding image is shown in Figure 12.

behavior to the input instructions. Concretely, Given a dataset D = {(x(),y()}¥, where x(¥
is the prompt sequence and y(* is the desired response sequence. We update 6 to maximize the
likelihood of producing y given x(). Formally, Lspr(0) = — Zfil log pe (y¥ |x(V). By
minimizing the loss, the model learns to produce responses more aligned with the labeled examples.
Reinforcement Learning (RL). RL approaches fine-tune LLMs via human preferences modeled
under the Bradley-Terry model [50, 12, 56, 1]: p(yw = yi | x) = o(r(x, yw) — 7(x,y:)), where
yw and y; denote preferred and dispreferred responses, respectively, and o(t) = 1/(1 + e~ !) is the
sigmoid function. The common RL objective under the Bradley-Terry assumption of the reward
model r(x,y) is thus

02 [Bx i 70, ¥)] = B e [KL(po -0 et (-1))] .
where 8 > 0 is the KL penalty coefficient. Under this framework, [56] introduced Group Relative

Policy Optimization (GRPO) by sampling a group of response trajectories {o;}$, from the old
policy model 6,4 for each query x, with the objective as maximizing:
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where € > 0 is a hyperparameter bounding the clipping range, S > 0 balances the KL-penalty term
Dk, [779 H wref] against the advantage-weighted policy update, and 6,4 is the old policy model. Here,

the advantage Ei,t =7; = (r; — mean(r))/std(r) is set as the normalized reward at group level.

4 OpenVLThinker: Iterative Self-improvement on Curriculum Data

In this section, we first analyze how SFT and RL affect the occurrence of reasoning-related keywords,
which serves to motivate our approach. We then introduce the proposed iterative approach to
enhancing complex reasoning capabilities in OpenVLThinker-7B with SFT-RL cycles. At last, we
propose a source-based curriculum RL.

4.1 The Role of SFT and RL

The initial SFT data. The standard distillation approach used for text-only reasoning cannot be
directly applied because the R1 model does not support visual input, and other proprietary LVLMs,
such as OpenAl’s 01/03, do not expose their internal reasoning paths. To learn reasoning behaviors
from R1, we instead use the target model as a captioning model, prompting it to generate detailed
textual descriptions for each image. Subsequently, these captions serve as proxies for the images
when input into a text-based R1 reasoning model, OQwQ-32B [63], which then generates k candidate
reasoning chains. Among these candidates, we select the shortest reasoning chain that correctly
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Figure 6: Occurrences of reasoning keywords when solving MathVista with the base model, SFT-Iter1
model, and GRPO-Iter] model. The most significant distribution shift occurs after SFT, while the
scale remains largely unchanged after GRPO, despite notable performance improvements.

arrives at the final answer to avoid excessive reasoning length after SFT (further details in Section 5.2).
The overall procedure is summarized in Figure 5.

Impact of SFT and RL on Model Reason-
ing Actions. Complex reasoning behaviors
in LLMs have been described using various Question: ... According to

2008 5 the table, what was the

terms, including long CoT [79] and aha mo- 2@ = | rate of change betueen 2010 Text-based Reasoning Model
2010 6 and 20117 (QwQ-32B)

ments [20]. At their core, these behaviors  wu s

. M Answer: 3 * leasonin nswer
reflect autonomous planning, reflection, and ™| * [posver: 2] P fessoning 3 7 fnsver 1
. . . . B8 Reasoning —> |Answer
verification steps that occur during inference. @ Captioning Model s .

(Qwen2.5-VL-7B) Reasoning k —> Answer k

We refer to them as inference-time actions,
. . . Caption: The image is a table ......
which are often triggered by specific tOKens  tere is the data presented in the table:

Verify answer

—

Reasoning, Answer}

such as “wait”. To examine how SFT and RL | vear | students | ~  SPLiter] Data:
influence these reasoning actions, we identify | 2008 | 5 | ~| {Image, Question,

eight representative keywords corresponding | 355 | ¢'f'

to perception, question comprehension, plan- =

ning, reflection, and seeking alternatives. Figure 5: Curation of SFT-Iter] data from text-based
As illustrated in Figure 6, the base model reasoning models based on image descriptions.
seldom exhibits planning, reflection, or

alternative-solution actions. However, SFT

guided by text-based R1-like reasoning traces effectively surfaces these behaviors. As shown in
the third and fourth subplots of Figure 6, subsequent GRPO-based RL training following SFT-Iter1
substantially enhances model performance on MathVista by 5.2%, yet largely maintains the initial
reasoning action distribution, with minor refinements such as reduced repetitive reflections.

Conversely, direct RL training without prior SFT struggles to efficiently induce reasoning behaviors,
exemplified by the absence of reflection keywords (e.g., “wait”) even after an equivalent training
volume. Concurrent research by [68], which solely relies on RL, addresses this by explicitly appending
relevant keywords during training rollouts. These observations support our argument that SFT plays a
critical role in highlighting desirable reasoning actions, providing an efficient and effective foundation
for RL to build upon. In contrast, RL primarily serves to further refine and enhance performance.

4.2 TIterative Improvement

The model obtained after the first iteration (GRPO-Iterl) demonstrates enhanced complex reason-
ing capabilities and improved reliability in processing visual inputs compared to methods based
on image-to-text conversion. This advancement positions GRPO-Iterl as an effective source for
generating higher-quality reasoning demonstrations. Consequently, we propose an iterative self-
improvement strategy, inspired by established methodologies such as iterative SFT in ReST-EM [59]
and iterative direct preference optimization (DPO) schemes [81, 51], both of which have shown
substantial effectiveness in iterative training processes and fall under the Expectation-Maximization
framework [59].

Specifically, in each iteration, we sample a new set of enhanced reasoning traces using the model
trained in the preceding iteration. These refined demonstrations are then utilized to retrain the base



model’, thereby progressively elevating its reasoning performance. The overall iterative pipeline is
illustrated in Figure 2, and the consistent incremental performance gains achieved through successive
iterations are depicted in Figure 3.

4.3 Two-Stage Source-Based Curriculum RL

To ensure effective exploration during reinforcement learning (RL), we assess the difficulty of data
sources, aiming to provide data that is challenging yet appropriate for the model’s proficiency level.
Specifically, we utilize GPT-40 to rate the difficulty of five representative examples drawn from
various data sources such as FigureQA [31], MapQA [4], and GeoQA [7], in a similar fashion
to the text-based evaluation in DeepMath-103K [23]. Additionally, we employ the base model,
Qwen?2.5-VL-7B?2, to obtain its error rates as a complementary difficulty indicator. We standardize
independently using z-score normalization for both the GPT-4o0 rating and base model error rates
and compute the average of the two. Based on this composite score, we categorize the data sources
into Easy, Medium, and Hard groups via k-means clustering in 1d space. With these categories, we
construct two difficulty-specific datasets: DRy, (Medium) a1d DRy (Hard)- Our curriculum training thus
proceeds in two stages within one iteration, sequentially training on Dy, (Medium) @and DRy, (Hard)-

5 Experiments

Training setup. We take Qwen2.5-VL-7B [3] as the base model and perform three iterations of the
SFT-RL cycle as illustrated in Section 4, applying full fine-tuning for both SFT and RL. Our training
framework is based on LLaMA-Factory® for SFT and EasyR1* for RL. We source our training
data from the established LLaVA-OneVision [34] and specifically consider the 14 data sources in
overlap with MathV360K [58] (Table 4). Based on our preliminary experiments, we equally draw 500
examples from each source to form the SFT seed dataset of 7K examples, where for each iteration we
collect distillation data via rejection sampling, resulting in a final 3K SFT data. We then classify the
data sources into easy, medium and hard (as detailed in Table 4). We construct the 3K medium-level
RL training data from the 5 sources that we identified as medium difficulty. Finally, we construct 6K
hard-level RL training data from the 3 most difficult sources, summing up to 12K data in total for
each iteration that trains from the base model. We defer the training hyperparameters to Appendix C.

Evaluation. Our evaluation employs exact matching and a grader function from MathRuler’. We
use the same inference hyperparameter as suggested by Qwen and recovered Qwen2.5-VL-7B’s
reported results on MathVista at 68.5%. The hyperparameters are detailed in Table 12. We employ
six established benchmarks to examine model’s ability thoroughly:

* Math reasoning: MathVista [44], MathVerse [88] and MathVision [69]. The three benchmarks
evaluate how LVLMs interpret and reason with diagrams in visual math problems through both
multiple-choice and free-form questions.

* General reasoning: MMMU-Pro [82] and EMMA [22]. MMMU-Pro spans 30 subjects across
183 subfields, including business, medicine, and science. EMMA evaluates in physics, chemistry,
coding, and math.

* Perception: HallusionBench [19], designed to evaluate LVLMs’ susceptibility to language halluci-
nation and visual illusion.

Baselines. We evaluate the non-reasoning base model Qwen2.5-VL-7B as a primary baseline to
demonstrate the improvements introduced by our method. Additionally, we include the reported
performance of proprietary models, including GPT-40 [29] and Claude-3.5-Sonnet [2], alongside
open-source LVLMs such as Mulberry-7B [77], InternVL2.5-8B [9], Kimi-VL-16B [61], and Qwen2-
VL-7B [70], as reference points. Crucially, to highlight the effectiveness of our iterative SFT-RL
training strategy, we compare our model with concurrent approaches employing a single round of
SFT distillation and RL at the same model scale (7B), yet utilizing significantly larger training
datasets. These concurrent models include R1-VL-7B [86], R1-Onevision-7B [76], and VLAA-
Thinker-Qwen2.5VL-7B [6]. Notably, R1-Onevision and VLAA-Thinker-Qwen2.5VL-7B also start
from the same base model (Qwen2.5-VL-7B) as ours, using 165K and 150K total data, respectively.

'To maintain stability, we retrain the model from scratch at each iteration with the newly generated dataset,
as similar to some iterative approaches in text-only domain [59, 24].

’In alignment with previous R1 reasoning research [79, 78], we choose the base model from Qwen2.5 family
for their strong general capability obtained in pre-training.

Shttps://github.com/hiyouga/LLaMA-Factory

*https://github.com/hiyouga/EasyR1

https://github.com/hiyouga/MathRuler
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Table 1: Evaluation results across visual math reasoning benchmarks (MathVista, MathVerse, MathVi-
sion), general visual reasoning benchmarks (MMMU-Pro, EMMA), and perception (HallusionBench).
We include the reported performance of proprietary models and open-source Vision-Language models
as references. *Performance of the base model Qwen2.5-VL-7B and concurrent reasoning models
are evaluated by us under the same setting and hardware as OpenVLThinker. The bold numbers
indicate the best results among the open-source models and the underscored numbers represent the
second-best results.

Math Reasoning General Reasoning Visual
Model Data Math- Math- Math- MMMU- Hallu- Avg
Vista Verse Vision Pro EMMA Bench
Proprietary Model
GPT-40 - 63.8 50.2 30.4 51.9 32.7 55.0 47.3
Claude-3.5-Sonnet - 67.7 47.8 335 51.5 35.1 55.0 48.4
Open-source Vision-Language Model
Mulberry-7B - 63.1 39.6 - - - 54.1 -
InternVL2.5-8B - 64.4 39.5 19.7 343 - - -
Kimi-VL-16B - 68.7 44.9 214 - - - -
Qwen2-VL-7B - 58.2 32.5 16.3 30.5 20.2 50.6 347
Qwen2.5-VL-7B* - 68.5 46.8 24.0 42.3 24.4 67.5 45.6
Concurrent Vision-Language Reasoning Models
R1-VL-7B 270K 63.5 40.0 24.7 7.8 8.3 54.7 332
R1-Onevision-7B 165K  64.1 46.4 29.9 21.6 20.8 65.6 41.4
VLAA-Thinker-7B* 150K  70.0 48.6 24.9 42.0 25.5 68.4 46.6
OpenVLThinker-7B* 12K 72.3 50.3 259 42.9 26.8 69.1 47.9

In contrast, our model achieves better performance with only 12K training samples from the base
model.

5.1 Main Results

We present our main results in Figure 1, with detailed Table 2: Performance of 3B models on
performance across datasets shown in Table 1. Asil- MathVista.
lustrated, OpenVLThinker-7B consistently achieves ei-

ther the best or second-best scores among open-source Model Accuracy (%)
LVLM:s of comparable scale across all six benchmarks, R1-VL-2B 521
including concurrent reasoning models. On average, InternVL2.5-4B 60.5
OpenVLThinker attains an accuracy of 46.6%, repre- Qwen2.5-VL-3B 62.3
senting a 2% improvement over the base model and VLAA-Thinker-3B 61.0
performance comparable to proprietary models such OpenVLThinker-3B 63.4

as GPT-40. Notably, OpenVLThinker exhibits fewer
hallucinations and more precise perception than its base
model on HallusionBench, improving accuracy by 2.7%. Compared to concurrent reasoning meth-
ods that utilize substantially larger datasets for single-iteration SFT and RL, our iterative approach
achieves superior results while utilizing only 1/10 of the data scale as used in concurrent works with
a single-iteration SFT-RL pipeline.

OpenVLThinker-3B. We additionally train a 3B model using a single iteration of the SFT-RL pipeline,
where the training process distills from our 7B model. In Table 2, we compare the performance of
our 3B model against current representative models at the same scale, including our base model,
Qwen2.5-VL-3B, and the reasoning model VLAA-Thinker-3B, which is trained from the same initial
checkpoint as ours. OpenVLThinker-3B achieves the best performance on MathVista and outperforms
state-of-the-art 3B reasoning models.

5.2 Analysis

Distillation at iteration 1. At SFT-Iterl, we utilized the base model Qwen2.5-VL-7B to generate
image descriptions and obtained R1-like reasoning from QwQ-32B through rejection sampling. A



Table 3: Performance on the MathVista benchmark Table 4: Categorization of data sources by com-
comparing different SFT data-filtering strategies. posite difficulty score using k-means with k=3.
Removing the most repetitive keywords in data can The geometry question sources all fall into the

mitigate repetitive reflections after SFT. hard category.
Model Variant Accuracy (%) Easy Medium Hard
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Figure 8: Performance at GRPO-Iterl
using data from different difficulty
sources, at the same scale of 3K.

Figure 7: Data source difficulty based on base model
accuracy and GPT-4o rating.

common problem for distillation observed in text-only math reasoning is the overly long reasoning
length coupled with unnecessary repetitions of reflections [79, 42]. We observed similarly that
these initial reasoning traces were often excessively verbose, partly due to information loss during
image-to-caption conversion. Consequently, post-SFT reasoning became increasingly repetitive with
unproductive self-reflections (see Appendix D for an illustration). To address this, we evaluated
two filtering strategies: (1) discarding samples with reasoning traces exceeding 500 words, and (2)
truncating reflections by splitting traces of at specific keywords that were overly repetitive in data (
“Wait,” “But wait,” and “But the question”) and discarding subsequent segments while preserving
the final answer. The latter approach was ultimately adopted to prevent the model from internalizing
reflection loops, while preserving the reasoning action at a reasonable frequency. Table 3 compares
models trained on original versus processed data.

Data source difficulty. We conducted a quantitative analysis to categorize the data sources based
on difficulty. Applying k-means clustering (with £ = 3) to our composite difficulty score as described
in Section 4 allowed us to clearly identify three distinct difficulty pools, as shown in Table 4. We
visualize the difficulty scores for each source in Figure 7. In Figure 8, we show the performance
of GRPO-Iter]l when drawing 3K data from either (1) 10 data sources classified as either Easy or
Medium, or (2) 5 data sources classified as Medium. We observe that RL training with easy-level
data results in ineffective performance gain as compared to sourcing from medium-level data only.
This finding aligns with concurrent algorithmic efforts such as DAPO [80] in the text-only domain
for improving GRPO by dynamically filtering out overly-easy examples.

Curriculum RL to maximize utilization of challenging data. Figure 9 investigates the impact
of incorporating challenging training data (e.g., geometry datasets) at iteration 1. On the left panel,
we illustrate the absolute performance gains transitioning from SFT-Iter1 to GRPO-Iterl (medium
difficulty), and subsequently from GRPO-Iterl (medium) to GRPO-Iter1 (hard). Training on these
harder datasets yields substantial improvements on more difficult benchmarks, such as MathVision,
while not significantly affecting performance on easier benchmarks like MathVista. On the right panel,
we further compare our two-stage, source-based curriculum RL approach against training solely on



hard data. The results indicate that initiating RL with moderately challenging (medium difficulty)
data and subsequently progressing to harder datasets provides optimal performance improvements.
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Figure 9: Absolute performance gain achieved at iteration 1. The round 2 RL training on hard data
provides more significant performance gain on harder benchmarks such as MathVision. Moreover, if
RL training with the hard data only yield less improvement than our two-stage curriculum RL.
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Figure 10: Distribution of reasoning length (number of words) across iterations of training. While
our trained reasoning model across iterations all tend to reason longer than the base model, iterative
training resulted in gradually more concise length, possibly due to reduced repetitive reflections.

Iterative progression. Building upon the performance improvements shown in Figure 3, we further
analyze changes in reasoning length across iterations, as illustrated in Figure 10. Our results indicate
that the reasoning model consistently utilizes more words at inference time compared to the base
non-reasoning model, without becoming excessively repetitive. Notably, the largest increase in
reasoning length occurs at Iteration 1, with subsequent iterations gradually adopting more concise
reasoning. This progression suggests an increasingly efficient utilization of reflective reasoning,
engaging reflections primarily when beneficial. In Appendix D (Figure 13 and 14), we show reasoning
examples that our SFT-ed model was incorrect while our RL-ed model was correct.

Design choice on restarting iterations Restarting training from scratch at each iteration is a
standard practice in iterative self-improvement methods [59, 24]. This design choice ensures training
stability and prevents overfitting, especially when the data scale is relatively small, thus maintaining
better generalization to unseen tasks. As noted in [59], re-training from the base model provides
comparable task-specific performance and significantly better transfer to held-out tasks compared to
continued training.

In our iterative re-training approach, the SFT data is refined and improved across iterations, while the
base model parameters are reinitialized to prevent error accumulation. To further substantiate this
design choice, we conducted an additional comparison between (a) re-training from scratch and (b)
continuing training from the previous checkpoint.

The results indicate that continued training leads to performance degradation on HallusionBench,
suggesting potential overfitting to the previous iteration’s data. Hence, restarting from the base model
offers a more robust and generalizable learning trajectory across iterations.

Additional evaluation benchmarks. Our main paper evaluates OpenVLThinker across six widely-
used vision-language benchmarks covering mathematical reasoning, general reasoning, and perceptual



Table 5: Comparison between re-training from scratch and continued training.

Method MathVista EMMA HallusionBench
OpenVLThinker (re-training) 71.7 25.8 70.2
OpenVLThinker (continue training) 71.8 25.1 66.8

reliability. These benchmarks are consistent with those used in recent reports on both proprietary
(e.g., GPT, Gemini) and open-source (e.g., Qwen-VL, Intern-VL) models. This setup aligns with
concurrent works [27, 6] that also employ these benchmarks with emphasis on reasoning ability.

To further clarify benchmark coverage, Table 6 provides subset-level EMMA results, showing
performance across Math, Chemistry, Physics, and Code categories.

Table 6: Subset performance on EMMA benchmark.

Model EMMA-Math EMMA-Chemistry EMMA-Physics EMMA-Code
Qwen2.5-VL 24.6 21.9 29.5 28.0
VLAA-Thinker 28.1 22.3 28.8 27.3
OpenVLThinker 28.8 22.6 32.7 26.8

In addition, we expanded the evaluation to include two recent benchmarks, MM-Star [8] and We-
Math [52]. MM-Star assesses six major LVLM capabilities, including fine-grained perception,
mathematics, science & technology, and logical reasoning.

Table 7: Results on newly included benchmarks MM-Star and WeMath.
Model MM-Star WeMath
Qwen2.5-VL 53.9 61.9

VLAA-Thinker 55.4 62.4
OpenVLThinker 61.9 64.1

Together, these expanded evaluations across eight comprehensive benchmarks demonstrate the
robustness and generalizability of our approach across multiple reasoning domains.

6 Conclusion

In this work, we proposed a new perspective on LLM reasoning as actions at inference time, signified
by keywords such as “wait”. We thus interpret the roles of SFT as action highlighting that efficiently
surfaces desired actions by distilling a reasoning model’s demonstrations. On the other hand, RL
makes improvement on basis provided by SFT. Based on this intuition, we introduced OpenVLThinker-
7B, a LVLM enhanced through an iterative self-improving process combining SFT and RL to enable
complex CoT reasoning. Our results demonstrate that integrating R1-style reasoning into LVLMs
effectively boosts their multimodal reasoning performance across benchmarks. With only three
SFT-RL cycles and 12K training examples, the model raises average accuracy on six diverse visual-
reasoning benchmarks to 46.6 %, with a 2 % absolute gain over its base model and on par with
proprietary systems such as GPT-4o.

Limitations. Our experiments span six established benchmarks, yet they do not exhaustively probe
robustness in other tasks or real-world settings. In addition, we validated the method only on a 7B
model as a proof of concept. While the approach should scale to larger backbones (e.g., 32B) and
likely yield further gains, such exploration requires substantially greater computational resources.
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A Additional Experiments

A.1 Computational Cost of the Iterative SFT-RL Loop

We provide a detailed breakdown of the computational cost for each stage of the iterative SFT—RL
training process. The experiments were conducted on an 8 xH100 (or equivalent) GPU node.

Table 8: Approximate GPU hours per stage for iterative SFT—RL training.

Stage GPU Hours (per GPU) Total (8 GPUs)
SFT 0.06 (3 min 30 s) 0.48
GRPO-Medium 2.01 (2h355) 16.08

GRPO-Hard 4.57 (4 h 34 min 26 s) 36.56

The SFT stage incurs minimal computational cost due to the small dataset size (3k examples). For RL
training on medium-difficulty data, the number of epochs is reduced to maintain efficiency. Although
the hard-stage RL incurs the highest cost, the overall compute remains comparable to contemporary
RL-based post-training methods.

Importantly, the preceding SFT and medium RL stages accelerate convergence during the final RL
stage. Despite the iterative nature introducing additional overhead, the total compute remains practical
and resource-efficient for academic-scale training. We plan to include precise GPU-hour estimates
and discuss scalability trade-offs in future versions.

A.2 Single-Stage SFT-Only and RL-Only Baselines

To isolate the effect of iteration beyond simply combining SFT and RL, we conducted experiments
with single-stage SFT-only and RL-only baselines trained on the same 12K examples used in
OpenVLThinker.

* RL-only: Qwen2.5-VL trained exclusively with GRPO on the full 12K dataset.

* SFT-only: Qwen2.5-VL trained solely via SFT on iteration-2 trajectories generated by
OpenVLThinker. Instances with no correct reasoning within £ = 4 samplings were filtered.

Both baselines were trained to full convergence, and checkpoints were selected based on validation
performance. OpenVLThinker was trained using the same initialization but followed the iterative
SFT—RL loop.

Table 9: Comparison of single-stage baselines and iterative OpenVLThinker.

Method MathVista EMMA HallusionBench
RL-Only 71.3 24.5 66.8
SFT-Only 71.1 22.3 65.4
OpenVLThinker (Iterative) 71.7 25.2 70.2

Training the RL-only baseline on the full 12K dataset required approximately 16 GPU-hours using
an 8xH100 node—comparable to the cumulative training time of OpenVLThinker. While RL-
only surpassed SFT-only, the iterative OpenVLThinker consistently achieved the best performance,
demonstrating that the improvement stems from iterative refinement rather than merely combining
SFT and RL.

A.3 Impact of Caption Quality on Iterative Training

The quality of caption-based SFT data significantly influences reasoning performance in the iterative
training loop. During iteration 1, we constructed the dataset using captions generated by QwQ-32B,
filtered by final-answer correctness. Higher-quality captions increased the likelihood of correct
reasoning traces, thus expanding the effective training pool.

To analyze this effect, we compared two variants: one using captions from the weaker Qwen2.5-VL-
3B model and another using Qwen2.5-VL-7B, both under identical rejection-sampling conditions
(k = 4). The performance evolution across iterations on the MathVista benchmark is shown below.

Better caption quality improves visual grounding and reasoning trace precision in early stages,
yielding higher-quality data for subsequent iterations. Consequently, richer initial captions amplify
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Table 10: Effect of caption quality across training iterations on MathVista.
Caption Source SFT-Iter] GRPO-Iter]l SFT-Iter2 GRPO-Iter2 SFT-Iter3 GRPO-Iter3

3B Caption 62.5 65.6 66.1 69.4 69.0 70.2
7B Caption 63.4 66.6 67.5 70.9 69.5 71.7

the benefits of the iterative framework, leading to more consistent improvements in reasoning
performance.

B Additional Empirical Study

Does Complex Reasoning Matter for VQA?

We additionally investigated whether complex, multi-step reasoning provides significant performance
gains over standard (non-R1) reasoning in visual tasks. In this study, we use the ConTextual [67]
validation set of 100 VQA examples, aiming to disentangle the roles of image grounding and textual
reasoning. As similar to our first distillation process, we separately employ a vision-language model
for caption generation and a pure-text model for reasoning. The image description generated by
the captioning model is then fed into one of two text-based models: DeepSeek-R1-Distill-14B (an
R1-style reasoner) or Qwen2.5-14B-Instruct (a standard instruction-tuned model). This setup allows
us to isolate the impact of R1 reasoning from the effects of the underlying vision encoder.

We further explore how different levels of caption quality influence final accuracy by comparing
two caption generators, LLaVA-v1.6-34B and GPT-4o0. Additionally, we vary the number of sampled
reasoning paths (k = 1, 2,4) and compute pass@Fk accuracies for each condition. As a baseline, we
include direct QA outputs from LLaVA-v1.6-34B without any intermediate text description (i.e., the
model sees images directly). Figure 11 summarizes these results. In our experiments, we find that
R1-style reasoning provides consistent benefits:

(1) R1 reasoning outperforms standard methods. When provided with identical captioned
inputs, DeepSeek-R1-Distill-14B achieves higher accuracy than Qwen2.5-14B-Instruct. Moreover,
its performance can match (or even surpass) the direct QA accuracy of its own captioning model
(LLaVA-v1.6-34B), despite potential information loss from translating the image into text.

(2) Sampling benefits complex reasoners. Increasing the number of sampled reasoning chains
(k = 2 or k = 4) leads to larger performance gains for R1 models than for standard Qwen models,
indicating that the multi-step reasoning approach can more effectively converge on correct solutions
when multiple hypotheses are explored.

(3) Image grounding quality matters. We observe that richer and more precise captions signif-

icantly enhance final VQA accuracy. When captions are more detailed (e.g., from GPT-40), the
improvements from complex reasoning are especially pronounced.

Caption by LLaVA-v1.6 (34B) ) Caption by GPT-40

~@- Text-based Reasoning: Qwen2.5-14B-Instruct
60 -@- Text-based Reasoning: DeepSeek-R1-Distill-14B
| == VLM: Direct QA from LLaVA-v1.6 (34B)

Figure 11: Pass@k accuracy of different reasoning models based on captions generated with different
vision-language LLMs.
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Table 11: VQA accuracy after a single round of caption refinement. While pass@4 increases slightly,
pass@1 and pass@2 remain largely unchanged.

Caption Type pass@1 pass@2 pass@4

Original 33 37 44
Refined 29 35 46

Caption Refinement via Feedback: Limited Effectiveness.

We also investigated whether a one-round feedback loop could improve the quality of captions and
thus final VQA performance. Concretely, DeepSeek-R1-Distill-14B was prompted to list missing
or ambiguous details in the initial captions generated by LLaVA-v1.6-34B. The captioning model
then re-generated a “refined” description incorporating this feedback. Table 11 shows that the refined
captions did not produce major accuracy improvements, suggesting that a single feedback pass is
insufficient for significantly enriching image descriptions.

Overall, although the idea of iterative caption refinement has intuitive appeal, our preliminary tests
suggest that more elaborate or repeated feedback cycles might be necessary to achieve substantial
gains. Even so, the primary finding remains that R1-style reasoning robustly boosts performance
relative to standard instruction-tuned reasoning, underscoring the importance of multi-step logic in
VQA tasks.

C Experiment Details

We thank LLaMA-Factory® and EasyR17 for open-sourcing the training framework that we used for
SFT and GRPO. In Table 13 and 14, we detail the hyperparameters that we used for SFT, GRPO
and inference. We further lay out the prompts we used for generating image captions. Experiments
were conducted on GPU clusters to the similar level of NVIDIA H100 80GB GPU. SFT/Distillation
requires 30 minutes and RL requires 20 hours for each iteration. In addition, distillation data
generation with verification requires about 8 hours.

Table 12: Inference hyperparameters.

max_new_tokens | 2048

top_p 0.001
top_k 1
temperature 0.01

repetition_penalty | 1.0

Table 13: Supervised fine-tuning hyperparameters.

Data type bf16
Learning rate Se-7
Global batch size | 32
Scheduler Cosine
Warmup ratio 0.1
Num train epochs 1
Image max pixels | 262144

Prompt for image description generation

Please provide a detailed description of this image that could help another AI model un-
derstand it completely. Be specific and comprehensive while maintaining natural language
flow.

Shttps://github.com/hiyouga/LLaMA-Factory
https://github.com/hiyouga/EasyR 1
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Table 14: GRPO hyperparameters.

Rollout batch size | 512
Global batch size | 128
Max grad norm 1.0
Data type bf16
Learning rate le-6
Weight decay le-2
Warmup ratio 0.0
Rollout temperature | 1.0

Figure 12: The image to the demonstrated reasoning example in section 1.

D Output Examples

Repetitive reasoning example after SFT without filtering

But the question is asking for the route and endpoint. So, the route would be the highway
number, and the endpoint would be the destination.

Wait, but the signs are arranged vertically. So, the top signs are the routes, and the bottom
ones are the destinations. So, if you’re at the junction and you’re facing the signs, you can
see both. So, the route is the highway number, and the endpoint is the destination.

But the question is phrased as "the route and endpoint reached by continuing in a straight
line." So, if you’re at the junction and you’re facing the signs, you can see both the routes and
the destinations. So, the route would be the highway number, and the endpoint would be the
destination.

Wait, but the instruction is a bit ambiguous. It says "continuing in a straight line," which
might mean following the route indicated by the sign. So, if you’re at the junction and you’re
facing the signs, you can see both the routes and the destinations. So, the route is the highway
number, and the endpoint is the destination.

But the question is asking for the route and endpoint. So, the route would be the highway
number, and the endpoint would be the destination.

Wait, but the signs are arranged vertically. So, the top signs are the routes, and the bottom
ones are the destinations. So, if you’re at the junction and you’re facing the signs, you can
see both. So, the route is the highway number, and the endpoint is the destination.

But the question is phrased as "the route and@ndpoint reached by continuing in a straight
line." So, if you’re at the junction and you’re facing the signs, you can see both the routes and
the destinations. So, the route would be the highway number, and the endpoint would be the
destination.
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Figure 13: The image to the visual reasoning task that we show for SFT-Iter3 and GRPO-Iter3 output
below.

Example of SFT-Iter3 incorrect output and GRPO-Iter3 Correct output to the same question

Question: The derivative of f(x) at x=2 is that at x=5
Choices: (A) larger than (B) equal to (C) smaller than

SFT-Iter3

<think>

Okay, let me see. The question is asking about the derivative of the function f(x) = 12x - 3| + 1
at x=2 compared to x=5. First, I need to recall what the derivative represents. The derivative
gives the slope of the tangent line at a point on the function. So I need to look at the slopes at
those two points.

</think>

The function ( f(x) = 12x - 31 + 1 ) is an absolute value function, which means it has a V-shape.
The vertex of this V-shape occurs where the expression inside the absolute value is zero, i.e., (
2x - 3 =0), which gives ( x = % ). The derivative of ( f(x) ) will be zero at the vertex because
the function changes direction there. For ( z < % ), the function is decreasing, and for (
T > % ), it is increasing. The slopes on either side of the vertex are negative and positive,
respectively. At (x =2 ) (which is to the right of the vertex), the function is increasing, so the
derivative is positive. At (x =5 ) (which is further to the right), the function is also increasing,
so the derivative is positive but steeper because the function is increasing faster. Since the
function is increasing faster at (x =5 ) than at ( x = 2 ), the derivative at ( x =5 ) is larger.
<answer>(C)</answer>

GRPO-Iter3

<think>

Okay, let’s see. The question is asking about the derivative of the function f(x) = 12x - 3| + 1
at x=2 compared to x=5. First, I need to recall what the derivative represents. The derivative
at a point gives the slope of the tangent line at that point. So I need to look at the slopes at
x=2 and x=5.

</think>

The function ( f(x) =12x - 31 + 1) is an absolute value function shifted up by 1. The absolute
value function ( 12x - 31) has a V-shape with a vertex at ( x = % ). The derivative of ( I12x - 3|

)is (2) for (x > % )yand (-2) for (x < % ). Adding 1 to the function doesn’t affect the
derivative’s magnitude but shifts the y-values up.

<answer>(B)</answer>

Ground truth: (B)
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Y X
Figure 14: The image to the task that we show for SFT-Iter3 and GRPO-Iter3 output below.

Example of SFT-Iter3 incorrect output and GRPO-Iter3 Correct output to the same question

Question: Find m /3.
Choices: (A) 28 (B) 38 (C) 52 (D) 62

SFT-Iter3

<think>

Okay, let me see. The problem is asking for the measure of angle 3 in the given quadrilateral.
The hint suggests looking at the angles provided, which are 52 degrees and 38 degrees. Hmm,
the quadrilateral is a rectangle, so all angles should be 90 degrees. But the hint is confusing
me. Let me check the options again. The angles 52 and 38 are given, but they’re not the
ones I need to find. The question is about angle 3, which is opposite angle 1. Since opposite
angles in a rectangle are equal, angle 3 should be the same as angle 1. But angle 1 is not
given directly. Let me see, the hint is saying to look at the angles provided. The 52 and
38 are supplementary angles, which means they add up to 180 degrees. But angle 3 is not
supplementary to 52 or 38. It’s the opposite angle, so it should be the same as angle 1. Since
angle 1 is not given, I need to use the options. The only angle that could be the same as angle
1 is the one that’s not given directly. The options are A, B, C, D. The only one that’s not
supplementary to 52 or 38 is 62. So angle 3 must be 62 degrees.

</think>

The problem states that the quadrilateral is a rectangle, and all angles in a rectangle are 90
degrees. The hint provided the angles 52° and 38°, which are supplementary angles (52° +
38° =90°). However, angle 3 is the opposite angle to angle 1, which means they are equal
because opposite angles in a rectangle are congruent. Since angle 1 is not given directly, we
need to look at the options provided. The only angle that fits the properties of opposite angles
in a rectangle is the one that is not supplementary to the given angles. The options are A (28),
B (38), C (52), and D (62). Since angle 1 is not given, the only angle that could be the same
as angle 3 is the one that is not supplementary to 52° or 38°. The only angle that fits this
criterion is 62°, as it is the only one not listed as supplementary to the given angles.
<answer>(D)</answer>

GRPO-Iter3
<think>
Okay, let’s see. The question is asking for the measure of angle 3. The image provided is a
rectangle with some angles labeled. The hint suggests looking at the angles given, which
are 52 degrees and 38 degrees.

The angles 52 and 38 are supplementary because they add up to 90 degrees
(90 - 52 = 38). But angle 3 is not one of those. It’s the angle opposite the 38-degree angle,
so it should be the same.

</think>

The problem states that angle 3 is opposite the 38-degree angle. In a rectangle, opposite
angles are equal. Since angle 3 is opposite the 38-degree angle, angle 3 must also be 38
degrees.

<answer>(B)</answer>

Ground truth: (B)
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E Impact Statement

Our work introduces OpenVLThinker, an open-source large vision-language model (LVLM) designed
explicitly for complex reasoning tasks through a novel iterative self-improvement process integrating
supervised fine-tuning (SFT) and reinforcement learning (RL).

Positive societal impacts include significant improvements in multimodal reasoning, beneficial for
applications in education, assistive technologies, accessibility, and content moderation, potentially
enhancing decision-making processes involving visual and textual data.

However, improved generative capabilities inherently pose potential negative societal impacts, such
as misuse for creating deceptive or manipulative content or misinformation. There are also fairness
and privacy considerations, as biases in training data or misinterpretation of visual information could
unfairly affect specific groups.

To mitigate these risks, responsible deployment practices such as gated model releases, comprehensive
documentation, usage guidelines, and continuous monitoring for misuse and biases are essential.
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NeurlIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims presented in both the abstract and introduction clearly and
accurately reflect the paper’s contributions and scope. They precisely describe the novel
iterative self-improvement cycle combining SFT with RL, clearly articulate the performance
improvements across multiple benchmarks as shown in Table 1, and highlight the conceptual
novelty of reframing SFT as action-highlighting. These claims consistently align with the
detailed methodological and empirical evidence provided throughout the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included a discussion on limitation in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of the iterative self-improvement methodol-
ogy, explicitly outlining the SFT process, RL learning (RL) stages, and model architectures.
We clearly specified datasets, benchmarks, evaluation protocols, and experimental conditions
(e.g., the iterative steps, curriculum RL, and data generation strategies) necessary to repro-
duce its main experimental findings. This level of detail adequately supports reproducibility
for validation of the primary claims and conclusions, independent of direct code or data
availability.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper commits to providing open access to the code. We provided code in
the anonymous GitHub link in page 1 footnote.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detailed our experiment setting in Section 5 and our experiment hyperpa-
rameters and prompts in Appendix C

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Evaluations in this work are all deterministic. fully reproducible and do
not incur error bars. The computational expense of fine-tuning large language models or
generating 2M data multiple times is prohibitive, so we did not include error bars with
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regard to training. We acknowledge this limitation and ensure that the reported results are
consistent and reliable based on our experimental setup.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We detailed the compute we used in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper adheres to the NeurIPS Code of Ethics,
ensuring ethical standards are maintained in data usage, experimental procedures, and
reporting of results. The paper preserves anonymity and considers the implications of the
research on society.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We included an impact discussion in Section E.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We will ensure the responsible release and usage of our dataset by implement-
ing detailed usage guidelines.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open-sourced models and datasets for our experiments, all of which
are properly cited and used under their original licenses.
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15.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not introduce any new assets, so this question is not applicable.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects, so
this question is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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16.

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects, so
this question is not applicable.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: This paper focus on research directly related to LLMs and described the usage
of LLMs in methodology in Section 4.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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