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Abstract
Heterogeneous Graph Neural Networks (HGNNs) are extensively
applied in modeling web-based applications that involve hetero-
geneous graph structures. Explanation models for HGNNs aim to
address their "black box" nature. Enhancing the interpretability of
HGNNs leads to a better understanding and can potentially im-
prove predictive performance. However, existing post-hoc HGNN
explanation methods cannot impact the HGNN’s predictions. Self-
explainable homogeneous models also perform poorly on hetero-
geneous graphs. To address these challenges, we present a Self-
Explainable Heterogeneous Graph Neural Network (SEHG), a novel
architecture that integrates explanation generation into the learn-
ing process of HGNN through two alternative stages. The first stage
focuses on producing high-quality explanations while providing
predictions alongside. The second stage enhances prediction accu-
racy by a contrastive learning strategy. Unlike the current methods
that rely on manually defined metapaths for structural explana-
tions, SEHG generates important structure and feature explana-
tions by learnable heterogeneous masks. To ensure high-quality and
sparsity explanation, these masks are regulated by a uniquely de-
signed range-based penalty during training.Moreover, we introduce
HetBA, a collection of synthetic heterogeneous datasets designed
to quantify and visualize explanations or heterogeneous graphs. Ex-
tensive experiments demonstrate the effectiveness of SEHG, which
surpasses strong baselines in real-world node classification tasks
by notable margins of up to 3.91%. SEHG also achieves state-of-
the-art performance on synthetic datasets with improvement of
up to 9.44%, and records the highest fidelity scores in explanation
tasks, improving by up to 46.57%. To our knowledge, SEHG is a
pioneering self-explainable HGNN framework that achieves state-
of-the-art performance on both heterogeneous graph explanation
and prediction tasks.
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1 INTRODUCTION
Heterogeneous relationships, characterized by diverse node and
edge types, are inherent in many real-world systems and web ap-
plications and can be presented as heterogeneous graphs. Hetero-
geneous Graph Neural Networks (HGNNs) [23] are effective mod-
els to process heterogeneous graphs and are applied in various
contexts [4], including social networks [4, 31], and anomaly de-
tection [11, 44]. While numerous advanced HGNNs have been
proposed [10, 24, 34, 36, 42], these methods primarily focus on
enhancing model performance by specialized architectures and
exploitation of heterogeneous data characteristics. However, tradi-
tional HGNNs do not actively elucidate the model’s fundamental
understanding of the data, instead, they function as black boxes,
similar to many deep learning methods [18], obscuring the mecha-
nisms underlying the learned representations in HGNNs.

Approaches such as HGExplainer [27] and HTGExplainer [19],
xPath [20], inspired by explainability methods in homogeneous
graphs [12, 30, 38, 41], have been developed to explain predictions
in heterogeneous graphs in a post-hoc manner after the HGNN is
well trained and remains unchanged. While these post-hoc meth-
ods provide valuable insights into the HGNN’s decision-making,
the HGNN’s predictions remain unchanged from the explanations.
HGNNs might still learn irrelevant information that is not rea-
sonable from explanations from original data even after the train-
ing is finished, leading to sub-optimal predictions. Based on the
sub-optimal predictions, the explainers can also produce unsatis-
factory explanations. Even though self-explainable homogeneous
graph neural networks like SEGNN [6], GSAT [26], ProtGNN [43],
SES [13], and ExpFiGCN [35] exist, they fail to produce satisfac-
tory explanations and predictions due to the huge gap between the
characteristics of heterogeneous and homogeneous graphs.

To address the challenges in explaining HGNNs, we present a
Self-Explainable Heterogeneous Graph Neural Network (SEHG),
which integrates heterogeneous explainability into the training
process of HGNNs. SEHG consists of two primary phases: heteroge-
neous self-explainable training and enhanced contrastive learning.
In the heterogeneous self-explainable training phase, we proposed
a novel heterogeneous graph explanation generator that produces
node feature and edge structure masks. According to the previous
study [40], high-quality explanations should be sparse, capturing
the most important input features, while disregarding the irrelevant
ones. To ensure this sparsity, we incorporate specially designed
sparsity-enhancing penalty terms. In the enhanced contrastive
learning phase, SEHG extracts appropriate sample pairs from the
explanation graph for each predicted node to facilitate contrastive
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Figure 1: An illustration of heterogeneous post-hoc explana-
tion models and the SEHG mechanism, demonstrated in a
hypothetical node classification task. A GNN Φ is trained on
heterogeneous social networks to predict the future sports
activities of the center nodes. Post-hoc explanation models
provide explanations after the HGNN is trained, whereas
SEHG enhances HGNN predictions through integrated ex-
planations, with improved predictions further refining the
quality of explanations throughout the training process.

learning. Inspired by SimCLR [5], a learnable nonlinear transforma-
tion is introduced between representation and contrastive losses,
significantly enhancing the quality of the learned representations.
The difference between SEHG and post-hoc explanation methods
such as xPath [20] and HGExplainer [27] is illustrated in Fig. 1. Post-
hoc explanation models explain a trained HGNNwithout impacting
its performance, while SEHG simultaneously enhances predictions
and explanation quality during training.

Existing metrics for quantifying the heterogeneous explana-
tion models primarily rely on fidelity assessments using available
datasets [40] lack intuition visualization of explanation quality and
reliable ground truth for accurately and fairly evaluating expla-
nation accuracy. Inspired by GNNExplainer [38], we introduce a
group of synthetic datasets HetBA to evaluate and visualize the
explainability performance of heterogeneous models. HetBA con-
sists of four subsets—SingleShapes, DoubleShapes, TripleShapes,
and TripleCommunities—each featuring planted heterogeneous net-
work motifs as indicators of ground truth. This design enables a
comprehensive and intuitive evaluation and visualization of various
explanation methods.

We evaluated the predictive performance and explainability of
SEHG on four real-world heterogeneous datasets and four synthetic
datasets. SEHG consistently achieves the highest scores across all
datasets. Notably, SEHG demonstrated up to a 3.91% improvement
in prediction performance measured by Micro-F1 and a significant
46.57% enhancement in explanation quality assessed by fidelity
scores. SEHG also achieves state-of-the-art performance on the
HetBA dataset with an improvement of up to 9.44%. Visualization
of the explanation results on HetBA also confirms that SEHG accu-
rately identifies target structures, demonstrating its superior ability
to pinpoint and leverage essential features. Moreover, SEHG is
compatible with various backbone HGNNs, illustrating that the
prediction performance and explanation quality can be optimized
within a single framework.

Our contributions are as follows:
• We present SEHG, a robust self-explanation HGNN framework
that integrates a unique explanation generator into the HGNN
training pipeline and effectively leverages explanations during
enhanced contrastive learning, improving performance in both
explanation and prediction.
• We proposed a range-based penalty method to ensure the spar-
sity of explanations, preventing ambiguity and ensuring high-
quality explanations.
• We introduce HetBA, a group of datasets specifically designed
for heterogeneous graph explanation tasks that allow compre-
hensive evaluation and benchmarking of explanation methods
across various scenarios.
• Extensive experiments demonstrate that SEHG achieves state-
of-the-art performance in explanation and prediction tasks,
highlighting the superiority of its self-explanation mechanism
and contrastive learning framework in heterogeneous graphs.

2 RELATEDWORKS
2.1 Heterogeneous Graph Neural Networks
HGNNs have exhibited robust representation capabilities for man-
aging heterogeneous graph data [2, 33]. These models extend tra-
ditional graph neural network (GNN) frameworks [9, 14, 15] to
handle complex, multi-relational data by leveraging diverse types
of nodes and edges. For instance, HAN [34] preserves graph het-
erogeneity by constructing neighbors through meta-paths, and
predefined sequences of node and edge types, enabling it to capture
diverse relational information. In contrast, GTN [28] learns node
representations by aggregating features from neighbors without
predefined meta-paths, offering greater flexibility. SHGAT [24] is
a simplified HGNN variant based on GAT, fine-tuned for robust
performance. SeHGNN [36] uses a lightweight mean aggregator for
pre-computation, integrating meta-path features with a single-layer
transformer, enhancing receptive fields and feature integration. Het-
GNN [42] samples correlated heterogeneous neighbors through a
random walk and aggregates features using a two-module neural
network. Finally, HGT [10], using a transformer-based architecture
and subgraph sampling, boosts scalability for large web graphs.

However, the "black box" nature of HGNNs poses challenges,
particularly in areas where transparency is key for fairness, trust,
and accountability [18]. This lack of interpretability complicates
the understanding of model predictions, raising concerns about
bias and reliability. In sensitive fields like recommendation systems
and user behavior analysis, this opacity undermines trust, hinders
discrimination detection, and increases ethical risks [8, 32].

2.2 Explanation of Graph Neural Networks
To provide explanations for GNNs, several methods and explainers
have been proposed [40]. These explainers are primarily divided
into post-hoc and self-explainable models. Among post-hoc ex-
plainers, GNNExplainer [38] is a pioneering instance-level model
that elucidates edge and feature importance by maximizing mu-
tual information between GNN predictions and subgraph struc-
tures. PGExplainer [22] uses a deep neural network to generate
multi-instance explanations, while GraphLIME [12] offers local in-
terpretability through HSIC Lasso, focusing on feature explanations.
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XGNN [39], a model-level approach, employs a graph generator to
optimize specific predictions but may lead to discrepancies between
the explainable model and the GNN. In contrast, self-explainable
GNNs provide explanations during training. SEGNN [6] uses an
interpretable similarity module to identify K-nearest labeled nodes
for explainable node classification. ProtGNN [43] integrates pro-
totype learning for case-based explanations. GSAT [26] applies
stochasticity to attention weights to filter irrelevant graph com-
ponents and highlight task-relevant subgraphs. ExpFiGCN [35]
selects key nodes while denoising, enhancing node representation
in GCN, and addressing over-smoothing, while SES [13] extends
this self-explanation approach to any GNN and various datasets.

Research on explainable models for heterogeneous graphs is
still limited. HGExplainer [27] accounts for temporal dependencies
while preserving heterogeneity in subgraph explanations. HTGEx-
plainer [19] improves heterogeneity representation by maximizing
joint mutual information and using meta-path-based sampling for
richer insights. xPath [20] efficiently identifies influential node
pairs through graph perturbation, using a greedy search algorithm
to pinpoint the most impactful fine-grained explanations. However,
these approaches operate independently from the core learning pro-
cess, leading to unsatisfactory predictions, and their explanations
do not contribute feedback to the training of HGNNs.

3 PRELIMINARIES
3.1 Heterogeneous Graph Neural Networks
Heterogeneous Graph Definition: A heterogeneous graph is
defined as 𝐺 = (𝑉 ,𝐻, 𝐸,T𝑣,T𝑒 ), where 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} rep-
resents the set of nodes, containing different node types. 𝐻 =

{ℎ (0)1 , ℎ
(0)
2 , . . . , ℎ

(0)
𝑛 } represents the set of initial features, where

ℎ
(0)
𝑖

is the feature vector for node 𝑣𝑖 . 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚} denotes
the set of edges, containing different edge types. T𝑣 is a node-type
mapping function that assigns each node to a specific type. T𝑒 is
an edge-type mapping function that assigns each edge to a specific
type.

Message Passing Mechanism: At layer 𝑙 , the representation of
node 𝑣𝑖 is updated by aggregating messages from its neighboring
nodes N(𝑣𝑖 ) as follows:

h(𝑙 )
𝑖

= 𝜎
©­«

∑︁
𝑟 ∈T𝑒 (𝐸 )

∑︁
𝑣𝑗 ∈N𝑟 (𝑣𝑖 )

1
𝑐𝑖 𝑗

W(𝑙 )𝑟 h(𝑙−1)
𝑗

+W(𝑙 )0 h(𝑙−1)
𝑖

ª®¬ , (1)

whereN𝑟 (𝑣𝑖 ) denotes the set of neighboring nodes connected to 𝑣𝑖
by edges of type 𝑟 ,W(𝑙 )𝑟 andW(𝑙 )0 are the weight matrices for type
𝑟 edges and self-loops, respectively, 𝑐𝑖 𝑗 is a normalization factor,
and 𝜎 (·) is an activation function, such as ReLU.

Final Representation and Task: After 𝐿 layers of message
passing, the final representation of each node ℎ (𝐿)𝑖 is obtained.
This representation can be used for various tasks, such as node
classification, link prediction, or graph classification.

3.2 Heterogeneous Graph Explanation
Given a heterogeneous graph𝐺 and a trainedHGNNmodel 𝑓 : 𝐺 →
R𝐶 , where𝐶 is the number of classes or prediction outputs, the goal
of an explanation is to identify the most influential components of

𝐺 , represented by 𝐺𝑒 = (𝑉𝑒 , 𝐻𝑒 , 𝐸𝑒 ) ⊆ 𝐺 , contribute to the model’s
prediction 𝑦𝑖 = 𝑓 (𝐺, 𝑣𝑖 ) for a given node 𝑣𝑖 ∈ 𝑉 .

4 SELF-EXPLAINABLE HETEROGENEOUS
GRAPH NEURAL NETWORK

In this section, we provide a detailed description of SEHG, including
heterogeneous self-explainable training and enhanced contrastive
learning, as illustrated in Fig. 2. The normalized heterogeneous
graph input generates node feature and edge structure masks, form-
ing an explanation graph. This graph is processed through an
HGNN encoder, where feature loss is constrained by range penalty
loss alongside prediction losses. During the enhanced contrastive
learning phase, sample nodes are processed through heterogeneous
graph convolutional and linear layers to produce positive and neg-
ative representations for contrastive learning. This approach opti-
mizes the final explanation and enhances prediction accuracy.

4.1 Heterogeneous Self-Explainable Training
As the first component of SEHG, Heterogeneous Self-Explainable
Training normalizes the input graph features and employs a het-
erogeneous graph explanation generator to produce node feature
masks and edge structure masks, which are optimized alongside
the HGNN during the training process.

HeterogeneousRepresentationNormalization.Given a node
𝑣𝑖 with an initial feature vector ℎ (0)

𝑖
∈ R𝑑𝑟 , where 𝑑𝑟 is the dimen-

sion of ℎ (0)
𝑖

, depending on its type 𝑟 ← T𝑣 (𝑣𝑖 ), the transformation
through two linear layers to output a final feature vector ℎ𝑖 ∈ R𝑑out
is expressed as:

ℎ𝑖 = 𝜎

(
W2 · 𝜎 (W𝑟

1 · ℎ
(0)
𝑖
+ b1) + b2

)
, (2)

whereW𝑟
1 ∈ R

𝑑hid×𝑑𝑟 is the weight matrix of the first linear layer
specific for nodes belong to type 𝑟 , 𝑑hid is the dimension of the
hidden layer, b1 ∈ R𝑑hid is the bias vector of the first layer, W2 ∈
R𝑑norm×𝑑hid is the weight matrix of the second linear layer, 𝑑norm is
the dimension of normalized node feature, b2 ∈ R𝑑norm is the bias
vector of the second layer, and 𝜎 (·) is an activation function applied
after each linear transformation, ℎ𝑖 ∈ R𝑑norm is the final output
feature vector. This transformation normalizes the heterogeneous
features into a common representation space to obtain 𝐻norm ∈
R𝑁×𝑑norm , where 𝑁 is the total nodes number. This normalization
facilitates subsequent graph processing tasks.

Heterogeneous Graph Encoder. The heterogeneous graph
encoder forms the basis for both explanation and prediction, and
it can be substituted by any HGNN. To improve performance, we
incorporate edge aggregation into the backbone model. For illus-
trative clarity, we provide specific details using SHGAT [24] as the
backbone example.

The following formula aggregates the edge attribute:

ℎ𝑒𝑖 𝑗 = W𝑒 · [ℎ𝑖 ∥ ℎ 𝑗 ∥ T𝑒 (𝑒𝑖 𝑗 )], (3)

W𝑒 ∈ R(2×𝑑norm+1)×𝑑hid is the learnable weight matrix that trans-
forms the concatenated features into the edge feature ℎ𝑒𝑖 𝑗 , and ∥
denotes the concatenation operation along one dimension. The
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Figure 2: The framework of SEHG, includes two main components: heterogeneous self-explainable training and enhanced
contrastive learning. Different colored lines are used to represent distinct data processing workflows.

weight 𝛼𝑖 𝑗 for each edge 𝑒𝑖 𝑗 is from an attention mechanism as:

𝛼𝑖 𝑗 =

exp
(
LeakyReLU(𝑎𝑇 [Wℎ𝑖 ∥Wℎ 𝑗 ∥ℎ𝑒𝑖 𝑗 ])

)
∑
𝑘∈N(𝑣𝑖 ) exp

(
LeakyReLU(𝑎𝑇 [Wℎ𝑖 ∥Wℎ𝑘 ∥ℎ𝑒𝑖 𝑗 ])

) , (4)

where 𝑎 and W are learnable weights and N(𝑣𝑖 ) represents the
neighbors of node 𝑖 . The 𝑙-th HGNN layer can be expressed as:

ℎ
(𝑙 )
𝑖

= 𝜎

( ∑︁
𝑣𝑗 ∈N(𝑣𝑖 )

𝛼
(𝑙 )
𝑖 𝑗

W(𝑙 )ℎ (𝑙−1)
𝑗

+ b(𝑙−1)
)
, (5)

where 𝛼 (𝑙 )
𝑖 𝑗

is the attention weight about edge 𝑒𝑖 𝑗 andW(𝑙 ) is the
weight of layer 𝑙 .

Heterogeneous Graph Explanation Generator. The hetero-
geneous graph explanation generator is employed to generate learn-
able node feature masks and structural masks.

After passing through 𝑘 layers of the HGNN Layer, followed by
a linear layer and an ELU activation, we obtain the node feature
mask 𝑀𝑓 ∈ R𝑁×𝑑norm . The mask is multiplied with the normal-
ized representation𝐻norm to generate the node feature explanation,
which is then used to construct the edge structure explanation. For
each node in the graph, we perform edge aggregation (Equation 3)
by computing the representations of edges directly connected to
it (within its one-hop neighborhood) and the edge representations
of nodes within its two-hop neighborhood that are not directly
connected. These real and virtual edge representations enhance the
discriminative power of the linear layer. Specifically, for a given
node 𝑣𝑖 , we calculate the edge strengths within its two-hop neigh-
borhood:

𝑚𝑒𝑖 𝑗 = W𝑚 ·
(
W𝑒 · [ℎ𝑖 ∥ ℎ 𝑗 ∥ T𝑒 (𝑒𝑖 𝑗 )

)
] + b𝑚 (𝑣 𝑗 ∈ N2 (𝑣𝑖 )), (6)

where W𝑚 ∈ R𝑑hid×1is used to compute the edge strength, and
𝑏𝑚 ∈ R1 is the bias term. N2 (𝑣𝑖 ) is the 2-hop neighbor nodes of
𝑣𝑖 and T𝑒 (𝑒𝑖 𝑗 ) is set to −1 if 𝑒𝑖 𝑗 does not exists. All edge strengths
𝑚𝑒𝑖 𝑗 are combined to form the structural mask𝑀𝑠 ∈ R𝑁×𝑁 , where
𝑖 and 𝑗 denote the row and column indexes in𝑀𝑠 .

For the structure mask𝑀𝑠 , we introduce a threshold-based pe-
nalization loss LSP constraint. Specifically, the elements of𝑀𝑠 are
categorized into three segments (greater:𝑉𝑠> , middle:𝑉𝑠≈, less:𝑉𝑠< ,
each subjected to distinct penalties:

𝑉𝑠> = 𝑀𝑠 · I(𝑀𝑠 > 2𝛿avg),
𝑉𝑠≈ = 𝑀𝑠 · I( 𝛿avg < 𝑀𝑠 ≤ 2𝛿avg),
𝑉𝑠< = 𝑀𝑠 · I(𝑀𝑠 ≤ 𝛿avg),

(7)

where 𝛿avg is the threshold used to segment the regions, with its
value typically set between 0 and 0.5. These three segments are
used to calculate structure explanation penalization loss LSP:

LSP = 𝜆L1 ·
∑︁

𝑚∈𝑀𝑠

|𝑚 | +
�����(𝛿2avg · 𝑑norm) − 𝑁∑︁

𝑖=1

(
𝑉 𝑖
𝑠> +𝑉 𝑖

𝑠< −𝑉 𝑖
𝑠≈

)����� ,
(8)

where 𝜆L1 = 0.01
𝛿2avg ·𝑁𝑝 ·𝑑norm

. This feature explanation loss incorpo-
rates an L1 regularization term to ensure sparsity and a range-based
penalty to enhance the discriminability of 𝑀𝑠 . The penalty term���(𝛿2avg · 𝑑norm) −∑𝑁

𝑖=1 (𝑉 𝑖
𝑠> +𝑉 𝑖

𝑠< −𝑉 𝑖
𝑠≈)

��� is designed to achieve two
main objectives: 1) Encouraging Extremes: By maximizing the sum
of 𝑉𝑠> and 𝑉𝑠< while minimizing 𝑉𝑠≈, the model is incentivized
to push values away from the middle range. This enhances the
contrast between important and unimportant features. 2) Improv-
ing Discriminability: By penalizing values that fall into the middle
range, the model is compelled to make clearer distinctions between
features, thereby improving the interpretability of the mask.



SEHG: Bridging Interpretability and Prediction in Self-Explainable Heterogeneous Graph Neural Networks n WWW ’25, April 28 - May 2, 2025, Sydney, Sydney

The loss function effectively penalizes elements of the mask that
fall into undesirable ranges, guiding the model to focus on a sparse
set of highly relevant features while clearly distinguishing between
important and unimportant ones. This optimization contributes to
a more robust feature selection mechanism. The combination of
sparsity and discriminability helps reduce overfitting and improves
generalization, leading to better predictive performance.

To ensure the accuracy of the predicted structure explanation,
we compute the structural loss LS using the Binary Cross-Entropy
loss [25] to compare the actual edge structure with the learned edge
strength:

LS = − 1
𝑁E

𝑁E∑︁
𝑒=1

[
𝐸𝑒 log𝑚𝑒 + (1 − 𝐸𝑒 ) log(1 −𝑚𝑒 )

]
, (9)

where 𝐸 ∈ R𝑁E is the edge label vector, with 𝑁𝐸 representing the
total number of sampled edges. Each element 𝐸𝑒 indicates whether
the corresponding edge𝑚𝑒 exists (1 if exists, 0 if absent). This loss
guides𝑀𝑠 in learning the true structural distribution.

Similar to the structure mask 𝑀𝑠 and ensure sparsity and en-
force discriminability, we compute the feature penalty loss LFP by
penalizing elements of the mask that fall into undesirable ranges,
which calculated as follows:

LFP = 𝜆L1 ·
∑︁

𝑚∈𝑀𝑓

|𝑚 | +
�����(𝛿2avg · 𝑑norm) − 𝑁∑︁

𝑖=1

(
𝑉 𝑖
𝑓 >
+𝑉 𝑖

𝑓 <
−𝑉 𝑖

𝑓 ≈

)����� ,
(10)

where 𝑉𝑓 >,𝑉𝑓 ≈ and 𝑉𝑓 < represent the elements of𝑀𝑓 filtered and
penalized based on the threshold, calculated similarly to Equation 7.

Self-Explainable Joint Training. The normalized features of
the original heterogeneous graph are input into the HGNN, passing
through 𝑘 HGNN layers, followed by L2 regularization and log
softmax activation to produce the initial predictions 𝑌P ∈ R𝑁𝑝×1,
𝑁𝑝 is the number of nodes to predict. Similarly, the normalized node
features and edges, after being multiplied by the feature mask𝑀𝑓

and the structural mask𝑀𝑠 , respectively, are processed through the
same 𝑘 HGNN layers, L2 regularization, and log softmax activation
to generate the explanation-enhanced predictions 𝑌F ∈ R𝑁𝑝×1.

To compute the loss between the explanation-enhanced predic-
tions 𝑌F and ground truth labels 𝑌 using the Binary Cross-Entropy
loss, we employ the following formal definition:

LF = − 1
𝑁𝑝

𝑁𝑝∑︁
𝑖=1

[
𝑌𝑖 log(𝑌F,𝑖 ) + (1 − 𝑌𝑖 ) log(1 − 𝑌F,𝑖 )

]
, (11)

where 𝑌P,𝑖 represents the predicted probability of the 𝑖-th sample
belonging to the positive class, 𝑌𝑖 is the label for the 𝑖-th sample.
And the loss between the predicted labels 𝑌Pre and the ground truth
labels 𝑌 using the Negative Log-Likelihood loss [37], we define the
following formula:

LP = − 1
𝑁𝑝

𝑁𝑝∑︁
𝑖=1

log 𝑃 (𝑌𝑖 |𝑌P,𝑖 ), (12)

Here, 𝑃 (𝑌𝑖 |𝑌P,𝑖 ) is the probability assigned by the model to the
correct label 𝑌𝑖 under the prediction 𝑌P,𝑖 .

Training Objectives. The training objectives for optimizing the
overall explanation training loss LET are defined as follows:

LET = 𝛼 [𝛽 (LSP + LFP) + (1 − 𝛽) (LS + LF)] + (1 − 𝛼)LP, (13)

where 𝛼 is used to balance accuracy and explainability and 𝛽 is used
to balance penalty and explanation losses. 𝛽 is set to around 0.5𝛼
in practice. These combined objectives work together to optimize
the model’s ability to generate accurate, interpretable explanations
while preserving strong predictive capabilities.

4.2 Enhanced Contrastive Learning
To better align the insights explanations with predictive perfor-
mance, enhanced contrastive learning leverages the explanations
generated during the Self-Explainable training stage. By sampling
key nodes from these explanations, contrastive learning is employed
to enhance the representation of heterogeneous graph networks.

Explanatory Graph Node Sampling.We sample negative and
positive nodes around each target node and apply contrastive learn-
ing to train the node representation in an unsupervised method.
For each node 𝑣𝑖 , we select 𝑁 + sampled positive nodes from its
neighboring nodes 𝑁𝑣𝑖 that share the same type 𝑟 ← T𝑣 (𝑣𝑖 ) sam-
pled from the masked explanatory graph 𝐺𝐸 , and 𝑁 − negative
nodes that differ from its type. After passing the explanatory graph
through 𝑘 HGNN layers, we obtain the explanation output features
�̂�Q ∈ R𝑁×𝐶 . We construct positive and negative sample repre-
sentations �̂�P ∈ R𝑁×𝑁 +×𝐶 and �̂�N ∈ R𝑁×𝑁 −×𝐶 for each node
based on the previously selected samples using these features. In-
spired by SimCLR [5], to reduce noise in the representations and
facilitate more effective downstream contrastive loss learning, we
apply an MLP layer to process the node representations. This yields
the refined representations 𝐻Q, 𝐻P, and 𝐻N, with their dimensions
preserved.

Explanation Enhanced Contrastive Learning.Here, we train
a new HGNN using the explanatory graph. The network architec-
ture consists of 𝑘 heterogeneous convolution layers, followed by
L2 normalization and Log SoftMax activation, yielding the final
prediction results 𝑌ET. We calculate the loss between the output
from the explanatory graph and the ground truth labels:

LEP = − 1
𝑁

𝑁∑︁
𝑖=1

log 𝑃 (𝑌𝑖 |𝑌ET,𝑖 ), (14)

To enable HGNN to learn more nuanced heterogeneous ex-
planatory features, we introduce a contrastive learning mechanism.
Specifically, we use the Normalized Temperature-scaled Binary
Cross-Entropy loss [5] to calculate the distinguished representation
between negative and positive node representations, which inte-
grates elements of binary cross-entropy with temperature scaling
to effectively manage contrastive learning objectives, particularly
in multi-classification tasks.

𝑙𝑖 𝑗 = −𝑦𝑖 𝑗 log𝜎
(
𝑠𝑖𝑚(ℎ𝑖 , ℎ 𝑗 )

𝜏

)
− (1 − 𝑦𝑖 𝑗 ) log𝜎

( 1 − 𝑠𝑖𝑚(ℎ𝑖 , ℎ 𝑗 )
𝜏

)
,

(15)

LCon =

𝑁∑︁
𝑖=1

(
1
𝑁 +

Σ𝑁
+

𝑗=11
+
𝑖 𝑗 𝑙𝑖 𝑗 +

1
𝑁 −

Σ𝑁
−

𝑗=11
−
𝑖 𝑗 𝑙𝑖 𝑗

)
, (16)
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where 𝑠𝑖𝑚(ℎ𝑖 , ℎ 𝑗 ) denotes the similarity score (cosine) between the
representation vectors ℎ𝑖 and ℎ 𝑗 , with ℎ 𝑗 being either a positive
sample ℎ+

𝑖
or a negative sample ℎ−

𝑖
, 𝑦𝑖 𝑗 = 1 when ℎ 𝑗 = ℎ+

𝑖
(positive

sample and 𝑦𝑖 𝑗 = 0 when ℎ 𝑗 = ℎ−
𝑖
(negative sample). The notation

1+
𝑖 𝑗
and 1−

𝑖 𝑗
is an indicator function that takes the value of 1 if the

condition inside the subscript is true, and 0 otherwise. 𝜏 is the
temperature hyperparameter that affects the similarity scales and
helps smooth similarity distributions.

Training Objectives. The training objectives for optimizing the
overall contrastive training loss LCT are defined as follows:

LCT = 𝛾LEP + (1 − 𝛾)LCon, (17)

the parameter 𝛾 is employed to balance the two losses. The pre-
diction can be further refined through those insight explanations
and contrastive learning-enhanced representations, leading to more
accurate and robust outcomes.

5 EXPERIMENT
5.1 Heterogeneous Benchmark Graphs
To evaluate the performance of the Self-Explainable Heterogeneous
Graph Neural Network (SEHG) on heterogeneous node classifi-
cation tasks, we utilize four representative benchmark datasets:
DBLP from [24], IMDB curated by [24], ACM from HAN [34], and
Freebase[3]. Detailed information about these datasets can be found
in AppendixB.1. Dataset statistics are summarized in Table 1.

Dataset Nodes Nodes
Types Edges Edges

Types Target Classes

DBLP 26,128 4 239,566 6 author 4
IMDB 21,420 4 86,642 6 movie 5
ACM 10,942 4 547,872 8 paper 3
Freebase 180,098 8 1,057,688 36 book 7

Table 1: Dataset statistics of benchmark graphs.

5.2 Baselines
We compare the prediction performance of SEHG on the node
classification task with the following strong baselines, which in-
clude both representative homogeneous graph neural networks:
GCN [15], GAT [29], and heterogeneous graph neural networks:
RGCN [28],HAN [34], SHGCN [24], SHGAT [24], SeHGNN [36],
HetGNN [42], HGT [10]. For heterogeneous graph explanation
tasks, we compare performance using the following robust meth-
ods: GRAD, ATT [29], GNNExplainer [38], PGMExplainer [30],
GraphLIME [12], ProtGNN [43], and SES [13]. The detailed in-
formation of all baselines is shown in Appendix B.2.

5.3 Predicted Performance Evaluation
The node representations generated by different models are used to
predict the node labels in the test set, with performance evaluated
usingMacro-F1 andMicro-F1 scores. A comprehensive performance
comparison is presented in Table 2.

Notably, SEHG (SHGAT) consistently outperforms all othermeth-
ods across the datasets. On DBLP, SEHG achieves 95.53% (Macro-
F1) and 96.15% (Micro-F1), surpassing the second-best SeHGNN
by approximately 1.44% and 1.81%, respectively. Similarly, SEHG
shows significant improvements over the second-best SHGAT on

IMDB, with increases of 3.91% and 2.31% in Macro-F1 and Micro-F1
scores. This trend continues across ACM and Freebase, where SEHG
delivers the highest scores. Moreover, SEHG also demonstrates con-
siderable improvements across different backbones. Notably, on
the DBLP dataset, SEHG (HAN) outperforms HAN by 1.34%, while
SEHG (SHGCN) shows a 1.04% gain over SHGCN. On IMDB, SEHG
achieves larger improvements, with SEHG (HAN) surpassing HAN
by 5.48% and SEHG (SHGCN) outperforming SHGCN by 2.53%.
For the ACM dataset, SEHG maintains competitive performance
with gains of up to 2.28%. On the Freebase dataset, SEHG achieves
its most significant improvements, with SEHG (HAN) and SEHG
(SHGCN) boosting performance by 13.90% and 15.69%, respectively,
demonstrating the effectiveness and robust performance of the
proposed heterogeneous explanation framework.

Homogeneous methods, such as GCN, GAT, and RGCN gener-
ally underperform compared to heterogeneous graph prediction
models. Besides the proposed SEHG, the heterogeneous models
SHGAT and SeHGNN also exhibit strong predictive performance,
as they are specifically designed to enhance prediction accuracy.
Under the other representative backbones GCN and HAN, SEHG
improved the performance of backbone graph neural networks by
large margins on IMDB and Freebase, which demonstrates that even
with relatively weak backbones, SEHG maintains robust prediction
performance.

5.4 Explanation Qualification
To assess the quality of the explanations in real-world datasets,
we rank the features generated by each method based on their
importance and remove the top 5 and 10 most significant features
to evaluate the impact on predictive performance. For consistency,
we utilize SHGAT as the predictive model and employ fidelity 𝐹+𝑎𝑐𝑐
[1] as the evaluation metric, which can be computed using the
following formula:

𝐹+𝑎𝑐𝑐 =
1
𝑁

𝑁∑︁
𝑖=1
(1(𝑦𝑖 = 𝑦𝑖 ) − 1(𝑦1−𝑚𝑖

𝑖
= 𝑦𝑖 )), (18)

where 𝑦𝑖 represents the original prediction, and 1 −𝑚𝑖 denotes the
complementary mask that eliminates the crucial features. The indi-
cator function 1(𝑦𝑖 = 𝑦𝑖 ) evaluates to 1 when 𝑦𝑖 and 𝑦𝑖 are equal,
and 0 otherwise. The fidelity 𝐹+𝑎𝑐𝑐 calculates accuracy changes after
removing crucial features and structures according to explanations
of models. So a higher fidelity value indicates a greater change in
model performance, suggesting that the important features identi-
fied in explanations are indeed crucial for making accurate predic-
tions. The results are presented in Table 3. The xPath is based on
metapath disturbances and is not suitable for this task.

Notably, SEHG consistently achieves the highest fidelity scores
across all datasets, demonstrating its superior ability to identify
and leverage important features. For example, on the DBLP dataset,
SEHG achieves a top-10 fidelity of 85.34%, far surpassing the next-
best model, SES by 46.57%. Similar trends are observed on IMDB,
ACM, and Freebase, with SEHG outperforming competing mod-
els by substantial margins. Specifically, SEHG achieves a top-10
fidelity of 57.61% on IMDB, 76.61% on ACM, and 41.76% on Freebase,
surpassing the second-best model by 24.43%, 36.24%, and 21.65%,
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Table 2: Prediction result evaluation. The highest value in each category is highlighted in bold, and the second-highest value is
indicated with an underline.

Model
Dataset DBLP IMDB ACM Freebase

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
GCN 89.88±0.15 90.17±0.03 55.82±0.09 62.47±0.05 89.87±0.01 90.31±0.14 31.38±0.02 48.20±0.15
GAT 91.37±0.07 92.01±0.15 58.84±0.19 63.51±0.15 92.33±0.11 91.15±0.15 40.00±0.08 63.33±0.17
RGCN 91.52±0.17 92.07±0.12 58.85±0.14 62.05±0.01 91.55±0.14 91.41±0.14 46.78±0.19 58.33±1.62
HAN 91.67±0.19 92.05±0.01 57.74±0.11 64.61±0.15 90.52±0.13 89.86±0.06 23.31±0.05 52.03±0.05
SHGCN 90.62±0.27 91.43±0.31 57.68±1.23 64.82±0.43 92.13±0.10 92.19±0.20 30.65±1.96 60.23±0.27
SHGAT 93.82±0.05 94.22±0.15 64.50±0.02 67.46±0.05 93.17±0.06 92.07±0.15 44.68±0.02 65.63±0.08
SeHGNN 94.09±0.05 94.34±0.01 65.09±0.12 66.17±0.12 91.09±0.14 93.44±0.19 48.33±0.17 59.12±0.01
HGT 88.70±0.19 89.01±0.14 61.50±0.12 65.88±0.04 93.50±0.08 92.30±0.03 30.71±0.08 61.29±0.12
ProtGNN 79.77±0.02 82.77±0.12 40.20±0.16 42.30±0.03 81.32±0.15 86.02±0.09 31.93±0.05 39.13±0.17
SES 87.39±0.11 89.64±0.17 55.93±0.21 60.27±0.31 86.10±0.09 89.64±0.17 42.37±0.35 55.38±0.13
SEHG (HAN) 93.01±0.18 94.22±0.15 63.22±0.20 66.35±0.17 90.10±0.22 92.14±0.33 31.21±0.42 65.30±0.20
SEHG (SHGCN) 91.59±0.20 92.47±0.11 60.21±0.07 65.49±0.18 93.11±0.10 92.73±0.22 46.34±0.15 64.71±0.19
SEHG (SHGAT) 95.53±0.19 96.15±0.15 68.41±0.09 69.77±0.12 95.74±0.09 95.21±0.08 51.17±0.18 66.23±0.16

Table 3: The fidelity 𝐹+𝑎𝑐𝑐% after removing the top important nodes. The highest value is highlighted in bold and the second-
highest value is indicated with an underline.

Model
Dataset DBLP IMDB ACM Freebase

𝐹+𝑎𝑐𝑐 (Top5) 𝐹+𝑎𝑐𝑐 (Top10) 𝐹+𝑎𝑐𝑐 (Top5) 𝐹+𝑎𝑐𝑐 (Top10) 𝐹+𝑎𝑐𝑐 (Top5) 𝐹+𝑎𝑐𝑐 (Top10) 𝐹+𝑎𝑐𝑐 (Top5) 𝐹+𝑎𝑐𝑐 (Top10)
GRAD 8.65±0.22 11.23±0.17 10.74±0.74 13.17±0.66 6.65±0.31 9.93±0.33 4.95±0.17 6.28±0.23
ATT 9.68±0.10 15.19±0.21 10.68±0.41 14.97±0.12 10.73±0.15 16.19±0.35 3.77±0.45 5.64±0.16
GraphLIME 10.11±0.15 27.44±0.27 15.23±0.33 21.37±0.47 11.91±0.29 25.17±0.41 4.27±0.26 8.32±0.29
GNNExplainer 25.37±0.26 32.11±0.44 18.99±0.38 25.89±0.36 23.28±0.26 26.54±0.43 15.34±0.11 20.11±0.21
PGMExplainer 27.31±0.65 33.21±0.21 20.24±0.29 33.18±0.74 21.86±0.27 32.45±0.18 8.87±0.19 11.63±0.32
SES 32.17±0.49 38.77±0.21 28.79±0.27 32.54±0.19 35.28±0.48 40.37±0.35 15.27±0.50 19.73±0.34
SEHG 76.31±0.19 85.34±0.18 46.07±0.25 57.61±0.21 67.88±0.14 76.61±0.31 32.27±0.15 41.76±0.10
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Figure 3: Evaluation of explanations on HetBA. Example explanation subgraphs for node classification tasks on four synthetic
datasets are presented. Each method provides explanations for the orange node’s prediction.

respectively. SES ranks second on the DBLP and ACM datasets. GN-
NExplainer is securing the second-best position on Freebase. GRAD
and ATT models perform comparably and GraphLIME slightly out-
performs both. These results highlight SEHG’s robustness and ef-
fectiveness in extracting critical features across diverse datasets,
emphasizing its strong performance in heterogeneous graphs.

To further investigate the explanation quality of SEHG, we eval-
uate the model using various perturbation-based structural expla-
nation methods, with detailed results provided in Appendix B.4.

5.5 Explanation Evaluation on HetBA
The real-world datasets do not have ground truth to verify the expla-
nation’s precision. We evaluated the model’s explanation accuracy
by predictions across four HetBA subsets: SingleShapes, Double-
Shapes, TripleShapes, and TripleCommunities. Example results are
presented in Fig. 3. Each node belongs to a distinct heterogeneous
type (denoted by different colors), to generate an explanation for
a given prediction (highlighted in orange) by identifying the sub-
graph that led to the correct prediction, as specified by the ground
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truth. As the number of shapes increases, generating accurate ex-
planations becomes more challenging.

Notably, SEHG exhibits a superior capacity to capture ground
truth structures in most cases accurately. On the SingleShapes, Dou-
bleShapes, and TripleShapes datasets, SEHG is the only method that
fully identifies the correct ground truth structures, significantly
outperforming other methods such as GNNExplainer, GraphLIME,
and SES. The compared methods frequently either misidentify ir-
relevant neighboring nodes or fail to capture essential parts of the
explanation subgraph. These inaccuracies emphasize the limita-
tions of using homogeneous methods in heterogeneous graph tasks
and underscore the effectiveness of SEHG’s approach in addressing
these challenges.

We also provide detailed information about the dataset and each
method’s complete quantitative validation results, as presented in
Appendix A.2.

5.6 Case Study
In this case study, we examine the explanation results of SEHG
and GNNExplainer on the DBLP dataset, as shown in the figure.
To investigate the key factors influencing the classification of a
specific author (author-428), we analyzed three papers authored
by this individual, along with the associated terms and conference
information. The thickness of the edges in the figure represents the
strength of the influence. SEHG’s explanation reveals that paper-
6207 and paper-6089 are critical for the classification of author-
428, as both papers belong to term-4242 and were presented at
conference-9. In contrast, paper-9886 shows some association with
author-428 but contributes less significantly to the prediction. On
the other hand, GNNExplainer provides less distinction in edge
thickness, indicating minimal differentiation in the contribution
levels of the various factors. This experiment demonstrates that
SEHG offers more insightful explanations with clearer distinctions
in the factors contributing to the prediction.

author-428

paper-6089paper-6207paper-9886

term-4242term-6183 conference-9

author-428

paper-6089paper-6207paper-9886

term-4242term-6183 conference-9

(a) SEHG (b) GNNExplainer

Figure 4: Explanation case for SEHG and GNNExplainer on
author-428 in DBLP.

To investigate how different threshold 𝛿avg in the penalty loss af-
fect sparsity, we conducted a case study, as shown in Appendix B.5.

5.7 Ablation Studies
The ablation study presented in Table 4 highlights the impact of
SEHG’s components on prediction and explanation performance,
including feature masks𝑀𝑓 , structure masks𝑀𝑠 , feature penalty
loss LFP, structure penalty loss LSP, and SimCLR. Removing any
component leads to performance declines, with the most significant

Table 4: Ablation studies evaluating the impact of𝑀𝑓 ,𝑀𝑠 ,LFP,
LSP, and SimCLR (SC). The L∗P, refers to LFP + LSP. 𝑀GEX
and𝑀PGM denote the masks generated by GNNExplainer and
PGMExplainer, respectively.

Model
Dataset DBLP IMDB

Micro-F1 𝐹+𝑎𝑐𝑐 (Top10) Micro-F1 𝐹+𝑎𝑐𝑐 (Top10)
SEHG 96.15±0.15 85.34±0.18 69.77±0.12 57.61±0.21
SEHG -𝑀𝑓 90.26±0.11 60.33±0.24 61.34±0.12 41.65±0.19
SEHG -𝑀𝑠 93.24±0.13 72.27±0.19 65.31±0.17 49.27±0.24
SEHG - LFP 89.64±0.19 55.31±0.16 58.28±0.23 46.29±0.39
SEHG - LSP 93.15±0.16 66.21±0.15 62.81±0.25 47.20±0.28
SEHG - SC 87.50±0.19 57.00±0.11 57.35±0.15 42.38±0.20
SEHG - (L∗P+SC) 85.43±0.30 29.01±0.21 55.32±0.23 16.38±0.37
SEHG +𝑀GEX 94.26±0.19 – 68.83±0.24 –
SEHG +𝑀PGM 95.14±0.24 – 68.26±0.20 –

drop in prediction (Micro-F1) observed when SimCLR is removed
(8.65% on DBLP and 12.42% on IMDB), demonstrating its key role
in learning node representations. Feature-related components have
a larger impact than structure-related ones. For example, removing
𝑀𝑓 and LFP leads to a greater drop in explanation performance
(up to 30.03% on DBLP) than removing 𝑀𝑠 and LSP. When both
penalty losses and SimCLR are removed, SEHG suffers a 56.33%
decline in explanation fidelity on DBLP, emphasizing their critical
importance. We also explored replacing 𝑀𝑠 with the masks from
GNNExplainer 𝑀GEX and PGMExplainer 𝑀PGM during SEHG’s
second-stage contrastive learning phase. This resulted in slight
performance drops compared to SEHG, demonstrating the effective-
ness of SEHG’s Self-Explainable mask generation mechanism. The
minor variations further highlight the robustness of the contrastive
learning framework.

We also investigated the importance of Penalty Loss and SimCLR
when applied to different backbones and more datasets, as detailed
in Appendix B.6.

6 CONCLUTION
In this paper, we present SEHG, an innovative self-explainable
heterogeneous graph neural network framework that integrates
explainability into the learning process of HGNNs. SEHG utilizes a
unique heterogeneous graph explanation generator that produces
node feature and edge structure masks. These masks are incorpo-
rated into the original graph, guiding the model to focus on the
most crucial aspects of the data, thereby promoting more accurate
predictions and explanations. In addition, we introduced a group
of synthetic datasets, HetBA, and evaluated the performance of
different explanation models. Our extensive experiments on both
real-world and synthetic datasets further validated the effectiveness
of SEHG. However, challenges persist in developing self-explainable
models for larger or dynamic heterogeneous graphs, which warrant
further investigation in future studies.
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A HetBA DATASET
A.1 Dataset Introduction
Inspired by GNNExplainer [38] and utilizing the code provided
by [16], we constructed four heterogeneous datasets to quantita-
tively evaluate explainability performance and enhance the visual
assessment of explanations.

HetBA-SingleShapes: This dataset consists of 19,500 nodes.
Of these, 18,000 nodes are generated based on a base Barabási-
Albert (BA) graph. An additional 300 five-node “house”-structured
motifs are randomly attached to nodes in the BA graph, followed by
perturbation with 0.1×𝑁 random edges. As illustrated in Fig. 3, each
node in the BA graph is randomly assigned a type (e.g., triangle,
square, circle, or pentagon), while nodes in the house motif are
assigned the types of circle, triangle, and square for the top, middle,
and bottom nodes, respectively. Nodes of the circle type are given
labels for classification, with all top-positioned circle nodes in the
house motif sharing the same label. In total, there are two node
labels. The node features are extracted from a diagonal matrix
composed of nodes of the same type. For edges, we assign 16 distinct
labels based on the source and target node types.

HetBA-DoubleShapes: This dataset contains 39,600 nodes. The
generation process is similar to HetBA-SingleShapes, but the num-
ber of BA graph nodes is increased to 36,000, with 600 five-node
house motifs and 100 six-node cycle motifs added sequentially. The
node labeling in house motifs remains the same as described ear-
lier, while each node in the cycle motifs is assigned a unique new
label, resulting in 3 total node labels. Since no new node types are
introduced, the dataset maintains the same 16 edge labels.

HetBA-TripleShapes: Following a process similar to HetBA-
DoubleShapes, this dataset contains 61,200 nodes. It consists of
54,000 BA graph nodes, 900 house motifs, 150 cycle motifs, and 450
"family of four" motifs. In the "family of four" motif, the parents
are represented by square and triangle types, while the children
are circles, each assigned a new unique label. The node and edge
labels follow the same logic as the earlier datasets, resulting in 4
node labels and 16 edge labels.

HetBA-TripleCommunities: This dataset is constructed from
two HetBA-TripleShapes graphs, resulting in a total of 122,400
nodes. Labels are assigned based on the motif’s origin within the
two HetBA-TripleShapes graphs, leading to 7 node labels and 16
edge labels.

A.2 Quantitative Evaluation on HetBA
We validated the performance of SEHG and comparative methods
on four subsets of the HetBA dataset. The Table 5 presents a compar-
ative evaluation of explanation performance across various models
on the HetBA dataset. Key metrics include Accuracy and Micro-F1
scores across four distinct datasets: SingleShapes, DoubleShapes,
TripleShapes, and TripleCommunities.

The SEHG model consistently outperforms other models across
all datasets. Specifically, SEHG achieves the highest Accuracy and
Micro-F1 scores in each category, underscoring its superior per-
formance in explanation tasks. For example, in the SingleShapes
dataset, SEHG attains an Accuracy of 90.68 and a Micro-F1 score of
92.33, significantly surpassing other models. This trend is evident
across all datasets, with SEHG leading in both metrics. Notably,

SEHG demonstrates remarkable superiority in Accuracy, with a
9.11% improvement over the second-best model, GNNExplainer, on
the DoubleShapes dataset. Additionally, on the TripleCommunities
dataset, SEHG outperforms the second-highest model by 9.44%.
These substantial margins highlight SEHG’s exceptional effective-
ness in providing accurate and reliable explanations.

The results demonstrate SEHG’s exceptional ability to provide
accurate and reliable explanations. This consistent superiority un-
derscores SEHG’s effectiveness in heterogeneous explanation tasks,
offering a clear advantage in both explainability and accuracy.

B EXPERIMENT DETAIL
B.1 Datasets Details
We present the details of four real-world heterogeneous datasets:

DBLP is a prominent bibliographic database for computer sci-
ence research. We use a subset from [24], which includes nodes
representing authors, papers, terms, and venues across four do-
mains.

IMDB is a movie database where we use a subset from the Ac-
tion, Comedy, Drama, Romance, and Thriller categories, as curated
by [24].

ACM is also a citation network, with a subset from HAN [34],
retaining all paper citations and references.

Freebase [3] is a large knowledge graph, from which we sample
a subgraph featuring 8 entity types and approximately 1,000,000
edges, following the methodology in a prior survey.

B.2 Baselines Details
The detailed information on baselines is shown here:

GCN [15] is a classic graph convolution network proposed by
simplifying the process of ChebNet [7].

GAT [29] is a graph attention network that applies a self-attention
mechanism to calculate the weights of neighboring nodes.

RGCN [28] is a relational graph convolution network using
relation-specific weights and optimizing the model through weight
sharing and sparsity constraints.

HAN [34] is an early heterogeneous attention network that
uses multiple manually defined meta-paths and applies hierarchical
attention to learn node and semantic weights.

SHGCN and SHGAT [24] are straightforward HGNs based on
GCN and GAT architectures, respectively, complemented by linear
layers, which are carefully tuned to achieve robust performance.

SeHGNN [36] uses a lightweight mean aggregator for neighbor
pre-computation, a single-layer structure with extended meta-paths
for an enlarged receptive field, and a transformer-based method for
feature integration from various meta-paths.

HetGNN [42] Introduce a random walk with a restart to sample
a fixed number of strongly correlated heterogeneous neighbors
per node, grouping them by type, followed by a two-module neu-
ral network to aggregate feature information from these sampled
neighbors.

HGT [10] Heterogeneous graph transformer is a transformer-
based model by subgraph sampling strategies to accelerate hetero-
geneous graph computations for support web-scale graphs.
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Table 5: Explanation performance evaluation on HetBA. The highest value in each category is highlighted in bold, and the
second-highest value is indicated with an underline.

Model
Dataset SingleShapes DoubleShapes TripleShapes TripleCommunities

Accuracy Micro-F1 Accuracy Micro-F1 Accuracy Micro-F1 Accuracy Micro-F1
GRAD 72.85±0.48 74.98±0.36 68.29±0.42 69.35±0.29 67.55±0.22 66.89±0.41 62.78±0.48 62.34±0.33
ATT 73.12±0.35 75.41±0.28 69.01±0.41 70.12±0.34 66.98±0.36 67.51±0.37 64.01±0.38 63.11±0.31
GraphLIME 81.23±0.22 82.17±0.20 78.31±0.26 79.24±0.18 76.45±0.24 77.01±0.25 72.99±0.32 71.75±0.28
GNNExplainer 82.01±0.28 83.12±0.25 79.14±0.30 79.99±0.22 77.25±0.23 77.44±0.19 73.53±0.27 72.21±0.30
PGMExplainer 81.12±0.31 86.33±0.22 78.45±0.27 79.34±0.23 76.01±0.21 76.14±0.26 72.41±0.35 71.22±0.29
SES 85.19±0.17 84.05±0.18 75.22±0.19 81.11±0.12 81.05±0.22 81.47±0.24 71.44±0.31 73.36±0.22
SEHG 90.68±0.23 92.33±0.12 88.25±0.13 88.94±0.16 86.15±0.19 86.38±0.21 82.97±0.32 81.71±0.26

Table 6: Impact of different perturbation methods on model explanations and their influence on prediction results. Lower
values indicate greater result fluctuations, suggesting more accurate explanations. Optimal values are highlighted in bold.

Perturbation Method Metric
DBLP IMDB ACM

GNNE HGT SHGAT SEHG GNNE HGT SHGAT SEHG GNNE HGT SHGAT SEHG

PGM-Explainer 𝐹acc 7.9 6.2 31.9 2.7 9.8 3.4 9.4 7.9 32.9 46.7 31.7 27.9
𝐹prob 13.8 5.9 11.3 1.1 7.2 4.8 2.0 1.2 17.1 35.2 11.4 15.5

GEM 𝐹acc 35.2 6.1 32.1 12.4 22.7 13.5 17.1 18.4 37.2 1.9 26.9 1.1
𝐹prob 12.3 6.3 11.4 2.1 22.7 13.3 5.1 3.2 23.8 1.6 11.3 1.2

SubgraphX 𝐹acc 11.1 0.8 5.9 0.2 7.1 1.4 2.8 1.1 10.1 1.4 4.6 1.3
𝐹prob 7.2 -2.3 2.1 -2.8 2.3 0.1 -1.6 -2.9 9.0 1.2 1.5 1.1

xPath 𝐹acc 4.3 0.3 0.3 0.1 5.8 0.4 2.5 0.3 8.5 5.5 4.1 0.17
𝐹prob 2.2 -1.0 -0.4 -1.3 0.0 -2.8 -2.0 -3.1 13.2 1.9 0.7 -0.2

GRAD is a gradient-based method. We compute the gradient of
the GNN’s loss function to the adjacency matrix and the associated
node features, similar to a saliency map approach.

ATT is a graph attention GNN (GAT) [29] that learns attention
weights for edges in the computation graph, which we use as a
proxy measure of edge importance.

GNNExplainer [38] generate subgraph explanations by maxi-
mizing the mutual information between GNN predictions and the
distribution of possible subgraph structures.

PGMExplainer [30] leverages a probabilistic graphical model
to identify essential components, generating an explanation by con-
structing a PGM that closely approximates the original prediction.

GraphLIME [12] Extend the LIME algorithm to deep graph
models and investigate the significance of different node features
for node classification tasks.

ProtGNN [43] combines prototype learning with GNNs and
provides a new perspective on the explanations of GNNs.

SES [13] is a self-explainable and self-supervised homogeneous
graph network by training a feature and structure mask.

B.3 Experiment Settings
Our experiments comprise two main tasks: prediction tasks on
four real-world datasets and explainability tasks on four synthetic
datasets. For both tasks, we follow HGB [24] benchmark protocol.

Specifically, edges are visible during training, and node labels are
split into 24% for training, 6% for validation, and 70% for testing.
For the Freebase dataset used in the prediction tasks and the HetBA-
TripleCommunities dataset used in the explainability tasks, SEHG
employs the Adam optimizer with a learning rate of 0.002 and no
weight decay. In all other experiments, the learning rate is set to
0.001 with a weight decay of 0.005. In the prediction tasks, the
Penalty Loss in SEHG uses 𝛿avg set to 0.35, while for explainability
tasks, 𝛿avg is set to 0.25.

B.4 Explanation Quality Evaluation Supplement
Weadopt the evaluationmethodology outlined in previouswork [40]
to compare the significant explanations generated by various meth-
ods (x-axis). The impact on performance after applying four pertur-
bation techniques—PGMExplainer [30], GEM [21], SubgraphX [41],
and xPath [20]—is assessed. The results are quantified in terms of
𝐹acc, which measures the prediction change, and 𝐹prob, which eval-
uates the probability change of the original predicted label. These
metrics are defined as follows:

𝐹acc =
1
|T |

∑︁
(𝑣𝑡 ,𝑦) ∈T

(1 − 1𝑦=�̃�),

𝐹prob =
1
|T |

∑︁
(𝑣𝑡 ,𝑦) ∈T

(𝑀𝐺 (𝑣𝑡 ) [𝑦] −𝑀�̃�
(𝑣𝑡 ) [𝑦]).

(19)
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Table 7: Ablation study evaluating the effects of Penalty Loss (L∗P) and SimCLR (SC) in SEHG across various backbones.

Model
Dataset DBLP IMDB ACM Freebase

Micro-F1 𝐹+𝑎𝑐𝑐 (Top10) Micro-F1 𝐹+𝑎𝑐𝑐 (Top10) Micro-F1 𝐹+𝑎𝑐𝑐 (Top10) Micro-F1 𝐹+𝑎𝑐𝑐 (Top10)
SEHG (SHGAT) 96.15±0.15 85.34±0.18 69.77±0.12 57.61±0.21 95.21±0.08 76.61±0.31 66.23±0.16 41.76±0.10
SEHG (SHGAT) - L∗P 91.20±0.28 40.20±0.24 60.26±0.19 20.91±0.24 88.47±0.22 18.52±0.30 60.77±0.28 20.58±0.24
SEHG (SHGAT) - SC 87.50±0.19 57.00±0.11 57.35±0.15 42.38±0.20 85.26±0.25 53.76±0.28 58.80±0.30 45.11±0.22
SEHG (SHGAT) - (L∗P+SC) 85.43±0.30 29.01±0.21 55.32±0.23 16.38±0.37 83.79±0.31 27.15±0.32 55.92±0.29 23.21±0.30
SEHG (SHGCN) 92.47±0.11 70.10±0.25 65.49±0.18 49.93±0.30 92.73±0.22 58.35±0.28 64.71±0.19 40.30±0.26
SEHG (SHGCN) - L∗P 87.39±0.21 25.50±0.18 58.03±0.25 26.20±0.22 88.35±0.30 25.59±0.20 62.27±0.25 23.15±0.22
SEHG (SHGCN) - SC 89.43±0.22 39.70±0.19 56.19±0.20 43.15±0.25 85.26±0.30 55.18±0.27 56.35±0.24 40.21±0.28
SEHG (SHGCN) - (L∗P+SC) 85.85±0.25 19.40±0.20 55.14±0.22 15.60±0.18 83.79±0.30 19.31±0.15 52.25±0.29 20.12±0.20
SEHG (HAN) 92.01±0.18 59.10±0.23 63.22±0.20 44.37±0.28 90.10±0.22 63.04±0.25 65.30±0.20 40.15±0.26
SEHG (HAN) - L∗P 90.30±0.20 23.70±0.22 60.33±0.25 24.93±0.20 87.58±0.28 35.74±0.18 61.50±0.25 23.10±0.22
SEHG (HAN) - SC 86.60±0.22 51.30±0.18 57.30±0.20 39.47±0.22 85.95±0.30 57.94±0.27 57.25±0.28 35.10±0.26
SEHG (HAN) - (L∗P+SC) 85.44±0.25 18.90±0.22 55.29±0.20 10.70±0.18 83.89±0.30 16.66±0.22 55.40±0.28 19.90±0.20

Specifically, let T denote test samples correctly predicted by the
model. For a test sample (𝑣𝑡 , 𝑦), we induce a graph �̃� based on all
the involved graph objects in its explanation. We then compute the
prediction𝑀

�̃�
(𝑣𝑡 ) and the predicted label 𝑦 based on �̃� .

The Table 6 highlights that SEHG consistently achieves the low-
est values for both 𝐹acc and 𝐹prob across multiple datasets and
perturbation methods, indicating its explanations are highly accu-
rate. In the DBLP dataset, SEHG exhibits the smallest fluctuation
in prediction accuracy and probability under methods like PGM-
Explainer, showing that its explanations are closely tied to its pre-
diction process. This pattern is seen across various metrics, with
SEHG outperforming models such as GNNE, HGT, and SHGAT in
minimizing prediction changes after perturbation.

For instance, in the DBLP dataset, SEHG achieves the lowest
𝐹acc (2.7) and 𝐹prob (1.1) under the PGM-Explainer method, out-
performing all other models by minimizing prediction fluctuations.
Similarly, in the IMDB dataset, SEHG consistently delivers superior
performance, recording the lowest 𝐹acc and 𝐹prob values across most
cases. In the ACM dataset, SEHG once again surpasses competing
models, maintaining the best results across all perturbation meth-
ods. These results demonstrate that SEHG’s predictions are highly
influenced by the explanations it generates, suggesting that its ac-
curacy and robustness are deeply connected to how well it captures
the structure of the graph during perturbation. Consequently, the
model’s lower values across different perturbation methods show
that its explanations are key factors in influencing graph prediction
outcomes.

B.5 Case Study Supplement
We conducted a case study to examine the effect of varying the
threshold 𝛿avg on 𝑀𝑠 , as shown in the results. When 𝛿avg is low,
the values of𝑀𝑠 tend to converge, making differentiation difficult.
As 𝛿avg gradually increases, the penalty loss becomes effective,
resulting in a clearer distinction between the deep blue and light
blue regions within𝑀𝑠 and a noticeable increase in sparsity. This
indicates that Penalty Loss, which enforces sparsity and penalizes

mask elements in undesirable ranges, is essential for maintaining
prediction accuracy and model explainability.

(a) 𝛿avg = 0 (b) 𝛿avg = 0.2 (c) 𝛿avg = 0.4

Figure 5: Case study in𝑀𝑠 with different 𝛿 .

B.6 Ablation Studies Supplement
The ablation study provides detailed insights into the effects of
Penalty Loss (L∗P, refers toLFP +LSP) and SimCLR (SC) on SEHG’s
performance across various backbones and datasets, as shown in Ta-
ble 7. SEHG consistently outperforms its variants, with the SHGAT
backbone generally exhibiting the highest performance across all
datasets. For instance, in the DBLP dataset, SEHG achieves the top
Micro-F1 and 𝐹+𝑎𝑐𝑐 (Top10) scores, with SHGAT also leading. The
removal of either L∗P or SC notably degrades performance, with
the largest declines observed in 𝐹+𝑎𝑐𝑐 (Top10) scores, highlighting
the critical role of these components.

The impact of L∗P is particularly significant, as its absence re-
sults in substantial reductions in both Micro-F1 and 𝐹+𝑎𝑐𝑐 (Top10)
scores. For example, in the IMDB dataset, removing L∗P leads to
a drop of up to 9.50% in Micro-F1 and a dramatic decrease in 𝐹+𝑎𝑐𝑐
(Top10). This indicates that L∗P plays a crucial role in enhancing
the model’s performance and accuracy. In contrast, while SimCLR
(SC) also contributes positively, its removal results in a less severe
drop in performance compared to L∗P. The reduction in Micro-F1
scores ranges from 2.67% (DBLP) to 12.42% (IMDB), demonstrating
that SC has a significant but slightly less critical impact.

Overall, the study underscores the importance of both L∗P and
SC in optimizing SEHG’s performance. The consistent advantage
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Figure 6: Visualization of Predictive Quality on DBLP. Different colors represent nodes from different categories.

of SEHG with different backbones, particularly SHGAT, reflects
the effectiveness of these components in improving the model’s
ability to provide high-quality explanations. The results highlight
that while both L∗P and SC are beneficial, Penalty Loss has a more
pronounced effect on maintaining and enhancing the model’s per-
formance across various datasets.

B.7 Visualization of Predictive Quality
We utilize t-SNE [17] to visualize the node representations pro-
duced by the model on the DBLP dataset, allowing us to explore
performance differences between SEHG and baseline variants. Fig. 6

illustrates these visualizations, projecting the node representations
generated by SEHG into a two-dimensional subspace.

From Fig. 6, it is evident that the node distribution for GCN is
disordered, contrasting with its performance in homogeneous tasks.
GAT displays a more structured distribution, with the represen-
tations of the four node categories beginning to separate, though
some confusion remains in the central region. The results of HAN,
SHGAT, and SeHGNN are similar, with the nodes being clearly di-
vided into four categories, but there are still classification errors and
insufficient clustering within classes. In contrast, SEHG achieves
the most optimal visualization, with nodes clearly separated into
four distinct clusters and a high degree of intra-class cohesion,
which aligns with SEHG’s superior predictive performance.
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