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Abstract

Offline goal-conditioned reinforcement learning (GCRL) offers a practical learning
paradigm in which goal-reaching policies are trained from abundant state–action
trajectory datasets without additional environment interaction. However, offline
GCRL still struggles with long-horizon tasks, even with recent advances that
employ hierarchical policy structures, such as HIQL [33]. Identifying the root cause
of this challenge, we observe the following insight. Firstly, performance bottlenecks
mainly stem from the high-level policy’s inability to generate appropriate subgoals.
Secondly, when learning the high-level policy in the long-horizon regime, the
sign of the advantage estimate frequently becomes incorrect. Thus, we argue that
improving the value function to produce a clear advantage estimate for learning
the high-level policy is essential. In this paper, we propose a simple yet effective
solution: Option-aware Temporally Abstracted value learning, dubbed OTA, which
incorporates temporal abstraction into the temporal-difference learning process. By
modifying the value update to be option-aware, our approach contracts the effective
horizon length, enabling better advantage estimates even in long-horizon regimes.
We experimentally show that the high-level policy learned using the OTA value
function achieves strong performance on complex tasks from OGBench [32], a
recently proposed offline GCRL benchmark, including maze navigation and visual
robotic manipulation environments. Our code is available at https://github.com/ota-
v/ota-v

1 Introduction

Offline goal-conditioned reinforcement learning (GCRL) has emerged as a practical framework for
real-world applications by leveraging pre-collected datasets to train goal-reaching policies without
requiring additional environment interaction [23, 32]. However, learning an accurate goal-conditioned
value function in long-horizon settings remains a major challenge, as naively training the value
function often leads to noisy estimates and erroneous policies [35, 20, 33]. To mitigate the learning
of an erroneous policy, Hierarchical Implicit Q-Learning (HIQL) [33], one of the state-of-the-art
methods, adopts a simple hierarchical structure in which a high-level policy predicts subgoals, and
a low-level policy learns to execute actions toward those subgoals. Though a hierarchical policy
is still learned from the noisy value function, both policies receive more reliable learning signals
than when training a flat, non-hierarchical policy. However, despite reasonable performance gains
of hierarchical methods in some long-horizon environments, a recent challenging benchmark [32]

∗Equal Contribution.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/ota-v/ota-v
https://github.com/ota-v/ota-v


reveals that such a hierarchical policy still cannot solve more complex tasks, such as long-horizon
robotic locomotion or robotic manipulation.

To understand the failure in complex tasks more deeply, we raise the following question: Low-level
policy vs. high-level policy: which is the bottleneck of HIQL? To answer this question, we analyze the
hierarchical policy in failure cases by generating oracle subgoals for the low-level policy. Interestingly,
we observe that the low-level policy achieves these subgoals with high accuracy, indicating that
the failure stems from the inability of the high-level policy to generate appropriate subgoals. The
limited performance primarily results from a noisy value function, which fails to provide sufficiently
informative learning signals for effectively training the high-level policy in long-horizon scenarios.

Based on the phenomenon that the high-level policy eventually failed to extract meaningful learning
signals from the value function, we identify the primary cause of these noisy signals as the order
inconsistency of the learned value function in the long-horizon setting. Our analysis reveals that
when the distance between the state and the goal exceeds a certain temporal horizon, the sign of
the advantage estimate is incorrect, causing erroneous regression weights for learning the high-level
policy. Considering the issue with the value function, we argue that designing a value function that
can produce a clear advantage estimate for learning the high-level policy is necessary.

Motivated by the observation that the low-level policy performs remarkably well at reaching short-
horizon subgoals, we propose a simple yet effective value function learning scheme for high-level
policy learning that reduces the horizon between the state and the goal. Specifically, we leverage the
notion of option [45], a temporally-extended course of action, by updating the value over sequences
of primitive actions. This option-aware value learning substantially shortens the effective horizon
compared to primitive action-aware value learning [21], mitigating errors in long-horizon value
estimation. We evaluate our approach on maze and robotic visual manipulation tasks from OGBench
[32], and empirically show that using our value function enables the high-level policy to achieve
superior performance on long-horizon tasks.

In summary, our contributions are threefold:

• Through analysis of the failure cases of hierarchical policies, we identify that the failures
stem from the inability of the high-level policy to generate appropriate subgoals. Further-
more, we observe that the value function used for high-level policy learning has significant
errors when the distance between the state and the goal is large.

• To tackle this problem, we propose Option-aware Temporally Abstracted (OTA) value
learning, which reduces the effective horizon compared to the conventional value learning
objective [21].

• Our experiments show that, even across long state-to-goal horizons, our value function
achieves significantly lower errors, enabling the hierarchical policy to successfully solve
complex maze and robotic manipulation tasks.

2 Related Work

GCRL. GCRL aims to train goal-conditioned policies to reach arbitrary goal states from given
initial states, rather than optimizing for a single, fixed task [42, 25]. Our work focuses specifically on
offline GCRL [4, 26, 52, 33, 43, 32], in which goal-conditioned policies are learned entirely from
pre-collected datasets without further environment interaction. Due to the sparse rewards in goal-
reaching tasks, offline GCRL has relied on hindsight data relabeling [1, 40, 55], and more recently,
imitation learning and value-based methods have been explored to better leverage suboptimal datasets
[6, 11, 52, 12]. In these works, the value function is typically learned through temporal-difference
(TD) methods [21, 34], or through alternative techniques such as state-occupancy matching [26, 7],
contrastive learning [27, 9, 24], and quasimetric learning [50]. However, whether the value functions
can effectively generalize to long-horizon tasks remains an open question [32].

Hierarchical RL. Achieving long-horizon goals remains a fundamental challenge in GCRL [37, 35,
20, 33]. To address this, hierarchical RL methods have adopted either graph-based planning in the
state space [8, 16, 54, 20, 53, 19] or waypoint-based subgoal generation [5, 22, 47, 28, 17, 13, 31,
30, 18, 3, 33, 51]. However, graph-based planning methods incur high computational overhead and
architectural complexity. Waypoint-based approaches also face challenges in generating effective
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subgoals in long-horizon settings, due to inaccurate value estimates when the state is far from the
goal.

Option framework. To enhance the planning capabilities of an agent over long time horizons,
one effective approach is to leverage temporal abstraction through the option framework, which
involves learning sub-policies known as options [14, 45, 41, 35]. In this framework, options serve
as temporally extended actions that enable planning across multiple time scales. After establishing
the theoretical connection between the option framework and semi-Markov decision processes [45],
research has progressed toward end-to-end option learning [39, 44, 2, 46] and automatic option
discovery [38, 15]. Our method is closely related to HIQL [33], which trains a high-level policy
to generate subgoals. However, unlike HIQL, our approach leverages options defined in offline
datasets to effectively reduce the planning horizon during value function training. As a result, our
high-level policy can generate subgoals over longer temporal horizons without relying on explicit
option learning or option discovery.

3 Preliminaries

Problem setting. Offline GCRL is defined over a Markov Decision Process (MDP), consisting
of (S,A,G, r, γ, p0, p) in which S denotes the state space, A the action space, G the goal space,
r(s, g) the goal-conditioned reward function for state s ∈ S and goal g ∈ G , γ the discount
factor, p0(·) the initial state distribution, and p(·|s, a) the environment transition dynamics for
state s ∈ S and action a ∈ A. We also denote V (s, g) as the goal-conditioned value function
at state s given goal g. We assume that the goal space is the same as the state space (i.e., S =
G). An offline dataset D consists of trajectories τ = (s0, a0, s1, . . . , sT ), each sampled from an
unknown behavior policy µ. The objective is to learn an optimal goal-conditioned policy π(a|s, g)
that maximizes the expected cumulative return J (π) = Eτ∼pπ(τ),g∼p(g)[

∑T
t=0 γ

tr(st, g)], where
pπ(τ) = p0(s0)Π

T−1
t=0 p(st+1|st, at)π(at|st, g), and p(g) is a goal distribution.

Hierarchical Implicit Q-Learning (HIQL). In GCRL, accurately estimating the value function for
distant goals is the main challenge in solving complex long-horizon tasks [16, 20, 33]. To address this
issue, HIQL [33] proposed a hierarchical policy structure that utilizes a value function learned with
IQL [21]. This hierarchical design enables the agent to produce effective actions even when value
estimates for distant goals are noisy or unreliable. More specifically, HIQL trains a goal-conditioned
state-value function V with the following loss:

L(V ) = E(s,s′)∼D, g∼p(g)

[
Lτ
2

(
r(s, g) + γV̄ (s′, g)− V (s, g)

)]
, (1)

where the expectile loss is defined as Lτ
2(u) = |τ − 1(u < 0)|u2, with τ > 0.5, and V̄ denotes

the target V network.3 Following prior works [1, 8, 3, 50, 33, 51], we adopt the sparse reward
r(s, g) = −1{s ̸= g}. Under this reward, the optimal value |V ⋆(s, g)| corresponds to the discounted
temporal distance, i.e., a discounted measure of the minimum number of environment steps required
to reach the goal g from state s. HIQL separates policy extraction4 into two levels: a high-level policy
πh(st+k|st, g) generates a k-step subgoal to guide progress toward the goal, while a low-level policy
πℓ(at|st, st+k) produces primitive actions to reach the subgoal. Both policies are extracted using
advantage-weighted regression (AWR) [48, 36, 29] with the following objective:

J (πh) = E(st,st+k,g)∼D
[
exp

(
βh ·Ah(st, st+k, g)

)
log πh(st+k|st, g)

]
, (2)

J (πℓ) = E(st,at,st+1,st+k)∼D
[
exp

(
βℓ ·Aℓ(st, st+1, st+k)

)
log πℓ(at|st, st+k)

]
, (3)

where βh and βl are inverse temperature parameters, Ah(st, st+k, g) = V h(st+k, g) − V h(st, g)
denotes the high-level policy advantage, and Aℓ(st, st+1, st+k) = V ℓ(st+1, st+k) − V ℓ(st, st+k)
denotes the low-level policy advantage. HIQL uses a single goal-conditioned value function V ,
which is shared between both πh and πℓ (i.e., V h = V ℓ = V ). However, despite this design, HIQL
still struggles with long-horizon, complex tasks, as shown in the recent offline GCRL benchmark,
OGBench [32].

3Note that since the inherent over-estimation problem of IQL, in this paper, we assume that the environment
dynamics is deterministic.

4Policy extraction refers to learning a policy from a learned value function, emphasizing the separation
between value learning and policy learning.
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Figure 1: High-level policy is problematic. We evaluate HIQL by varying only the high-level policy
while keeping the low-level policy fixed. The x-axis denotes different tasks under maze sizes and
data types (See Section 6.1 for task details). Using learned high-level policy (HIQL, π = πℓ ◦ πh),
performance drops, whereas using the oracle high-level policy (HIQLOS, π = πℓ ◦ πh

oracle) achieves
high success rates, indicating the high-level policy is the main bottleneck.

4 Motivation

4.1 Low-Level Policy vs. High-Level Policy: Which is the Bottleneck of HIQL?

We investigate the failure cases of HIQL in long-horizon scenarios by identifying whether the main
performance bottleneck is in the low-level policy or the high-level policy. To examine this, we fix the
low-level policy πℓ and replace the high-level policy πh with an oracle policy πh

oracle, which always
provides optimal subgoals reachable within a short horizon.5 We refer to this variant as HIQLOS, and
pose the following hypothesis: if HIQLOS still fails in long-horizon tasks, then the low-level policy
struggles to reach short-horizon subgoals. Conversely, if it achieves a high success rate, the main
problem lies in the high-level policy.

Figure 1 shows the results of HIQL and HIQLOS on eight challenging maze navigation tasks from
OGBench [32]. HIQL achieves less than 20% success rate on many tasks, indicating that HIQL
significantly fails to solve the long-horizon tasks. In contrast, we note that HIQLOS achieves a much
higher success rate around 90%. These results indicate that, although the low-level policy generalizes
well in short-horizon settings when provided with accurate subgoals, the primary failure of HIQL in
long-horizon scenarios stems from inaccuracies in the high-level policy.

We identify two potential issues in Equation (2) that may underlie the failure of high-level policy
learning: (1) an inadequate policy extraction scheme (i.e., the regression component in Equation
(2)), and (2) an inaccurately learned value function (i.e., the advantage term in Equation (2)). Since
the same policy extraction scheme enables successful low-level policy learning, we do not consider
it to be the primary cause of failure. This suggests that the inaccurate value function used in the
high-level policy advantage term may be the key contributor to the failure. In particular, as the
distance between st and g increases, the value estimates become increasingly erroneous, leading to
an imprecise evaluation of the high-level advantage. Although HIQL attempts to mitigate the noise in
estimating the long-horizon value V h through its hierarchical structure, the high-level advantage may
still be substantially erroneous. In the following subsection, we carefully analyze how such errors in
estimating V h adversely affect high-level policy learning.

4.2 Order Inconsistency of the Learned Value Function in the Long-Horizon Setting

Before analyzing the learned V h in HIQL, we first define order consistency of the value function.

Definition 4.1. (Order consistency) Assume that the environment is deterministic. Let τ⋆ =
(s0, s1, . . . , sT = g) denote the optimal trajectory induced by the optimal policy π⋆(· | s, g), from the
initial state s0 to the goal g, and let V be a learned value function. Given si, sj ∈ τ∗ with j > i, we
say that V satisfies order consistency with respect to (si, sj , g) if and only if V (sj , g) > V (si, g).

5Specifically, πh
oracle provides as a subgoal the center of an adjacent maze cell that lies on the shortest path

from the current state to the goal.
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Figure 2: Value order inconsistency in long-horizon settings. (Left) We collect optimal trajectories
from the initial state ( ) to the goal ( ). (Middle) At each state along the trajectory, we compare
the high-level value from HIQL (V h) and the optimal (V ⋆). (Right) To better illustrate value order
consistency, we convert the values into temporal distances: HIQL (dh) and the optimal (d⋆).

Consider an optimal trajectory τ⋆ = {s0, s1, . . . , sT }, generated by an oracle policy. Along this
trajectory, the optimal value function is increasing, such that V ⋆(sj , g) > V ⋆(si, g) for all j > i.
Thus, value order consistency refers to the alignment between the order induced by V h and that
induced by V ⋆. We argue that achieving the order consistency between V (st, g) and V (st+k, g) is
critical, as sign mismatches can invert the high-level advantage estimate Ah and hinder the learning of
an appropriate high-level policy. With large k values (e.g., 25 in AntMaze 100 in HumanoidMaze),
the sign mismatch of the advantage estimate can lead to significant performance degradation. When
the advantage sign is incorrect, the magnitude of regression weights (which is the exponentiated
advantage) is drastically increased or decreased, leading to improper subgoal regression for high-level
policy. For example, if the range of an advantage is [−1, 1] with βh = 3, the regression weights
vary from e−3 ≈ 0.05 to e3 ≈ 20, indicating that a sign flip can significantly change the weight
magnitude.

To check whether the learned V h of HIQL achieves the order consistency or not, we collected
optimal trajectories for four different long-horizon tasks with specified goals using near-optimal
policies, as illustrated in Figure 2. The trajectory lengths varied from 250 to 2000 steps. For
each state st in the trajectory, we then visualize the learned value V h(st, g) alongside the optimal
value function, computed as V ⋆(st, g) = −

(
1− γd⋆(st,g)

)
/ (1− γ), in which d⋆(st, g) denotes

the temporal distance between st and g. Since the value decays exponentially as the distance
to the goal increases due to the discount factor γ, directly comparing relative values is visually
challenging. Hence, we transform V h(s, g) into estimated temporal distances using the following
equation: dh(s, g) = log

(
1 + (1− γ)V h(s, g)

)
/ log γ. In this form, the criterion for value order

consistency becomes dh(si, g) > dh(sj , g), where j > i.

As shown in Figure 2, we note that V h closely matches V ⋆ when the state is near the goal (i.e.,
d⋆(s, g) ≈ 0). This alignment explains the strong performance of the low-level policy presented in
Figure 1. However, when the state-goal distance exceeds a certain temporal horizon, the value order
inconsistency frequently arises between V h(st, g) and V h(st+k, g) due to the non-monotonicity of
the learned V h.6 This is due to the well-known fact that the learning target for the value in Equation
(1) becomes noisier as the horizon becomes longer, and shows why the use of V h becomes less
effective in high-level policy learning for long-horizon settings.

Motivated by the observation that V h aligns well with V ⋆ and achieves order consistency in short-
horizon settings, we propose a simple yet effective solution based on temporal abstraction [45]. This
approach enables high-level value function learning to provide appropriate advantage estimates, even
when d⋆(s, g) is large.

6The hyperparameter k in HIQL is chosen based on the characteristics of the environments and datasets. In
Figure 2, k = 25 for the AntMaze task and k = 100 for the HumanoidMaze task.
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Figure 3: Option-aware temporal abstraction. (Left) OTA achieves temporal abstraction by
computing the reward and target value from the state reached after executing the option (i.e., sΩ).
(Right) By leveraging temporal abstraction, OTA provides clear high-level advantage estimates,
particularly in long-horizon tasks.

5 Option-aware Temporally Abstracted (OTA) Value

In this section, we propose a straightforward solution for learning V h(s, g) by leveraging options
[45] to reduce the horizon length. An option can be regarded as a temporally extended sequence of
primitive actions that enable temporal abstraction. In our offline RL setting, an option starting from
the state st corresponds to a sequence of n actions (at, at+1, . . . , at+n−1) extracted from trajectories
in the offline dataset. By using temporally extended actions in planning, we reduce the effective
horizon length, referring to the number of planning steps, to approximately d⋆(st, g)/n. Therefore,
to ensure that the high-level value V h is suitable for long-term planning, we modify the reward and
target value in Equation (1) to be option-aware.

Specifically, for a given abstraction factor n and goal g, we define an option Ωn,g = (I, µ, βn,g),
where I = S is the initiation set, µ is the behavior policy used to collect the offline dataset D, and
βn,g is a timeout-based termination condition that ends the option after n steps or upon reaching g.
Let s′(Ωn,g, st) denote the state resulting from executing Ωn,g at state st, which is either st+n or
g. For brevity, we denote s′(Ωn,g, s) as sΩ. Then, we reformulate the value learning objective in
Equation (1) into an option-aware variant:

L(V h
OTA, n) = E(s,sΩ)∼D,g∼p(g)[L

τ
2(r(s

Ω, g) + γV̄ h
OTA(s

Ω, g)− V h
OTA(s, g))], (4)

where r(sΩ, g) = −1{sΩ ̸= g}.7 We refer to V h
OTA as the Option-aware Temporally Abstracted

(OTA) value function.

We argue that the high-level value function V h
OTA would effectively address the value order incon-

sistency. Using a 1-step target for value learning tends to be more sensitive to noise, especially in
long-horizon tasks, whereas an option-aware target mitigates noise and empirically produces more
order-consistent value estimates. The overall framework for learning V h

OTA is illustrated in Figure 3.

Connection to n-step TD learning. The target used in n-step TD learning and that in OTA value
learning are closely related, as both primarily rely on the n-step forward value.8 However, the key
distinction between n-step TD and OTA lies in the choice of the discount factor γ, which controls
how information decays during the TD update. Standard n-step TD learning typically uses the same
γ as in 1-step TD, causing the discount factor applied to the n-step target to decay exponentially with
n. In contrast, the discount factor in the OTA target is independent of n. This excessive decay in the
standard n-step target hinders the order-consistent value learning, indicating that a direct extension
from the n-step target to the OTA target is not straightforward. Instead, temporal abstraction through
the option framework provides a natural explanation for the insights presented in Section 4.2. As
shown empirically in 6.5, with respect to value order consistency, standard n-step TD learning offers
no advantage over 1-step TD learning.

7We highlight the differences from Equation (1) in Equation (4).
8The TD target used in n-step TD learning is

∑n−1
i=0 −γi · 1(st+i ̸= g) + γnV (st+n, g).
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Figure 4: Evaluation on OGBench. We run 8 seeds for each dataset and use the performance
reported in OGBench for the baselines. For maze tasks, we report the average success rate grouped by
maze size. For visual robotic manipulation, we report the average success rate across the four tasks.

6 Experiments

6.1 Experiment Setup

Tasks. We use OGBench [32], a recently proposed offline GCRL benchmark designed for realistic
environments, long-horizon scenarios, and multi-goal evaluation. The Maze environment consists of
long-horizon navigation tasks that evaluate whether the agent can reach a specified goal position from a
given initial state. The Maze environments are categorized by agent type (PointMaze, AntMaze,
and HumanoidMaze), maze size (medium, large, and giant), and the type of trajectories
in the dataset (navigate, stitch, and explore). The Maze environments are well suited
to evaluating performance in long-horizon settings. For example, the HumanoidMaze-giant
environment has a maximum episode length of 4000 steps.

The Visual-cube and Visual-scene environments focus on visual robotic manipulation tasks.
In Visual-cube, the task involves manipulating and stacking cube blocks to reach a specified goal
configuration. This environment is categorized by the number of cubes: single, double, and
triple. In contrast, Visual-scene requires the agent to control everyday objects like windows,
drawers, or two-button locks in a specific sequence. Both visual environments use high-dimensional,
pixel-based observations with 64 × 64 × 3 RGB images. The robotic manipulation environments
have shorter episode lengths (250 to 1000 steps) compared to the Maze environments. These robotic
environments are a strong benchmark for evaluating the performance of an algorithm on high-
dimensional visual inputs. A detailed description of the environments is provided in Appendix B.1.

Baselines. For brevity, we will refer to the policy that utilizes the high-level policy learned with the
OTA value as OTA. We compare OTA against six representative offline GCRL methods included in
OGBench. Goal-conditioned behavioral cloning (GCBC) [11] is a simple behavior cloning method
that directly imitates actions from the dataset conditioned on the goal. Goal-conditioned implicit
V-learning (GCIVL) and goal-conditioned implicit Q-learning (GCIQL) [21, 33] estimate the goal-
conditioned optimal value function using IQL-based expectile regression, and extract policies using
AWR [36] and behavior-regularized deep deterministic policy gradient (DDPG+BC) [10], respectively.
Quasimetric RL (QRL) [50] learns a value function that estimates the undiscounted temporal distance
between state and goal via quasimetric learning and trains a policy using DDPG+BC. Contrastive RL
(CRL) [9] approximates the Q-function via contrastive learning between state-action pairs and future
states from the same trajectory, and trains the policy using DDPG+BC. HIQL [33] extends GCIVL
with a hierarchical policy, as detailed in Section 3.

6.2 Evaluation on OGBench

We evaluate success rates on 14 datasets, including {AntMaze, HumanoidMaze}-{medium,
large, giant}-{navigate, stitch} and AntMaze-{medium, large}-explore.
For both AntMaze and HumanoidMaze, we report the average success rate grouped by maze
size. Additionally, for visual robotic manipulation, we evaluate the average performance across four
tasks: Visual-Cube-{single, double, triple} and Visual-Scene. As shown in
Figure 4, most non-hierarchical baselines (i.e., GCBC, GCIVL, GCIQL, QRL, CRL) consistently fail
on long-horizon tasks. While HIQL, a hierarchical policy, achieves up to 40% success on challenging
tasks such as AntMaze-giant and HumanoidMaze-large, its performance drops significantly
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OTA, d

h,
and dhOTA, and the order consistency ratios rc(V h) and rc(V h

OTA), across six different datasets.

in the most difficult setting, HumanoidMaze-giant, highlighting its limitations in long-horizon
settings.

In contrast, we observe that OTA achieves a significant performance improvement over all baselines.
Notably, as the maze size increases (i.e., from medium to large to giant), the performance gap
between OTA and other methods widens substantially. These results suggest that OTA performs effec-
tive temporal abstraction and enhances high-level policy performance, even as task horizons become
longer. Full benchmark results, including the PointMaze tasks, are provided in Appendix D.

6.3 High-level Value Function Visualization

In Figure 5, we compare the high-level value function V h learned with HIQL and V h
OTA learned with

OTA across six challenging tasks. Using the visualization method from Figure 2, we plot V h and
V h

OTA along optimal long-horizon trajectories τ⋆, together with the corresponding temporal distances
dh and dhOTA. The figure clearly shows that V h

OTA exhibits a more monotonic increase than V h,
particularly when the distance between s and g is large. To quantify this improvement, we compute
the order consistency ratio rc, which measures how reliably value estimates from (st, st+k, g) ∈ τ⋆

produce directionally correct signals for high-level advantage estimation. Specifically, rc(V ) =∑T−k
t=0 1{V (st+k, g) > V (st, g)}/(T − k + 1), where g is fixed and st, st+k ∈ τ⋆. Across all

tasks, we observe that rc(V h
OTA) > rc(V h), indicating that OTA yields more order-consistent value

estimates.9 Therefore, we confirm that OTA improves high-level value estimation in long-horizon
tasks, leading to better high-level policy learning.

6.4 Effect of Varying Abstraction Factor n

Learning the value function V h
OTA depends on the abstraction factor n, which determines the degree

of temporal abstraction. Figure 6(a-c) illustrates how the value function changes as n is varied across
1, 2, 3, 5, 10, and 20 in Equation 4, while keeping the optimal trajectory and goal fixed for each
dataset. As shown in Figure 6(b,c), for long-horizon trajectories (i.e., those exceeding a length of
1500), the absolute scale of the value function increases with larger n. This trend arises since the
option termination condition introduces a reward of −1 every n steps, which effectively compresses
the value range as n increases.

Temporal abstraction not only changes the scale of the value function but also impacts the quality
of the value estimation. Figure 6(a-c) shows that when n = 1, the value function fails to learn as
d⋆(s, g) increases, which aligns with limitations commonly observed in standard HIQL. However, as
n increases, the value function becomes more suitable for long-horizon tasks. To further evaluate the
effect of temporal abstraction, we examine the order consistency ratio rc, as shown in Figure 6(d),

9We set k = 25 for AntMaze environment and k = 100 for HumanoidMaze environment.
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varying abstraction factor n (d) Order consistency ratio rc(V h
OTA) across different values of n.

Table 1: Average success rate and order consistency ratio. Simply using n-step TD
learning or increasing the discount factor in HIQL is insufficient to achieve the perfor-
mance improvements of OTA. Here, the dataset ALE refers to AntMaze-large-explore,
AGS to AntMaze-giant-stitch, HLS to HumanoidMaze-large-stitch, and HGS to
HumanoidMaze-giant-stitch.

Datasets
Success rates Order consistency ratios rc

HIQL OTA HIQL OTA
1-step, γ n-step, γ 1-step, γ1/n 1-step, γ n-step, γ 1-step, γ1/n

ALE 4 ±5 0 ±0 3 ±3 75 ±16 0.75 ±0.01 0.77 ±0.01 0.76 ±0.02 0.97 ±0.01

AGS 2 ±2 0 ±0 0 ±0 37 ±6 0.91 ±0.01 0.84 ±0.02 0.79 ±0.02 0.94 ±0.01

HLS 12 ±4 50 ±4 22 ±3 57 ±3 0.76 ±0.01 0.76 ±0.00 0.75 ±0.02 0.89 ±0.03

HGS 28 ±3 2 ±2 2 ±1 79 ±3 0.71 ±0.01 0.72 ±0.00 0.72 ±0.01 0.94 ±0.01

which generally increases with n. However, beyond a certain point, larger n causes a drop in rc(V h),
indicating that excessive temporal abstraction may lead to a loss of information.

6.5 Impact of n-Step TD and Increasing the Discount Factor γ

In the original HIQL, the high-level value function V h is discounted by γ at every step. In contrast,
the OTA value function V h

OTA applies discounting only every n steps. To investigate the source of
the effectiveness of OTA, we modify the value learning approach of standard HIQL in two ways:
(1) using n-step TD learning, and (2) increasing γ. We evaluate both the success rate and the order
consistency ratio rc across four datasets. In Table 1, we set n = 15 for AntMaze and n = 20
for HumanoidMaze. To compute rc, we collect 5 trajectories per dataset and report the average
consistency ratio (see Appendix B.2.3 for details of the collected trajectories).

The first variant uses the original γ with n-step TD learning in HIQL, denoted as HIQL(n-step, γ).
Table 1 shows that this approach yields almost no improvement in rc, and the success rates also show
little gain except for HumanoidMaze-large-stitch. These results indicate that n-step TD
targets still suffer from value function estimation errors when the discount factor remains unchanged.

The second variant keeps 1-step TD learning but modifies the discount factor to γ1/n. Under OTA
training, the optimal value function becomes V ⋆(st, g) = −(1− γd⋆(st,g)/n)/(1− γ). Therefore, to
approximate this temporally abstracted optimal value function, a possible approach is to increase the
discount factor γ to γ1/n in Equation (1). However, Table 1 shows that simply increasing γ fails to
outperform standard HIQL in either success rate or rc. In contrast, OTA achieves significant gains in
long-horizon tasks such as HumanoidMaze-giant-stitch. The experiments demonstrate that
simply adjusting the discounting factor alone is insufficient, and the temporal abstraction is crucial
for effective value learning in long-horizon tasks.

Our analysis further suggests that n-step TD learning could potentially be improved by carefully
adjusting γ for each n. However, this would introduce additional complexity in hyperparameter
selection. In contrast, OTA fixes γ regardless of n, which makes the approach much simpler.
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6.6 Scalability Comparison of TD-Based OTA and QRL

Here, we demonstrate that OTA, which leverages a TD-based IQL loss, scales effectively with
increasing state and action dimensionality. As discussed in Section 4.2, conventional TD methods
rely on a discount factor, which causes the advantage estimate to decay exponentially over long
horizons. To avoid this issue, we explore alternative value learning approaches that do not depend on
a discount factor.

Table 2: Success rates for different high-level values.

Datasets QRL HIQL OTA

AntMaze-giant-navigate 76 ±2 65 ±5 77 ±4

HumanoidMaze-giant-navigate 12 ±3 12 ±4 92 ±0

Visual-cube-double 6 ±2 59 ±3 65 ±2

Visual-scene 5 ±2 50 ±1 54 ±2

In particular, we consider QRL, which
learns undiscounted temporal distances
between states through quasimetric
learning (see Appendix C for more
details). However, QRL relies on
min-max optimization, which becomes
computationally challenging in high-
dimensional state spaces. As shown in
Table 2, QRL achieves significantly lower success rates on complex tasks such as HumanoidMaze
and Visual-scene. These results highlight the scalability and the practical advantages of our
TD-based OTA, particularly in environments with high-dimensional state spaces.

7 Conclusion

In this paper, we investigated the limitations of the hierarchical offline GCRL method HIQL, particu-
larly in long-horizon tasks. Our analysis revealed that the main performance bottleneck lies in the
high-level policy, which suffers from inaccurate value estimates when the state-goal distance is large.
To address this challenge, we proposed OTA, a method that incorporates temporal abstraction into
IQL-based value learning through the concept of options. Experiments on challenging long-horizon
goal-reaching tasks show that OTA enables high-level policies to achieve substantial performance
improvements in long-term planning. The simplicity and effectiveness of OTA highlight its potential
for advancing long-horizon offline GCRL in real-world applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction section, we clearly explain our contribution on
devising an option-aware temporally abstracted value function learning scheme.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss on the limitations of OTA in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not contain any theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of the environment setup and experimental
hyperparameters in the Appendix, and the open-source code is released to ensure repro-
ducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released our code as open-source to enable full reproducibility of the
results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We show the details on the dataset, hyperparameters, training scheme, and
baselines in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the error bars in the tables and bar plots in the Experiment section
and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We show the details on the compute resources (e.g., GPU) in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Fully conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is a foundational algorithmic study in offline goal-conditioned
reinforcement learning. While the methods could potentially be used in future applications,
there are no specific positive or negative impacts to discuss.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used publicly available datasets and open-source code under appropriate
licenses (e.g., CC-BY 4.0, MIT). All sources and licenses are properly cited in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have open-sourced our code and released the dataset used in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use LLM as a tool only for writing, editing, or formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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Visual-cube-single Visual-cube-double Visual-cube-triple Visual-scene

(a) Maze size

(c) Robotic visual manipulation

(b) Env type
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Figure 7: Dataset examples. For Maze environment, the task differ by (a) environment type (b) and
dataset type. (c) In Visual-cube, the robot must manipulate the cube to the location specified by
the blurred cube, which denotes the goal position.

A Limitations

Our method, OTA, has several following limitations. First, we introduce a new hyperparameter,
temporal abstraction factor n, to reduce the effective horizon of the value function. Due to the
additional hyperparameter, we should carefully select both k, the number of steps to reach subgoal,
and n. Second, though we carry out temporal abstraction on the value function, we still cannot
obtain an order consistent value function for all state and goal pairs. Third, for the experiments on
long-horizon tasks in which the trajectory length is more than 1000, we only use the maze dataset to
evaluate our method.

B Experimental Details

B.1 Environments, Tasks, and Datasets

In this section, we provide detailed descriptions of each task, with dataset examples illustrated in
Figure 7. For a more detailed description of the environment, see OGBench [32].

Maze (Maze) is a challenging long-horizon locomotion task, where the agent needs to reach
the given goal position from the initial position. This environment is categorized into three
different types of agent based on state and action dimension: 1) Pointmaze (PointMaze) ,
which controls 2 degrees of freedom (DoF) point mass, 2) Antmaze (AntMaze), which controls
a quadrupedal Ant with 8-DoF, and 3) Humanoidmaze (HumanoidMaze), which controls 21-
DoF Humanoid agent. Each maze environment is divided into medium, large, and giant based
on maze size, from PointMaze-medium requiring a horizon length (i.e., maximum episode
steps) of 1000, to HumanoidMaze-giant requiring 4000. Each environment includes diverse
datasets—navigate, stitch, and explore—collected via different dataset features:

• navigate: This dataset consists of trajectories collected as an agent, guided by a noisy
expert policy, that attempted to reach randomly sampled goals.
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Table 3: Common hyperparameters for OTA. We refer to Appendix B.2.1 hyperparameter defini-
tion.

Hyperparameter Value

Learning rate 3e-4
Optimizer Adam
Minibatch size 1024 (Maze), 256 (Visual env)
Total gradient steps 1000000 (Maze), 500000 (Visual env)
MLP dimensions [512, 512, 512]
Activation function GELU
Target network smoothing coefficient 0.005
Discount factor γ 0.99 (default), 0.995 (Antmaze-giant,HumanoidMaze)
Image augmentation probability 0.5 (random crop)
Policy (pDcur, p

D
traj, p

D
rand) ratio (0,1,0) (default), (0,0.5, 0.5) (stitch), (0,0,1) (explore)

Value (pDcur, p
D
traj, p

D
rand) ratio (0.2, 0.5, 0.3)

• stitch: This dataset contains shorter trajectories compared to those collected in the
navigate setting. They are designed to evaluate goal-stitching capabilities.

• explore: This includes higher levels of action noise, resulting in lower-quality data, but
with increased state coverage.

Visual-cube (Visual-cube) is a challenging robotic visual manipulation task, where the agent
must move and stack cube blocks to reach a specified goal configuration. The task includes three
variants—single, double, and triple—corresponding to the number of cubes that must be
manipulated. The agent receives pixel-based images of the current observation and goal, each of size
64× 64× 3, and outputs a 5-DoF action vector. The task horizon ranges from 200 steps (single)
to 1000 steps (triple). The agent is learned with noisy dataset, which is built from a suboptimal
dataset with action noise, leading to extremely low-quality data and longer effective horizons.

Visual-scene (Visual-scene) is also a robotic visual manipulation task, where the agent needs to
manipulate everyday objects -a window, a drawer, two button locks—where pressing a button toggles
the lock status of the corresponding object (i.e., the drawer or the window). The agent receives
pixel-based images of the current observation and goal, each of size 64× 64× 3, and outputs a 5-DoF
action vector. The task horizon range is 750, in that it involves unlocking object and manipulating the
object. The agent is learned with noisy dataset, as mentioned above.

B.2 Implementation Details

B.2.1 Hyperparameters

We implemented OTA on top of the official implementation of OGBench [32]10. We use goal-
sampling distribution for value and policy learning, following OGBench. Data sampling scheme is
based on HER [1], taking three different goal-sampling distributions, definition is as follows:

• pDcur(g|s) is a Dirac delta distribution centered at the current state s (i.e., g = s),
• pDtraj(g|s) is the probability distribution over goals g, where each goal is uniformly sampled

from the future states within the same trajectory as the state s,
• pDrand(g|s) is the probability distribution that a goal g is uniformly sampled from the entire

dataset D.

Task-specific hyperparameters are organized in Table 4, where hyperparameters are described in
Equation (1) to Equation (4).

10https://github.com/seohongpark/ogbench
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Task category OTA hyperparameters
Environment Type Size βh βℓ k n

Maze

PointMaze

navigate medium 0.5 3.0 25 5
large 3.0 3.0 25 5
giant 3.0 3.0 20 5

stitch medium 1.0 3.0 20 4
large 1.0 3.0 20 10
giant 5.0 3.0 20 5

AntMaze

navigate medium 1.0 3.0 25 5
large 1.0 3.0 25 5
giant 0.5 3.0 16 4

stitch medium 0.5 3.0 25 5
large 1.0 3.0 25 5
giant 3.0 3.0 30 10

explore medium 3.0 3.0 25 5
large 3.0 3.0 20 15

HumanoidMaze

navigate medium 0.5 3.0 100 20
large 0.5 3.0 100 20
giant 0.5 3.0 100 20

stitch medium 3.0 3.0 100 20
large 1.0 3.0 100 20
giant 0.5 3.0 100 20

Robotic visual manipulation

Visual-cube noisy
single 1.0 3.0 20 4
double 3.0 3.0 20 4
triple 3.0 3.0 25 4

Visual-scene noisy 3.0 3.0 10 4

Table 4: Task specific hyperparameters for OTA. We refer to Appendix B.2.1 for each hyperparam-
eter variable. Note that we individually tune the hyperparameters for each task.
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Task category Maximum episode lengthEnvironment Size

Maze

PointMaze
medium 1000
large 1000
giant 1000

AntMaze
medium 1000
large 1000
giant 1000

HumanoidMaze
medium 2000
large 2000
giant 4000

Robotic visual manipulation

Visual-cube
single 200
double 500
triple 1000

Visual-scene 750

Table 5: Maximum episode length of environments.

B.2.2 Training and Evaluation Details

In Maze environment, the model is trained for up to 1M gradient steps. We evaluate the model
at 800K, 900K, and 1M steps. At each evaluation point, we measure the success rate using five
fixed task goals provided by OGBench. Each goal is evaluated with 50 rollouts, resulting in 750
evaluation episodes per seed (i.e., 3 evaluation steps × 5 goals × 50 rollouts). We report the average
success rate across these episodes and across 8 different random seeds. For Visual-cube and
Visual-scene environments, the model is trained for 500K gradient steps. Evaluations are
conducted at 300K, 400K, and 500K steps using the same protocol: five fixed goals and 50 rollouts
per goal. The maximum episode length of each environment is shown in the Table 5. All results
are averaged across 8 seeds. All experiments are conducted using NVIDIA RTX A5000 and A6000
GPUs.
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path 1 path 2 path 3 path 4 path 5

path 1 path 2 path 3 path 4 path 5
(a) AntMaze large environment

(b) AntMaze giant environment

Figure 8: Collected optimal trajectories for AntMaze environment. We collect the optimal
trajectories from the initial state ( ) to the goal ( )

path 1 path 2 path 3 path 4 path 5

path 1 path 2 path 3 path 4 path 5
(a) HumanoidMaze large environment

(b) HumanoidMaze giant environment

Figure 9: Collected optimal trajectories for HumanoidMaze environment. We collect the optimal
trajectories from the initial state ( ) to the goal ( )

B.2.3 Collected Optimal Trajectories

To evaluate the order consistency of value for high-level advantage, we collect five optimal tra-
jectories for each environment: AntMaze-{large, giant} and HumanoidMaze-{large,
giant}. Each optimal trajectory is generated using the expert policy that was originally used during
the offline dataset collection in OGBench.

The collected optimal trajectories for AntMaze and HumanoidMaze are shown in Figures 8 and
9, respectively. Order consistency, as reported in Table 1, is evaluated based on the five trajectories
illustrated in these figures and averaged over 8 random seeds. During value estimation, we apply a
moving average with an appropriate temporal window size to smooth out short-term fluctuations and
obtain stable value estimates. The optimal trajectories used for value visualizations in Figures 5 and
6 are as follows:

Trajectory selection for Figure 5:

• Figure 5(a): path 5
• Figure 5(b): path 5
• Figure 5(c): path 2
• Figure 5(d): path 5
• Figure 5(e): path 5
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• Figure 5(f): path 1

Trajectory selection for Figure 6:

• Figure 6(a): path 5
• Figure 6(b): path 2
• Figure 6(c): path 5

C Quasimetric Reinforcement Learning (QRL)

QRL [50] is an goal-conditioned RL algorithm by utilizing the quasimetric structure for learning
optimal value function V ⋆. The quasimetrics are a generalization of metrics in that they do require
symmetry. The optimal value function in QRL is an undiscounted temporal distance, V ⋆(s, g) =
−d⋆(s, g), and the value function satisfies the triangular inequality, d⋆(s, s′) + d⋆(s′, g) ≥ d⋆(s, g)
for any s, s′ ∈ S, and g ∈ G. To obtain the optimal value function using the quasimetric structure,
the value function should have two properties: First, the value function should should have locally
consistent value, d⋆(s, s′) ≤ −r. Second, the distance should be globally spread out, d⋆(s, g) =
total cost of path connecting s to g. To achieve those properties, QRL optimizes the following
objective to obtain the optimal value function:

min
θ

max
λ≥0

−E(s,g)∼D[ϕ(d
IQE
θ (s, g))] + λ

(
E(s,a,s′,r)∼D[relu(dIQE

θ (s, s′) + r)2]− ϵ2
)
, (5)

where ϕ is a monotonically increasing convex function, dIQE(·, ·) is Interval Quasimetric Embeddings
(IQE) [49] for the quasimetric model. In the above objective, both the min and max operations
should be applied simultaneously, which can induce unstable training. Using the value function, QRL
learns policy through optimizing the DDPG + BC [10] like objective.
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D Additional Results

D.1 Per-environment Results

We show the full per-environment results in Table 6. In this table, OTA outperforms the baselines in
most cases.

Task category Non-hierarchical Hierarchical
Environment Type Size GCBC GCIVL GCIQL QRL CRL HIQL OTA

Maze

PointMaze

navigate medium 9 ±6 63 ±6 53 ±8 82 ±5 29 ±7 79 ±5 86 ±2

large 29 ±6 45 ±5 34 ±3 86 ±9 39 ±7 58 ±5 85 ±5

giant 1 ±2 0 ±0 0 ±0 68 ±7 27 ±10 46 ±9 72 ±6

stitch medium 23 ±18 70 ±14 21 ±9 80 ±12 0 ±1 74 ±6 75 ±5

large 7 ±5 12 ±6 31 ±2 84 ±15 0 ±0 13 ±6 66 ±8

giant 0 ±0 0 ±0 0 ±0 50 ±8 0 ±0 0 ±0 52 ±7

AntMaze

navigate medium 29 ±4 72 ±8 71 ±4 88 ±3 95 ±1 96 ±1 96 ±1

large 24 ±2 16 ±5 34 ±4 75 ±6 83 ±4 91 ±2 92 ±1

giant 0 ±0 0 ±0 0 ±0 14 ±3 16 ±3 65 ±5 77 ±4

stitch medium 45 ±11 44 ±6 29 ±6 59 ±7 53 ±6 94 ±1 93 ±1

large 3 ±3 18 ±2 7 ±2 18 ±2 11 ±2 67 ±5 84 ±3

giant 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 2 ±2 37 ±6

explore medium 2 ±1 19 ±3 13 ±2 1 ±1 3 ±2 37 ±10 94 ±3

large 0 ±0 10 ±3 0 ±0 0 ±0 0 ±0 4 ±5 75 ±16

HumanoidMaze

navigate medium 8 ±2 24 ±2 27 ±2 21 ±8 60 ±4 89 ±2 94 ±1

large 1 ±0 2 ±1 2 ±1 5 ±1 24 ±4 49 ±4 83 ±2

giant 0 ±0 0 ±0 0 ±0 1 ±0 3 ±2 12 ±4 92 ±1

stitch medium 29 ±5 12 ±2 12 ±3 18 ±2 36 ±2 88 ±2 88 ±2

large 6 ±3 1 ±1 0 ±0 3 ±1 4 ±1 28 ±3 57 ±3

giant 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 3 ±2 79 ±3

Robotic visual manipulation

Visual-cube noisy
single 14 ±3 75 ±3 48 ±3 10 ±5 39 ±30 99 ±0 99 ±0

double 5 ±1 17 ±4 22 ±2 6 ±2 6 ±3 59 ±3 65 ±2

triple 16 ±1 18 ±1 12 ±1 9 ±4 16 ±1 23 ±2 26 ±2

Visual-scene noisy 13 ±2 23 ±2 12 ±4 2 ±0 15 ±2 50 ±1 54 ±2

Table 6: Performance comparison across various policy types and benchmarks. We shot average
success rate on 8 random seeds. Bold values indicate the best performance in each row. Baseline
performances are the official results provided by OGBench.
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D.2 Performance under Unified Hyperparameters

We report additional results where OTA is trained with the same hyperparameters as HIQL, except for
the temporal abstraction factor n. The experiments are conducted on complex maze environments.

As shown in Table 7, OTA consistently outperforms HIQL even under identical hyperparameter
settings. This result indicates that incorporating temporal abstraction alone significantly enhances
performance in long-horizon goal-conditioned tasks.

Task category Hyperparameters Methods
Environment Type Size n k βh βℓ HIQL OTA

PointMaze

navigate large 5 25 3.0 3.0 58±5 85±5

giant 5 25 3.0 3.0 46±9 72±6

stitch large 5 25 3.0 3.0 13±6 46±7

giant 5 25 3.0 3.0 0±0 44±8

AntMaze

navigate large 5 25 3.0 3.0 91±2 91±1

giant 5 25 3.0 3.0 65±5 70±2

stitch large 5 25 3.0 3.0 67±5 79±3

giant 5 25 3.0 3.0 2±2 29±5

explore medium 5 25 3.0 3.0 37±10 93±3

large 10 25 3.0 3.0 4±5 62±12

HumanoidMaze

navigate large 20 100 3.0 3.0 49±4 82±2

giant 20 100 3.0 3.0 12±4 91±1

stitch large 20 100 3.0 3.0 28±3 43±3

giant 20 100 3.0 3.0 3±2 61±3

Table 7: Performance under unified hyperparameters.

D.3 Performance on Visual Play Datasets

We evaluate the performance of OTA on visual play datasets, with results summarized in Table 8. For
a fair comparison, we fix the hyperparameters (k, βh, βl) = (10, 3.0, 3.0) for both HIQL and OTA,
varying only n = 2.

Task category Methods
Environment Data Env HIQL OTA

Visual-cube
play double 48±4 51±3

play triple 21±5 28±1

Visual-scene play - 50±5 56±5

Table 8: Performance comparison on visual manipulation play dataset.
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