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ABSTRACT

State Space Models (SSMs) have emerged as a promising alternative to compu-
tationally expensive attention-based models for sequence modeling. They rely
on linear recurrences to integrate information over time, which enables for fast
inference while still allowing the model to be parallelized during training and to
control the stability of the recurrence. However, a consequence is that the effective
memory of traditional SSMs is limited, requiring larger state sizes for improved
recall. This paper introduces a multi-resolution SSM framework that addresses
these limitations by representing sequence dynamics across multiple levels of de-
tail. This approach captures both fine-grained, high-frequency patterns and coarse,
low-frequency trends, hence effectively capturing historical patterns at multiple
time scales. This decompositions allow the SSM to make better use of its memory.
Our multi-resolution SSM demonstrates superior performance in various sequence
modeling tasks, particularly in domains where multi-resolution patterns naturally
occur, such as time series analysis and image processing.

1 INTRODUCTION

Over the past few decades, numerous deep neural network architectures have been developed for
sequence modeling. Early approaches like recurrent neural networks (RNNs) (Elman, 1990) and their
variants, such as Long Short-Term Memory (LSTM) networks (Hochreiter et al., 1997) and Gated
Recurrent Units (GRUs) (Cho et al., 2014), were proposed to handle sequential dependencies by
maintaining hidden states over time. However, these models struggled with long-range dependencies
and computational inefficiencies. With the advent of attention mechanisms (Bahdanau et al., 2015;
Vaswani et al., 2017), the Transformer architecture emerged as the de facto standard for many sequence
modeling tasks. The Transformer’s self-attention mechanism enabled the modeling of complex
relationships across sequences without relying on recurrence, allowing for parallel computation and
better handling of long-range dependencies which enabled breakthrough advances across a wide range
of applications. However, inference in transformer can be expensive due to the quadratic complexity
of the attention mechanism, hindering its ability to handle even longer context tasks efficiently or
run in low resource settings. These limitations has motivated the exploration of alternative scalable
sequence modeling approaches with comparable expressiveness.

Recently, state-space models have generated renewed interest as efficient attention-free sequence
models. Deep state-space models (SSMs), a class of RNNs that use linear recurrences, provide
scalable training and inference capabilities, proving particularly effective for long-range dependency
modeling (Gu et al., 2020a). These methods typically rely on a block structure similar to transformers,
where the linear recurrences do sequence mixing, while MLPs are used for feature mixing (Orvieto
et al., 2023). To gain expressivity, similar to transformer, many such blocks are typically stacked
on top of each other (Orvieto et al., 2024). The linearity allows to reformulate the recurrence as a
convolution (Gu et al., 2020a; 2022a; 2021b; Mehta et al., 2022) or the use of associative scan (Smith
et al., 2023; De et al., 2024), making SSM on par to transformer in terms of training cost. Recent
architectures also typically use gating mechanisms, similar to LSTMs and GRUs, which can also
be viewed as relying on input-dependent model parameters, increasing their expressivity (Gu &
Dao, 2023; Orvieto et al., 2023; Dao & Gu, 2024; De et al., 2024; Beck et al., 2024), along with
long convolution models (Karami & Ghodsi, 2024). They demonstrate considerable potential in
various applications, including natural language processing (Gu & Dao, 2023; Karami & Ghodsi,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2024), computer vision (Liu et al., 2024; Karami & Ghodsi, 2024; Behrouz et al., 2024a), DNA
modeling (Nguyen et al., 2024; Gu & Dao, 2023), and graph data (Behrouz & Hashemi, 2024).

However, traditional SSMs lack the inherent ability to capture multi-scale patterns prevalent in many
real-world signals, such as image, audio, and time series data. Moreover, the effective memory
of these linear RNNs, which is inversely proportional to the distance of the eigenvalues from the
unit circle (Agarwal et al., 2023), is limited, requiring larger state sizes for improved recall. To
address these limitations, we propose incorporating Multi-Resolution Analysis (MRA) into SSMs.
By decomposing the input sequence into multiple scales, our approach allows the SSM to capture
both fine-grained details and broader trends simultaneously. This multi-scale representation enables
SSM to effectively capturing historical patterns at multiple levels of granularity.

Multi-resolution analysis plays a crucial role in understanding and modeling complex patterns across
diverse datasets, including audio (Van Den Oord et al., 2016), images (Long et al., 2015), time
series (Deznabi & Fiterau, 2023), graph generation (Karami, 2024), and text (Tamkin et al., 2020;
Tai et al., 2015; Bowman et al., 2016). The importance of this approach stems from the multi-scale
properties inherent in these data types, where patterns and structures manifest at various levels and
timescales. For instance, natural language data exhibit multi-scale patterns ranging from subword to
word, phrase, sentence, paragraph, and document levels. Similarly, the multi-scale structure of images
and videos can reveal details from pixel-level to higher-level scene interpretation. Recently evidence
from neuroscience further underscores the significance of multi-resolution analysis, particularly in
language processing. Specifically, Caucheteux et al. (2023) provide evidence supporting hierarchical
predictive coding in language, showing that the human brain predicts speech in a hierarchical
manner, with different brain regions responsible for different levels of prediction. This aligns with
earlier observation that the brain continuously predicts a hierarchy of representations across multiple
timescales in the cortical hierarchy (Wacongne et al., 2011). Consequently, modern language models
augmented with hierarchical predictions across multiple timescales can improve their alignment with
human brain responses. Furthermore, even in data without explicit multi-scale characteristics, this
modeling approach can efficiently capture long-range dependencies (Shi et al., 2023).

Several approaches have been proposed to incorporate multi-resolution analysis into sequence
modeling. For instance, Nawrot et al. (2021) introduce a hierarchical Transformer architecture
that processes information across multiple levels of abstraction in language modeling tasks. This
approach explores various strategies for downsampling and upsampling activations in Transformers,
achieving efficient computation and improved performance on various benchmarks. The Clockwork
RNN (Koutnik et al., 2014) enhances traditional RNNs by partitioning the hidden layer into modules
that operate at different temporal frequencies. This structure allows for a more efficient processing
of sequences with varying temporal dynamics, thereby improving performance on complex tasks.
In the context of Fourier-based multiresolution models, techniques such as FNet (Lee-Thorp et al.,
2021), Prism (Tamkin et al., 2020), and Orchid (Karami & Ghodsi, 2024) operate in both the spatial
and frequency domains. However, these methods are inherently non-causal, as the Fourier transform
is applied across the entire sequence, also Fourier transform is poor in time localization of the
representation in the frequency domain. Shi et al. (2023) proposed a multi-resolution convolution as
an efficient pattern memorization, utilizing learned convolution kernels with dilations shared across
multiple timescales. However, similar to other short convolution-based architectures, this model’s
effective receptive field is limited. Additionally, Fan et al. (2024) has utilized the intrinsic granularity
present in data to design more stable and accurate forecasting methods using diffusion.

In this work, we introduce MS-SSM, which integrates an efficient multi-resolution analysis into the
state space architecture, decomposing the dynamical system into multiple time scales. This enables
the overall SSM to operate at different resolutions. We show the effectiveness of our methods on
Long Range Arena (Tay et al., 2020b) as well as other sequential tasks. In section 2 we describe in
detail the proposed method, providing our empirical evaluation in section 3.

2 METHOD

The proposed sequence model is composed of two core components: 1) a multi-scale decomposition
and 2) an array of state space models (SSMs). These components work together to capture patterns
and temporal dynamics at different resolutions. Each will be explained in detail in the following
sections.
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2.1 STATE SPACE MODELS

SSM. State Space Models (SSMs) are linear time-invariant systems that map input sequence
x(t) ∈ RL to response sequence y(t) ∈ RL (Aoki, 2013) using a latent state h(t) ∈ RN×L, parameter
A ∈ RN×N (a.k.a. state transition matrix), and projection parameters B ∈ RN×1,C ∈ R1×N . That
is:

h′(t) = A h(t) + B x(t) (1)
y(t) = C h(t).

Discrete space state models (Gu et al., 2020a; Zhang et al., 2023) is obtained by discretizing at step
size ∆ through a high accuracy Zero-Order-Hold (ZOH) method:

ht = Ā ht−1 + B̄ xt (2)
yt = C ht,

where B̄ = (∆A)
−1

(exp (∆A− I)) .∆B and Ā = exp (∆A).

These models can be interpreted as both CNNs and RNNs and are equivalent to the convolution
K̄ =

(
CB̄,CĀB̄, . . . ,CĀL−1B̄

)
, and so y = x∗ K̄ (Gu et al., 2020a). Leveraging the convolution

theorem and Fast Fourier Transform (FFT) algorithm for this long convolution formulation, its
training complexity scales quasi-linearly with sequence length and can be parallelized, while it enjoys
linear complexity at inference time using its recurrence form.

Structured SSM (Gu et al., 2022a) relies on a diagonal parametrization of A, enabling efficient
computation of the discretization in (2) and its convolution formulation. Combined with the use of
associative scan techniques Smith et al. (2023), this allows for efficient parallelization of computation
even when using the recurrent form. Newer architectures such as Mamba (Gu & Dao, 2023) or
Griffin (De et al., 2024), typically have moved away from the convolutional formulation.

Input-Dependent SSM. Recently, Gu & Dao (2023) introduced the S6 block, a structured State
Space Model (SSM) with a selective scan mechanism. This input-dependent gating mechanism
enables S6 to selectively propagate or forget information along the sequence dimension by allowing
the parameters B̄, C, and ∆ to be dependent on the input xt, i.e.:

B̄t = sB(xt) = LinearB(xt),

Ct = sC(xt) = LinearC(xt),

∆t = s∆(xt) = Softplus (Linear∆(xt)) ,

where Linear(.) is a linear projection and Softplus(.) = log(1 +exp(.)). This approach adds
context-awareness to SSMs and a similar form is used in other works, e.g. (De et al., 2024). Despite
its more expressive power, in contrast to S4, this time- and input-variant model prevents the use of the
convolutional formulation. But as mentioned above, computation can still be parallelized by using
the associative scan (Martin & Cundy, 2018; Smith et al., 2023; Orvieto et al., 2023). Also, it allows
for more hardware-aware implementations.

Limitations: While the linear formulations of SSM allows to greatly improve scalability of the
system and to control its stability (Orvieto et al., 2023), it also limits the architecture. From an
expressivity point of view, a single linear recurrent layer is limited in what it can represent. Deep SSM
architectures recapture expressivity by stacking multiple blocks Orvieto et al. (2024). Additionally,
the system can only exhibit fading memory, where the time to live for information is inversely
proportional to the distance of the eigenvalues from the unit circle (Agarwal et al., 2023), requiring
an increase in the state size in order to improve the ability of the system to recall.

2.2 MULTI-SCALE DECOMPOSITION

Multi-resolution analysis (MRA) is a mathematical framework that enables the analysis of signals
at multiple scales or resolutions. A powerful tool for performing MRA is the Discrete Wavelet
Transform (DWT), which decomposes a signal into different levels of approximation and detail by
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(a) (b)
Figure 1: (a) Block diagram of the MS-SSM model. (b) Multi-scale convolution layer. The multi-scale
conv layer, which decomposes the signal into multiple scales, is composed of nested convolution layers Conv1d
defined in (4). The scale-mixer combines the scales through an input-dependent weighted summation
defined in (5).

recursively applying a pair of filters—a low-pass filter and a high-pass filter, denoted by ϕ and ψ,
respectively—followed by downsampling.1

A major limitation of the standard Discrete Wavelet Transform (DWT) is its lack of translation-
invariance, meaning that even small shifts in the input signal can result in significant changes to
the resulting wavelet coefficients. To address this issue, several DWT variants have been developed
that use redundant signal representations. One such approach is the Dual-Tree Complex Wavelet
Transform (DTCWT) (Selesnick et al., 2005), which provides approximate translation-invariance
by using two parallel DWT trees with slightly different filters. In contrast, the Stationary Wavelet
Transform (SWT) (Nason & Silverman, 1995) achieves true translation-invariance by skipping the
downsampling step at each decomposition level. Given an input signal a0 , x, the SWT decomposes
it recursively into approximation and detail coefficients at each scale s ∈ {1, 2, ..., S}, as follows:

as[t] , (as−1 ∗ (ϕ ↑ 2s−1))[t] =

K−1∑
`=0

as−1[t− 2s−1`]ϕ[`]

ds[t] , (as−1 ∗ (ψ ↑ 2s−1))[t] =

K−1∑
`=0

as−1[t− 2s−1`]ψ[`]. (3)

In essence, the coefficients at level s are obtained by convolving the upsampled filters, (ϕ ↑ 2s−1)
and (ψ ↑ 2s−1), with the approximation coefficients from the previous level, as−1. The complete
multi-scale decomposition of the signal after S levels consists of the set of detail coefficients at all
scales, (d1[t], ..., dS [t]), along with the final approximation coefficients, aS [t], which together can
perfectly reconstruct the original signal. This transformation of the signal provides information about
both the frequency content and the time localization of the signal and also captures both the smooth,
global trends and the fine-grained details, enabling a wide range of applications in signal processing.
One key advantage of the SWT is that it maintains the same sequence length at each decomposition
level, producing a redundant representation of the signal. This redundancy is key to achieving
translation-invariance, which leads to significant performance improvements in applications such as
signal denoising (Kumar et al., 2021), image resolution enhancement (Demirel & Anbarjafari, 2010),
and feature extraction (Zhang et al., 2010). However, the trade-off for this improved performance is
the increased computational cost and memory usage compared to the standard DWT.

The specific form of the filters ϕ and ψ depends on the choice of wavelet basis. Different wavelet
families, such as Haar, Daubechies, and Symlets, have distinct filter coefficients, resulting in different

1Continuous form of multi-scale analysis such as continuous wavelet transforms are normally discretized
with a finite dyadic set {2s}Ss=1.
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properties for the wavelet transform (Daubechies, 1992). While choosing an orthogonal wavelet basis
ensures perfect reconstruction of the signal, this property is not always desirable in deep sequence
modeling. As observed in recent research (Shi et al., 2023), employing trainable filter weights
instead of fixed wavelet bases offers greater flexibility and model expressiveness. This approach
enables the model to learn optimal filter coefficients for specific tasks, potentially leading to enhanced
performance in a range of applications. The filtering operation at level s, as defined in equation 3,
can be efficiently implemented using a causal depthwise 1D convolution (Conv1d) with two output
channels, a kernel length of K, and a dilation factor of 2s−1. As a result, the input-output relationship
in (3) can be specified by 2

[as; ds] = Conv1d(1, 2, L, 2s−1)[as−1]. (4)

In this model, the multi-scale block utilizes convolution kernels with dedicated weights for each
scale.

This recursive process leads to a nested multi-scale decomposition block that transforms a 1-
dimensional sequence into a set of sequences across different scales, which can be collected into
a multi-dimensional representation vector, i.e. xt ∈ R 7→ x̂t ∈ RS+1. Each dimension in this
representation corresponds to a different resolution, capturing signal features from fine-grained
details to coarse global trends, enabling analysis of the signal across varying levels of granularity. The
higher the scale value, s—which corresponds to deeper levels in the recursion tree of (4)—the more
coarse-grained the information represented at that scale. This follows the recursive principle (Pauwels
et al., 1995), whereby larger values of s result in increasingly blurred (less sharp) representations of
an image (Worrall & Welling, 2019).

At each time scale s, the dilated convolution filter captures patterns of length up to 2s ×K, meaning
that x̂st represents local patterns within a limited window preceding the time index t. In other words,
akin to the localized spectro-temporal representation in the Discrete Wavelet Transform, the scale
components of x̂t, with limited number of scales, capture only recent local structures. However, for
non-local patterns that span larger intervals, such as those found in auditory signals (Romero et al.,
2020), it is essential to model long-range temporal correlations within each scale representation. To
address this, we apply independent SSMs—which maintain a global receptive field—to each scale
representation, as well as to the original signal, in order to capture the temporal dynamics within the
scales. The proposed models, named MS-SSM, specializes distinct SSMs for different time scales.
This setup results in an array of (S + 2) SSMs operating in parallel, with each SSM having a latent
state size of N . Consequently, the effective latent state size per input channel becomes (S + 2)N . To
obtain comparable state dimension in the proposed model, we set this effective state size to match the
recurrent state size of other models, thereby maintaining consistent latent dimensions across different
architectures. Additionally, this SSM array can be implemented in parallel, making their overall
computational complexity comparable to architectures operating at a single resolution. The MS-SSM
block is illustrated in Figure 1.

Initialization. The eigenvalues of the state transition matrix (|λi(Ā)|) play a critical role in deter-
mining the stability and memory capacity of State Space Models. To ensure stability in discrete SSMs,
these eigenvalues must lie within the unit circle, while for continuous-time SSMs, the eigenvalues
of A must be in the left half-plane. Eigenvalues of Ā that are closer to 1 enhance the model’s
ability to capture long-range dependencies (Gupta et al., 2022; Orvieto et al., 2023). In essence,
the effective memory of an SSM, which quantifies how long past information influences the present
state, is inversely proportional to the distance of the eigenvalues from the unit circle. Formally, when
eigenvalues satisfy |λi(Ā)| < 1− δ the effective memory is on the order of 1

δ (Agarwal et al., 2023).

To balance between capturing long-range dependencies and maintaining different effective memory
at each resolution, we employ a scale-dependent initialization scheme. Previous works observed that
real-valued SSMs can perform on par with or even outperform complex-valued counterparts (Ma
et al., 2022; Gu & Dao, 2023), hence, we adopt a diagonal-structured recurrence matrix with real
values.

2In PyTorch, this operation can be simply realized with the following code: torch.nn.Conv1d(1, 2,
kernel size=L, dilation=2**(s-1)).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 1

s=1 s=2 s=3

Figure 2: Initialization scheme for 3 different scales
with N = 3 and ∆0 = 0.2 .

For lower resolutions (higher value of s in hierar-
chy), which contain coarse-grained information,
we initialize the diagonal elements of Ā with val-
ues closer to 1 to enhance the model’s ability
to capture long-range dependencies within these
scales. In contrast, for higher resolutions contain-
ing fine-grained details, we initialize diag(Ā)
with smaller values to prioritize shorter effective memory and focus on local dynamics at initializa-
tion. Specifically, the diagonal elements of the state transition matrix at scale s ∈ {0, . . . ,S + 1},
diag(As), are initialized uniformly within the interval

(
−N(S + 1− s), −N(S− s)

]
(or equiv-

alently diag(Ās) ∈
(
e(−∆0N(S+1−s)), e(−N∆0(S−s))

]
), where N is the state size per scale. By

concatenating all latent states into a large state [h0 ; . . . ; hS+1], the overall state transition matrix
becomes A = diag([diag(A0) ; . . . ; diag(AS+1)]). Then, this real-valued initialization aligns
with that in the S4D-real (Gu et al., 2022a) which is grounded in the HiPPO theory (Gu et al., 2020a),
where the n-th element of diag(A) is initialized as −(n + 1). An example of this initialization
scheme is illustrated in Figure 2.

Scale Mixer. After independently modeling the temporal dynamics at each specific scale, the array
of (S + 2) SSMs produces outputs that are collected into the vector yt ∈ RS+2. To effectively
merge these multi-scale representations, the model requires a mechanism that encodes cross-scale
interactions, enabling information to flow between scales and ultimately combines them into a single-
dimensional output. To achieve this, we combines the scales through a weighted summation applying
an input-dependent projection matrix Et ∈ R1×(S+2):

zt = scale-mixer(yt;xt) = Et yt (5)
where Et = sE(xt) = LinearE(xt)

This approach allows the model to dynamically adjust the contribution of each scale based on its
input.

Input-dependent Parameterization. In S6 (Gu & Dao, 2023), an input-dependent parameteriza-
tion is employed for the SSM, allowing the model to selectively propagate or forget information
along the sequence based on the input token of the SSM, functioning similarly to gating mechanism
in RNNs. In this work, for the s-th SSM operating on scale s, we make the parameters functions of
the original input xt. Specifically, the parameters of the s-th SSM, are modeled as B̄s

t = ssB(xt),
C̄s
t = ssC(xt), and ∆s

t = ss∆(xt). Through empirical studies, presented in Appendix C, we observe
that gating based on the raw input, xt, is more effective than gating based on the scale-specific repre-
sentations (B̄s

t = ssB(x̂st ), C̄s
t = ssC(x̂st ), and ∆s

t = ss∆(x̂st )). Using the raw input for controlling
the parameters results in a more effective mixing of each scale’s representation with the raw input
information.

Complexity. The multi-scale convolution operation introduces a linear time computation overhead
of O(LKS) and require an additional O(KS) parameters per layer. However, this overhead is
minimal compared to the overall model size, given the small convolution kernel size, K, and the
limited number of scales, S.

3 EXPERIMENTS

We evaluate our proposed architecture across image classification tasks, where images are converted
into a sequence of patches (ImageNet-1k) or pixels (sCIFAR), as well as hierarhical reasoning and
time series classifications. In all experiments, we report the results of two variants of our approach,
i.e., MS-SSM (S4) and MS-SSM (S6), in which we use S4 (Gu et al., 2021a) and S6 (Gu & Dao,
2023) blocks as the recurrent module, respectively. Comparison of these two, as two instances of
data-dependent and data-indpendent recurrent models, shows that MS-SSM’performance does not
rely on the S6 block and supports the significance of our design.

Image Classification. We evaluate the performance of MS-SSM in two image classification tasks:
ImageNet-1K (Krizhevsky et al., 2012) and sCIFAR (Shi et al., 2023). We use ImageNet to compare
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Table 1: Results on sCIFAR (Shi et al., 2023) and Ima-
geNet (Deng et al., 2009). Missing results mean that the
performance of the model is not reported on ImageNet-1K
in the original reference.

Method sCIFAR ImageNet-1K
Transformers

Transformer (Vaswani et al., 2017) 62.2 78.9

Recurrent Neural Networks (RNNs)

HiPPO-RNN (Gu et al., 2020a) 61.1 -
LSTM (Hochreiter et al., 1997) 63.0 -
r-LSTM (Trinh et al., 2018) 72.2 -
UR-GRU (Gu et al., 2020b) 74.4 -
LipschitzRNN (Erichson et al., 2020) 64.2 -

State Space Models (SSMs)

S4 (Gu et al., 2022b) 91.1 79.1
S4D (Gu et al., 2022a) 89.9 80.4
S5 (Smith et al., 2023) 89.7 77.9
Liquid-S4 (Hasani et al., 2022) 92.0 -
Mamba (Gu & Dao, 2023) 90.1 80.5

Convolutions

CKConv (Romero et al., 2021) 63.7 -
MULTIRESNET (Shi et al., 2023) 93.1 -
Orchid (Karami & Ghodsi, 2024) 93.0 80.2

Convolution + SSMs

MS-SSM (S4) 90.3 79.7
MS-SSM (S6) 93.3 81.3

Table 2: Performance of predicting outcomes of list
operations in ListOps dataset of Tay et al. (2020b).
Mamba 2X Param and Mamba 2X State denote
Mamba model with double model size and double
state size, respectively.

Model Accuracy (%)

Transformers

Transformer (Vaswani et al., 2017) 36.37
Local Attention (Tay et al., 2020b) 15.82
Linear Trans. (Katharopoulos et al., 2020) 16.13
Linformer (Wang et al., 2020) 16.13
Sparse Transformer (Child et al., 2019) 17.07
Performer (Choromanski et al., 2020) 18.01
Sinkhorn Transformer (Tay et al., 2020a) 33.67
Longformer (Beltagy et al., 2020) 35.63
BigBird (Zaheer et al., 2020) 36.05
Luna-256 (Ma et al., 2021) 37.25
Reformer (Kitaev et al., 2020) 37.27
H-Transformer-1D (Zhu & Soricut, 2021) 49.53

Convolutions

CDIL (Cheng et al., 2023) 44.05
SGConv (Li et al., 2022) 61.45
MULTIRESNET (Shi et al., 2023) 62.75

SSMs

S4 (Gu et al., 2022b) 59.60
DSS (Gupta et al., 2022) 57.60
S4D (Gu et al., 2022a) 60.52
S5 (Smith et al., 2023) 62.15
Liquid-S4 (Hasani et al., 2022) 62.75
Griffin (De et al., 2024) 32.34
Mamba (Gu & Dao, 2023) 38.02
Mamba 2x Param 49.63
Mamba 2x State 42.14

Convolutions + SSMs

MS-SSM (S4) 62.83
MS-SSM (S6) 63.04

the performance of MS-SSM with baselines in modeling the sequence of image patches. In sCIFAR
task, however, each image is treated as a 1D sequence of pixel and so the models are not using any 2D
inductive bias from the images. Therefore, the model must be able to capture long-range dependencies
and patterns at different resolutions. Results are reported in Table 1. MS-SSM shows outstanding
performance compared to all other sequence models in both tasks and more specifically in capturing
long range and multi-resolution modeling of pixels in sCIFAR. The superior performance compared
to Mamba (Gu & Dao, 2023) and similar SSM-based models (Smith et al., 2023; Gu et al., 2022b;a)
comes from the multi-resolution convolutions that helps MS-SSM to capture the dependencies at
different levels of granularity. Compared to multi-resolution methods, e.g., MULTIRESNET (Shi
et al., 2023), the superior performance of MS-SSM highlights the significance of SSMs and our
scale-mixer module.

Time Series Classification. Time series classification is one of the important tasks in sequence
modeling that requires capturing dependencies at different resolutions. We use PTB-XL (Wagner
et al., 2020), a commonly used dataset of electrocardiogram (ECG) in the time series literature. This
dataset has 21,837 ECG recordings, each of which with 12 channels, from 18,885 patients. Each
recording has at least one label from 71 total ECG labels obtained from SCP-ECG standard. In this
experiment, the dataset is partitioned into six subsets of “all”, “diagnostic”, “diagnostic subclass”,
“diagnostic superclass”, “form”, and “rhythm”. Following previous studies (Behrouz et al., 2024b; Shi
et al., 2023), we use the 100Hz version of the dataset, in which each time series has 1000 timesteps.
Table 3 reports the results on ECG classification tasks. MS-SSM outperforms all the baselines, even
specialized models for time series (e.g., SpaceTime (Zhang et al., 2023)).

Hierarchical Reasoning. To evaluate the MS-SSM’s ability in reasoning about hierarchical struc-
tures, we perform experiments on the long ListOps dataset from the Long Range Arena bench-
mark (Tay et al., 2020b). This dataset consists of sequences with hierarchical structures and operators
such as MAX, MIN, MEDIAN, and SUM MOD, which are enclosed by brackets to indicate nested
operations. A short example of a sequence from this dataset is as follows:

INPUT: [MAX 2 4 [MIN 1 6 ] 1 0 [MEDIAN 1 9 7]] OUTPUT: 7
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Table 3: AUROC for ECG multi-label/multi-class classification on the PTB-XL dataset.

Model (AUROC) All Diag Sub-diag Super-diag Form Rhythm

Transformer (Vaswani et al., 2017) 0.857 0.876 0.882 0.887 0.771 0.831
MULTIRESNET (Shi et al., 2023) 0.938 0.939 0.934 0.934 0.897 0.975
Spacetime (Zhang et al., 2023) 0.936 0.941 0.933 0.929 0.883 0.967
S4 (Gu et al., 2022b) 0.938 0.939 0.929 0.931 0.895 0.977
InceptionTime (Ismail Fawaz et al., 2020) 0.925 0.931 0.930 0.921 0.899 0.953
LSTM (Hochreiter et al., 1997) 0.907 0.927 0.928 0.927 0.851 0.953
Wavelet features (Strodthoff et al., 2020) 0.849 0.855 0.859 0.874 0.757 0.890
Mamba (Gu & Dao, 2023) 0.915 0.929 0.905 0.912 0.876 0.952

MS-SSM (S4) 0.939 0.939 0.935 0.930 0.899 0.980
MS-SSM (S6) 0.939 0.941 0.936 0.935 0.901 0.979

Table 4: Performances Comparison on the Long Range Arena benchmark (Tay et al., 2020b). The baselines
results are reported by Qin et al. (2024).

Model Text Retrieval Image Pathfinder Path-X AVG.

Transformer (Vaswani et al., 2017) 61.95 80.69 40.57 65.26 - 62.12
cosFormer (Qin et al., 2022) 67.70 83.15 51.23 71.96 - 68.51
FLASH (Hua et al., 2022) 64.10 86.10 47.40 70.25 - 66.96
S4 (Gu et al., 2022b) 86.82 90.90 88.65 94.20 96.35 91.38
DSS softmax (Gupta et al., 2022) 84.80 87.80 85.70 84.60 87.80 86.13
DSSEXP (Gupta et al., 2022) 84.60 87.60 84.90 84.70 85.60 85.47
DSSEXP-NO-SCALE (Gupta et al., 2022) 82.40 86.00 81.20 81.30 - 66.46
TNN (Qin et al., 2023) 87.90 90.97 88.24 93.00 96.10 91.24
S5 (Smith et al., 2023) 89.31 91.4 88.00 95.33 98.56 92.52
Mega (Ma et al., 2022) 90.43 91.25 90.44 96.01 97.98 93.22
SGConv (Li et al., 2022) 89.2 91.11 87.97 95.46 97.83 92.31
LRU (Orvieto et al., 2023) 89.40 89.90 89.00 95.10 94.20 91.52
Mamba (Gu & Dao, 2023) 82.98 72.14 69.82 69.26 67.32 72.30
Griffin (De et al., 2024) 71.75 66.58 61.15 73.38 69.53 68.47

MS-SSM (S4) 87.22 91.06 89.15 94.90 97.12 91.89
MS-SSM (S6) 85.70 83.21 89.83 87.24 87.70 86.73

Table 2 reports the performance of MS-SSM and baselines on ListOps dataset. MS-SSM achieves
the best results compared to all baselines. Notably, MS-SSM achieves ×2 accuracy compared
to Mamba (Gu & Dao, 2023), which shows the significance of multi-resolution modeling of the
sequence.

Additionally, the performance improvement is achieved without increasing computational complexity
or parameter count. When compared to Mamba models with double parameter count and double state
size, MS-SSM consistently exhibits superior performance, highlighting its effectiveness and efficient
utilization of its multi-timescale memory in capturing long hierarchical structures.

Long Range Arena. We further evaluate the performance of MS-SSM on additional tasks from the
Long Range Arena benchmark (Tay et al., 2020b). The results, summarized in Table 4, highlight the
advantages of MS-SSM over similar data-dependent SSM-based architectures such as Mamba and
Griffin. While these models exhibit poor performance on long-range tasks, MS-SSM achieves a sig-
nificant 14.42% performance improvement over Mamba. This performance boost is attributed to the
integration of multi-scale convolutions, which enhances MS-SSM’s capacity to capture dependencies
across various scales and over long sequences.

Table 5: Ablation on the architecture of MS-SSM.
Method PTB-XL ListOps

Base

1 MS-SSM (S6) 0.939 63.04
2 MS-SSM (S4) 0.939 62.83
3 Remove S6/S4 0.936 62.59
4 Remove Multi. Conv. 0.916 37.98

Gating (Input, Based on)

5 (self scale, original input) 0.939 63.04
6 (self scale, self scale) 0.938 62.91
7 (original input, self scale) 0.939 62.95

Scale Mixing

8 Input-dependent 0.939 63.04
9 Input-independent 0.932 61.28
10 None-linear SoftMax gate 0.921 61.42

Ablation Studies. In this section, we evaluate
the significance of our model design and the
made choices by performing an ablation study
on ListOps and PTB-XL datasets. To this end, we
change the main components of the MS-SSM, one
at a time, to evaluate its contribution in the perfor-
mance of MR-SSM. We use the following variants:
(1) is the main variant of MS-SSM, when using S6
block as the recurrent module, (2) replaces the S6
block with S4, (3) removes the recurrent module,
(4) removes the multiresolution convolution and
instead uses Conv1D, (5) is the original gating for
scales, (6) for each scale, we use its own input for
the gating, (7) is the gating where each scale is
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gated with the original input, (8) is the original scale mixing module used in MS-SSM, (9) uses simple
linear layer for mixing different scales, and (10) uses non-linearity in the gating (data-dependency) of
scale mixing. The results are reported in Table 5, indicating that all components contributes to the
performance gain, where main contribution comes from the multiresolution convolution. Additional
experimental results and ablation studies (on the types of initialization) are discussed in Appendix C.

3.1 EFFECTIVE RECEPTIVE FIELD

We introduce the concept of the mean mixing distance as a metric to quantify the effective receptive
field (ERF) in our model, drawing inspiration from the receptive field in convolutional networks. This
definition is inspired by the average attention distance defined in self-attention models (Dosovitskiy
et al., 2020).

The normalized attention scores between each pair of tokens defines the mapping between each output
token and all tokens in the input sequence.3 Using this, the average attention distance (Dosovitskiy
et al., 2020) is defined as: d(m,n) =

∑m
n=1 A(x)m,n × (m− n) where each row of the attention

matrix forms a probability distribution over distances (Ben-Kish et al., 2024), as they lie in the
(L − 1)-simplex (i.e. the rows sum to 1). In contrast, expressing a closed-form mapping between
input and output tokens for y = MS-SSM(x) = f(x) is not straightforward. Therefore, we rely on
the Jacobian of the output with respect to the input to describe how the sequence is transformed by a
MS-SSM layer. We define the mean mixing distance for MS-SSM as:

d(m,n) =

m∑
n=1

|J(x)m,n|
|
∑m
k=1 J(x)m,k|

× (m− n) (6)

As the results in Table 6 highlights, MS-SSM achieves a significantly higher mean mixing distance
than Mamba, indicating its superior ability to attend to distant contexts, thereby capturing long-range
dependencies in the sequence more effectively.

4 CONCLUSION AND DISCUSSION

In this paper, we introduced MS-SSM, a multi-resolution state-space model for sequence modeling
that integrates multi-scale analysis into state space models (SSMs). By decomposing the system
into multiple time scales and incorporating independent SSMs at each resolution, MS-SSM is able
to capture dependencies at varying levels of granularity, addressing a key challenge in long-range
sequence modeling. The use of specialized convolutions and scale-specific parameter initialization
enhances the model’s ability to efficiently handle both local and global temporal dynamics.

Our extensive experiments across multiple benchmarks, including image classification, hierarchical
reasoning, long-context tasks, and time series tasks, demonstrate the effectiveness of the proposed
approach. MS-SSM consistently outperforms state-of-the-art SSM architectures, such as Mamba and
Griffin. The results in the Long Range Arena benchmark further validate that MS-SSM can handle
effectively long-range dependencies, showing significant improvements over similar data-dependent
SSM models. One of the key strengths of MS-SSM lies in its parallelized implementation and
minimal computation and model parameters increase, which ensures computational efficiency despite
the increased capacity in capturing multi-scale structures.

While MS-SSM is highly effective in capturing multi-resolution and long range dependencies, there
remain several avenues for future research. First, extending the MS-SSM framework to other sequence
domains, such as natural language processing, where hierarchical structures are prevalent, could
further validate its generality. Another potential direction is the exploration of multi-resolution in the
most recent form of RNN such as LRU (Orvieto et al., 2023) and xLSTM (Beck et al., 2024) and
analyze how it improves the system’s memory in such RNN/SSM models.

3For simplicity, we assume the value projection is V = x.
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Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572–585, 2021b.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initial-
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A DETAILS

A.1 NOTATION DEFINITION

Notations Brief definition and interpretation

xt, yt, W the sequence x ∈ RL and y ∈ RL are input and output of a layer, while matrices are denoted
by bold uppercase letters, such as layer weight matrix W .

∆, Ā, B̄ discretization step size and parameters of the discrete SSM: Ā = exp (∆A) (state transition
matrix), B̄ = (∆A)−1 (exp (∆A− I)) . ∆B.

x̂s
t , As the superscripts denotes the index of a scale: s ∈ {0, . . . , S + 1}. x̂s

t is the s-th scale repre-
sentation of xt, and As is the SSM parameter applied to that scale.

[h0 ; . . . ; hS+1] Concatenation vectors {h0, . . . , hS+1}

Ct = LinearC(xt) input-dependent parameter modeled by LinearC(xt) = WC xt.

Conv1d(1, 2, L, 2s−1) a causal depthwise 1D convolution (Conv1d) with two output channels, a kernel length of K,
and a dilation factor of 2s−1 applied to each feature dimension.

h ∗ x linear convolution: y[t] = (h ∗ x)[t] ,
∑L−1

`=0 h[t− `]x[`]

h� x element-wise multiplication (Hadamard product): y[t] = (h� x)[t] , h[t] · x[t]

diag(A), diag(a) diag(A): a vector containing the diagonal elements of square matrix A, and diag(a): a
square matrix formed by the entries of a on its diagonal.

Softplus(.) the nonlinearity defined as: log(1 + exp(.))

softmax(u) Softmax activation function defined as: softmax(u)i := exp(ui)∑L
j=1 exp(uj)

A.2 MODEL ARCHITECTURE

A.2.1 SCALE MIXING

We explored differnt approaches for scale mixing within the proposed architecture: (i) a data-
dependent scale mixing module, as defined in equation 5, (ii) a simple trainable linear layer
for scale mixing that is data-independent, and (iii) a data-dependent scale mixing module, sim-
ilar to the one in equation 5, but uses non-linearity in its gating, expressed as Et = sE(xt) =
SoftMax(LinearE(xt)).

The ablation study results, reported in Table 5, indicate that the data-dependent scale mixing with the
linear parameterization from equation 5 achieves the best performance among these methods.

A.3 EFFECTIVE RECEPTIVE FIELD

We introduce the concept of the mean mixing distance as a metric to quantify the effective receptive
field (ERF) in our model, drawing inspiration from the receptive field in convolutional networks. This
definition is inspired by the average attention distance defined in self-attention models (Dosovitskiy
et al., 2020).

For a length-L sequence of tokens x = (x1, x2, . . . , xL), the self-attention layer transforms the
sequence by computing a weighted sum of token embeddings, as follows:

y = SA(x) = SoftMax

(
QKT

√
dk

)
x = A(x) x,

where Q = xWQ, K = xWK ,

In this equation, the matrix A(x) contains the normalized attention scores between each pair of
tokens. Which defines the mapping between each output token and all tokens in the input sequence.4

4For simplicity, we assume the value projection is V = x.
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Table 6: Comparison of Mean Mixing Distance between Mamba and MS-SSM on the ListOps dataset. The
metric d(m,L), as defined in (7), is averaged across all channels and layers in the model.

Method Mean Mixing Distance

Mamba 38.84±21.97

MS-SSM (S6) 94.90±64.62

Using this, the average attention distance (Dosovitskiy et al., 2020) is defined as:

d(m,n) =

m∑
n=1

A(x)m,n × (m− n)

where each row of the attention matrix forms a probability distribution over distances (Ben-Kish
et al., 2024), as they lie in the (L− 1)-simplex (i.e. the rows sum to 1).

In contrast, expressing a closed-form mapping between input and output tokens for y =
MS-SSM(x) = f(x) is not straightforward. Therefore, we rely on the Jacobian of the output
with respect to the input to describe how the sequence is transformed by a MS-SSM layer. The
Jacobian matrix defined as the collection of the gradient of each output token with respect to the input

sequence: Jf =

∇
Tf1

...
∇TfL

. We define the mean mixing distance for MS-SSM as:

d(m,n) =

m∑
n=1

|J(x)m,n|
|
∑m
k=1 J(x)m,k|

× (m− n) (7)

where the Jacobian is normalized row-wise to form a probability distribution over the distance
analogous to attention-based models. In classification tasks, we compute d(m,L), the mean mixing
distance for the last token, as a measure of the ERF, capturing how far dependencies extend across
the sequence in MS-SSM.

As the results in Table 6 highlights, MS-SSM achieves a significantly higher mean mixing distance
than Mamba, indicating its superior ability to attend to distant contexts, thereby capturing long-range
dependencies in the sequence more effectively.

A.4 EFFICIENT IMPLEMENTATION OF MULTI-SCALE DECOMPOSITION LAYER.

While computation of multi-scale decomposition (3) requires sequential application of a convolution
layer, this filtering scheme is actually linear time-invariant (LTI) and can be implemented using linear
convolution layers. Composing two linear convolution layers ϕ1 and ϕ2 with kernel sizes K1 and K2,
respectively, yields a single linear convolution layer ϕ1:2 = ϕ1 ∗ ϕ2 with an effective kernel size of
K1 +K2− 1. This property enables us to transform this sequential linear convolutions into a parallel
application of array of filter banks during inference. When the filter length and number of levels
are limited, this approach can potentially accelerate multi-resolution decomposition by leveraging
specialized implementations of convolution units available on modern hardware accelerators, resulting
in a more hardware-efficient solution.

B EXPERIMENTAL DETAILS

For all the experiments, we use the same experimental setup as Smith et al. (2023) and Shi et al.
(2023). The results of baselines are either from the original papers, or are reported by Shi et al. (2023)
and/or Qin et al. (2024).
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Table 7: Ablation studies on the initialization of MS-SSM.

Method PTB-XL ListOps
Base

1 MS-SSM 0.939 63.04
2 Mamba’s Initialization 0.928 57.49

B.1 IMAGE CLASSIFICATION

We employ the Vision Transformer (ViT) architecture (Dosovitskiy et al., 2020), integrating MS-SSM
as the core block. The models are evaluated on two image classification tasks: sCIFAR (Shi et al.,
2023) and ImageNet-1K (Krizhevsky et al., 2012).

sCIFAR-10: For the sCIFAR-10 dataset, each image is transformed into a sequence of pixels with
size 1024 and 3 channels, and the model is built using a ViT architecture (Dosovitskiy et al., 2020)
consisting of 10 layers with a hidden size of 256 and filter size of 2. The Adam optimizer with
standard settings (β1 = 0.9, β2 = 0.999) and a learning rate of 0.0045 was used, along with a linear
warmup over the first 1 epoch. A weight decay of 0.01 was applied as regularization. We use S = 3
and N = 128. The model was trained on A6000 GPUs for 250 epochs with a batch size of 50.

ImageNet-1K: In the case of ImageNet-1K, images were divided into patches of 16× 16 pixels,
and we trained a ViT-base architecture (Dosovitskiy et al., 2020) with 24 layers and a hidden size
of 256. Training was conducted using the Adam optimizer with a base learning rate of 1e-3 and its
standard settings (β1 = 0.9, β2 = 0.999). The learning rate scheduler included a linear warmup for
the first 10 epochs, followed by a cosine decay. MS-SSM was trained for 300 epochs using 4xA6000
GPUs with a batch size of 1024. Each MS-SSM layer consists of a multi-scale convolution with
S = 3 scales, each convolution having a length of K = 4, and SSMs with a latent state size of
N = 128.

ListOps: We use the setting of Long-range Arena (Tay et al., 2020b) benchmark and pad all
sequences to the length of 2048 and then use an embedding layer to encode them into 128 channels.
We use 20 layers of MS-SSM to mach the number of parameters of other models in the benchmark
study. In MS-SSM we choose filter size as 4 and dimension of 128. The model is trained for 100
epochs with batch size of 50. Following Shi et al. (2023), we use AdamW optimizer with a weight
decay rate 0.03, learning rate of 0.003 after 1 epoch of linear warmup, and a dropout rate 0.1. The
batch normalization is used instead of layer normalization. We use S = 3 and N = 128.

Long Range Arena: We use the settings from Long Range Arena benchmark (Tay et al., 2020b)
but to match the number of parameters, we use ×2 of the number of layers for Transformers.

PTB-XL In this dataset, we have 12 channels, each of which has 1000 timestamps. All the
architectural setting for this experiment is the same as the CIFAR10 but instead of batch normalization,
we use layer normalization. We use dropout rate of 0.2 and the AdamW optimizer with weight decay
rate 0.06. The network is train for 5 warmup epochs and then 95 epochs of cosine learning rates.

C ADDITIONAL EXPERIMENTS AND ABLATIONS

C.1 ABLATIONS

In this section, we compare our initialization with the Mamba’s initialization. The results are reported
in Table 7. As expected, the scale-dependent initialization scheme proposed in this work is more
effective and MS-SSM achieve better performance when using such initialization.
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