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Abstract

Neural representations for 3D scenes have made substantial advancements recently,
yet object removal remains a challenging yet practical issue, due to the absence
of multi-view supervision over occluded areas. Diffusion Models (DMs), trained
on extensive 2D images, show diverse and high-fidelity generative capabilities in
the 2D domain. However, due to not being specifically trained on 3D data, their
application to multi-view data often exacerbates inconsistency, hence impacting
the overall quality of the 3D output. To address these issues, we introduce “In-N-
Out”, a novel approach that begins by inpainting a prior, i.e., the occluded area
from a single view using DMs, followed by outstretching it to create multi-view
inpaintings via latents alignments. Our analysis identifies that the variability in
DMs’ outputs mainly arises from initially sampled latents and intermediate latents
predicted in the denoising process. We explicitly align of initial latents using a
Neural Radiance Field (NeRF) to establish a consistent foundational structure in
the inpainted area, complemented by an implicit alignment of intermediate latents
through cross-view attention during the denoising phases, enhancing appearance
consistency across views. To further enhance rendering results, we apply a patch-
based hybrid loss to optimize NeRF. We demonstrate that our techniques effectively
mitigate the challenges posed by inconsistencies in DMs and substantially improve
the fidelity and coherence of inpainted 3D representations.

1 Introduction

Neural Radiance Fields (NeRFs) [0, 12} 23] 58] 81} 137, (131 [10} 3} 192]] have effectively revolutionized
3D scene reconstruction from multi-view images. These models offer high-fidelity novel-view
synthesis, proving beneficial across a variety of domains [32} 187} 188} 143,107, 16,163 72} 8. 160]. Despite
the impressive ability to reconstruct highly detailed scenes, these learning-based methods depend
on the availability of consistent multi-view training data. This reliance limits their generalizability,
particularly in editing 3D representations for tasks like object removal and inpainting occluded areas.

Recently, diffusion models (DMs) 130} [18} 71} [80] have gained significant attention in the field of
generative modelling for 2D images. These models are well-known for their robustness as generative
priors, capable of producing diverse and high-fidelity results in 2D inpainting tasks. However,
adapting these 2D priors for 3D object removal is not straightforward. While the inherent diversity of
DMs benefits the generation of varied outputs, it also poses a significant challenge: high variance
in the inpainted results (Fig[T| middle column). Consequently, these models frequently produce
outputs that, while visually appealing in isolation, may appear misaligned when incorporated into 3D
domain [53} 194, 93], 125,119,197} I84]]. This misalignment often results in the loss of high-frequency
details, crucial for realistic and coherent scene rendering.
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(a) Original Image (b) Inpainted by Stable Diffusion (c) Inpainted by Ours

Figure 1: Inpainting outcomes of multi-view images from original Stable Diffuion (middle) with
those achieved by our approach (right). The inpainted areas are highlighted in red and green boxes.

Previous studies addressing such 3D inconsistencies can be broadly categorized into two approaches:
multi-view and single-view priors. The former tackled inconsistencies across multi-view inpainted
images by optimizing NeRFs with modified objectives [53] 165 91]]. While these methods
have shown promise in refining inconsistent inputs, they sometimes suffer from a loss of detail fidelity
during the training process, as illustrated in Fig.[d] Conversely, other studies have attempted to
overcome the multi-view inconsistency bottleneck by anchoring the inpainting process to a single
reference image that serves the entire scene [42} 51, [109]]. This approach, however, places significant
reliance on the selection of an appropriate reference image and the accuracy of depth estimates, which
could lead to geometric artifacts during testing, as shown in Fig. 4]

To address these challenges, we aim to overcome 3D inconsistencies by guiding 2D DMs to achieve
multi-view consistent inpainting results (Fig. [[]right column). Our analysis reveals that the variance in
model outputs primarily comes from the random noise as the initial latent sample, and intermediate
latents inferred by the denoising network. Each frame’s initial latents are independently sampled,
while intermediate latents are individually predicted, highlighting how view-dependent data impacts
the generation process. Therefore, our approach focuses on aligning these two critical elements
across multiple inputs. We introduce “In-N-Out”, a conditional-sampling-like approach that inpaints
a sampled view and outstretches it to multiple views. Our method contains three key components:

1. Conditional Inpainting Pipeline: We propose a pipeline that first samples an inpainting
outcome from a random view as an inpainting prior. This prior then serves as a condition to
guide the inpainting process of multiple views, ensuring a consistent inpainting foundation.

2. Explicit Latents Alignment: Leveraging the geometry derived from a pre-trained NeRF
and the inpainting prior, we sample multi-view initial latents conditional on the geometry
dictated by the inpainting prior. This ensures that the primary components within the
inpainted areas are structurally consistent and align with the underlying 3D geometry.

3. Implicit Latents Alignment: We employ a cross-view attention mechanism during the
denoising steps to align predicted intermediate latents concerning the inpainting prior. This
enhances the appearance consistency across the inpainted images.

To further enhance our method’s performance in the 3D domain, we have implemented a patch-based
optimization strategy using a hybrid loss on our inpainted multi-view images. This strategy employs
perceptual loss to rectify spatial mismatches, and adversarial loss to preserve high-frequency details.
By addressing these key challenges, our framework effectively handles multi-view inconsistencies
and enhances the fidelity and coherence of 3D representations. The effectiveness of our approach is
demonstrated through both qualitative and quantitative evaluations of a challenging object removal
dataset. Our results indicate comprehensive improvement compared to existing methods, highlighting
our model’s ability to achieve greater fidelity and consistency in inpainted scenes.



2 Related Works

2D Editing with Diffusion Models Diffusion models [30, 133,105,159} 79, |80]], have revolutionized
image generation with their capacity to create highly realistic images. These models facilitate
customizable generation via textual prompts [18}, 29} 169 [74]], predominantly using pre-trained Stable
Diffusion [71]]. Several editing methods [22} 57, 156, [61]] allow users to adjust images by moving
anchor points to new locations. Editing typically begins by inverting the latent representation of the
image to be edited back to its initial noise [80], with modifications made during the denoising phase.
Prompt-to-Prompt (P2P) [26] edits images by adjusting the cross-attention between the image and
text. Null-text inversion [S5]] addresses artifacts in DDIM inversion [80] when using classifier-free
guidance [29]]. Delta Denoising Score (DDS) [27] optimizes the latent image representation by
aligning the predicted noises of the original and modified texts. Additionally, several studies [7}19,26]
have identified a relationship between the appearance of images generated by diffusion models and
the key-value pairs. While these advancements represent significant progress preserve some content
from the original image in 2D image editing, they do not account for multi-view consistency, thus
can not be lifted to 3D editing directly.

Lifting 2D diffusion models for 3D editing Recent advancements in 3D editing and generation
have effectively utilized 2D DMs to enhance these processes, as demonstrated in various studies [52|
76,196, 162,197,199, 141}, 195, 168, 49, [103]. Pioneering works have used images inferred by DMs for
direct supervision. Instruct-NeRF2NeRF (IN2N) [25] approached the editing task by transforming
3D model editing into a 2D image editing task, utilizing Instruct Pix2Pix (IP2P) [5] to iteratively
update 3D scenes. Similarly, VICA-NeRF [19] addressed editing challenges by modifying reference
images and integrating these changes into the scene. DreamEditor [110] opted for a different strategy
by converting NeRF into a mesh for direct optimization. GaussianEditor [12] applies semantic
tracing to identify and modify editing targets within 3D Gaussian Splatting (3DGS) [37]]. Similarly,
Gaussian Grouping [100] implements Identity Encoding for each Gaussian to create masks for
editing. Conversely, Score Distillation Sampling (SDS) [64] provides an alternative way to guide 3D
representations by backpropagating gradients from a diffusion model’s denoiser [1 (16} [73}[71] into
the underlying scene representation. This technique has been effectively applied to generate realistic
3D and 4D scenes using NeRFs [[11} 40,139,108} [110]] and 3DGS [70} [101} [84} [15]].

2D and 3D Inpainting 2D inpainting methods reconstruct images by filling missing content in
areas defined by a mask [20, [77] [104! [86! 146 [75/102]]. Early techniques, exemplified by [21], relied
on copying textures from known to unknown regions. LaMa [82] excels in restoring large missing
areas using fast Fourier convolutions, extensive receptive fields, and large training masks. Although
highly effective at generating plausible background textures within specified masks, LaMa limits the
fidelity of its outputs. In contrast, probabilistic diffusion models [30] have shown impressive results
in image generation and offer a wide range of inpainted outputs. DMs can be adapted for inpainting
without specific training, and modify known regions during each denoising step to fit the task [47]].
Similarly, Stable Diffusion [71]] excels at inpainting by operating within latent space, allowing for
efficient and effective image generation. In this work, we adopt it as our 2D inpainter.

3D scene inpainting aims to fill missing areas within a space, such as removing objects and generating
coherent geometry and textures to complete the scene. Although 3D generative models have garnered
large interest [4) 34} 38}, 189, [78] 144} 31}, 185, 145| [14} [12], they are often limited by the scarcity of 3D
training data, hence result in poor generalization, particularly in scene inpainting tasks. Therefore,
most current 3D inpainting models [53| 51} 42} 65 (93| 94} [109] 91]] enhance their effectiveness
by adopting priors from 2D models. SPIn-NeRF [53]] reduces multi-view inconsistencies by first
inpainting views and then optimizing NeRF using perceptual loss. NeRFiller [93]] tackles multiple
frames simultaneously by tiling images for DMs. GaussianEditor [12] edit targets within 3DGS [37],
guided by inpainted multi-view images from DMs. While these methods show promise, they
can sometimes compromise detail fidelity during training. Alternatively, some studies circumvent
multi-view inconsistencies by using a single reference image for the entire scene [42, |51} [109].
Infusion [109] stands out in the inpainting of 3DGS, leveraging a pre-trained depth completion
network to infer point clouds from a single inpainted view, though this method depends heavily on
precise depth estimates. Concurrent works [6554] address these challenges using SDS objective [64]
to better align 2D model priors with 3D scene consistency.



3 Preliminaries

3.1 Neural Radiance Fields

Neural Radiance Fields (NeRFs) [50] represents a breakthrough in 3D rendering by employing a
multilayer perceptron (MLP), denoted as ¢ to represent a scene. This MLP serves as a continuous
volumetric function to capture and reconstruct a scene in unprecedented detail. Specifically, NeRFs
take as input the view direction d and a 3D coordinate r(7) sampled from a camera ray defined by
r(T7) = o + 7d. At each position along this ray r(7), the network predicts the volume density and
view-dependent color, represented as (o, ¢). To render a camera pixel, NeRFs perform an aggregation
of the predicted densities and color emissions o (7;), ¢(7;) along the camera ray. This process is
mathematically formulated as an approximation of a volume rendering integral [48]], which is used to
compute the final color of the pixel:
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where 6(7;) = ;11 — 7; is the distance between adjacent samples along the ray. During the training
phase, rays are uniformly sampled from the training images, and the volumetric field is optimized
using mean square error (MSE) to enhance the accuracy and realism of the rendered scenes.

3.2 Diffusion Models

Diffusion models [30] consist of two processes: a forward process that gradually introduces noise to
a data sample 2° ~ pgua(2), and a learned reverse process that iteratively denoises a purely Gaussian
noise sample 27 ~ A/(0, 1) back into a clean image 2°. The reverse process is parameterized by a
conditional noise prediction network ¢y, trained to predict the noise using the simplified objective:

T
po(2*7le) = p(z") [ o112t )y oz 2t 0) = N2 pp(2 1), 0°T), ()
t=1

where ¢ is the time step in the diffusion process, z is an intermediate noisy sample, and c represents
a condition (e.g., images, masks, or text). Utilizing a deterministic sampler like DDIM [80], the
sample 2!~ can be obtained by 2'~! = 2! — ¢y(2, ¢, ¢); note that scaling is omitted for simplicity.
In practice, as we use Stable Diffusion [71]], a latent diffusion as the inpainting backbone, z is latent
and the generated image is obtained with a decoder Q(2°). Hence, the variability of the generated

image 2 depends solely on initial sampled latent z7 and intermediate inferred latents {zt’l } 1

4 Method

Given a set of multi-view training images {Z; }fvzl from the scene with corresponding masks { M }f\il
indicate the unwanted object in each frame, our approach seeks to generate consistently inpainted
training set {Z; }2¥ ; and use them to supervise NeRF. Our approach is structured into three key stages:

* Stage 1: Pretrain a NeRF ¢ using {Z;}¥ | and {M;}}¥ |, along with a sampled inpainted
prior Z,, as a rough hallucination of the inpaint feature. (Sec. .

« Stage 2: Leverage ¢ to inpaint additional views {Z; | i # p,i = 1,..., N} conditioned on
the inpainting prior Z,, via explicit and implicit latents alignment. (Sec. D

» Stage 3: Using the inpainted image set {fi}ij\il, we optimize ¢ with a patch-based hybrid
loss to distill multi-view supervision. (Sec.

An overview of our method is shown in Fig. [2]

4.1 Stage 1: Pre-train NeRF

The initial stage involves training the NeRF on the unmasked region, we follow the original work [50]
where simple MSE loss is applied:

»Crec(¢) = Z
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(a) Pretraining NeRF with inpainting prior (b) Inpainting with latents alignment

Figure 2: Overview of our method. Our approach begins with (a) pre-training the NeRF ¢ with a
sampled inpainting prior Z,, from Stable Diffusion 6, detailed in Sec. It then progresses to (b)
latent-aligned inpainting Z; for multi-view images through Explicit Latents Alignment (ELA) and
Implicit Latents Alignment (ILA), as described in Sec.[4.2] Finally, the NeRF is optimized using a
patch-based hybrid loss strategy outlined in Sec.[#.3] Throughout the training process, we fix Stable
Diffusion # and update the scene-specific NeRF parameters ¢ only.

where Rynmasked Tepresent the unmasked pixels across all the training images. Then we sample a
prior view Z,, with its mask M,, and regularly inpaint it using Stable Diffusion 6. For illustration,
we replace of condition in Eq. [2] with two components used by Stable Inpainting Diffusion [71]] as
e for the input prompt, and Z/ for the masked image that fed into the diffusion models. Hence the
inpainting process can be formulated as:

21 = 2 —eg(zp,t,Ly,e), fort="T,...,1, with zg; ~ N(0,1). 4)

p 1P

The inpainted image then can be obtained by fp = Q(ZS). We then use a monocular depth estimator

on fp to get a depth map f)p. We regress the scale and offset parameters to align f)p with the depth
estimated from field ¢ on the unmasked pixels. Hence, we can introduce the geometry and appearance

supervision of the inpainting prior Z,, into the NeRF’s optimization through:
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where Ryasked(p) denoted the masked (inpainted) pixels of fp, and Ed) is the depth estimated by NeRF.
This stage is depicted in Fig. 2{a).

4.2 Stage 2: Latents Alignment

In this section, we introduce our key approach to condition the additional inpainted frames to have
an inpainting feature based on the prior fp. As discussed before, in deterministic sampling of the
diffusion inpainting model 6, the generation structure and layout highly depend on (1) initial sampled
noise 2] and (2) intermediate predicted latents {2571}7?:1. Hence if we can align the latents from
different views with the prior one, the model is likely to generate multi-view consistent latent 20,
hence image Z;. In this section, we discuss how to align two terms respectively.
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(a) Explicit Initial Latent Alignment (ELA) (b) Implicit Intermediate Latents Alignment (ILA)

Figure 3: Illustration of two types of Latent Alignment. This figure depicts the Explicit Latents
Alignment (ELA) and Implicit Latents Alignment (ILA) processes, as detailed in Sec. @

Explicit Initial Latent Alignment (ELA) Given the sampled latent of prior view zg used in Stage
1 (Sec.[A&1)), we could leverage geometric information to explicitly align the initial latent in 3D space.
Given that estimated depth D,,, one possible solution is to warp the zg into other views using camera

matrices. However, D,, is not guaranteed to be accurate hence such hard projection could yield
significant errors. Alternatively, we propose to leverage the pre-trained NeRF ¢, as it’s a naturally
3D-consistent representation. Specifically, to sample a resolution-grain initial latent 27 (), we utilize
the original formulation of volume rendering (Eq but with the substitution of color ¢ by latent 27"
We query the density o from ¢, and acquire z” by reprojecting the sampled point to the image plane
of the prior latent view 2 :

2T(r) = ZFi (1 —exp (— U(Ti)(s(Ti)))ZT(Ti)a with 27 (;) = fp,i(zg,n), (6)

where f, ; denote camera perspective projection according to p and ¢ camera matrices. Such soft
projection could avoid error accumulation in the inpainting process, and reduce the precision burden
on the depth estimator. We illustrate this process in Fig.[3a] There are two key reasons why we
propose fine-tuning the NeRF and using it as a geometric prior for ELA: (a) After finetuning the
NeREF, the geometric is represented by NeRF as a sharp (low variance) unimodal distribution on the
ray. Consequently, the aggregated feature remains sharp, preserving the variations in the initial latents.
(b) We empirically found the depth prior inferred by the monocular depth estimator is not perfectly
aligned with the NeRF. Fine-tuning the NeRF can also benefit this depth prior. Since NeRF learns
relatively certain geometry in the known (unmasked) areas, this geometry constraint can improve the
geometry of neighboring inpainted (masked) areas due to their geometric proximity. We compromise
the view-dependent effect in NeRF within the ELA module. Due to the heuristic nature of diffusion
models, incorporating such view-dependent effects into diffusion models’ output remains elusive.

Implicit Intermediate Latents Alignment (ILA) While the initial latent could be aligned using
the explicit method, intermediate latents are predicted by denoising network €y which is hard to
control. We address this issue by exploring the conditioning mechanism of the denoising network in
Stable Diffusion [71]. Recall that in Eq.[4] denoising network ¢, relies on the input prompt e and
masked image Z; to predict the noise occurrence in the current step. While we can use the unified
prompt for all views to align the text condition in cross-attention of €y, the masked images {Z]} Y ;
are inherently different due to multi-view nature. Note that Z] condition is introduced based on spatial
self-attention (SA) [90] in the U-Net:

QK[ )

SA(Q;, K;,V;) = Softmax LV @)
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where (); obtained from each spatial resolution of the latent, /;, V; are derived from corresponding

latent encoded from masked image Z/. We can impose the coherence of the denoising step by

introducing cross-view attention (CVA) of the prior view (Fig. [3b):

) T
CVA(Q;, K, V,) = Softmax (W) v, (8)



where K, V;, are from masked base image Z,,. We can then implicitly align the denoising step by
replacing the original SA with a weighted sum from SA and CVA, i.e. A\, * SA(Q;, K;, Vi) + (1 —
Aa) * CVA(Q;, K, V},). Through this technique we ensure that the intermediate latents {2/},
are also conditioned on the prior {zf;l}?:l, while retain its distinctiveness due to the individual
viewpoint. The rationale of replacing K’V with "prior" p, but not () is that the appearance information
(V) of the prior image should be considered when inpainting the other views, with the amount of
information propagation is weighted by its attention key value (/). The attention query value comes
from the current inpainting view i, (J;, representing the information the current inpainting for view 4
is searching for. Together with K, it decides how much attention the view 7 inpainter should place
on the prior view, and finally incorporates the information of the prior view V, into view 4.

4.3 Stage 3: Joint Optimization

As the original intention of this work, we seek to distill the inpainted views into NeRF ¢ in a way
such that the high-fidelity is preserved as much as possible as the unmasked region. While some
priors work in 3D editing 25,196, 97, 93] propose to update the training set iteratively until converge,
we empirically find it not suitable for inpainting task since the loss of fidelity is significant and could
fall into local optima. Hence we propose to inpaint a subset of training images at once and regard
them as supplementary guidance using a patch-based hybrid loss:

Lour() = 3 [ L) =200, + L To(0). Zo)) + La (o) Z(e)). ()
PEPsub

where p is a patch sample from the masked area of subset views Py, I (p) is NeRF predicted patch,
and Lipips, Ladv are perceptual distance LPIPS [[106] and adversarial loss [24]. Here LPIPS is utilized
to address geometry mismatches, while adversarial loss is employed to preserve high-frequency
details. As shown in Fig. 2] the final optimization objective is:

E((b) = £rec(¢) + Lprior(¢) + )\patchﬁpatch(ﬁb)- (10)

The patches are uniformly sampled within the bounding box of the mask, with a size of 256x256.
Therefore, only the inpainted area is being optimized by the patch loss.

5 Experiment

5.1 Evaluation Setting

Dataset: Aligning with methodologies employed in prior works [53} 51} [109]], our experiments
utilize the SPIn-NeRF dataset [53]], selected for its comprehensive ground truth availability. This
dataset is specifically designed for object removal evaluations and comprises 10 scenes. Each scene
includes 60 images featuring an unwanted object (training views) and 40 images from which the
object has been removed (test views). For both the training and test views, human-annotated masks
indicating the object region are available. We further collected 9 forward-facing scenes with manually
annotated masks to evaluate the effectiveness of our method. This dataset includes 4 indoor scenes
and 5 outdoor scenes. In the training set, the masked region contains the unwanted object, while the
test set contains the ground truth background in the masked region.

Baselines: In our study, we benchmark our method against a variety of established 3D inpainting
approaches to ascertain its relative performance. These include the perceptual-based SPIn-NeRF [53],
tiling-based NeRFiller [93] (both multi-view guidance) and InFusion [109] (single-view guidance).
To ensure a fair comparison, we employ the same inpainting diffusion models across all methods and
maintain consistency in the number of denoising steps and used prompts. We utilized the source code
provided by the authors and ran all the methods using one NVIDIA A100 (80G) GPU.

Metrics: To quantitatively evaluate the effectiveness of our approach, we employ two similarity
metrics: LPIPS [106] and FID [28]]. Additionally, we use MUSIQ [36]], a sharpness metric that
quantifies the clarity and detail retention in the edited images. Following established protocols from
previous studies [S3], all metrics are calculated specifically within the bounding boxes defined by the
masks, focusing the evaluation precisely on the regions most affected by the object removal task.
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5.2 Main Results

We first present the quantitative results in Tab. [T} where our method outperforms all baselines in
terms of similarity metrics and sharpness. Our approach also excels in qualitative assessments,
as demonstrated in Fig. [ It is important to note that in simpler scenes with low variability in
inpainting results, where the inconsistency issue is less pronounced (first row), most methods perform
adequately. In other cases, high-frequency loss is observed in multi-view-based methods (SPIn-NeRF
and NeRFiller). NeRFiller [93]], through its use of multiple joint denoising steps, ensures consistency
but often produces overly smooth outputs that lack fine details. It is noteworthy that the single-
view-based method, InFusion [109]], relies on one view and its depth to represent the entire scene.
It performs well when geometry estimation is accurate. However, its performance deteriorates in
scenarios where depth accuracy is compromised, leading to geometry artifacts (sixth and seventh
rows). This underscores the critical role of multi-view supervision in addressing such challenges. By
incorporating consistent multi-view supervision, our method remains effective even when depth or
geometry is inaccurate, achieving robust and promising results. This explains why our method shows
little difference from InFusion when the geometry is accurate (first and third row), but excels when
the depth is inaccurate. Additionally, the exclusive reliance on perceptual loss by SPIn-NeRF [53]]
fails to fully address the multi-view inconsistencies introduced by inpainting diffusion models, often
resulting in a blurred effect, particularly visible in the third and fourth rows. To further validate our
findings, we conducted a user study based on the SPIn-NeRF dataset, focusing on the coherence of
the background within the inpainted area, the fidelity of detail preservation in the inpainted region,
and overall preference. The results of this study are summarized in Tab. [2] This evaluation clearly
demonstrates superior performance across all assessed criteria.

Table 1: Quantitative Results Table 2: User Study
Method LPIPS| FID|] MUSIQT Method Coherence  Fidelity  Overall
SPIn-NeRF [33] 0.54 185.63 38.69 SPIn-NeRF [53] 22.72% 20.45%  21.82%
NeRFiller [93]] 0.71 315.83 32.60 NeRFiller 2.73% 4.33% 2.50%
InFusion 0.62 153.77 39.29 InFusion 27.50% 2477%  25.00%
Ours 0.49 130.92 50.97 Ours 47.05% 50.45% 50.68%

5.3 Ablation Studies

We initially demonstrate the efficacy of our latents alignment approach with an example in Fig. [3}
The first column displays the inpainting prior (sampled view), and the subsequent columns show the
same training image being inpainted under different conditions. Notably, the variant without ELA
(w/o ELA) retains colors similar to the prior but fails to preserve the texture structure. Conversely, the
version without ILA (w/o ILA) maintains structural integrity but lacks appearance consistency with
the prior. Our method effectively merges the strengths of both mechanisms, resulting in inpaintings
that are highly consistent and cohesive across all evaluated aspects.

Inpainting prior Ours w/o ELA Ours w/o ILA Ours
— 3 = g

Figure 5: Ablation study on latent aligned onpainting. 2D Inpainting results when key components of
our proposed method are omitted. Naive inpainting using Stable Diffusion can refer to Fig. E

We conducted further ablation studies to underscore the importance of our key design elements in
object removal tasks. The quantitative and qualitative results, showcased in Tab. [3]and Fig.[6] clearly
indicate the impact of each component. Notably, removing ELA leads to geometry mismatches
in the NeRF outputs (w/o ELA), while deactivating ILA results in blurry coloration (w/o ILA).
This observation confirms our initial findings: the initial latents primarily influence the inpainting’s
structural pattern, whereas the intermediate denoising steps largely affect its appearance, including



colour nuances. Additionally, our patch-based loss plays a crucial role in the optimization process
(W/o Lpacn)- Specifically, the Lypips loss helps to alleviate geometry mismatches (w/o Lypips), and the
L4y serves as a detail-preserving supervisor (w/o L,qy). These results highlight the effectiveness of
our design choices in enhancing the overall quality and coherence of the inpainted outputs.

Table 3: Quantitative Results of Ablation Study.
Method LPIPS| FID| MUSIQT

Ours w/o ELA 0.52 133.09 48.90
Ours w/o ILA 0.50 141.78 49.70
Ours W/0 Lpaich 0.73 293.32 33.76
Ours w/0 Lipips 0.55 223.31 46.07
Ours w/o L,ay 0.51 134.70 49.88
Ours full model 0.49 130.92 50.97

Figure 6: Ablation study on design choices based on rendering quality. This figure displays rendering
results from NeRF when key components are individually removed from our full model.

6 Conclusion

In this work, we demonstrate the significant improvement achieved through our novel latents align-
ment approach in 3D object removal. By integrating both explicit and implicit latent alignment
mechanisms, we have successfully addressed key challenges associated with geometry mismatches
and color inconsistencies that are prevalent in the baselines, enhancing the fidelity and detail of the
inpainted 3D scenes. The improvements achieved through our work offer significant societal benefits,
such as enhanced editability of radiance fields. However, it also poses risks, including the potential
perpetuation of biases and discrimination. If the data used to train diffusion models is biased, our
approach could inadvertently reinforce these biases.

Despite notable advancements, our method has limitations: (1) It struggles with full 3D consistency,
especially on high-frequency details, due to the constraints of applying 2D diffusion models to
multi-view data. Future work could address this by integrating multi-view training into 2D inpainting
diffusion models or leveraging true 3D generative models. (2) It is tailored for forward-facing scenes,
limiting its applicability to diverse 360° views. Further exploration of latent relationships for broader
view coverage is needed. (3) Predefined masks are currently required. Integrating advanced 3D
perception methods [66} [67] could enhance accuracy and flexibility, enabling precise language-driven
interactions and creating a more automated, user-friendly framework for neural 3D scene editing.
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A Supplemental Material for “In-N-QOut: Lifting 2D Diffusion Prior for 3D
Object Removal via Tuning-Free Latents Alignment”

A.1 Implementation Detail

For the inpainting network, we employ the stable-diffusion-2-inpainting model [71], which encodes a
masked image into the same dimensional latent space and integrates conditions via concatenation.
We set the denoising steps for inpainting at 20. To achieve better generalization, we propose sampling
the base frame according to the geometrical centroid of the training camera poses, meaning the
camera that sits most centrally among the training views. However, we found that Stable Diffusion
occasionally inpaints strange artifacts in the masked region. To mitigate this, we propose sampling n
candidate views around the geometrical centroid and selecting the one with the highest similarity
votes. This approach automatically avoids such occasion artifacts without human intervention. In our
implementation, we used five candidate views, and the similarity was calculated using perceptual
hashing. In the reprojection procedure of ELA, we adjust the camera intrinsics to match the latent
dimensionality. Furthermore, to refine the ILA mechanism, we incorporate Cross-View Attention
(CVA) into every self-attention layer of the inpainting model. Each step in this modified approach is
controlled with A\, set at 0.2.

For our 3D representation (NeRF) implementation, we utilize the "nerfacto" framework proposed by
NerfStudio [83]. To ensure stable training, we deactivated the view-dependent effect. We pre-train the
NeRF using 10000 iterations in stage 1 and jointly optimize it using 5000 iterations in stage 3. Our
monocular depth estimation adopts DepthAnything [98]], complemented by the depth loss outlined in
DS-NeRF [17]]. Moreover, we employ StyleGAN2 discriminator [35] to implement adversarial loss.

A.2 Sensitivity Analysis

We conducted several sensitivity analyses regarding the base view selection, A, in ILA, and the
subset selection. Due to the computational burden, we conduct the sensitivity analysis on six out of
ten scenes with higher inpainting variability from the SPIn-NeRF dataset.

(a) Base View Selection:

To achieve better generalization, we propose sampling the base frame according to the geometrical
centroid of the training camera poses, meaning the camera that sits most centrally among the training
views. However, we found that Stable Diffusion occasionally inpaints strange artifacts in the masked
region. To mitigate this, we propose sampling n candidate views around the geometrical centroid and
selecting the one with the highest similarity votes. This approach automatically avoids such occasion
artifacts without human intervention. In our implementation, we used five candidate views, and the
similarity was calculated using perceptual hashing.

We tested our results under different settings (candidate numbers): 3, 5, 7, and 9. The base frame
selection algorithm proved to be robust, with our algorithm typically yielding the same base frame.
However, another factor influencing this step is the random seed. Setting different seeds causes the
2D inpainting model to produce different results, leading to different base frames being selected. We
tested our methods under five different seeds, and the final scores are reported in Table E} While
different seeds cause the final NeRF to differ in the appearance of the masked region, the consistency
of the multi-view inpainting results remains robust, resulting in minimal variance in the evaluation
scores.

(b) A\, inILA:

To effectively examine the effect of the hyper-parameter A\, in ILA, we evaluated our method’s
rendering quality with different A\, values of 0.2, 0.4, 0.6, and 0.8. The metrics are reported in
Table[5} Quantitatively, the results are consistent across different A, values, indicating that the effect
of this hyper-parameter is relatively small. This conclusion is also supported by qualitative results.
Larger )\, values tend to produce slight variations in some small regions, but the global structure
and semantics are preserved. This stability is attributed to the significant role of the initial latent
alignment in ELA, which effectively aligns the underlying inpainting structure, thereby maintaining
low variability in appearance. Additionally, the self-attention layer, where cross-view attention is
introduced, does not dominate the entire Stable Diffusion Unet. It is balanced by the presence of
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Table 4: Sensitivity analysis on the prior inpainting results and prior view selection. Results are
evaluated on the SPIn-NeRF dataset with different random seeds.

Seed LPIPS| MUSIQT FID]

1 0.46 46.61 264.91
2 0.44 48.04 255.29
3 0.44 46.47 262.09
4 0.44 45.72 261.04
5 0.46 48.65 258.50
Avg 0.45 47.10 260.37
Std 0.01 1.21 3.657

other (residual and linear) layers, ensuring cross-view attention does not override the signal during
the denoising process. Hence we simply set A, as 0.2 in our implementation.

Table 5: Sensitivity analysis on A\, used in ILA.
Ao LPIPS] MUSIQ?T FID|

0.2 0.44 47.11 261.62
0.4 0.44 46.76 264.91
0.6 0.44 46.47 264.37
0.8 0.45 46.33 265.10
Avg 0.44 46.67 264.00
Std 0.01 0.35 1.62

(c) Subset Selection:

We found that for reconstruction tasks, more views can enhance quality; however, for generation tasks,
using the entire set of images can introduce unnecessary inconsistencies. Therefore, we propose
selecting the subset according to the distribution of camera viewpoints.

We evenly split the viewpoints into 12 groups based on the base view’s camera space (evenly 2 on the
x and y axes and 3 on the z-axis) and select 50 percent within each group according to perceptual
hashing similarity to the base view. This approach avoids redundant views introducing supervision
conflicts while covering different viewpoints for effective supervision.

We also evaluated our method based on different percentages, as reported in Table[6} The quantitative
scores are quite close, indicating that for most scenes, the difference isn’t significant. For one complex
scene with extremely high frequencies, setting the percentage too low (0.2) yields artifacts in the
test view due to insufficient viewpoint coverage. Conversely, setting the percentage too high (0.8)
introduces appearance conflicts due to the high variability of the inpainted results.

Overall, for most scenes, the subset selection algorithm is robust due to the consideration of viewpoints
distribution. For extreme cases, careful selection of the percentage might be necessary. However,
values between 0.5 and 0.7 remain a reliable choice.

Table 6: Sensitivity analysis on proportion of images selected for the subset.
Percentage LPIPS| MUSIQt FID|]

0.2 0.46 45.98 265.48
0.4 0.44 46.32 264.91
0.6 0.44 47.11 261.62
0.8 0.45 46.47 263.20

(d) Apatcn in patch loss:

To assess the sensitivity of the patch loss multiplier Apq4¢cn, we evaluated the method’s performance
using various values of A,q¢cp: 0.001, 0.005, 0.01, 0.05, and 0.1. The results are reported in Table
Analysis of the table indicates that varying Apq:cr, leads to similar performance across different
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settings, with a low standard deviation of the metrics. However, there is an observable trend where
setting Apqtcn too low or too high adversely affects performance. The multiplier Apq¢cp, is critical as
it determines the extent of influence multi-view images have on the NeRF. Insufficient multi-view
supervision can lead to inadequate training, whereas excessive supervision may result in conflicting
inputs. Consequently, we have set A,qsch, at 0.01 in our implementation for optimal balance.

Table 7: Sensitivity analysis on Apqschn used for patch loss.
Apaten  LPIPS | MUSIQ1 FID |
0.001 0.46 46.078 263.32

0.005 0.45 47.08 262.43
0.010 0.44 47.11 261.62
0.050 0.47 44.93 265.31
0.100 0.49 44.05 277.36
Avg 0.46 45.85 266.01
Std 0.02 1.35 6.49

A.3 More Qualitative Results

This section presents extended qualitative results from our experiments on the SPIn-NeRF Dataset.
Fig.[7]and Fig.[8|showcase a series of multi-view comparative inpaintings.

A.4 Details on User Study and Impact

To comprehensively evaluate our method using human subjects, we conducted a user study focusing on
three aspects: (1) Background Coherence — assessing whether the inpainted area blends seamlessly
with the remaining background, (2) Detail Preservation — determining if the inpainted area retains
high-fidelity details, and (3) Overall Quality — gauging participants’ preference rates for the inpainted
results. For each method, we presented users with two multi-view test images from each scene and
instructed them to choose the method that best met the criteria for each aspect. Clear instructions
were provided to ensure participants understood the rating process. An example screenshot of the
study interface is shown in Fig. [0}

The user study we conducted focused solely on collecting participants’ preferences regarding different
inpainting results, involving no sensitive or personal data collection beyond their aesthetic judgments.
The study’s design was inherently low-risk as it required participants to simply view and evaluate
digital images based on their visual appeal and perceived quality. Furthermore, the participation was
entirely voluntary, with clear instructions provided, allowing participants to withdraw at any time
without any consequence. Given these factors, the potential for harm or discomfort to participants
was negligible, ensuring the study maintained a minimal risk profile.
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Figure 7: Additional Qualitative Results on the SPIn-NeRF Dataset.
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Figure 8: Multi-view Qualitative Results on the SPIn-NeRF Dataset.
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3D Inpainting User Study

“This study is an evaluation of 3D Inpainting, as a task that virtually remove an unwanted abjoct in
3D soene and npaint the occluded area.

We will show some visual results of different 3D inpainting methods. Please select the best one
according to:

1. Background Coherence: if the inpainted area is coherent with the remained background.
2. Detall Preserving: if the inpainted area shows the high-fidelity detals.
3. Overal Quality: a preference rate for the inpainted resuts.

1. This is the original view of the scene:

In below there are two different views without the box, from top to bottom are method

1234

Please select the best according to:

Background Coherence

Detail Perserve O O O O

Overal Quality

Figure 9: Example of User Study.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we clearly state that our method contributes to
the field of object removal in neural radiance fields, offering a novel and effective solution
to improve multi-view consistency.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the conclusion (Sec.[6) , we discuss the limitations of our approach, outlining
the current bottlenecks.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our paper does not present theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail our implementation in Sec.[A.I] The evaluation settings are clearly
described in Sec. [5.1] ensuring a fair comparison by standardizing the input across all
baselines.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Due to the extensive work required for this task, we will need to clean up the
code before its release. However, to ensure reproducibility, we provide detailed instructions
in Sec. ] and Sec.[A.T] The code will be made available upon completion of the cleanup
process.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We clearly stated the evaluation setting and implementation details in Sec.[5.1]

and Sec.[A1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Previous 3D object removal methods did not report error bars, and the compu-
tational resources required for these experiments were relatively high, making it impractical
to replicate the experiments multiple times.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided details on the computational hardware used in experiment (Sec.
[B.I]and Sec. [AT).

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our research
adheres to its guidelines.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the conclusion (Sec. [6), we discuss the positive societal impacts of our
research and state the potential harms of technology misuse.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No new dataset or model is proposed in this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets used in this work are properly credited and are the license
and terms of use explicitly mentioned and properly respected.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We have provided clear instructions for human evaluation in our user study
and included a sample screenshot in the supplementary materials, presented in Sec. [5]and

Sec.[A4l
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: We have explicitly informed all participants in the user study that the collected
data will be used solely for research purposes.

Guidelines:
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The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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