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Abstract

Neural representations for 3D scenes have made substantial advancements recently,
yet object removal remains a challenging yet practical issue, due to the absence
of multi-view supervision over occluded areas. Diffusion Models (DMs), trained
on extensive 2D images, show diverse and high-fidelity generative capabilities in
the 2D domain. However, due to not being specifically trained on 3D data, their
application to multi-view data often exacerbates inconsistency, hence impacting
the overall quality of the 3D output. To address these issues, we introduce “In-N-
Out”, a novel approach that begins by inpainting a prior, i.e., the occluded area
from a single view using DMs, followed by outstretching it to create multi-view
inpaintings via latents alignments. Our analysis identifies that the variability in
DMs’ outputs mainly arises from initially sampled latents and intermediate latents
predicted in the denoising process. We explicitly align of initial latents using a
Neural Radiance Field (NeRF) to establish a consistent foundational structure in
the inpainted area, complemented by an implicit alignment of intermediate latents
through cross-view attention during the denoising phases, enhancing appearance
consistency across views. To further enhance rendering results, we apply a patch-
based hybrid loss to optimize NeRF. We demonstrate that our techniques effectively
mitigate the challenges posed by inconsistencies in DMs and substantially improve
the fidelity and coherence of inpainted 3D representations.

1 Introduction

Neural Radiance Fields (NeRFs) [50, 2, 23, 58, 81, 37, 13, 10, 3, 92] have effectively revolutionized
3D scene reconstruction from multi-view images. These models offer high-fidelity novel-view
synthesis, proving beneficial across a variety of domains [32, 87, 88, 43, 107, 6, 63, 72, 8, 60]. Despite
the impressive ability to reconstruct highly detailed scenes, these learning-based methods depend
on the availability of consistent multi-view training data. This reliance limits their generalizability,
particularly in editing 3D representations for tasks like object removal and inpainting occluded areas.

Recently, diffusion models (DMs) [30, 18, 71, 80] have gained significant attention in the field of
generative modelling for 2D images. These models are well-known for their robustness as generative
priors, capable of producing diverse and high-fidelity results in 2D inpainting tasks. However,
adapting these 2D priors for 3D object removal is not straightforward. While the inherent diversity of
DMs benefits the generation of varied outputs, it also poses a significant challenge: high variance
in the inpainted results (Fig.1 middle column). Consequently, these models frequently produce
outputs that, while visually appealing in isolation, may appear misaligned when incorporated into 3D
domain [53, 94, 93, 25, 19, 97, 84]. This misalignment often results in the loss of high-frequency
details, crucial for realistic and coherent scene rendering.
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Figure 1: Inpainting outcomes of multi-view images from original Stable Diffuion [71] (middle) with
those achieved by our approach (right). The inpainted areas are highlighted in red and green boxes.

Previous studies addressing such 3D inconsistencies can be broadly categorized into two approaches:
multi-view and single-view priors. The former tackled inconsistencies across multi-view inpainted
images by optimizing NeRFs with modi�ed objectives [53, 94, 93, 65, 91]. While these methods
have shown promise in re�ning inconsistent inputs, they sometimes suffer from a loss of detail �delity
during the training process, as illustrated in Fig. 4. Conversely, other studies have attempted to
overcome the multi-view inconsistency bottleneck by anchoring the inpainting process to a single
reference image that serves the entire scene [42, 51, 109]. This approach, however, places signi�cant
reliance on the selection of an appropriate reference image and the accuracy of depth estimates, which
could lead to geometric artifacts during testing, as shown in Fig. 4.

To address these challenges, we aim to overcome 3D inconsistencies by guiding 2D DMs to achieve
multi-view consistent inpainting results (Fig. 1 right column). Our analysis reveals that the variance in
model outputs primarily comes from the random noise as theinitial latent sample, andintermediate
latents inferred by the denoising network. Each frame's initial latents are independently sampled,
while intermediate latents are individually predicted, highlighting how view-dependent data impacts
the generation process. Therefore, our approach focuses on aligning these two critical elements
across multiple inputs. We introduce “In-N-Out”, a conditional-sampling-like approach thatinpaints
a sampled view and outstretches it to multiple views. Our method contains three key components:

1. Conditional Inpainting Pipeline: We propose a pipeline that �rst samples an inpainting
outcome from a random view as an inpainting prior. This prior then serves as a condition to
guide the inpainting process of multiple views, ensuring a consistent inpainting foundation.

2. Explicit Latents Alignment: Leveraging the geometry derived from a pre-trained NeRF
and the inpainting prior, we sample multi-view initial latents conditional on the geometry
dictated by the inpainting prior. This ensures that the primary components within the
inpainted areas are structurally consistent and align with the underlying 3D geometry.

3. Implicit Latents Alignment: We employ a cross-view attention mechanism during the
denoising steps to align predicted intermediate latents concerning the inpainting prior. This
enhances the appearance consistency across the inpainted images.

To further enhance our method's performance in the 3D domain, we have implemented a patch-based
optimization strategy using a hybrid loss on our inpainted multi-view images. This strategy employs
perceptual loss to rectify spatial mismatches, and adversarial loss to preserve high-frequency details.
By addressing these key challenges, our framework effectively handles multi-view inconsistencies
and enhances the �delity and coherence of 3D representations. The effectiveness of our approach is
demonstrated through both qualitative and quantitative evaluations of a challenging object removal
dataset. Our results indicate comprehensive improvement compared to existing methods, highlighting
our model's ability to achieve greater �delity and consistency in inpainted scenes.
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2 Related Works

2D Editing with Diffusion Models Diffusion models [30, 33, 105, 59, 79, 80], have revolutionized
image generation with their capacity to create highly realistic images. These models facilitate
customizable generation via textual prompts [18, 29, 69, 74], predominantly using pre-trained Stable
Diffusion [71]. Several editing methods [22, 57, 56, 61] allow users to adjust images by moving
anchor points to new locations. Editing typically begins by inverting the latent representation of the
image to be edited back to its initial noise [80], with modi�cations made during the denoising phase.
Prompt-to-Prompt (P2P) [26] edits images by adjusting the cross-attention between the image and
text. Null-text inversion [55] addresses artifacts in DDIM inversion [80] when using classi�er-free
guidance [29]. Delta Denoising Score (DDS) [27] optimizes the latent image representation by
aligning the predicted noises of the original and modi�ed texts. Additionally, several studies [7, 9, 26]
have identi�ed a relationship between the appearance of images generated by diffusion models and
the key-value pairs. While these advancements represent signi�cant progress preserve some content
from the original image in 2D image editing, they do not account for multi-view consistency, thus
can not be lifted to 3D editing directly.

Lifting 2D diffusion models for 3D editing Recent advancements in 3D editing and generation
have effectively utilized 2D DMs to enhance these processes, as demonstrated in various studies [52,
76, 96, 62, 97, 99, 41, 95, 68, 49, 103]. Pioneering works have used images inferred by DMs for
direct supervision. Instruct-NeRF2NeRF (IN2N) [25] approached the editing task by transforming
3D model editing into a 2D image editing task, utilizing Instruct Pix2Pix (IP2P) [5] to iteratively
update 3D scenes. Similarly, ViCA-NeRF [19] addressed editing challenges by modifying reference
images and integrating these changes into the scene. DreamEditor [110] opted for a different strategy
by converting NeRF into a mesh for direct optimization. GaussianEditor [12] applies semantic
tracing to identify and modify editing targets within 3D Gaussian Splatting (3DGS) [37]. Similarly,
Gaussian Grouping [100] implements Identity Encoding for each Gaussian to create masks for
editing. Conversely, Score Distillation Sampling (SDS) [64] provides an alternative way to guide 3D
representations by backpropagating gradients from a diffusion model's denoiser [1, 16, 73, 71] into
the underlying scene representation. This technique has been effectively applied to generate realistic
3D and 4D scenes using NeRFs [11, 40, 39, 108, 110] and 3DGS [70, 101, 84, 15].

2D and 3D Inpainting 2D inpainting methods reconstruct images by �lling missing content in
areas de�ned by a mask [20, 77, 104, 86, 46, 75, 102]. Early techniques, exempli�ed by [21], relied
on copying textures from known to unknown regions. LaMa [82] excels in restoring large missing
areas using fast Fourier convolutions, extensive receptive �elds, and large training masks. Although
highly effective at generating plausible background textures within speci�ed masks, LaMa limits the
�delity of its outputs. In contrast, probabilistic diffusion models [30] have shown impressive results
in image generation and offer a wide range of inpainted outputs. DMs can be adapted for inpainting
without speci�c training, and modify known regions during each denoising step to �t the task [47].
Similarly, Stable Diffusion [71] excels at inpainting by operating within latent space, allowing for
ef�cient and effective image generation. In this work, we adopt it as our 2D inpainter.

3D scene inpainting aims to �ll missing areas within a space, such as removing objects and generating
coherent geometry and textures to complete the scene. Although 3D generative models have garnered
large interest [4, 34, 38, 89, 78, 44, 31, 85, 45, 14, 12], they are often limited by the scarcity of 3D
training data, hence result in poor generalization, particularly in scene inpainting tasks. Therefore,
most current 3D inpainting models [53, 51, 42, 65, 93, 94, 109, 91] enhance their effectiveness
by adopting priors from 2D models. SPIn-NeRF [53] reduces multi-view inconsistencies by �rst
inpainting views and then optimizing NeRF using perceptual loss. NeRFiller [93] tackles multiple
frames simultaneously by tiling images for DMs. GaussianEditor [12] edit targets within 3DGS [37],
guided by inpainted multi-view images from DMs. While these methods show promise, they
can sometimes compromise detail �delity during training. Alternatively, some studies circumvent
multi-view inconsistencies by using a single reference image for the entire scene [42, 51, 109].
Infusion [109] stands out in the inpainting of 3DGS, leveraging a pre-trained depth completion
network to infer point clouds from a single inpainted view, though this method depends heavily on
precise depth estimates. Concurrent works [65, 54] address these challenges using SDS objective [64]
to better align 2D model priors with 3D scene consistency.
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3 Preliminaries

3.1 Neural Radiance Fields

Neural Radiance Fields (NeRFs) [50] represents a breakthrough in 3D rendering by employing a
multilayer perceptron (MLP), denoted as� to represent a scene. This MLP serves as a continuous
volumetric function to capture and reconstruct a scene in unprecedented detail. Speci�cally, NeRFs
take as input the view directiond and a 3D coordinater (� ) sampled from a camera ray de�ned by
r (� ) = o + �d . At each position along this rayr (� ), the network predicts the volume density and
view-dependent color, represented as(�; c ). To render a camera pixel, NeRFs perform an aggregation
of the predicted densities and color emissions� (� i ); c(� i ) along the camera ray. This process is
mathematically formulated as an approximation of a volume rendering integral [48], which is used to
compute the �nal color of the pixel:

Ĉ(r ) =
X

� i (1 � exp (� � (� i )� (� i ))) c(� i ); with � i = exp
�

�
X i � 1

j =1
� (� j )� j

�
; (1)

where� (� i ) = � i +1 � � i is the distance between adjacent samples along the ray. During the training
phase, rays are uniformly sampled from the training images, and the volumetric �eld is optimized
using mean square error (MSE) to enhance the accuracy and realism of the rendered scenes.

3.2 Diffusion Models

Diffusion models [30] consist of two processes: a forward process that gradually introduces noise to
a data samplez0 � pdata(z), and a learned reverse process that iteratively denoises a purely Gaussian
noise samplezT � N (0; 1) back into a clean imagez0. The reverse process is parameterized by a
conditional noise prediction network� � , trained to predict the noise using the simpli�ed objective:

p� (z0:T jc) = p(zT )
TY

t =1

p� (zt � 1jzt ; c); p� (zt � 1jzt ; c) = N (zt � 1; � � (zt ; t; c); � 2I ); (2)

wheret is the time step in the diffusion process,zt is an intermediate noisy sample, andc represents
a condition (e.g., images, masks, or text). Utilizing a deterministic sampler like DDIM [80], the
samplezt � 1 can be obtained byzt � 1 = zt � � � (zt ; t; c); note that scaling is omitted for simplicity.
In practice, as we use Stable Diffusion [71], a latent diffusion as the inpainting backbone,z is latent
and the generated image is obtained with a decoder
( z0). Hence, the variability of the generated
imagez0 depends solely on initialsampledlatentzT and intermediateinferred latents

�
zt � 1

	 T
t =1 .

4 Method

Given a set of multi-view training imagesfI i g
N
i =1 from the scene with corresponding masksfM i g

N
i =1

indicate the unwanted object in each frame, our approach seeks to generate consistently inpainted
training setf ~I i gN

i =1 and use them to supervise NeRF. Our approach is structured into three key stages:

• Stage 1: Pretrain a NeRF� usingfI i gN
i =1 andfM i gN

i =1 , along with a sampled inpainted
prior ~I p as a rough hallucination of the inpaint feature. (Sec. 4.1).

• Stage 2: Leverage� to inpaint additional viewsf ~I i j i 6= p; i = 1 ; : : : ; N g conditioned on
the inpainting prior~I p via explicit and implicit latents alignment. (Sec. 4.2)

• Stage 3: Using the inpainted image setf ~I i gN
i =1 , we optimize� with a patch-based hybrid

loss to distill multi-view supervision. (Sec. 4.3)

An overview of our method is shown in Fig. 2.

4.1 Stage 1: Pre-train NeRF

The initial stage involves training the NeRF on the unmasked region, we follow the original work [50]
where simple MSE loss is applied:

L rec(� ) =
X

r 2 R unmasked






 Ĉ� (r ) � C(r )








2

2
; (3)
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Figure 2: Overview of our method. Our approach begins with (a) pre-training the NeRF� with a
sampled inpainting prior~I p from Stable Diffusion� , detailed in Sec. 4.1. It then progresses to (b)
latent-aligned inpainting~I i for multi-view images through Explicit Latents Alignment (ELA) and
Implicit Latents Alignment (ILA), as described in Sec. 4.2. Finally, the NeRF is optimized using a
patch-based hybrid loss strategy outlined in Sec. 4.3. Throughout the training process, we �x Stable
Diffusion � and update the scene-speci�c NeRF parameters� only.

whereRunmaskedrepresent the unmasked pixels across all the training images. Then we sample a
prior view I p with its maskM p and regularly inpaint it using Stable Diffusion� . For illustration,
we replace of condition in Eq. 2 with two components used by Stable Inpainting Diffusion [71] as
e for the input prompt, andI 0

p for the masked image that fed into the diffusion models. Hence the
inpainting process can be formulated as:

zt � 1
p = zt

p � � � (zt
p; t; I 0

p; e); for t = T; : : : ; 1; with zT
p � N (0; 1): (4)

The inpainted image then can be obtained by~I p = 
( z0
p ). We then use a monocular depth estimator

on ~I p to get a depth map~Dp. We regress the scale and offset parameters to align~Dp with the depth
estimated from �eld� on the unmasked pixels. Hence, we can introduce the geometry and appearance
supervision of the inpainting prior~I p into the NeRF's optimization through:

L prior(� ) =
X

r 2 R masked(p)






 Ĉ� (r ) � C(r )








2

2
+






 D̂ � (r ) � ~Dp(r )








2

2
; (5)

whereRmasked(p)denoted the masked (inpainted) pixels of~I p, andD̂ � is the depth estimated by NeRF.
This stage is depicted in Fig. 2(a).

4.2 Stage 2: Latents Alignment

In this section, we introduce our key approach to condition the additional inpainted frames to have
an inpainting feature based on the prior~I p. As discussed before, in deterministic sampling of the
diffusion inpainting model� , the generation structure and layout highly depend on (1) initialsampled
noisezT

i and (2) intermediatepredicted latentsf zt � 1
i gT

t =1 . Hence if we can align the latents from
different views with the prior one, the model is likely to generate multi-view consistent latentz0

i ,
hence image~I i . In this section, we discuss how to align two terms respectively.
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(a) Explicit Initial Latent Alignment (ELA) (b) Implicit Intermediate Latents Alignment (ILA)

Figure 3: Illustration of two types of Latent Alignment. This �gure depicts the Explicit Latents
Alignment (ELA) and Implicit Latents Alignment (ILA) processes, as detailed in Sec. 4.2.

Explicit Initial Latent Alignment (ELA) Given the sampled latent of prior viewzT
p used in Stage

1 (Sec. 4.1), we could leverage geometric information to explicitly align the initial latent in 3D space.
Given that estimated depth~Dp, one possible solution is to warp thezT

p into other views using camera
matrices. However,~Dp is not guaranteed to be accurate hence such hard projection could yield
signi�cant errors. Alternatively, we propose to leverage the pre-trained NeRF� , as it's a naturally
3D-consistent representation. Speci�cally, to sample a resolution-grain initial latentzT (r ), we utilize
the original formulation of volume rendering (Eq.1) but with the substitution of colorc by latentzT .
We query the density� from � , and acquirezT by reprojecting the sampled point to the image plane
of the prior latent viewzT

p :

zT (r ) =
X

� i

�
1 � exp

�
� � (� i )� (� i )

� �
zT (� i ); with zT (� i ) = f p;i (zT

p ; � i ); (6)

wheref p;i denote camera perspective projection according top andi camera matrices. Such soft
projection could avoid error accumulation in the inpainting process, and reduce the precision burden
on the depth estimator. We illustrate this process in Fig. 3a. There are two key reasons why we
propose �ne-tuning the NeRF and using it as a geometric prior for ELA: (a) After �netuning the
NeRF, the geometric is represented by NeRF as a sharp (low variance) unimodal distribution on the
ray. Consequently, the aggregated feature remains sharp, preserving the variations in the initial latents.
(b) We empirically found the depth prior inferred by the monocular depth estimator is not perfectly
aligned with the NeRF. Fine-tuning the NeRF can also bene�t this depth prior. Since NeRF learns
relatively certain geometry in the known (unmasked) areas, this geometry constraint can improve the
geometry of neighboring inpainted (masked) areas due to their geometric proximity. We compromise
the view-dependent effect in NeRF within the ELA module. Due to the heuristic nature of diffusion
models, incorporating such view-dependent effects into diffusion models' output remains elusive.

Implicit Intermediate Latents Alignment (ILA) While the initial latent could be aligned using
the explicit method, intermediate latents are predicted by denoising network� � which is hard to
control. We address this issue by exploring the conditioning mechanism of the denoising network in
Stable Diffusion [71]. Recall that in Eq. 4, denoising network� � relies on the input prompte and
masked imageI 0

i to predict the noise occurrence in the current step. While we can use the uni�ed
prompt for all views to align the text condition in cross-attention of� � , the masked imagesfI 0

i g
N
i =1

are inherently different due to multi-view nature. Note thatI 0
i condition is introduced based on spatial

self-attention (SA) [90] in the U-Net:

SA(Qi ; K i ; Vi ) = Softmax
�

Qi K T
ip

d

�
Vi ; (7)

whereQi obtained from each spatial resolution of the latent,K i ; Vi are derived from corresponding
latent encoded from masked imageI 0

i . We can impose the coherence of the denoising step by
introducing cross-view attention (CVA) of the prior view (Fig. 3b):

CVA(Qi ; K p; Vp) = Softmax
�

Qi (K p)T
p

d

�
Vp; (8)
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whereK p; Vp are from masked base imageI 0
p. We can then implicitly align the denoising step by

replacing the original SA with a weighted sum from SA and CVA, i.e.� a � SA(Qi ; K i ; Vi ) + (1 �
� a) � CVA(Qi ; K p; Vp). Through this technique we ensure that the intermediate latentsf zt � 1

i gT
t =1

are also conditioned on the priorf zt � 1
p gT

t =1 , while retain its distinctiveness due to the individual
viewpoint. The rationale of replacingKV with "prior" p, but notQ is that the appearance information
(V ) of the prior image should be considered when inpainting the other views, with the amount of
information propagation is weighted by its attention key value (K ). The attention query value comes
from the current inpainting viewi , Qi , representing the information the current inpainting for viewi
is searching for. Together withK p, it decides how much attention the viewi inpainter should place
on the prior view, and �nally incorporates the information of the prior viewVp into view i .

4.3 Stage 3: Joint Optimization

As the original intention of this work, we seek to distill the inpainted views into NeRF� in a way
such that the high-�delity is preserved as much as possible as the unmasked region. While some
priors work in 3D editing [25, 96, 97, 93] propose to update the training set iteratively until converge,
we empirically �nd it not suitable for inpainting task since the loss of �delity is signi�cant and could
fall into local optima. Hence we propose to inpaint a subset of training images at once and regard
them as supplementary guidance using a patch-based hybrid loss:

L patch(� ) =
X

� 2P sub






 Î � (� ) � ~I (� )








1
+ L lpips(Î � (� ); ~I (� )) + L adv(Î � (� ); ~I (� )) ; (9)

where� is a patch sample from the masked area of subset viewsPsub, Î � (� ) is NeRF predicted patch,
andL lpips; L adv are perceptual distance LPIPS [106] and adversarial loss [24]. Here LPIPS is utilized
to address geometry mismatches, while adversarial loss is employed to preserve high-frequency
details. As shown in Fig. 2, the �nal optimization objective is:

L (� ) = L rec(� ) + L prior(� ) + � patchL patch(� ): (10)

The patches are uniformly sampled within the bounding box of the mask, with a size of 256×256.
Therefore, only the inpainted area is being optimized by the patch loss.

5 Experiment

5.1 Evaluation Setting

Dataset: Aligning with methodologies employed in prior works [53, 51, 109], our experiments
utilize the SPIn-NeRF dataset [53], selected for its comprehensive ground truth availability. This
dataset is speci�cally designed for object removal evaluations and comprises 10 scenes. Each scene
includes 60 images featuring an unwanted object (training views) and 40 images from which the
object has been removed (test views). For both the training and test views, human-annotated masks
indicating the object region are available. We further collected 9 forward-facing scenes with manually
annotated masks to evaluate the effectiveness of our method. This dataset includes 4 indoor scenes
and 5 outdoor scenes. In the training set, the masked region contains the unwanted object, while the
test set contains the ground truth background in the masked region.

Baselines: In our study, we benchmark our method against a variety of established 3D inpainting
approaches to ascertain its relative performance. These include the perceptual-based SPIn-NeRF [53],
tiling-based NeRFiller [93] (both multi-view guidance) and InFusion [109] (single-view guidance).
To ensure a fair comparison, we employ the same inpainting diffusion models across all methods and
maintain consistency in the number of denoising steps and used prompts. We utilized the source code
provided by the authors and ran all the methods using one NVIDIA A100 (80G) GPU.

Metrics: To quantitatively evaluate the effectiveness of our approach, we employ two similarity
metrics: LPIPS [106] and FID [28]. Additionally, we use MUSIQ [36], a sharpness metric that
quanti�es the clarity and detail retention in the edited images. Following established protocols from
previous studies [53], all metrics are calculated speci�cally within the bounding boxes de�ned by the
masks, focusing the evaluation precisely on the regions most affected by the object removal task.
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Figure 4: Qualitative results on the SPIn-NeRF the self-collected dataset.
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