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ABSTRACT

In this work, we introduce CELLXPERT, a scalable multimodal foundation model
that unifies single-cell and spatial multi-omics within a common representation
space. CELLXPERT jointly encodes transcriptomic (scRNA-seq), chromatin-
accessibility (ATAC-seq), and surface-proteomic (CITE-seq) measurements, while
directly incorporating MERFISH and imaging mass-cytometry data as 2D or 3D
spatial–visual layers. CELLXPERT facilitates four key downstream tasks out of
the box: (i) cell-type annotation across a broad ontology of 154 largely overlap-
ping identities—the largest label space addressed to date and a stringent test of
fine-grained discrimination, (ii) efficient fine-tuning using Low Rank Adaptation
(LoRA), (iii) genome-wide transcriptomic response prediction to in silico per-
turbations (ISP), and (iv) seamless multi-omic integration across various assays
and platforms. Unlike current single-cell foundation models, which approximate
gene perturbations by deleting or reordering tokenized gene expression ranks,
CELLXPERT employs a Metropolis–Hastings sampler whose proposal kernel uses
the model’s masked conditional distributions to transition to new transcriptomic
states conditioned on the perturbed genes. This Markov-chain procedure mitigates
out-of-distribution artifacts introduced by abrupt token manipulation and produces
trajectories that are biologically interpretable. Evaluations on PBMC68K, Replogle
Perturb-seq, SYSTEMA and BMMC benchmarks show CELLXPERT outperforming
classical and state-of-the-art baselines in cell-type annotation, perturbation-aware
reasoning, and multi-omic integration by a significant margin.

1 INTRODUCTION

Cellular systems generate heterogeneous, high-dimensional data spanning molecular, cellular, and
tissue scales. To process this multimodal evidence, AI systems must jointly encode sequence
information, quantitative expression profiles, and spatial context within a single latent space (Bunne
et al., 2024; Heumos et al., 2023; Ashuach et al., 2023). We present CELLXPERT, a multimodal
foundation model that constructs hierarchical representations of cell state by composing three
abstraction layers: molecular, cellular, and multicellular that map complementary observables into
a shared latent space. Specifically, (i) the molecular layer applies a sequence-aware transformer to
DNA/RNA/protein tokens; (ii) the cellular layer forms a permutation-invariant set representation
by additively fusing feature identity embeddings with expression magnitude encodings, and (iii) the
multicellular layer builds a spatial neighborhood graph with relative positional encodings to capture
tissue context. A provides a holistic view of the molecular, cellular, and multicellular abstractions.

Beyond observational inference, a central use case of single-cell foundation models is reasoning about
in silico perturbations (ISP), which predict genome-wide responses to gene knockdown or overexpres-
sion to understand transcriptomic regulation and to validate therapeutic targets (Adamson et al., 2016;
Dixit et al., 2016). However, most single-cell foundation models are trained solely on observational
data, without exposure to perturbations during pretraining. To simulate gene knockdown or knockup,
existing approaches typically delete or reorder tokenized gene expression ranks (Theodoris et al.,
2023). Such simplistic manipulations neglect biological regulatory mechanisms and push the model
into out-of-distribution regimes, resulting in unreliable embeddings for genome-wide perturbation
analyses. An alternative is conditional masked imputation (Cui et al., 2024). Instead of directly
rearranging the order of the ranks, this method fixes a subset of gene tokens and introduces tokens
that encode experimental conditions, e.g., perturbation labels. The remaining positions are masked
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and imputed in one forward pass by a masked-gene prediction head. While this keeps inference near
the pretraining distribution and avoids explicit rank manipulations, it is susceptible to mode collapse
regressing toward global expression baselines, diminishing biologically meaningful variability, and
accuracy degrades under heavy masking (Kedzierska et al., 2025; Wu et al., 2024).

CellxPert

Spatial Omics
(MERFISH, IMC)

Transcriptomics

Proteomics
Chromatin 
Accessibility

Figure 1: CELLXPERT is a generalist agent shar-
ing a single backbone across modalities and tasks.

In practice, ISP pipelines modify tokenized representa-
tions for a target gene set and then measure the effect
on internal embeddings, e.g., [CLS], mean-pooled
cell vectors, or per-gene embeddings. Typical oper-
ations include deletion (remove tokens to mimic un-
derexpression), overexpression (move tokens forward
to simulate higher rank/priority), and activation/inhi-
bition (shift tokens across rank quantiles). Follow-
ing perturbation, a forward pass on the altered token
sequence generates updated embeddings. These are
compared to the original embeddings via cosine sim-
ilarity, with greater dissimilarity indicating a more
pronounced shift in cell state. Despite their practi-
cality, these token-based methods suffer from critical
limitations:

Limitations of Existing Token-based Gene Perturbation Modeling

Oversimplification of Biological Mechanisms. Simply deleting a gene token to mimic un-
derexpression or repositioning it earlier in the ranking to simulate overexpression represents a
crude approximation. Actual biological processes involve complex interactions and regulatory
networks, which are not realistically captured merely by deleting or reordering tokens.
Out-of-Distribution Embeddings. Extreme perturbations, e.g., complete deletion or strong
overexpression, may push the model into data regimes that were not encountered during
training. The resulting altered token sequences yield unreliable embeddings, as the model
must extrapolate to unseen configurations. This results in embeddings that are not trustworthy
because the model is essentially guessing based on situations it never saw during training.
Predictions in these scenarios may lead to misleading biological conclusions.
Baseline Sensitivity. These methods show sensitivity to the perturbation type, where genes
identified as highly important to the model’s predictions vary depending on whether the
perturbation involves deletion, upregulation, or downregulation.

To overcome these challenges, we propose a Markov chain Monte Carlo (MCMC) wrapper for ISP
within CELLXPERT. The method requires no supervision beyond class anchors computed on the
training split. For each class, control or perturbed, we estimate a Fréchet medoid in embedding space.
Here, perturbed denotes cells in which a designated gene is targeted by CRISPR. At inference time,
users specify target genes and desired expression levels. We clamp these targets and evolve a Markov
chain using masked language model (MLM) proposals. Each step randomly masks 15% of non-target
genes, which matches our pretraining mask rate, then prompts the encoder to impute their values and
applies a Metropolis–Hastings acceptance rule that favors transcriptomes whose cumulative per-gene
distributions move toward the medoid of the perturbed class. This on-manifold, iterative procedure
preserves biological variability, avoids distributional drift from hard token edits, and produces stable
and interpretable trajectories of cell-state change.

2 RELATED WORK

Recent single-cell foundation models differ in architectural design, vocabulary scale, training ob-
jectives, and supported tasks as demonstrated in Tables 8a and 8b. SCBERT (Yang et al., 2022)
employs an encoder-only low-rank Transformer over ∼16k gene tokens per cell, masking non-zero
entries to learn gene co-expression structure. SCGPT (Cui et al., 2024) uses a decoder-only GPT-
style Transformer trained on ∼33M cells with generative pretraining. GENEFORMER (Theodoris
et al., 2023) adopts a bidirectional BERT-style encoder trained on ∼30M cells (extended to 95M),
learning contextual gene representations and regulatory hierarchies. XTRIMOGENE (Gong et al.,
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Figure 2: The overall architecture of CELLXPERT follows the encoder-decoder (seq2seq) paradigm.

2023) applies an asymmetric encoder–decoder architecture that skips sparse input tokens, scaling
to 100M parameters and training on ∼50B gene tokens. CELLPLM (Wen et al., 2023) introduces a
hierarchical model comprising a gene embedder, Transformer encoder, Gaussian mixture latent layer,
and decoder, using cells as tokens and tissues as sentences. While most models use vocabularies of
∼20k–25k genes, CELLXPERT defines a 100k-token vocabulary by discretizing multi-omic signals
and supports input sequences of up to 16384 tokens. These models vary in task specialization:
SCGPT supports cell type classification, multi-omic integration, perturbation response modeling,
and gene network inference. GENEFORMER is designed for gene function prediction, inferring
gene–gene regulatory interactions, and modeling perturbation responses. XTRIMOGENE targets per-
turbation, drug synergy, and annotation tasks. CELLPLM incorporates spatial transcriptomics during
pretraining, enabling joint modeling of scRNA-seq and spatial data for imputation and perturbation
prediction. GEARS (Roohani et al., 2024), a specialized perturbation model, uses a graph-enhanced
encoder–decoder architecture with gene–gene priors to predict transcriptional outcomes of single and
combinatorial knockouts. A more comprehensive survey is provided in L.

3 SCALABLE MULTIMODAL ARCHITECTURE AND COMPONENT ABLATIONS

Table 1: Ablations on 154-class annotation (Acc/F1 in %).
Ours uses mean sequence pooling, MoE, FlashAttention-
v2, 4096-token context, class-weighted cross-entropy.

Variant Ctx Acc. Macro-F1

Ours (mean, MoE, FA, wce) 4096 69.2 63.8
– Prepending [CLS] token 4096 57.6 48.5
– no MoE (dense FFN) 4096 68.1 62.5
– no FlashAttention 4096 68.9 62.1
– no class weighting 4096 68.4 58.6
Ctx = 1024 1024 65.7 60.4

CELLXPERT is a two-stage encoder–decoder
Transformer for multimodal single-cell inputs
(gene expressions, DNA accessibility, protein
abundance and cell coordinates) enhanced with
mean sequence pooling, sparsely gated MoE
feed-forward layers, and FlashAttention-v2.
We pretrain the encoder with a masked-token
objective on 4096-token sequences and then
fine-tune the decoder for 154-way annotation
using class-weighted cross-entropy. Long con-
texts near 4k tokens stress capacity and mem-
ory, so sparse MoE raises capacity at near-
constant per-token latency and FlashAttention reduces memory traffic, making long-context mul-
timodal modeling feasible at fixed compute. Mean sequence pooling substantially outperforms a
prepended [CLS] token. Table 1 shows that removing MoE or class weighting reduces both accuracy
and macro-F1, FlashAttention has negligible impact on quality (as expected from exact attention),
and shortening context from 4096 to 1024 degrades performance. Additional details on the model
architecture, routing, and scalability are provided in B and C.

We pretrained on 23.6M cells from the CELLxGENE Census (Program et al., 2025) (see E.1 for
details). Inputs follow a compact preprocessing pipeline as presented in D: we perform quality
control, per-cell 10k normalization, and log transform; select up to 4096 highly variable genes;
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standardize by global per-gene mean and standard deviation; clip to two standard deviations; discretize
expression into B=50 quantile bins; and tokenize each cell as aligned gene–bin pairs with fixed
sinusoidal embeddings and optional spatial encodings. A unified gene vocabulary is maintained
and extended during fine-tuning by appending unseen genes and growing the embedding table
in place (see D.5). Hence, CELLXPERT supports incremental vocabulary growth across datasets,
enabling continuous learning and seamless integration of unseen tokens and modalities during fine-
tuning. Token-space augmentations further enforce permutation invariance (see D.6). We present
each cell under independent random permutations of gene order; for Perturb-seq, where data are
comparatively scarce and augmentation is essential, we apply minority oversampling, small bin
jitter with clipping, and same-label token CutMix (Yun et al., 2019) while bin edges and statistics
remain fixed. Pretraining minimizes cross-entropy only on masked positions, optimized with AdamW
(β1 = 0.9, β2 = 0.999, weight decay = 1 × 10−2) under a cosine schedule with 1000 warm-up
steps to a peak learning rate 1 × 10−3 followed by decay to 1 × 10−4. We use automatic mixed
precision (AMP) with gradient scaling and distributed data parallelism (DDP). Fine-tuning follows a
simple curriculum: 4 epochs with class-weighted cross-entropy, where the first 2 epochs use uniform
weights and the final 2 enable inverse-frequency weights to progressively emphasize minority classes.
Comprehensive pretraining details are provided in E.2.

4 SELF-SUPERVISED PRETRAINING EVALUATION

Evaluation on Gene Expression Reconstruction While many recent single-cell transformer
models have adopted an MLM objective for pretraining, few have reported quantitative metrics
for expression reconstruction, limiting direct comparisons in the field. To address this gap, we
introduce the first rigorous, per-bin evaluation of MLM performance in single-cell transcriptomics.
We discretize every gene’s expression into 50 fixed bins and randomly mask 15% of these bin
tokens across the input sequence. We then train the encoder-only Transformer to recover the original
bin indices. We obtain a corpus-level accuracy of 96.3%, a macro-averaged F1 of 96.0%. The
confusion matrix in Figure 7 shows that most errors stem from assigning the highest expression bin
to lower-expression categories, indicating that extreme outliers remain challenging.

Large-Scale Cell- and Tissue-Level Discrimination We evaluate CELLXPERT on classifying
154 cell types and multiple tissues, using a curated ontology to see if pretraining captures both
fine- and coarse-level differences and follows the hierarchy. At the cell level, the model shows
high performance on abundant, transcriptionally distinct lineages (e.g., hepatoblasts, retinal rod
cells, oligodendrocytes), while errors concentrate among closely related or low-abundance subtypes
(e.g., CD14/CD16 monocytes, NK maturation stages, CD4/CD8 αβ T cells), consistent with shared
or gradient markers (see confusion matrix in Figure 8). At the tissue level, accuracy is strong
for transcriptionally stereotyped tissues (e.g., central nervous system, eye, embryo) and degrades
primarily for anatomically or functionally overlapping systems (e.g., intestinal vs. mucosa; lung vs.
respiratory), reflecting expected cross-tissue signature overlap (Figure 9). Full per-class and per-tissue
metrics are provided in M (Table 9) and N (Table 10), respectively.

Table 2: Class-imbalanced bench-
mark using PBMC68K (in %).

Model Acc. F1

CELLXPERT 78.1 78.9
XGBOOST 73.4 74.2
RANDOM FOREST 73.0 73.4
L1-LOGREG 68.2 69.5
L2-LOGREG 67.3 67.9
SCANVI 68.2 68.3
PCA+KNN 68.7 67.5

CellxPert Outperforms Classical Baselines We evaluate
CELLXPERT using the PBMC68K dataset of peripheral blood
mononuclear cells (PBMCs) (Zheng et al., 2017). We focus on 4
immune cell types that are functionally related and transcription-
ally similar: CD8+ cytotoxic T (n = 15860), CD8+/CD45RA+
naive cytotoxic T (n = 13036), CD19+ B (n = 4460), and CD34+
progenitor cells (n = 180). These populations show overlapping
gene expression and immune phenotypes, and their distribu-
tion is highly imbalanced, which makes them difficult to classify
from RNA data alone. Prior work (Boiarsky et al., 2024) showed
that logistic regression exceeds the performance of foundation
models such as SCBERT on this benchmark. However, we find
that CELLXPERT achieves significantly stronger results, reaching 78.9% macro-F1 compared to
74.2% for the best classical baseline, XGBOOST. These gains suggest that CELLXPERT can capture
fine-grained structure in transcriptomic space that is not as well recovered by linear or tree-based
models.
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Classes
Astrocytes
DaNs
Interneurons
Microglia

Classes
Control Astrocytes
Control DaNs
Control Interneurons
Control Microglia
Parkinson's Disease Astrocytes 
Parkinson's Disease DaNs 
Parkinson's Disease Interneurons 
Parkinson's Disease Microglia

Figure 3: UMAP of fine-tuned CELLXPERT embeddings. Left: Colored by expert-annotated cell types;
astrocytes, dopaminergic neurons (DaNs), interneurons, and microglia form distinct clusters. Right: Colored by
disease status (PD vs. control).

Table 3: Macro-Averaged Performance for Cell Type Annotation & PD vs. Control Classification (metrics in %).

Cell Type Samples Cell Type Annotation Control vs. Parkinson’s

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

All Cell Types 13,113 99.7 99.6 99.6 99.6 82.7 74.9 74.9 74.9
Astrocytes 4,095 100.0 100.0 100.0 100.0 88.5 92.9 90.2 92.9
DaNs 2,752 99.5 99.6 99.6 99.6 73.3 56.9 60.6 56.9
Interneurons 1,121 99.1 98.8 98.9 98.8 75.5 58.5 56.5 58.5
Microglia 5,145 100.0 100.0 100.0 100.0 93.4 91.2 92.2 91.2

Fine-tuning on Parkinson’s Disease (PD) We expect the value of single-cell foundation models
to become even more apparent under distribution shift. Hence, we fine-tune CELLXPERT on the
dataset from (Kamath et al., 2022) using a leave-one-control/one-PD-donor-out cross-validation
protocol to mitigate donor-, tissue-, and batch-level confounders (Babcock et al., 2021; Tran et al.,
2020). All transforms with leakage risk, including gene filtering, normalization, scaling, and highly
variable gene selection, are fit per fold on training donors only. We use parameter efficient adapters
by injecting low rank updates into attention and feed forward projections (implementation details
are in G.1). We report macro averaged precision, recall, F1, and accuracy on held out donors we
aggregate across folds in Table 3. CELLXPERT maintains near ceiling cell type annotation where
F1 is 99.6%, while PD vs. control is more challenging where F1 is 74.9%. Performance is higher
for non-neuronal lineages such as astrocytes where F1 is 90.2% and microglia where F1 is 92.2%.
Performance is lower for neuronal subtypes including dopaminergic neurons (DaNs) where F1 is
60.6% and interneurons where F1 is 56.5%. These trends align with the UMAP of cell embeddings
in Figure 3 where major cell types form distinct clusters and disease status shows minimal overlap.
These results remain strong under the weak supervision typical of single-cell disease datasets, where
every cell from a patient inherits the donor-level diagnosis (Craig et al., 2025). The model also
accurately highlights the glial populations most affected in PD, with robust signals from reactive
astrocytes and microglia (Smajić et al., 2022).

5 METROPOLIS-HASTINGS SAMPLING FOR ISP RESPONSE PREDICTION

A common ISP baseline clamps the perturbed genes and then imputes the remaining positions in a
single pass under a mean-field factorization. This factorization assumes conditional independence
across masked genes and the formal definition is provided in H.1. In practice this procedure masks
more than 99% of tokens at inference time, which is far outside the pretraining corruption rate.
The result is distribution shift that collapses diversity and washes out gene to gene dependencies.
Empirically, this yields centroid-like reconstructions and poor perturbation specificity, consistent
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with prior work for SCGPT and also for non-transformer approaches such as CPA when evaluation
emphasizes average shifts (Cui et al., 2024; Lotfollahi et al., 2023). Standard shift-sensitive metrics,
such as Pearson correlation on differentially expressed genes or RMSE/MAE, can further inflate
apparent performance because they reward global control to perturbation shifts while downweighting
structure (Viñas Torné et al., 2025). Under such metrics simple linear baselines can match or surpass
recent deep models on unseen perturbations (Ahlmann-Eltze et al., 2025; Csendes et al., 2025).

We therefore replace one-shot imputation with an MCMC sampler based on the Metropolis-Hastings
algorithm (Hastings, 1970). At each iteration we randomly mask a small block of non-target genes
that matches the pretraining corruption rate. We run the encoder to propose replacements conditioned
on the unmasked context. We accept the joint update with a probability that increases as the candidate
transcriptome moves toward anchors computed from perturbed cells. This keeps inference near the
training manifold and preserves gene to gene dependencies. We monitor convergence by tracking the
acceptance rate, as illustrated in Figure 11, and the stabilization of the mean per-gene expression shift
between successive iterations. We model the BERT-like MLM in CELLXPERT as a fully connected
Markov random field over genes (Devlin et al., 2019; Wang & Cho, 2019). The encoder logits define
positive potentials and masked token training maximizes a tractable pseudo likelihood. The negative
sum of site wise logits defines an energy over transcriptomes and induces a Gibbs distribution. This
view is compatible with the use of local conditional proposals in our MCMC inference. We provide
formal definitions and theoretical details in H.2.

Preliminaries. We frame the prediction of transcriptional responses to genetic perturbations as
a Bayesian inference problem, which we solve using Metropolis-Hastings applied to expression
profiles from control cells. The MCMC chain draws samples from a proposal distribution and
accepts proposals that shift toward regions of high joint probability (biologically plausible states).
Specifically, at each iteration we (i) clamp user-specified target genes to their desired levels, (ii)
randomly mask a small block of non-target genes to match the pretraining corruption rate, and (iii)
prompt the CELLXPERT encoder to propose new expression values from the learned conditional
distribution. This partial, iterative resampling keeps the chain close to the training manifold, preserves
gene-gene dependencies and avoids the fill-all-at-once extreme masking while enforcing perturbation
constraints, e.g., knockdown, knockout, overexpression.

Let x = {0, 1, . . . , B − 1} be the set of expression bins. Given a sequence x = (x1, . . . , xL),
where each xi ∈ x denotes the discretized expression bin for gene i, with user-clamped targets T ⊆
{1, . . . , L}, at iteration t we sample a block Mt ⊆ {1, . . . , L} \ T with |Mt| = k = max(1, ⌊pL⌋),
where p ∈ (0, 1) is the mask ratio. This block Mt is sampled uniformly at random from all possible
subsets of the appropriate size, ensuring that the proposal process remains unbiased and covers the
sequence space effectively. Additionally, the masking block sampled does not intersect with the
frozen target set T , preserving the integrity of the fixed positions during the sampling process. x−Mt

denotes x with entries in Mt masked.

Target distribution to score new transcriptomic states. We score each candidate expression
profile by its gene-wise Wasserstein-1 distance to a small set of perturbed anchors constructed
from the training split only, so test cells never contribute to the target distribution and there is no
leakage across the train–test boundary. For each perturbation, we compute Fréchet medoids in the
training set and retain the top K = 5 medoids as anchors, chosen heuristically as a balance between
robustness and computational cost. We then precompute per-gene cumulative distributions around
these anchors and evaluate the Wasserstein-1 cost in linear time in the number of genes and bins.
We use Wasserstein-1 because it is an optimal transport distance that is sensitive to shifts in the full
distribution of expression, not just changes in the mean. Full details are given in H.3.

Proposal distribution and acceptance rule. The encoder-side MLM head outputs logits
ϕi(x−Mt

) = [ϕi,v(x−Mt
)]v∈X ∈ RB , where B represents the number of discretized bins for

gene expressions and v indexes a specific bin. Temperature τ > 0 controls the balance between
exploration and exploitation in the proposal distribution. When τ > 1, the distribution flattens, which
encourages more exploration by making less probable outcomes more likely. Conversely, when τ < 1,
the distribution sharpens, which promotes more exploitation by favoring the most probable outcomes.
We use τ = 2 in our implementation. Appendix H.4 reports an ablation over τ demonstrating that
ISP performance is stable across a broad range of temperatures and improves gradually as τ increases
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from very small values. We define the proposal distribution for each position as

qi(v | x−Mt ; τ) =
exp(ϕi,v(x−Mt)/τ)∑
b∈X exp(ϕi,b(x−Mt

)/τ)
, v ∈ X .

We propose a new state x′ by resampling only the positions within the masked block Mt: specifically,
x′i ∼ qi(· | x−Mt

; τ) for each i ∈ Mt, while keeping x′j = xj for all j /∈ Mt. Conditioning on the
chosen block Mt, the block proposal densities are expressed as

q(x′ | x,Mt; τ) =
∏
i∈Mt

qi(x
′
i | x−Mt

; τ) and q(x | x′,Mt; τ) =
∏
i∈Mt

qi(xi | x′
−Mt

; τ).

The forward pass queries the CELLXPERT encoder once on the masked input x−Mt to obtain the set of
proposal distributions {qi(· | x−Mt ; τ)}i∈Mt and to sample the proposed values x′i for i ∈Mt. The
reverse pass reuses the same block Mt and queries the CELLXPERT encoder on the masked proposed
input x′

−Mt
to obtain {qi(· | x′

−Mt
; τ)}i∈Mt , which are then used to evaluate the probability of the

original expressions {xi}i∈Mt
. These forward and reverse passes together enable the computation

of the Hastings ratio q(x | x′,Mt; τ)/q(x
′ | x,Mt; τ) in closed form as a product over the masked

sites, which compares how likely the proposal would regenerate the original expressions and corrects
for proposal asymmetry penalizing moves that are hard to reverse and rewarding those that are easy.
The Metropolis-Hastings acceptance probability per batch element, conditioning on Mt, is

log r(x → x′ |Mt) = (log π(x′)− log π(x))+
∑
i∈Mt

[
log qi(xi | x′

−Mt
; τ)− log qi(x

′
i | x−Mt

; τ)
]

For numerical stability, we compute the log-ratio log r(x → x′ |Mt), then set logα(x → x′ |Mt) =
min{0, log r(x → x′ | Mt)}, and accept the proposal if and only if log u ≤ logα(x → x′ | Mt)
for a uniform random variable u ∼ U(0, 1). Each iteration of this process uses exactly two MLM
forward passes (forward on x−Mt and reverse on x′

−Mt
).

Evaluation on Genome-Wide Perturb-seq Datasets. We evaluate on the Replogle–Weissman
Perturb-seq dataset (Replogle et al., 2022), which is available from the Gene Expression Omnibus
under accession code GSE146194. The dataset provides ∼ 1.72 × 105 scRNA-seq profiles per
cell line (K562 and RPE-1) with CRISPRi labels for 1092 and 1543 single-gene perturbations,
respectively, plus ∼ 2500 controls per line. We retain perturbations passing a two-stage filter: (i)
on-target repression with log2 FC ≤ −1 and Benjamini–Hochberg adjusted p ≤ 0.05 (two-sided vs.
controls), and (ii) significant separability from controls by an energy-distance (E-distance) test. This
yields 224/1092 targets in K562 and 66/1543 in RPE-1. For each target in the high confidence set
we form three groups of cells. The groups are control cells, cells receiving CRISPR (perturbed), and
ISP predictions generated from control cells.

Silhouette with cosine distance. We quantify separability between perturbed and control cells
using the standard silhouette coefficient. Let d(x,y) = 1 − x⊤y for unit-norm embeddings.
For a cell i with embedding zi and label yi ∈ {control, perturbed}, we define a(i) =

1
|C(yi)|−1

∑
j∈C(yi)\{i} d(zi, zj) and b(i) = 1

|C(ȳi)|
∑

j∈C(ȳi)
d(zi, zj), where C(y) is the index set of

cells in class y and ȳi is the opposite class. The per-cell silhouette is sil(i) = b(i)−a(i)
max{a(i),b(i)} ∈ [−1, 1].

The per-target silhouette is the mean of sil(i) over all cells from the control and perturbed groups for
that target. The dataset level score is the mean over targets. Positive values show a cell is closer to its
own class than the other, with larger values reflecting stronger separation.

Cosine shift toward perturbation. We quantify alignment of ISP predictions to the perturbed
state using mean pairwise cosine similarity between ℓ2-normalized model embeddings. For groups
A,B ∈ {control, perturbed, ISP}, we define spair(A,B) = 1

|A| |B|
∑

z∈A

∑
z′∈B z⊤z′, which

averages cosine similarities over all pairs of cells across the two groups. For each target, we compute
∆ = spair(ISP, perturbed) − spair(control, perturbed). We report the fraction of targets with
∆ > 0, which measures how often ISP predictions are more similar to perturbed cells than the
original controls. Empirically, blockwise Metropolis–Hastings sampling yields higher-fidelity ISP
samples. As shown in Table 4, CELLXPERT achieves stronger alignment to perturbed ground truth
than larger baselines while using fewer pretraining cells and a similar context length: with 23.6M cells
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Table 4: Evaluation on the Replogle–Weissman Perturb-seq high-confidence subsets. Metrics: mean silhouette
across perturbations and “+Shift” (count and fraction of targets whose cosine similarity shifts toward the
perturbed condition).

K562 (n=224) RPE-1 (n=66)

Model Silh. (↑) +Shift n (↑) +Shift % (↑) Silh. (↑) +Shift n (↑) +Shift % (↑)
CELLXPERT 0.58 212 94.6 0.63 64 97.0
GENEFORMER-2 0.61 181 80.8 0.60 58 89.0
GENEFORMER 0.34 65 29.0 0.45 31 47.0
SCGPT 0.52 35 15.6 0.57 17 25.8

and a 4096-token context, it reaches 94.6% positive cosine shift in K562 vs. 80.8% for GENEFORMER-
2 trained on 95M cells at comparable silhouette (0.58 vs. 0.61). On RPE-1, CELLXPERT attains
97.0% positive shift with a silhouette of 0.63, whereas token-editing and one-shot methods such as
GENEFORMER and SCGPT show weaker separability and substantially lower target-directed shift.

SYSTEMA benchmark: moving beyond “too-good-to-be-true” Pearson scores. Most benchmarks
compute a differential expression profile for each perturbation X as ∆ctrl

X = µpert
X − µctrl, where

µpert
X denotes the mean expression of cells perturbed at X and µctrl is the mean expression of control

cells. Pearson-∆ then measures the correlation between the true and predicted ∆ctrl
X across genes.

Under this setup, a simple perturbed-mean baseline already captures most of the global shift from
control to perturbed cells, and SYSTEMA (Viñas Torné et al., 2025) shows that this linear baseline
can outperform or match deep models such as CPA, GEARS, and SCGPT. In other words, models
are largely rewarded for reproducing the average control-to-perturbed shift, not the perturbation
specific component. Biologically, this global shift reflects that certain programs such as cell death,
cell cycle, and blood-cell differentiation tend to be more active in perturbed cells, and many different
perturbations push cells into similar stressed or dying states. This shared stressed phenotype creates a
strong global difference between control and perturbed populations, which in turn can inflate apparent
model performance when metrics are dominated by this global effect rather than by truly perturbation
specific responses. SYSTEMA adopts a stricter reference that removes the global perturbation effect.
Instead of centering on controls, it defines ∆pert

X = µpert
X − µall pert, where µall pert is the mean over

all perturbed cells pooled across targets. Pearson-∆ is then recomputed using ∆pert
X , so a model

must explain the perturbation-specific deviation from the global perturbed state rather than merely
reproducing the overall control-to-perturbed shift. Under this setting, most methods experience a
dramatic drop in correlation, many scores are near zero or even negative, and the perturbed-mean
baseline is no longer competitive. SCGPT is often among the strongest models on the SYSTEMA
benchmark, but its gains are modest and several methods remain close to random performance. On
this stricter evaluation, CELLXPERT achieves a substantially larger improvement in perturbation-
specific prediction. On this stricter benchmark, CELLXPERT shows a highly substantial improvement
in perturbation specific prediction. On Replogle K562, it achieves a mean Pearson-∆ctrl of 0.66 and
a Systema-style Pearson-∆pert of 0.45. On Replogle RPE-1, it reaches 0.72 and 0.46, respectively.
These results show that CELLXPERT not only recovers the global control-to-perturbed shift but also
explains a larger fraction of the target-specific residual signal than previously reported baselines in
the SYSTEMA benchmark, moving ISP evaluation closer to perturbation-aware expression modeling.

Table 5: SYSTEMA ISP benchmark in expression space on Replogle K562 and RPE-1. We report mean
Pearson-∆ with control reference (standard) and with the SYSTEMA perturbed reference.

Pearson ∆ (Standard) (↑) Pearson ∆ (SYSTEMA) (↑)

Model K562 RPE-1 K562 RPE-1

CPA 0.06 0.10 0.05 0.08
GEARS 0.22 0.48 0.00 0.19
SCGPT 0.27 0.51 0.06 0.13
Perturbed mean 0.32 0.55 0.06 0.08

CELLXPERT 0.66 0.72 0.45 0.46
Gain over next best +0.34 +0.17 +0.39 +0.27
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Table 6: Inference strategy ablation on CELLXPERT for ISP response prediction.

K562 (n=224) RPE-1 (n=66)

Inference method +Shift n (↑) +Shift % (↑) +Shift n (↑) +Shift % (↑)

Metropolis–Hastings (MCMC) 212 94.6 64 97.0
One-shot masked imputation 171 76.3 47 71.2
Token editing (rank/bin reorder) 140 62.5 41 62.1

Ablation on ISP Inference Strategies To isolate the effect of the inference strategy on ISP response
prediction from the underlying model architecture and training procedure, we perform a detailed
ablation comparing three decoding strategies applied to the same pretrained CELLXPERT model:
(i) our iterative blockwise Metropolis–Hastings sampling, (ii) one-shot MLM imputation, and (iii)
deterministic token editing that reorders discretized gene expression ranks/bins. As shown in Table 6,
Metropolis–Hastings sampling provides substantially larger target-directed cosine shifts. On K562
it achieves 94.6% positive shifts, a gain of +18.3% over one-shot MLM imputation and +32.1%
over token editing. On RPE-1 it reaches 97.0%, improving by +25.8% and +34.9%, respectively.
These ablations show that our gains in ISP response prediction are driven primarily by the Bayesian
inference via MCMC sampling, rather than by changes to the model architecture or training procedure.

6 SPATIAL AND MULTI-OMIC INTEGRATION

Spatial transcriptomics and proteomics. We evaluated CELLXPERT on two distinct spatial
datasets, which include 3D MERFISH from mouse brain tissue and 2D imaging mass cytometry (IMC)
from breast tumors using UMAP of CELLXPERT embeddings, mesoscale patterns (neighborhood
enrichment), and multi-scale spatial clustering (variograms via Moran’s I). Dataset details are
provided in I.1 and I.2. All spatial statistics use model predicted labels. The results in Figure 12
and I.3 show distinct clusters for major cell types, coherent tissue modules such as neurovascular and
immune stromal interfaces, and variograms that decay smoothly with radius which indicates strong
local clustering that weakens at larger scales. Figure 4 further highlights coherent tissue modules from
neighborhood enrichment. In MERFISH we observe a neurovascular module, strong self enrichment
of Ependymal, and staged Oligodendrocyte compartments. In IMC we observe compact self enriched
epithelial tumor patches and a clear Macrophage and T Cell interface with Vimentin High Stromal
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Figure 4: Neighborhood enrichment from CELLXPERT predictions on MERFISH and IMC, computed from
predicted labels to capture classifier-implied spatial organization. In MERFISH we observe strong self enrichment
of Ependymal, co-enrichment of Endothelial 2 with Pericyte, and Oligodendrocyte compartments that separate
into immature and mature blocks with moderate cross links, which is consistent with a staged lineage. In IMC
we observe compact self enriched patches formed by epithelial tumor cells, a clear Macrophage and T Cell
interface with Vimentin High Stromal Cell, and depletion near Apoptotic Tumor Cell.
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Figure 5: Modality and token budget ablations. Test-1 accuracy (%) of CELLXPERT on BMMC as a function of
token budget for (a) ATAC-seq and (b) CITE-seq. Columns denote the number of genes and rows denote the
number of peaks or proteins. For each configuration, we retain the most statistically variable genes, peaks, and
proteins within each modality.

Cell. Spatial metrics align with classification accuracy. Classes in compact niches achieve high F1

and strong enrichment/autocorrelation signals. Examples include Ependymal at 91% and Endothelial
1 at 87% in MERFISH, and Basal CK Tumor Cell at 80% and Macrophage at 87% IMC. Errors
concentrate in rare or transitional classes such as oligodendrocyte maturation stages and overlapping
epithelial stromal programs. Class imbalance explains the gap between macro and weighted scores
with MERFISH macro-F1 at 61% vs. weighted F1 at 77% and IMC macro-F1 at 60% vs. weighted F1

at 78%. A hierarchical evaluation that merges closely related subtypes could stabilize spatial metrics.
Overall CELLXPERT provides robust and interpretable spatial representations across modalities.

Table 7: NeurIPS 2021
BMMC benchmark (in %).

Model Acc. F1

CELLXPERT 85.7 86.3
SCMAMBA 77.5 76.7
SCGPT 72.9 70.0
CELLPLM 66.3 64.6

Joint modeling of gene expression, chromatin accessibility, and
cell surface protein abundance We evaluate on the OpenProblems
NeurIPS 2021 BMMC benchmark under GEO GSE194122. We describe
preprocessing, tokenization, and modality specific quality control for
ATAC-seq and CITE-seq in J.1 and J.2, respectively. As shown in Table 7,
under the same split and evaluation protocol CELLXPERT achieves 85.7%
Test-1 accuracy and 86.3% weighted F1, exceeding multimodal baselines
by wide margins: +8.2% / +9.6% over SCMAMBA, +12.8 / +16.3 over
SCGPT, and +19.4 / +21.7 over CELLPLM. To probe the sources of these
gains, we analyze modality and token–budget ablations. Figure 5 shows three consistent findings.
First, RNA is the strongest single modality, ATAC alone is weaker but complementary, and ADTs
alone are competitive because surface markers capture immune identity. Second, early fusion yields
most of the performance gain. Adding 200 ADTs to 3896 genes raises Test-1 accuracy from 79.2%
to 85.7%. It also yields large class level gains for receptor and activation defined states. For example
CD4+ T Activated increases from 45.6% with RNA to 85.3% with the mixed model. Third, adding
ATAC peaks to RNA helps at low gene budgets and then saturates. At 512 genes, 2048 peaks improve
accuracy by 2.7%, while gains are negligible or negative at larger gene budgets. The gains from ADTs
concentrate in fine grained T, NK, and myeloid phenotypes, and expanding the RNA vocabulary
beyond roughly one to two thousand genes shows diminishing returns once a second modality is
present. We provide detailed results on gains from multimodal fusion and token budget sweeps in J.3.

7 CONCLUSION

We present CELLXPERT, a multimodal foundation model for single-cell and spatial omics with a block
Metropolis–Hastings ISP sampler that treats MLM as an implicit energy-based model to generate
on-manifold transcriptomes. This preserves gene dependencies, avoids out-of-distribution shifts, and
outperforms strong baselines on perturbation response prediction and multi-omic integration.
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REPRODUCIBILITY STATEMENT

All datasets used in our experiments are publicly available, with direct links and complete prepro-
cessing scripts included in our codebase. Upon acceptance, we will release code, configuration files,
checkpoints and a detailed README with setup instructions. This release will be hosted on GitHub
under a non-commercial license.
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A HIERARCHICAL ABSTRACTIONS INTO A SHARED LATENT SPACE

Model Abstraction

Molecular layer. RNA, DNA, and protein sequences are serialized into a flat sequence of
tokens and processed with a stack of transformer layers. Although small molecule vocabularies
(glycans, lipids, metabolites) are critical for complete biochemical coverage, their combina-
torial diversity inflates the token set into the 105–106 range, making even memory-efficient
kernels such as FlashAttention (Dao et al., 2022) (with O(n2 d) time complexity, where n is
the sequence length and d is the per-head embedding dimension) computationally prohibitive
on today’s hardware.
Cellular layer. Each omics token, whether it represents a gene, an ATAC-seq k-mer, or a
CITE-seq epitope, is mapped twice: first to an identity embedding that captures what the
feature is, and second to a magnitude encoding that captures how much of it is present after
the raw measurement is discretized (e.g., binned expression levels, accessibility intensities,
or antibody counts). Both identity embeddings and magnitude encodings share the same
dimensionality, so we fuse them with a simple element-wise addition to produce the final token
vector. This additive operation keeps the model’s memory and compute footprint constant,
unlike vector concatenation, while still allowing gradients to flow back to embeddings. It
treats the two pieces of information as complementary channels of the same feature, similar
to how transformers add positional encodings to word embeddings, and it gives the network
freedom to learn whether identity or magnitude should dominate by adjusting the respective
embedding weights during training.
Multicellular layer. CELLXPERT brings in 3D transcriptomic spots from MERFISH and
2D proteomic cells from Imaging Mass Cytometry (IMC), then shift each axis so that all
coordinates run from zero up to their original range. The resulting float tensors of each cell’s
(x, y, [z]) coordinates are run through a fixed sinusoidal encoder—matching the transformer’s
embedding dimension—and multiplied by a single learnable scalar before being added element-
wise to every token’s identity-plus-magnitude vector (Vaswani et al., 2017; Gehring et al.,
2017). This approach incorporates spatial context into the sequence representation without
increasing parameter count or attention complexity.

B MODEL ARCHITECTURE

B.1 INPUTS, TOKENIZATION, AND EMBEDDINGS

We ingest multimodal single-cell profiles as a single sequence of length N≤4096 by concatenating
modality-specific tokens (RNA genes, ATAC peaks, ADT proteins; optional spatial tokens). Each
token t carries: (i) a feature identity embedding eid(t) (e.g., gene/peak/protein index), and (ii) an
expression-magnitude encoding emag(t) from discretizing counts into B=50 bins. We form per-token
inputs by additive composition

xt = eid(t) + emag(t) + epos(t),

where epos is a learned positional encoding. For spatial assays (MERFISH/IMC), we add relative
positional encodings over a k-NN tissue graph (radius/degree set per dataset) to epos(t).

B.2 ENCODER–DECODER BACKBONE AND POOLING

CELLXPERT uses a Transformer encoder–decoder with sparsely-gated MoE feed-forward blocks in
both stacks, layer normalization and residual connections. We pretrain the encoder with masked token
prediction (Sec. B.3) and fine-tune a linear classifier on the decoder output for 154-way annotation
(Sec. B.4). Unless stated otherwise, we aggregate with mean sequence pooling: h= 1

N

∑N
t=1 zt,

where {zt} are final-layer token representations. An ablation with a prepended [CLS] shows no
benefit over mean sequence pooling (Table 1).
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Token-1 Embedding

Noisy Top-k Router

FFN-1 FFN-2 FFN-3 FFN-4

Token-2 Embedding

Noisy Top-k Router

FFN-1 FFN-2 FFN-3 FFN-4

+ +
g1

g2

g1 g4

Figure 6: Illustration of our sparse MoE block with noisy top-2 routing. We replace the standard dense feed-
forward network (FFN) in the Transformer with a two-expert MoE layer. For each input token, a noisy top-2
router independently selects its two highest-scoring experts and returns a gated combination of their outputs.
Each expert output multiplied by its router gate value and summed (dotted lines).

B.3 PRETRAINING OBJECTIVE: MASKED TOKEN MODELING

We randomly replace p = 0.15 of tokens with [MASK] and train the encoder to predict the true
magnitude bin at masked positions:

LMLM = − 1

|M |
∑
i∈M

log pθ
(
xi | x¬M

)
.

Classwise per-bin reconstruction metrics are reported in Figure 9.

B.4 FINE-TUNING OBJECTIVE: CLASS-WEIGHTED CROSS-ENTROPY

Given pooled representation h and logits Wh+b for K classes, we use inverse-frequency weights

αk =
1/nk∑K

j=1(1/nj)
(k = 1, . . . ,K),

where nk is the count of class k in the training set. The weighted loss over a batch {(hb, yb)}Bb=1 is

LWCE = −
∑B

b=1 αyb
log pθ(yb | hb)∑B
b=1 αyb

, pθ(· | h) = softmax(Wh+ b).

This mitigates domination by frequent labels and improves macro-F1 on rare cell types (Table 1).

B.5 SPARSE MOE ROUTING

Each Transformer FFN is replaced by a sparsely-gated Mixture-of-Experts with E experts. Given
token embedding x∈Rd, the gate produces noisy logits

h = Wgate x, σ = ζ
(
Wnoise x

)
, H(x) = h + ε⊙ σ, ε ∼ N (0, I).

Here, d is the hidden size; Wgate,Wnoise ∈ RE×d are learned gating projections; σ ∈ RE is a
nonnegative per-expert noise scale (softplus applied elementwise), ε∈RE is i.i.d. Gaussian noise;
I=IE is the E×E identity.

We keep the top-k entries of H(x) (default k=2), set others to −∞, and apply a softmax to obtain
sparse mixture weights g∈RE (so

∑
e ge=1). The expert outputs {fe(x)}Ee=1 are combined as

MoE(x) =

E∑
e=1

ge fe(x),

where each expert fe : Rd →Rd is a position-wise FFN. Noisy gating promotes balanced expert
utilization and alleviates collapse without additional load-balancing losses. We follow standard
token-level dispatch and combine expert outputs within the same sequence shard for efficiency.
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B.6 ATTENTION EFFICIENCY FOR LONG CONTEXT

We use FlashAttention-v2 to compute exact attention with IO-aware tiling, reducing memory traffic
and enabling 4k-token contexts at practical memory/throughput (Dao, 2023). FlashAttention-v2’s
custom CUDA kernels require GPUs with compute capability ≥ 8.0 (Ampere+). On older hardware,
CELLXPERT automatically falls back to PyTorch’s ATen scaled_dot_product_attention,
preserving model quality while trading some throughput for compatibility. Kernel selection is resolved
at runtime. Checkpoints (state_dict) are device-agnostic and unchanged by the choice of kernel,
though small numerical differences can appear in activations due to floating-point non-associativity.
This dynamic fallback avoids the compatibility problems we observed on legacy GPUs when pipelines
assumed FlashAttention-only execution.

B.7 IMPLEMENTATION NOTES

Masking schedule. We sample a fresh Bernoulli mask with rate p=0.15 per batch. Masked positions
are predicted only by the encoder’s MLM head.
Sequence packing. Sequences are truncated to length ≤ 4096. Spatial encodings are additive.
Pooling. Mean pooling is used by default. [CLS] pooling is included only for ablation.
Reproducibility. All ablations report the same data split and preprocessing.

C INFRASTRUCTURE, SCALING, AND EFFICIENCY

Pretraining is implemented in PyTorch 2.5.1 with distributed data parallelism (DDP), automatic
mixed precision (AMP), and GradScaler. The workflow comprises two stages trained on the
CELLxGENE Discover Census, full details are provided in E.2. FlashAttention-v2 enables up to
16384-token contexts within 32GB, and sparse MoE maintains throughput by raising capacity at
near-constant per-token latency.

The XS configuration of CELLXPERT is optimized for efficiency and is suitable for scenarios with
limited computational resources or for rapid experimentation:

XS Model Configuration (Default)

Number of Layers (L): 2
Number of Attention Heads per Layer (H): 2
Number of Experts in MoE Layers (E): 4
Embedding Size (dmodel): 128

The alternative M, L, XL configurations increase the model’s capacity to capture more complex
patterns in the data, suitable for larger datasets:

M/L/XL Model Configurations

Number of Layers (L): 4/8/12
Number of Attention Heads per Layer (H): 4/8/12
Number of Experts in MoE Layers (E): 4/8/8
Embedding Size (dmodel): 128/128/128

D PREPROCESSING

We read the raw h5ad partitions from CELLxGENE corpus with anndata library (Virshup et al.,
2021). Each AnnData object is filtered to remove cells with fewer than 100 genes and genes present
in fewer than 10 cells; tissue and cell-type labels with fewer than 100 cells are also removed. Counts
are normalized to 10000 per cell using scanpy library (Wolf et al., 2018) and log10-transformed.
The top 4096 highly variable genes are selected in each partition. Across training partitions we retain
a unified vocabulary of V = 60,530 genes, including protein-coding, non-coding, lncRNA, small
RNA classes (miRNA, snRNA, snoRNA, rRNA, scaRNA) and the full spectrum of pseudogenes.
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Per-gene means µg and standard deviations σg are calculated once on the concatenated training parti-
tions via Dask and cached; these parameters are then fixed for both training and test standardization.
For any cell c and gene g, we compute

Zc,g =
Xc,g − µg

σg
, (1)

Ẑc,g = clip
(
Zc,g, −1.96, +1.96

)
, (2)

where clip(x, a, b) = min(max(x, a), b). Clipping to [−1.96, 1.96] (∼ 2 standard deviations corre-
spond to the 2.5th and 97.5th percentiles) bounds extreme values without affecting most data and
prevents extreme outliers from destabilizing model training.

D.1 BINNING-BASED EXPRESSION DISCRETIZATION

We map standardized values to integer bins via quantile binning. Specifically, we flatten all Ẑc,g from
pretraining data into a vector z, then split that vector into B equally populated buckets by computing
B + 1 percentile cut-points (we set B = 50 in our implementation).

qk = np.percentile
(
z, 100 k/B

)
, k = 0, . . . , B,

caching {qk} for test-time use. Then each Ẑc,g is compared to those stored percentiles qk, whichever
interval between adjacent cut-points it falls into determines its integer bin (from 0 up to B −
1). An alternative to binning-based discretization is rank-based discretization. While rank-based
discretization captures relative expression levels and is robust to batch effects and noise, it discards
all magnitude information. In contrast, quantile binning preserves coarse absolute expression levels.
Consequently, when downstream tasks depend on expression magnitude such as tasks like differential
expression analysis or predicting gene expression changes under perturbations, a binning-based model
directly predicts up/down shifts in expression level, whereas a rank-based model might only tell that
a gene moves up or down in rank, which is informative but not quantitative. Additionally, to capture
subtle magnitude differences for example, identifying rare cell types defined by slight expression
changes, binning can detect signals that might be lost in pure rank ordering. Empirically, SCGPT (Cui
et al., 2024) and SCBERT (Yang et al., 2022) (bin-based) outperformed GENEFORMER (Theodoris
et al., 2023) (rank-based) on imbalanced data with rare cell subpopulations (Alsabbagh et al., 2023).
Thus, for tasks like differential expression analysis, perturbation response prediction and rare cell
type detection, binning offers an edge.

D.2 TOKENIZATION

After discretizing expression into B=50 bins, each cell c is represented by two aligned sequences
of length L: gene IDs (gc,1, . . . , gc,L) with gc,t ∈ {0, . . . , G} and bin indices (bc,1, . . . , bc,L) with
bc,t ∈ {0, . . . , B − 1}. We fit a LabelEncoder (Pedregosa et al., 2011) on training genes to map
each symbol to [0, V − 1] and reserve the unused index V for [CLS]. If [CLS] is enabled, we set
gc,1=V , bc,1=0 (neutral bin), shift the original pairs by one, and take L=G+1 (otherwise L=G).
We denote the token sequence by Tc =

(
(gc,1, bc,1), . . . , (gc,L, bc,L)

)
and identify N := L ≤ 4096.

D.3 EMBEDDINGS AND INPUT COMPOSITION

Let d be the embedding dimension (we use d=128). We define

Eid ∈ R(G+1)×d, Emag ∈ RB×d, P ∈ RL×d.

For token position t ∈ {1, . . . , L},

eid(t) = Eid[ gc,t ], emag(t) = Emag[ bc,t ], epos(t) = P [ t ].

For spatial assays with per-cell coordinates (xc, yc[,zc]), we form a per-cell spatial term

espatial(c) = P x[xc ] + P y[ yc ][ +P
z[ zc ]],

and tile it across the sequence. The per-token input is

xc,t = eid(t) + emag(t) + epos(t) [+ espatial(c)].
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D.4 EXPRESSION ENCODING (SINUSOIDAL, FIXED)

We realize Emag with a precomputed sinusoidal table (no learned weights). For b ∈ {0, . . . , B − 1}
and i = 0, . . . , d2 − 1,

Emag[b, 2i] = sin
(
b · e− 2i

d ln(base)
)
, Emag[b, 2i+ 1] = cos

(
b · e− 2i

d ln(base)
)
,

with base=100.

D.5 VOCABULARY CONSTRUCTION AND DYNAMIC TOKEN ADDITION

We build our gene-token vocabulary once from a LabelEncoder mapping each known gene
name to a unique integer ID. During fine-tuning, if a gene appears that already has an entry in
gene_to_index , we reuse its token ID. Otherwise, we allocate the next free ID and append it to
both the LabelEncoder and the model’s embedding matrix. By persisting this updated mapping,
CELLXPERT supports incremental vocabulary growth across datasets, enabling continuous learning
and seamless integration of new gene tokens and modalities during fine-tuning. This mechanism
closely parallels ADAPTIVOCAB (Nakash et al., 2025), which pre-allocates embedding slots for
tokens absent from the pretraining vocabulary and jointly fine-tunes new and existing embeddings,
and resonates with recent work demonstrating that embeddings for previously unseen tokens can be
acquired post-hoc by soft token learning (Lester et al., 2021) or prompt tuning (Liu et al., 2023).

D.6 MAKE MORE WITH LESS DATA

During pretraining we augment dataset size via a novel bootstrap-style augmentation technique that
replicates each cell with independently permuted gene indices.

Bootstrapped Permutation

Every cell is cloned four times. Each clone receives an independent random permutation
of its 4096 highly variable genes before the sequence is truncated to the fixed sequence
length of 1024 tokens. This bagging over features approach presents each gene in multiple
positional contexts, helps the Transformer learn permutation–invariant patterns, and effectively
quadruples the number of training sequences.

Perturb-seq screens often contain less than 100 cells per perturbation. During fine-tuning we therefore
boost rare classes with the following heuristics:

Data Augmentation Strategies for Perturb-seq Screens

Minority oversampling. With 50% probability a sampled training index is replaced by a
random non-control cell, equalizing the frequency of perturbed and control classes.
Noise injection. For half the tokens we add a random integer offset in [−5, 5] and clip to
[0, B − 1], simulating quantization noise around bin boundaries.
CutMix. With 50% probability half of the token positions are replaced by tokens from
another cell of the same label to improve robustness to gene dropout.

All operations act on the discretized token sequences and therefore leave the underlying vocabulary,
bin edges, and gene statistics unchanged.The combination of bootstrapped permutations and targeted
perturbations provides a richer training distribution from the same raw dataset.
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E PRETRAINING

E.1 DATASET ACQUISITION AND SPLITTING

We utilized the CELLxGENE Discover Census1 (version 2023-12-15), accessed via the
cellxgene_census Python API (Program et al., 2025). To retain unique, non-diseased pri-
mary cells, we filtered for:

organism="Homo sapiens": We restrict the dataset to Homo sapiens to focus on human cells.
This avoids cross-species differences and tailors the analysis to human biology.

is_primary_data=True: Because the Census aggregates many studies, the same biological
cell can appear in multiple datasets (e.g. in an original study and again in a pooled analysis). We
label only one instance as primary to avoid duplicate counting.

suspension_type ̸= NA: Retains only cells with a defined library preparation: whole-cell
(scRNA-seq) or nuclear (snRNA-seq). Ensuring suspension_type is specified (i.e. not missing),
we remove samples with incomplete metadata.

disease="normal": Only cells from normal (disease-free) tissues or individuals are included,
while any cells from diseased or pathological samples (e.g. tumor tissues, disease conditions) are
excluded.

This provided a final cohort of 23.88 million single cells from diverse public repositories within the
Census. Then, cells were split by partition_id into an 80% training set and a 20% test set, with
the latter comprising independent experiments to evaluate model generalization.

E.2 PRETRAINING RECIPE

Stage 1 trains an encoder-only Transformer as an MLM. Each h5ad partition is streamed lazily to
the GPUs; the top-N variable genes, drawn from a vocabulary of 60530 transcripts, are quantile-
binned into 50 fixed edges. In every mini-batch, every bin token is independently sampled from a
Bernoulli(p = 0.15) distribution and those drawn as 1 are stochastically masked. Cross-entropy loss
is computed only on these masked positions. Optimization uses AdamW with β1 = 0.9, β2 = 0.999
and a weight-decay of 1× 10−2. The learning rate follows a cosine scheduler—1000 warm-up steps
to a peak of 1 × 10−3 followed by decay to 1 × 10−4. AMP and gradient scaling limit memory
footprint and preserve numerical stability. Whenever the average masked-loss on a partition decreases,
the master process (rank 0) writes a checkpoint containing the full model state dict, optimizer and
scheduler states, and AMP scaler state to disk. If training is interrupted or relaunched with the
use_latest_checkpoint flag, all processes synchronize at startup, load this latest checkpoint,
restore epoch/partition counters and hyperparameter schedules exactly as they were, and continue
training seamlessly from that point. This ensures no work is lost and providing true fault-tolerant
resume capability. Training metrics (masked-token loss, macro precision, recall, F1, learning rate,
GPU time, memory) stream live to Visdom, and a full bin-confusion matrix, similar to Figure 7, is
saved after processing each data partition.

Stage 2 performs supervised fine-tuning for cell or tissue classification. We freeze the pretrained
encoder, feed its activations as the key projections in cross-attention, and attach a decoder of matching
depth and width whose output is pooled via either a [CLS] token or mean-pooling that can be
toggled from the command line. Fine-tuning spans four epochs with AdamW under the same cosine
learning-rate schedule. Class imbalance is mitigated through Deferred Re-Weighting (DRW) (Cao
et al., 2019): the first two epochs use vanilla cross-entropy, after which inverse frequency class
weights are enabled for the remaining two epochs. This two-step schedule enables stable feature
representations before biasing the loss toward minority classes. If a checkpoint is resumed with a
different loss configuration the optimizer state is reinitialized to avoid resetting momentum. Each
cell can be augmented by a user-defined number of random gene-order permutations to improve
robustness. Throughout training we log top-1/top-5 accuracy, F1 and confusion matrices to Visdom,
while UMAP projections are generated only when GPU memory is sufficient.

1Access to the CELLxGENE dataset is available at: https://cellxgene.cziscience.com/
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F PRETRAINING RESULTS ON THE CELLXGENE CORPUS

F.1 EVALUATION ON GENE EXPRESSION RECONSTRUCTION
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Figure 7: Gene expression reconstruction.
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F.2 EVALUATION ON CELL TYPE ANNOTATION
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Predicted Classes

b cell
cd14-low, cd16-positive monocyte

cd14-positive monocyte
cd16-negative, cd56-bright natural killer cell, human

cd16-positive, cd56-dim natural killer cell, human
cd4-positive helper t cell

cd4-positive, alpha-beta t cell
cd4-positive, alpha-beta cytotoxic t cell
cd4-positive, alpha-beta memory t cell

cd8-positive, alpha-beta t cell
cd8-positive, alpha-beta cytotoxic t cell
cd8-positive, alpha-beta memory t cell

gabaergic amacrine cell
gabaergic neuron

iga plasma cell
l2/3 intratelencephalic projecting glutamatergic neuron

l2/3-6 intratelencephalic projecting glutamatergic neuron
l6b glutamatergic cortical neuron

mueller cell
purkinje cell

sertoli cell
t cell

absorptive cell
adipocyte

alveolar macrophage
amacrine cell

astrocyte
astrocyte of the cerebral cortex

basal cell
blood vessel endothelial cell

capillary endothelial cell
cardiac muscle cell

central memory cd4-positive, alpha-beta t cell
central memory cd8-positive, alpha-beta t cell

central nervous system macrophage
cerebellar granule cell

cerebral cortex gabaergic interneuron
ciliated cell

ciliated columnar cell of tracheobronchial tree
classical monocyte

club cell
conventional dendritic cell

cortical cell of adrenal gland
corticothalamic-projecting glutamatergic cortical neuron

decidual natural killer cell, human
dendritic cell

diffuse bipolar 2 cell
double negative thymocyte

double-positive, alpha-beta thymocyte
effector memory cd4-positive, alpha-beta t cell
effector memory cd8-positive, alpha-beta t cell

elicited macrophage
endothelial cell

endothelial cell of artery
endothelial cell of lymphatic vessel

endothelial cell of vascular tree
endothelial tip cell

enterocyte
epithelial cell

epithelial cell of lower respiratory tract
epithelial cell of proximal tubule

erythroblast
erythrocyte

fibroblast
fibroblast of lung

fibroblast of mammary gland
flat midget bipolar cell

forebrain radial glial cell
gamma-delta t cell

glial cell
glutamatergic neuron

glycinergic amacrine cell
granule cell

granulosa cell
helper t cell
hepatoblast
hepatocyte

inhibitory interneuron
innate lymphoid cell

intestinal epithelial cell
invaginating midget bipolar cell

keratinocyte
kidney loop of henle thick ascending limb epithelial cell

lamp5 gabaergic cortical interneuron
leukocyte

luminal adaptive secretory precursor cell of mammary gland
luminal epithelial cell of mammary gland

luminal hormone-sensing cell of mammary gland
macroglial cell

macrophage
mammary gland epithelial cell

mast cell
mature nk t cell

mature alpha-beta t cell
melanocyte

memory b cell
mesangial cell

mesenchymal cell
mesenchymal stem cell

mesodermal cell
mesothelial cell

microglial cell
midget ganglion cell of retina

monocyte
mononuclear phagocyte
mucosal invariant t cell

myeloid cell
myofibroblast cell

naive b cell
naive thymus-derived cd4-positive, alpha-beta t cell
naive thymus-derived cd8-positive, alpha-beta t cell

nasal mucosa goblet cell
natural killer cell

near-projecting glutamatergic cortical neuron
neural cell

neural progenitor cell
neuron

neuron associated cell (sensu vertebrata)
neuronal brush cell

neutrophil
non-classical monocyte

oligodendrocyte
oligodendrocyte precursor cell

pericyte
periportal region hepatocyte

perivascular cell
placental villous trophoblast

plasma cell
preadipocyte

progenitor cell
pvalb gabaergic cortical interneuron
regular ventricular cardiac myocyte

regulatory t cell
respiratory basal cell
retinal bipolar neuron

retinal cone cell
retinal ganglion cell

retinal rod cell
rod bipolar cell

secretory cell
skin fibroblast

smooth muscle cell
sncg gabaergic cortical interneuron

sst gabaergic cortical interneuron
stellate neuron

stratified epithelial cell
stromal cell

syncytiotrophoblast cell
thymocyte

tracheal goblet cell
type ii pneumocyte

vascular associated smooth muscle cell
vein endothelial cell

vip gabaergic cortical interneuron
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Figure 8: Cell type classification.
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F.3 EVALUATION ON TISSUE TYPE CLASSIFICATION
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Figure 9: Tissue type classification.
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G FINE-TUNING

G.1 DECORATOR BASED LORA ADAPTER

We replace each pretrained linear layer W ∈ Rdout×din with a LoRALinear wrapper that injects
trainable low-rank factors

∆W =
α

r
B A, A ∈ Rr×din , B ∈ Rdout×r,

so that the module’s forward pass becomes

y = (W +∆W )x =W x+
α

r
B (Ax) (Huet al., 2022).

The LoRA manager traverses the pretrained model’s nn.Module tree and, for each attribute in
{queries, keys, values, fc_out}, replaces the original nn.Linear with a LoRALinear
wrapper. A is initialized via Kaiming-uniform (He et al., 2015) and B is zero so that ∆W = 0
at initialization, preserving pretrained behavior. Freezing W while training only {A,B} degraded
fine-tuning performance, so we set freeze_base_model=False and jointly fine-tune both W
and the adapter parameters.All experiments use r = α = 256, yielding a scale factor α/r = 1 and
adding r(din + dout) extra parameters per adapted layer.

G.2 PARKINSON’S DISEASE DATASET

We fine-tuned CELLXPERT model with the (Kamath et al., 2022) dataset. The Kamath et al. dataset
comprises gene expression profiling data obtained through high-throughput sequencing. This study
focused on midbrain dopamine (DA) neurons in the substantia nigra pars compacta (SNpc), which are
critical for voluntary movements, reward processing, and working memory, and are highly susceptible
to neurodegeneration in Parkinson’s Disease (PD). Utilizing a specialized protocol, DA neuron
nuclei from postmortem human SNpc of both PD patients and matched controls were enriched and
transcriptionally profiled. The dataset isaccessible via GEO accession GSE178265.

H ADDITIONAL DETAILS FOR ISP FORMALISM AND BASELINES

H.1 MEAN-FIELD ONE-SHOT BASELINE

For a perturbation at position j, define the masked input x̃(j) which contains xj = x
(pert)
j and

[MASK] at every other index i ̸= j. The encoder produces per-site logits ϕi,k(x̃(j)) and posteriors

qi(k | x̃(j)) ∝ exp
(
ϕi,k(x̃

(j))
)
.

The one-shot mean-field estimator factorizes the masked joint as

p̃(x−j | x(pert)j )
MF
≈

∏
i̸=j

qi
(
xi | x̃(j)

)
,

ignoring cross-gene dependencies encoded by the model’s joint. In practice, this is evaluated under
extreme masking (>99% masked tokens), which is far outside the pretraining corruption rate (15%)
and leads to distribution shift and mode collapse (centroid-like reconstructions) (Cui et al., 2024).
Similar collapse can also surface in non-MLM approaches when evaluation emphasizes global
shifts (Lotfollahi et al., 2023; Viñas Torné et al., 2025). Under such metrics, linear baselines can
match or exceed deep models on novel perturbations (Ahlmann-Eltze et al., 2025; Csendes et al.,
2025).

H.2 ENERGY-BASED VIEW OF CELLXPERT

Let x = (x1, . . . , xn) be a discrete gene expression vector, xi ∈ {0, . . . , B − 1}.

For masked-gene prediction, an encoder produces logits

ϕi(x−i) =
(
ϕi,0(x−i), . . . , ϕi,B−1(x−i)

)
,
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from which we derive the conditional distribution

qi(k | x−i) ∝ exp
(
ϕi,k(x−i)

)
.

Using these logits, we define n positive clique potentials over the full configuration:

ψi(x) = exp
(
ϕi, xi

(x−i)
)
.

This yields the energy function and corresponding Gibbs distribution

E(x) = −
n∑

i=1

ϕi, xi
(x−i), pθ(x) =

exp
(
−E(x)

)
Z

, Z =
∑
x

exp
(
−E(x)

)
.

Equivalently, pθ(x) ∝
∏n

i=1 ψi(x). Each ψi depends on all coordinates, making the complete graph
Kn (a single maximal clique) a suitable undirected graphical model. As the factors are strictly
positive, this defines a valid positive Gibbs distribution.

In general, the model’s conditional distribution is

pθ(xi = k | x−i) ∝ exp
(
ϕi,k(x−i)

)
×

∏
j ̸=i

exp
(
ϕj, xj (x

(i:=k)
−j )

)
,

which does not reduce to softmaxkϕi,k(x−i) unless additional compatibility constraints are satisfied.
Therefore, training by maximizing

∑
i log qi(xi | x−i) serves as a tractable pseudo-likelihood of this

energy-based model.

H.3 SETUP FOR METROPOLIS–HASTINGS SAMPLER

Notation. Let x ∈ {0, . . . , B−1}L denote a discretized expression vector over L genes and B bins.
Users specify a set of clamped targets T ⊆ {1, . . . , L} with desired bins {x(pert)

i : i ∈ T }, which are
enforced as hard constraints during sampling. Training data are split by class y ∈ {control, perturbed}
into sets Dy = {x(n)

y }Ny

n=1, where control denotes unedited cells and perturbed denotes cells with
selective CRISPR-based Perturb-seq edits to specified target(s).

H.3.1 SETTING CLASS ANCHORS VIA FRÉCHET MEDOIDS

For each class y ∈ {control, perturbed} we summarize the distribution with a small set of in-sample
medoids. The single Fréchet medoid is the data point that minimizes the sum of squared Euclidean
distances to all other data points in the class,

my = argmin
x∈Dy

∑
x′∈Dy

∥x− x′∥22.

To capture class multimodality, we form a top–K medoid set

My = {my,1, . . . ,my,K} ⊂ Dy, with ∥my,1 − µy∥22 ≤ · · · ≤ ∥my,K − µy∥22.

Unlike the centroid, which can be skewed by outliers, the medoid is an actual observed cell that
retains realistic co-expression structure and is empirically more robust (Park & Jun, 2009; Bulté &
Sørensen, 2024).

H.3.2 LOG UNNORMALIZED TARGET DISTRIBUTION

Let Mperturbed = {mk}Kk=1 be the set of perturbed-class anchors, specifically the top-K medoids
from a cluster of cells, selectively perturbed by the same intervention and directed at the same
targets. For each gene i = 1, . . . , L, the anchor empirical probability mass function (PMF) is the
uniform distribution over the medoid bins: Pi(b) =

1
K

∑K
k=1 δmk,i

(b) for b ∈ {0, . . . , B − 1}. The
corresponding cumulative distribution function (CDF) is FM

i (b) = 1
K

∑K
k=1 ⊮[b ≥ mk,i], which

equals Pr(Xi ≤ b) where Xi is uniform over {mk,i}Kk=1.
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For a candidate sequence x, the point-mass CDF for gene i is Fx
i (b) = ⊮[b ≥ xi]. The Wasserstein-1

distance between these distributions for each gene simplifies to the L1 norm between CDFs, and
across all genes it equals the average L1 distance to the anchors (Vallender, 1974):

W1(x,M) =

L∑
i=1

B−1∑
b=0

∣∣Fx
i (b)− FM

i (b)
∣∣ = 1

K

K∑
k=1

∥x−mk∥1.

We precompute, for each gene g, the empirical CDF of the perturbed distribution over bins v ∈
{0, . . . , B − 1}, denoted as CDFpert

g (v). With a single anchor mpert, this reduces to CDFpert
i (b) =

⊮[b ≥ mi], and the distance is
∑

i |xi−mi|. The unnormalized log-target distribution for Metropolis-
Hastings is then

log π(x) = −β
L∑

g=1

B−1∑
v=0

∣∣⊮[xg ≤ v]− CDFpert
g (v)

∣∣, β > 0,

subject to the hard constraint xT = x
(pert)
T on genes selectively targeted during the perturbation.

This facilitates the transport of the control cell state to the perturbed distribution by minimizing the
optimal transport cost while enforcing fixed values. The multi-anchor case is a special instance where
CDFpert

g (v) = FM
g (v), and the factor 1/K can be absorbed into β.

This formulation evaluates in O(B L) time per candidate, since the Wasserstein-1 cost reduces to a
sum of 1D marginal costs via precomputed CDF differences. In contrast, general optimal transport
(OT) solvers, such as the Hungarian algorithm (O(N3)) or Sinkhorn algorithm (O(N2/ϵ) (Cuturi,
2013)), scale poorly with dimension and support size N , making our approach suitable for high
dimensional gene sequences in large Perturb-seq datasets.

H.4 TEMPERATURE ABLATION FOR METROPOLIS–HASTINGS PROPOSALS

To characterize the effect of the proposal temperature τ on ISP response prediction, we perform
an ablation over τ while keeping the model, training procedure, and MCMC budget fixed. We
sweep τ ∈ {0.1, 0.5, 1.0, 2.0, 4.0, 5.0, 8.0, 10.0} and evaluate ISP performance on the Replogle
K562 benchmark. For each value of τ we report the mean Pearson-∆ctrl under the standard control-
referenced definition and the mean Pearson-∆pert under the SYSTEMA perturbed-reference definition.

Figure 10 shows that both metrics improve monotonically as τ increases from 0.1 to roughly 2.0
and then enter a broad plateau. The stricter SYSTEMA Pearson-∆pert follows the same pattern. ISP
performance is not hypersensitive to the exact choice of τ once it is in a reasonable range. We
set τ = 2 in the main experiments as a point in this stable regime that balances exploration and
exploitation while avoiding the degradation observed at very low temperatures.
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Figure 10: Sensitivity of Metropolis–Hastings ISP performance on Replogle K562 to the proposal temperature
τ .
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H.5 MCMC CONVERGENCE AND ACCEPTANCE DYNAMICS

25 50 75 100 125 150 175 200
Iteration

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
ce

pt
an

ce
 R

at
io

Acceptance ratio

Figure 11: Metropolis–Hastings acceptance ratio [0, 1] per iteration during ISP sampling for a PMF1 knockdown.
The initial high acceptance rates indicate fast mixing and at later iterations proposals differ only slightly and are
accepted more selectively, indicating convergence of the Markov chain.

H.6 MCMC COMPUTE BUDGET AND PRACTICAL RUNTIME

Our MCMC sampler runs purely at inference time. For each batch of control cells we iterate a
blockwise Metropolis–Hastings chain without gradients, so the computation consists only of encoder
forward passes. At iteration t we mask a random block Mt of non-target genes and evaluate two
MLM forward passes (one on x−Mt

and one on x′
−Mt

), which makes the per-step cost linear in the
batch size and sequence length and linear in the number of MCMC steps.

On a single NVIDIA H100 NVL, our blockwise MH sampler runs at 8 iterations per second, requiring
25 seconds per chain with 200 iterations for a batch of 256 control cells. Covering the full high-
confidence Replogle subset (with 290 perturbation targets, each requiring 10 to 15 such batches)
therefore takes approximately 24 hours of compute. Since ISP sampling is purely inference-time, this
overhead is modest relative to pretraining or fine-tuning, and the total cost scales linearly with the
number of control cells per line (about 2.5k in Replogle, processed in batches), the context length (up
to 4096 tokens), and the number of MH steps T .

I SPATIAL DATA INTEGRATION

I.1 SPATIAL TRANSCRIPTOMICS (MERFISH)

The MERFISH platform provides single-molecule sensitivity (Chen et al., 2015) and subcellular
spatial resolution (Moffitt et al., 2018), allowing reconstruction of a high-resolution 3D point cloud
of cells and their microenvironments. Its primary limitation is that only a predefined gene set is
measured, rather than the full transcriptome. For our analysis, we use a subset of the MERFISH
dataset comprising 73655 cells from (Moffitt et al., 2018), where each cell includes precise 3D spatial
coordinates (x, y, z) in micrometers, a 161-dimensional feature vector based on MERFISH spot
counts, and one of 16 cell type annotations: Ambiguous, Astrocyte Endothelial 1-3, Ependymal,
Excitatory Inhibitory Microglia, OD Immature 1-2 OD Mature 1-4, and Pericytes. The 161 features
consist of 155 MERFISH gene targets (comprising 85 known markers curated from prior single-cell
and bulk RNA studies plus 70 novel markers identified by differential expression analysis) along with
6 control features (5 blank barcodes for background noise estimation and cFos for detecting recently
activated neurons).

I.2 SPATIAL PROTEOMICS (IMAGING MASS CYTOMETRY)

IMC uses metal isotope tagged antibodies to label proteins in tissue slices, followed by laser ablation
and time-of-flight mass spectrometry to detect these tags (Giesen et al., 2014). This generates high-
dimensional images, where each pixel measures dozens of protein markers at subcellular resolution. In
our analysis, we use a subset of the IMC breast cancer dataset, which comprises 720 high-dimensional
images from 352 patients and yields approximately 1.7× 106 segmented cells (Jackson et al., 2020).
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MERFISH Imaging Mass Cytometry
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(a) UMAP of CELLXPERT embeddings.
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(b) Variogram analysis.

Figure 12: UMAP embeddings and variogram analysis produced by CELLXPERT. The left panel shows
MERFISH and the right panel shows IMC. Points are colored by predicted cell type to visualize clustering in the
embedding space. Variograms compute Moran’s I over increasing radii from predicted labels to quantify spatial
organization. Positive I indicates clustering, values near zero indicate randomness, and negative values indicate
dispersion (Moran, 1950). In MERFISH the ependymal types decay rapidly which indicates localized niches,
whereas vascular and mature oligodendrocyte states retain positive I over larger distances which is consistent
with perivascular corridors and lineage domains. In IMC the epithelial tumor classes start with high I and decay
slowly which indicates compact tumor islands, while T cells and stromal classes show low and rapidly decaying
I which is consistent with their dispersed distributions.

For each cell, the data includes 2D spatial coordinates (x, y) in micrometers, intensity values across
35 protein channels, and a cell-type label derived from PhenoGraph clustering (Levine et al., 2015).
The cell types are: CK low HR low tumor cell, CK+ HR+ tumor cell, T cells, apoptotic tumor
cell, basal CK tumor cell, endothelial, macrophages, p53+ EGFR+ tumor cell, proliferative tumor
cell, small elongated stromal cell, and vimentin hi stromal cell. The 35-channel panel includes
clinical markers (ER, PR, HER2), proliferation markers (Ki-67), lineage markers (PanCK, Vimentin,
CD45, CD3, CD8, CD68, CD20, CD31, αSMA, Fibronectin), and other proteins. Overall, the IMC
panel targets a mix of cell surface, intracellular, and extracellular matrix proteins to enable detailed
phenotyping of tumor, immune, and stromal cells in breast cancer tissues.

I.3 EXPERIMENTAL RESULTS

MERFISH The UMAP of CELLXPERT embeddings in Figure 12a shows clear clusters for oligo-
dendrocyte lineages, ependymal cells, astrocytes, and excitatory and inhibitory neurons. Spatially
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compact and molecularly distinctive types achieve high per class F1 scores. Ependymal reaches
91% with n=395. Astrocyte reaches 88% with n=1558. Endothelial 1 reaches 87% with n=788.
Inhibitory reaches 84% with n=5015. Excitatory reaches 78% with n=2402. Weighted precision is
80%. Weighted recall is 76%. Weighted F1 is 77%. A total of 52.7% of cells belong to classes with
macro-F1 at least 80%. Errors concentrate in rare or closely related oligodendrocyte subtypes. OD
Mature 4 has F1 of 28% with n=81 and exhibits high recall with low precision, which suggests over
assignment from neighboring states. OD Mature 2 has F1 of 71% with precision of 92% and recall of
59% with n=1118 and shows the opposite pattern, which indicates conservative decision boundaries.
The Ambiguous class has F1 of 52% with n=1855 and captures heterogeneous cells as expected.

Neighborhood enrichment computed on CELLXPERT predictions for the MERFISH dataset in
Figure 4 reveals biologically coherent tissue modules. A neurovascular unit emerges in which
Endothelial 2 is strongly enriched with Pericytes and positively associated with Astrocytes. This
pattern reflects the endothelial to pericyte to astrocyte triad known to support blood brain barrier
function, perfusion, and homeostasis (Iadecola, 2017; Presa et al., 2020). Microglia show weaker
secondary co-occurrence with this vascular compartment. Ependymal cells are strongly self enriched.
Oligodendrocytes separate into immature and mature sub blocks with moderate cross links, which is
consistent with a stage structured lineage continuum. Excitatory and Inhibitory neurons are mutually
enriched and show their strongest depletions against the oligodendrocyte block, especially mature
states. As shown in Figure 12b, the variogram for all classes decays toward zero with increasing
radius, which reflects a transition from local microdomains to tissue scale heterogeneity. Class
specific curves highlight niche scales. Ependymal types decay fastest, which indicates short range
structures. Vascular and several oligodendrocyte states sustain positive I over larger radii, which is
consistent with perivascular corridors (Maki et al., 2015).

IMC CELLXPERT attains strong per class F1 on the IMC dataset. Macrophage reaches 87% with
n=40. Apoptotic Tumor Cell reaches 84% with n=635. Basal CK Tumor Cell reaches 80% with
n=76. Endothelial reaches 74% with n=16. T Cell is moderate at 60% with n=63. The UMAP in
Figure 12a recovers tumor epithelial subtypes such as Basal CK Tumor Cell and CK+ HR+ Tumor
Cell, immune cells including T Cell and Macrophage, stromal cells such as Vimentin High Stromal
Cell and Small Elongated Stromal Cell, and functional states such as Proliferative Tumor Cell and
Apoptotic Tumor Cell. Class imbalance is substantial because apoptotic tumor cells dominate. The
macro-F1 is 60%. The weighted F1 is 78% with weighted precision of 85% and weighted recall of
75%. Lower F1 values occur in sparse or phenotypically overlapping classes. p53+ EGFR+ Tumor
Cell has 41% with n=31. Proliferative Tumor Cell has 48% with n=22. Small Elongated Stromal
Cell has 42% with n=17. These patterns are consistent with diffuse and transitional morphology in
the embedding space.

Neighborhood enrichment based on CELLXPERT predictions groups classes into coherent tissue
modules in Figure 4. Epithelial tumor classes Basal CK and CK+ HR+ show strong self enrichment
and only moderate mutual adjacency, which is consistent with contiguous tumor patches rather than
one fused epithelial block. Macrophage co-enriches with T Cell and with Vimentin High Stromal
Cell, which marks an immune stromal interface common in solid tumors (Wu et al., 2021; Jackson
et al., 2020). Endothelial shows modest co-enrichment with stromal and immune compartments,
which is consistent with vascular tracks that outline tumor nests (Binnewies et al., 2018). In contrast,
Macrophage is depleted near the apoptotic tumor state and apoptotic tumor is depleted relative to
major stromal classes. We compute Moran’s I across increasing radii to obtain variograms of spatial
coherence. In IMC, epithelial classes start with high I at small radii and decay slowly, which indicates
compact tumor islands that persist over larger scales. T Cell and stromal classes exhibit low and
rapidly decaying I , which aligns with their dispersed distributions.

J MULTI-OMIC DATA INTEGRATION

We use the OpenProblems NeurIPS 2021 bone-marrow mononuclear cell (BMMC) benchmark
hosted under GEO accession GSE194122.2 This resource provides matched CITE-seq, which pairs
RNA with antibody-derived tags, and 10x Multiome, which pairs RNA with ATAC-seq. Because
both assays include an RNA layer, we apply the same preprocessing pipeline to RNA across the

2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194122
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two datasets. Specifically, we keep cells that express at least 200 genes, remove genes detected in
fewer than 10 cells, and exclude cells whose mitochondrial RNA fraction exceeds 15%. We then
normalize each cell to a total of 10,000 counts and apply a log-transform. Statistically variable genes
are retained for modeling. Before training, features are standardized using the mean and standard
deviation estimated on the training set, with values clipped to a reasonable range to limit outliers.
Finally, we convert continuous features into discrete tokens using quantile binning. By default we
use 50 quantile bins whose edges are fit on the training data and then applied unchanged to the test
data. The quality-control and normalization steps follow standard Scanpy practice.3

J.1 ATAC-SEQ DATA PREPROCESSING

For the ATAC layer we use modality-aware quality control derived from common Multiome metadata.
We retain cells that have at least 1000 unique nuclear ATAC fragments, that concentrate at least 30%
of reads within called peaks, and that show a nucleosome signal no greater than 2.0. We preserve an
unmodified copy of the raw peak counts and compute a normalized, log-transformed peak matrix for
analysis. We then select the most variable peaks and intersect the RNA and ATAC pass lists so that
only cells of acceptable quality in both modalities are kept. The resulting gene and peak features are
standardized with the training set statistics and discretized using the same scheme as the RNA layer.
We form fixed length token sequences that mix genes and peaks as inputs to the model.

J.2 CITE-SEQ DATA PREPROCESSING

For the ADT layer we require adequate protein signal per cell and reasonable prevalence per protein.
Specifically, we keep cells with at least 100 total ADT counts and at least five proteins detected,
and we retain proteins that are expressed in at least five cells. We preserve raw ADT counts and
then apply per-cell centered log-ratio (CLR) normalization to obtain a scale that is robust to depth
differences across cells. After intersecting the RNA and ADT pass lists, we standardize protein
features with training-set statistics and discretize them using the same approach as the RNA layer
with global quantile binning at 50 bins. We then construct fixed length token sequences that mix
genes and proteins. The train–test splitting strategy mirrors the ATAC setup.

J.3 EXPERIMENTAL RESULTS

RNA + ATAC (10x Multiome). We evaluated CELLXPERT on matched RNA and ATAC token
budgets in BMMC and found that gene expression is the primary driver of accuracy while chromatin
accessibility provides only modest complementary signal. Test-1 accuracies presented in Figure 5
corroborates this conclusion. With zero peaks, accuracy increases from 75.3% at 512 genes to 80.1%
at 1024 genes and 81.5% at 2048 genes. Peaks alone are weak with 35.4%, 43.9%, and 54.0% at
512, 1024, and 2048 peaks. Adding peaks on top of genes yields small gains that diminish as the
gene budget grows. At 512 genes, introducing 2048 peaks improves accuracy from 75.3% to 78.0%
which is a gain of 2.7%. At 1024 genes, the best mix reaches 80.7% which is an improvement of
0.6%. At 2048 genes, the best mix is 82.4% with 512 peaks which is a 0.9 point gain, whereas 2048
peaks slightly reduce accuracy to 81.2%. Per-class F1 analysis aligns with these patterns. The median
per-class F1 favors RNA at 81.2% compared with 49.1% for ATAC. RNA exceeds ATAC on every
class with the largest improvements in antibody secreting and myeloid populations where Plasma
Cell reaches 83.5% vs. 24.6% which is a gain of 58.9%, CD16+ Monocytes reach 90.4% vs. 41.0%
which is a gain of 49.5%, cDC2 reaches 77.9% vs. 35.6% which is a gain of 42.2%, and ID2 High
Myeloid Progenitors reach 48.5% vs. 8.3% which is a gain of 40.2%. RNA also leads for Natural
Killer and Naive B Cells with 87.8% vs. 50.8% which is a gain of 37.1% and 88.2% vs. 60.1%
which is a gain of 28.1%. ATAC retains lineage level signal for broad programs such as CD8+ T
at 69.2%, Erythroblast at 75.6%, and Transitional B at 60.8% yet it under resolves activation and
early progenitor states, for example CD4+ T Activated at 59.6% for RNA vs. 37.9% for ATAC and
Granulocyte Or Monocyte Progenitors at 62.2% vs. 31.5%. Biologically, these results are consistent
with RNA capturing immediate effector and activation programs while peak level accessibility at this
granularity reflects broader lineage permissivity and lacks the discriminative detail needed for closely
related or transient states.

3https://scanpy.readthedocs.io/en/stable/generated/scanpy.pp.calculate_
qc_metrics.html
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RNA + CITE-seq (ADT). Across the CITE-seq benchmark, the mixed setting with both modalities
and a larger token budget (200 proteins + 3896 genes; 4096 tokens total) delivered the strongest
aggregate performance. As shown in Figure 5, Test-1 accuracy increased from 79.2% with RNA-only
(3896 genes) and 77.5% with protein-only (200 ADTs) to 85.7% with the mixed model, gains of
+6.5% and +8.2%, respectively. At the class level (reported with F1 for interpretability), the mixed
model achieved the highest F1 on 23 of 45 cell types, covering 62.6% of test cells, while RNA-only
and ADT-only were best on 10 (19.9%) and 12 (17.6%) classes, respectively. Proteins were decisive
for activation and receptor-defined T/NK phenotypes: for CD4+ T Activated, F1 jumped from 45.6%
(RNA) to 83.3% (ADT) and 85.3% (mixed), and for CD8+ T CD69+ CD45RA+ it increased from
29.7% (RNA) to 69.2% (ADT) and 64.8% (mixed). KIR-stratified NK subsets also favored proteins
(NK CD158e1+: 50.1% RNA → 76.3% ADT → 71.4% mixed). Conversely, transcriptionally
stereotyped erythroid and plasmacytoid dendritic cells were gene-driven (Reticulocyte: 98.4% RNA
vs. 77.5% ADT vs. 97.4% mixed; pDC: 97.5% RNA vs. 94.8% ADT vs. 96.6% mixed). Crucially,
combining modalities rescued several hard classes where a single modality faltered: Plasmablast
IGKC+ improved from 29.9% (RNA) and 3.6% (ADT) to 62.7% (mixed); Plasma Cell IGKC−

from 37.6% and 31.1% to 58.7%; G/M Progenitors from 67.6% and 63.1% to 75.2%; and NK from
74.4% and 63.9% to 81.2%. The mixed model also corrected precision–recall imbalances introduced
by protein-only classification in rare innate populations (ILC precision rose from 6.0% to 30.2%
while recall remained high at 93.6%, lifting F1 from 11.0% to 45.7%). Taken together, adding the
protein modality and expanding the token budget improved overall Test-1 accuracy and yielded large,
class-specific gains for receptor/activation-defined states, while preserving near ceiling performance
for gene-dominated lineages.

K BROADER IMPACT

We aim to develop a rank based target recommendation system that proposes gene perturbations
capable of driving a cell toward a desired state, which supports therapeutic target identification.
Given a disease state and a reference state, our ISP sampler generates counterfactual expression for
single gene perturbations and small combinations, then ranks candidates by the predicted shift toward
the reference. We pair these rankings with attributions from attention weights and gradients for
gene level saliency maps and pathway level summaries computed with gene set enrichment analysis
(GSEA) (Chefer et al., 2021a;b; Selvaraju et al., 2017; Smilkov et al., 2017; Srinivas & Fleuret, 2019;
Sundararajan et al., 2017; Bach et al., 2015; Lundberg & Lee, 2017; Nam et al., 2020; Shrikumar
et al., 2017). Shortlists are filtered by druggability, essentiality screens, and off target risk. This
workflow could reduce costs and shorten timelines for target discovery in oncology and immunology.
Risks primarily stem from nuisance factors and batch effects across datasets and cohorts. We mitigate
these risks with rigorous cross-validation, including stratified and leave-one-cohort-out splits, and we
assess out-of-distribution generalization on held-out cohorts, labs, and platforms.

L RELATED WORK

Single-cell sequencing is prone to technical artifacts, dropout events, and batch effects (Hicks et al.,
2018; Stuart et al., 2019), which are further amplified in weakly supervised settings by noisy cell
labels. Even the largest single-cell datasets to date, the Tahoe-100M dataset (Zhang et al., 2025)
of 100 million transcriptomic profiles from 50 cancer cell lines exposed to 1100 small molecule
perturbations and the CZ CELLxGENE data corpus (Program et al., 2025) a collection of 93 million
cells (63% of them are from human), remain constrained by these confounders. Moreover, scaling
laws for Large Language Model (LLM) pretraining predict diminishing returns from enlarging model
size alone (Hoffmann et al., 2022; Kaplan et al., 2020); hence, synthetic data generation via generative
models, in silico perturbations, and data augmentation strategies is essential both to expand and
diversify training examples in line with scaling laws and to confer adversarial robustness against
nuisance factors (Nouri, 2025).

The primary bottleneck in single-cell foundation modeling is thus the availability of high-quality
observational data (vast, diverse cell atlases) and especially interventional data (pooled CRISPR-
based perturbation screens linking cause to effect), not model capacity. Large scale models such as
TranscriptFormer (Pearce et al., 2025) (542M params.), Teddy (Chevalier et al., 2025) (400M params.)
and Geneformer (Theodoris et al., 2023) (106M params) exhibit similar performance ceilings when
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trained on existing datasets. Recent research (Rood et al., 2024) proposes complementing the
Human Cell Atlas with a Perturbation Cell Atlas to enable truly causal foundation models. In this
landscape, CELLXPERT, despite its modest 26.3 M parameters, achieves a very competitive accuracy
by integrating multimodal single-cell signals in an efficient sparse Mixture-of-Experts Transformer,
demonstrating that data diversity and quality outweigh sheer model size.

CELLXPERT instantiates ISP as constrained generation in discrete sequence space. We build on
CGMH, the Markov random field view of BERT, and Gibbs-style sampling for sequence design (Miao
et al., 2019; Wang & Cho, 2019; Johnson et al., 2021). Concretely, we propose MLM edits of gene
tokens and accept or reject them with a Metropolis–Hastings rule that steers trajectories toward class
anchors estimated from control and CRISPR-perturbed cells. The result is an on-manifold, iterative
procedure that replaces hard rank edits and one-shot imputations, stays close to the pretraining
distribution through low-rate masking, and mitigates mean regression while preserving biologically
meaningful variability.

Table 8: Overview of single-cell foundation models and supported capabilities.

(a) Comparison of single-cell foundation models used in this study. The table reports architecture, parameter
count, vocabulary or gene list size, maximum input sequence length in tokens or genes, and pretraining data
scale. Values are taken from the original papers or public model repositories.

Model Design Num. Params. Vocab. Size Max. Input Seq. Pretraining Data

CELLXPERT* Encoder–decoder
transformer; MoE1

26.3M 100K tokens 16384 tokens 23.6M scRNA-seq
cells

SCGPT* Decoder-only
transformer

41.9M ∼30K genes 1200 tokens 33M scRNA-seq
cells

GENEFORMER* Decoder-only
transformer

10.2M; 106M3 25429 genes 4096 genes 104M scRNA-seq
cells

GEARS Encoder–decoder
transformer

∼100M 19264 genes N/A 50M scRNA-seq
cells

CELLPLM* Gaussian mixture
variational encoder

82.4M N/A 1000 genes 9M scRNA-seq cells

SCBERT* Decoder-only
transformer

8.4M ∼20K genes 16000 genes 1.2M scRNA-seq
cells

XTRIMOGENE* Encoder–decoder
transformer

∼100M 19264 genes N/A 50M scRNA-seq
cells

* Models using Masked Language Modeling (MLM).
1 MoE: Mixture of Experts.
2 SRT: Spatially Resolved Transcriptome Data.
3 Geneformer 106M: Available through Nvidia’s BioNeMo Framework.

(b) Feature comparison across single-cell foundation models evaluated in this work. Each column indicates
whether the released model and its public repositories provide the stated capability. A check mark indicates
support. A cross indicates not supported or not reported.

Model
Multi-Omic

Data Integration
Cell Type

Annotation
Gene Function

Prediction
Perturbation

Prediction
Modeling

Spatial Omics

CELLXPERT ✓ ✓ ✓ ✓ ✓

SCGPT ✓ ✓ ✓ ✓ ✓

GENEFORMER ✗ ✓ ✓ ✓ ✗

CELLPLM ✗ ✓ ✗ ✓ ✓

SCBERT ✗ ✓ ✗ ✗ ✗

XTRIMOGENE ✗ ✓ ✗ ✓ ✗
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M CELLXGENE: DETAILED PERFORMANCE RESULTS FOR CELL TYPE
ANNOTATION

We assess whether pretraining yields discriminative structure at single-cell resolution across a
broad ontology of 154 largely overlapping identities. CELLXPERT attains high F1 on abundant,
transcriptionally stereotyped lineages, including hepatoblasts (n=46,665; F1=96.9%), retinal rod cells
(n=68,690; F1=95.8%), oligodendrocytes (n=721,082; F1=95.0%), type II pneumocytes (n=18,172;
F1=92.7%), and cortical cells of adrenal gland (n=263,029; F1=91.6%). These results align with
lineage-specific marker programs (e.g., AFP/CYP3A7/DLK1 for hepatoblasts; RHO/GNAT1 for
rods; MBP/MOG/PLP1 for oligodendrocytes; SFTPC/ABCA3 for AT2 cells; CYP11B2/STAR for
adrenal cortex), which produce well-separated decision boundaries. Errors concentrate among closely
related or low-abundance subtypes that share gradient or transitional markers, notably along the
CD14/CD16 monocyte continuum, NK maturation (CD56bright/CD16+), and CD4/CD8 αβ T-cell
states, consistent with known biological overlaps. To make evaluation robust to long-tail classes,
we emphasize macro-F1 in Table 9 and provide confusions along with per-class support (#cells) in
Figure 8, enabling a calibrated interpretation of performance under class imbalance.

Table 9: Classification performance for 154 cell types

Cell Type Accuracy (%) F1 (%)

absorptive cell 98.44 97.57
hepatoblast 96.97 96.94
near-projecting glutamatergic cortical neuron 96.23 96.28
retinal rod cell 96.39 95.80
retinal cone cell 97.37 95.79
sertoli cell 96.66 95.05
oligodendrocyte 95.46 95.04
melanocyte 96.11 94.68
l2/3 intratelencephalic projecting glutamatergic neuron 98.69 94.20
kidney loop of henle thick ascending limb epithelial cell 94.57 93.90
keratinocyte 92.32 93.46
placental villous trophoblast 93.53 93.33
granulosa cell 94.42 92.81
type ii pneumocyte 95.18 92.65
epithelial cell of proximal tubule 94.46 92.48
l6b glutamatergic cortical neuron 93.72 92.43
astrocyte of the cerebral cortex 97.40 92.06
oligodendrocyte precursor cell 90.67 92.00
adipocyte 92.81 91.87
cortical cell of adrenal gland 95.34 91.63
erythrocyte 92.36 91.58
periportal region hepatocyte 96.73 91.53
hepatocyte 88.11 91.51
midget ganglion cell of retina 98.30 91.31
corticothalamic-projecting glutamatergic cortical neuron 91.50 91.18
rod bipolar cell 91.28 91.17
l2/3-6 intratelencephalic projecting glutamatergic neuron 92.37 90.45
lamp5 gabaergic cortical interneuron 90.49 89.97
forebrain radial glial cell 91.68 89.86
stratified epithelial cell 94.34 89.60
mueller cell 90.74 89.57
pvalb gabaergic cortical interneuron 90.04 89.41
diffuse bipolar 2 cell 87.44 88.83
cerebellar granule cell 89.83 88.81
invaginating midget bipolar cell 92.54 88.31
mesangial cell 93.77 88.14
skin fibroblast 89.42 87.84
neural progenitor cell 92.58 87.72
mesothelial cell 87.34 87.69
preadipocyte 88.55 87.63

Continued on next page
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Table 9 – Continued from previous page

Cell Type Accuracy (%) F1 (%)

central nervous system macrophage 92.30 87.37
flat midget bipolar cell 92.21 87.06
intestinal epithelial cell 86.30 86.75
syncytiotrophoblast cell 89.08 86.69
epithelial cell of lower respiratory tract 86.86 86.65
sst gabaergic cortical interneuron 86.23 85.94
sncg gabaergic cortical interneuron 89.06 85.83
regular ventricular cardiac myocyte 92.99 85.60
vip gabaergic cortical interneuron 82.23 85.58
neural cell 83.60 85.36
iga plasma cell 94.16 85.09
mast cell 85.06 85.01
glycinergic amacrine cell 82.93 84.99
erythroblast 88.93 84.88
gabaergic amacrine cell 86.47 84.82
endothelial cell of lymphatic vessel 84.92 84.51
cerebral cortex gabaergic interneuron 89.19 84.33
purkinje cell 81.59 84.32
basal cell 84.13 84.09
neuron 75.49 83.85
respiratory basal cell 88.00 83.44
enterocyte 86.32 82.39
luminal hormone-sensing cell of mammary gland 89.44 82.31
retinal bipolar neuron 76.85 82.26
ciliated columnar cell of tracheobronchial tree 94.96 81.81
cardiac muscle cell 77.48 81.64
alveolar macrophage 81.73 81.03
fibroblast of mammary gland 85.48 80.24
mesenchymal stem cell 90.89 80.02
neutrophil 77.70 79.91
thymocyte 87.15 79.39
retinal ganglion cell 71.92 79.01
decidual natural killer cell, human 85.98 78.67
amacrine cell 74.08 78.04
mononuclear phagocyte 82.07 77.82
luminal adaptive secretory precursor cell of mammary gland 85.00 77.67
endothelial tip cell 84.65 77.31
elicited macrophage 86.02 77.26
double-positive, alpha-beta thymocyte 83.73 77.14
mesodermal cell 90.12 76.44
astrocyte 71.34 75.32
tracheal goblet cell 77.14 75.23
perivascular cell 76.84 75.00
mammary gland epithelial cell 73.30 74.81
fibroblast of lung 59.78 73.96
ciliated cell 59.31 73.94
microglial cell 64.81 73.79
nasal mucosa goblet cell 89.43 73.68
plasma cell 66.51 73.21
naive b cell 76.43 71.71
endothelial cell of vascular tree 74.54 71.47
cd14-low, cd16-positive monocyte 78.99 71.21
memory b cell 73.77 71.15
secretory cell 65.63 71.15
luminal epithelial cell of mammary gland 63.87 71.05
glutamatergic neuron 67.95 70.91
inhibitory interneuron 65.37 69.87
neuronal brush cell 75.75 68.77
macroglial cell 68.19 68.23
vascular associated smooth muscle cell 69.99 67.75
blood vessel endothelial cell 62.86 67.58

Continued on next page
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Table 9 – Continued from previous page

Cell Type Accuracy (%) F1 (%)

mesenchymal cell 67.39 67.16
progenitor cell 57.59 65.91
double negative thymocyte 57.32 65.21
epithelial cell 58.02 65.20
cd14-positive monocyte 68.24 64.03
stellate neuron 63.25 63.91
mature alpha-beta t cell 66.56 63.67
stromal cell 55.02 63.30
myeloid cell 60.48 62.78
macrophage 55.73 62.50
vein endothelial cell 68.16 62.02
gabaergic neuron 59.47 61.78
smooth muscle cell 62.76 61.40
pericyte 55.40 60.95
helper t cell 69.61 60.52
glial cell 51.89 60.24
myofibroblast cell 58.39 59.66
endothelial cell of artery 58.84 59.58
neuron associated cell (sensu vertebrata) 55.91 59.27
fibroblast 57.53 59.16
endothelial cell 48.58 56.48
club cell 46.93 55.89
conventional dendritic cell 53.53 55.80
dendritic cell 55.01 55.48
capillary endothelial cell 51.63 54.40
granule cell 64.26 54.20
cd16-positive, cd56-dim natural killer cell, human 56.25 53.98
non-classical monocyte 55.09 53.13
cd16-negative, cd56-bright natural killer cell, human 60.32 51.29
leukocyte 42.43 50.08
classical monocyte 45.91 49.66
b cell 40.68 49.18
mucosal invariant t cell 59.40 48.63
mature nk t cell 39.99 47.78
cd8-positive, alpha-beta cytotoxic t cell 53.13 45.89
innate lymphoid cell 39.14 44.94
cd4-positive, alpha-beta memory t cell 45.64 43.70
cd4-positive helper t cell 41.15 41.71
naive thymus-derived cd8-positive, alpha-beta t cell 41.24 38.61
monocyte 30.16 38.25
natural killer cell 29.91 35.49
cd4-positive, alpha-beta cytotoxic t cell 40.71 35.18
cd4-positive, alpha-beta t cell 32.57 32.07
cd8-positive, alpha-beta memory t cell 28.24 32.03
effector memory cd8-positive, alpha-beta t cell 31.15 31.17
regulatory t cell 26.52 30.82
naive thymus-derived cd4-positive, alpha-beta t cell 43.29 30.00
t cell 22.55 29.68
central memory cd8-positive, alpha-beta t cell 31.73 29.39
gamma-delta t cell 20.02 28.83
central memory cd4-positive, alpha-beta t cell 25.78 26.58
effector memory cd4-positive, alpha-beta t cell 25.01 26.49
cd8-positive, alpha-beta t cell 13.82 20.37
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N CELLXGENE: DETAILED PERFORMANCE RESULTS FOR TISSUE TYPE
CLASSIFICATION

We examine whether representations support mesoscale discrimination across tissues. As with cell
types, we report per-class macro-F1 in Table 10 to characterize performance under substantial class-
size variation, and present the confusion matrix along with per-class support (#cells) in Figure 9.
CELLXPERT achieves high F1 for transcriptionally stereotyped tissues, including central nervous
system (n=8.16M; F1=91.5%), eye (n=1.47M; F1=95.9%), embryo (n=119,716; F1=94.3%), adipose
tissue (n=188,861; F1=89.0%), and yolk sac (n=43,096; F1=90.2%), reflecting strong, tissue-specific
transcriptional programs. Confusions arise primarily where anatomical or functional overlap induces
shared signatures: intestinal system (n=581,826; F1=66.9%) vs. mucosa (n=49,857; F1=70.5%),
lung (n=1.04M; F1=70.0%) vs. respiratory system (n=255,173; F1=69.1%), and endocrine gland
(n=264,924; F1=80.8%) vs. adrenal gland (n=327,928; F1=90.9%) where steroidogenic programs
overlap. Similarly, blood (n=4.04M; F1=62.9%) frequently overlaps with lymph node (n=121,646;
F1=64.3%) and spleen (n=212,691; F1=55.6%) due to shared immune signatures.

Table 10: Classification performance for 30 tissue types

Tissue Accuracy (%) F1 (%)

eye 94.33 95.85
embryo 94.04 94.34
central nervous system 95.37 91.46
adrenal gland 88.97 90.87
yolk sac 90.37 90.21
adipose tissue 91.94 89.01
uterus 89.24 88.88
limb 91.97 88.47
placenta 87.20 87.25
reproductive system 82.34 84.40
breast 75.83 83.25
esophagus 82.25 83.05
heart 81.17 82.91
nose 79.56 81.45
endocrine gland 75.59 80.80
kidney 76.36 80.46
ovary 73.22 75.74
liver 72.87 75.72
fallopian tube 77.24 75.29
skin of body 77.88 74.66
pancreas 75.05 73.81
musculature 82.00 73.32
mucosa 60.90 70.53
lung 72.91 69.61
respiratory system 72.33 69.13
intestinal system 55.17 66.93
lymph node 71.88 64.33
blood 77.26 62.89
stomach 61.97 62.63
spleen 52.91 55.58
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