
Under review as a conference paper at ICLR 2023

MQSP: MICRO-QUERY SEQUENCE PARALLELISM FOR
LINEARLY SCALING LONG SEQUENCE TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Long sequence modeling of Transformer gains prevalence in fields involving long
texts and high-resolution images and videos but suffers from quadratic memory
complexity. Existing work investigates low-complexity variants or parallel methods
to handle it. The former attempts to approximate full attention and is limited by
a single device’s capacity. The latter struggles to manage quadratic memory
of attention maps, leading to insufficient sequence scalability. In this work, we
propose a novel parallel method named Micro-Query Sequence Parallelism. MQSP
slices sequences across devices and projects local queries, keys, and values in self-
attention. For communication and memory efficiency, MQSP all-gathers the queries
while keys and values remain locally to acquire the local attention map, on which a
distributed softmax gets conducted to amortize memory by column. Meanwhile,
the queries get further partitioned as Micro-Q to divide the computation and recycle
the attention map by row, jointly decomposing the quadratic memory to achieve
linear scalability. The evaluation result shows that MQSP scales up sequence length
linearly and achieves 4.5× sequence length of ColossalAI’s sequence parallelism
and 4.3× of Megatron-LM3, enabling training BERT-large of 78848 sequence
length on 32 A100 GPUs. MQSP can reduce up to 78.6% of memory occupation
and achieve up to 3.3× throughput when training on 17408 sequence length. The
convergence quality experiment proves that MQSP provides the means for long
sequences with guaranteed convergence, bringing the potential for the Transformer
to explore longer sequences.

1 INTRODUCTION

Transformer (Vaswani et al., 2017), an attention-based model initially proposed for natural language
processing (NLP), shows its promising potential in computer vision (CV), multi-modality, and more
(Carion et al., 2020; Dosovitskiy et al., 2021; Liu et al., 2022; Arnab et al., 2021; Neimark et al.,
2021; Radford et al., 2021; Wang et al., 2022). The self-attention associations between arbitrary pairs
of tokens enable the Transformer to learn global context-aware sequence representation for many
modalities. Furthermore, there is an emerging trend toward long-range modeling, which scales up the
sequence length of the Transformer. Long-range modeling is essential for the long texts in question
answering, document classification, and other NLP tasks, as well as the high-resolution pictures and
the series of video frames in image modality.

As the sequence gets extended, memory consumption increases rapidly due to the quadratic com-
plexity of self-attention, inevitably exceeding the limit of a single device (e.g., GPU). This problem
obstructs the exploration of the Transformer for modeling longer sequences. Recently researchers
focused on sparse mechanisms in self-attention (Child et al., 2019; Beltagy et al., 2020; Zaheer et al.,
2020) or low-complexity substitutes (Wang et al., 2020; Xiong et al., 2021; Choromanski et al., 2021;
Qin et al., 2022) to approximate full attention, boosting sequence length. However, besides concern
about performance influence, the memory upper bound of a single device still limits those methods
from scaling up further.

Much existing work investigates parallel methods to distribute the Transformer model across the
devices, such as tensor parallelism (Shoeybi et al., 2019), pipeline parallelism (Harlap et al., 2018;
Huang et al., 2019; Narayanan et al., 2021; Yang et al., 2022), and zero redundancy optimizer (ZeRO)
(Rajbhandari et al., 2020; Ren et al., 2021). However, these methods separate the model parameters

1

Under review as a conference paper at ICLR 2023

across different dimensions, not alleviating the enormous intermediate activations introduced by long
sequence self-attention.Therefore, several more recent methods are devoted to partitioning Trans-
former along the sequence dimension. ColossalAI’s sequence parallelism (Li et al., 2021) transfers
keys and values in ring-style to compute the partial attention map. Megatron-LM3 (Korthikanti et al.,
2022) modifies the conjugate operators to parallel layer-norms and dropouts in sequence dimension.
Despite amortizing some intermediate activations, these approaches still consume local memory
proportional to global sequence length, making it difficult to scale up to a longer sequence.

In this paper, we propose MQSP, a novel sequence parallel method, to diminish the quadratic memory
overhead and efficiently scale up the long sequence Transformer. MQSP splits the input sequence to
n devices for parallel computation and projects local queries, keys, and values in self-attention. We
design a distributed self-attention to handle the global context-awareness in self-attention. Specifically,
MQSP synchronizes the queries across the devices through an all-gather operation while the keys and
values remain local, acquiring local attention maps amortized along the column dimension. Since
the rows for softmax are incomplete locally, we conduct a distributed softmax with hierarchical
reduction across the devices, which introduces negligible communication. More importantly, we
divide local queries into m finer-grained queries, called Micro-Q, and process them step by step to
get the corresponding attention outputs. Each micro step’s memory space for the attention map would
be shared along the row dimension, jointly decomposing the quadratic memory for linearly scaling
up the sequence length.

The proposed MQSP shows significant sequence scaling ability compared with the existing leading
approaches. Our evaluation indicates that for the Transformer BERT-large (Kenton & Toutanova,
2019), MQSP could scale up to 78848 sequence length with 32 A100 GPUs, 4.5× of ColossalAI’s
sequence parallelism, and 38912 sequence length with 16 A100 GPUs, 4.3× of Megatron-LM3. In
memory usage and throughput comparison, MQSP saves 78.6% memory and achieves 3.3× speedup,
demonstrating the superiority of its distributed attention and communication method. Furthermore,
the convergence quality experiments on wikitext, SQuAD, QQP and MRPC datasets prove that MQSP
maintains the convergence quality for scaling up sequence length, bringing the prospect of exploring
longer sequences to Transformers.

2 RELATED WORK

This section briefly introduces the self-attention complexity and the parallel methods for Transformer.

Self-Attention Complexity. In the Transformer proposed by Vaswani et al. (2017), self-attention is
the vital module for the global dependencies modeling. Omit the batch and multi-head dimensions
for brevity. For the input hidden states x ∈ RL×dm , where L is the sequence length and dm is the
model hidden size, the attention mechanism can be formulated as:

Q,K, V = Lqkv(x), C = softmax(S)V = softmax(
QK⊺

√
dk

)V (1)

Where Lqkv is the linear layer projecting the tokens to Q,K ∈ RL×dk , and V ∈ RL×dv in the query,
key, and value embedding spaces. The scaled dot product of Q and K produces the attention scores
map S ∈ RL×L, which incurs the quadratic complexity O(L2). Subsequently, the softmax operation
along the rows converts S to attention probabilities P , which reweights V to the context output C.

Many recent approaches introduce sparse mechanisms, such as Sparse Trans. (Child et al., 2019),
Longformer (Beltagy et al., 2020), and BigBird (Zaheer et al., 2020), or low-complexity substitutes,
such as Linformer (Wang et al., 2020), Nyströmformer (Xiong et al., 2021), Performer (Choromanski
et al., 2021), and Cosformer (Qin et al., 2022). These methods algorithmically approximate the
full attention with sparsity or low-rank assumption, reducing complexity to O(LlogL) or O(L).
However, unsatisfied assumptions could meet performance deficiency in a broad task spectrum, and
accommodating the entire Transformer within one device still limits the further expansion of the
sequence length. Thus we set our sights on scaling up standard Transformer through more devices.

Parallel Methods for Transformer. Parallelism approaches have been the innovative techniques
for training the large Transformer. Pipeline parallelisms (Harlap et al., 2018; Huang et al., 2019;
Narayanan et al., 2021; Yang et al., 2022) split the model layerwise without handling self-attention
within layers. ZeRO (Rajbhandari et al., 2020) spreads the model’s parameters and the optimizer
states and conducts the same computation. Tensor parallelism in Megatron-LM (Shoeybi et al., 2019)

2

Under review as a conference paper at ICLR 2023

𝐿

𝐿

𝐻

(a) Megatron-LM3

𝐿/𝑛

𝐿

(b) ColAISP

𝐿/𝑚𝑛

𝐿/𝑛

×	𝑛

(c) MQSP

Figure 1: The attention maps for (a) Megatron-LM3, (b) ColossAI sequence parallelism, and (c) the
proposed MQSP, with memory complexity of O(Hn L2), O(H L2

n), and O(H L2

mn).

decomposes the continuous linear layers and divides self-attention along multi-heads dimension (Fig.
1a). The methods above deal with model parameters but not the tremendous intermediate activations
in self-attention that are quadratic to the sequence length, insufficient to scale up the sequence.

Therefore, slicing along the sequence dimension comes into mind for scaling long sequence Trans-
former. Intuitively, the input sequence x could be split into n chunks, x → {x0, x1, .., xn−1}, where
xi ∈ RL

n×dm , and fed into n devices to compute in parallel. With similar insight, ColossalAI (Bian
et al., 2021) proposed sequence parallelism (Li et al., 2021), or ColAISP for short. Considering the
global associations of local query/key/value embeddings, which are projected in self-attention as
Qi,Ki, Vi = Lqkv(xi), ColAISP designs Ring Self-Attention as:

Ci = softmax(Si,:)V = softmax(
Qi

RingQK︷ ︸︸ ︷[
K⊺

0 ,K
⊺
1 , ...,K

⊺
n−1

]
√
dk

)

RingAV︷ ︸︸ ︷[
V ⊺
0 , V ⊺

1 , ..., V ⊺
n−1

]⊺
(2)

By ring-style transferring Ki and Vi, ColAISP circularly computes QiK
⊺
j to collect the partial

attention scores map Si,: ∈ RL
n×L(Fig. 1b). It indicates that ColAISP requires quadratic device

resources n to scale up L. Additionally, the efficiency of ring communication suffers from the weakest
link, e.g., inter-node bandwidth. Megatron-LM3 (Korthikanti et al., 2022) modifies its conjugate
operators to all-gather/reduce-scatter to introduce sequence parallelism in layer-norms and dropouts,
yet leaves the self-attention in tensor parallel mode, resulting in the same quadratic attention maps.

3 METHOD

MLP

Add & Norm

Add & Norm

MLP

Add & Norm

Add & Norm

MLP

Add & Norm

Add & Norm

Attention
Map

𝑥! 𝑥"#!

𝑄$

𝑉$
𝐾$

𝑉!
𝐾! 𝑉"#!

𝐾"#!

𝑄!

𝑄"#!

𝑥$

Self-Attention

…

…

…

𝑦! 𝑦"#!𝑦$

softmax

Figure 2: Illustration of sequence paral-
lelism. Besides self-attention with global
associations and softmax, other modules
natively support sequence parallelism.

This section introduces the proposed Micro-Query Se-
quence Parallelism. We analyze the communication pat-
terns in self-attention and propose Micro-Q for reused
memory. Then the distributed softmax is described. Fur-
thermore, we compare memory usage with other meth-
ods and analyze scalability.

3.1 MICRO-QUERY SEQUENCE PARALLELISM

Instead of dividing model parameters along different
dimensions in previous parallel methods, we focus on
the sequence dimension that affects intermediate activa-
tions. When the input sequences are partitioned and fed
to devices in parallel, most modules, such as multi-layer
perceptron (MLP), dropout, and layer normalization,
are computed independently of the sequence dimension.
However, as illustrated in Fig. 2, self-attention across
devices does not natively support sequential parallelism.
In MQSP, we dive into the self-attention mechanism to
attain distributed attention with efficient communication
and memory usage.

3

Under review as a conference paper at ICLR 2023

𝑥!

𝑄!

𝐾!
𝑉!

𝑞!"

𝑞!# $%

𝑞!
&

𝑄# 𝑆!
𝑃!

#

×	𝑚

𝑐!
&

𝐶!
#

𝑐!"

𝑐!#$%

𝐶!

rank 𝑖

other ranks
𝑥%&! 𝐶%&!

d-softm
ax

𝑄#
𝑞'(!
&

𝑆%&!
𝑃%&!

#

𝑐'(!
&

𝐶%&!
#

Micro-Q

𝐟

𝑥

𝐟

Figure 3: Overview of the MQSP self-attention. f and f are the conjugate all-gather/reduce-scatter
communication operations. The dotted box for m times would reuse memory space. The red dotted
arrow lines represent the aligned row for distributed softmax.

Attention Analysis. Recalling the general form of self-attention in Eq. 1, the self-attention for
each query can be analyzed independently. Assuming the k-th query in Q is qk ∈ R1×dk , the
corresponding context ck is calculated as:

ck = softmax(Srowk,:)V = softmax(
qkK

⊺

√
dk

)V (3)

Where Srowk,: ∈ R1×L represents the k-th row of the attention scores map. ColAISP transfers Ki as
a ring and multiplies with qk to collect the complete Srowk,:, which encounters efficiency deficiency
in a bandwidth-imbalanced environment and includes the L factor of memory overhead. In contrast,
MQSP chooses to share the qk across the devices, remaining Ki and Vi locally. In this way, each
rank only needs to compute Srowk,i ∈ R1×L

n , its corresponding columns of attention scores:

ck =
∑n−1

i=0
d-softmax(Srowk,i)Vi = f(d-softmax(

f(qk)K⊺
i√

dk
)Vi) (4)

Where d-softmax means the distributed softmax operation to acquire the corresponding columns of
attention probabilities, further described in section 3.2. For the communications required here, we
define f as qk synchronization across devices and f as locally reweighted Vi reduce-summation, e.g.,
broadcast/reduce or all-gather/reduce-scatter, as shown in Fig. 4. f and f are conjugate, which means
the forward pass of one equals the backward pass of the other. Considering the symmetric workload
across devices and the efficiency of the duplex collective communication, we adopt all-gather/reduce-
scatter as the conjugate operators to demonstrate our method (Fig. 3).

Micro-Q. The complete attention includes the whole sequence qk∈[0,L) in Eq. 4, leading to the
equally significant attention scores S:,i ∈ RL×L

n . To this end, we propose Micro-Q, the finer-grained
query, to reduce memory consumption orthogonally. For a number m of Micro-Q, the local query Qi

gets chunked as {q0i , ..., q
m−1
i }, as depicted in the red box of Fig. 3, where qji ∈ R L

mn×dk would be
the j-th micro-step’s input on the i-th device. The following f all-gathers qji∈[0,n) to form the shared

attention + d-softmax + reweight

Forward:
broadcast

Forward:
reduce

Backward:
reduce

Backward:
broadcast

𝑞! 𝑞" 𝑞#

𝑐! 𝑐" 𝑐#

𝐟 ̅

𝐟

...

...device 0 device 1 device n-1
𝑞! 𝑞" 𝑞#

𝑐! 𝑐" 𝑐#

Forward:
all-gather

Forward:
reduce-scatter

Backward:
reduce-scatter

Backward:
all-gather𝐟 ̅

𝐟

attention + d-softmax + reweight

...

...

...

...

...

...

...

...

device 0 device 1 device n-1

Figure 4: Conjugate pair comparisons. Broadcast/reduce: asymmetric simplex one-to-all communica-
tion for n times. All-gather/reduce-scatter: symmetric duplex collective communication for once.

4

Under review as a conference paper at ICLR 2023

and concatenated Qj ∈ R L
m×dk . Hence the distributed attention in a minor range could be conducted

as:

Cj
i = d-softmax(Sj

i)Vi = d-softmax(
QjK⊺

i√
dk

)Vi (5)

Where the Cj
i is the sub-context matching Qj on the i-th device. The memory complexity of each

micro-step’s attention scores map Sj
i would be R L

m×L
n , illustrated as in Fig. 1c. The memory space

could be reused across the micro-steps, implemented through the checkpointing technique (Chen
et al., 2016). The existing methods typically employ layerwise checkpointing, not addressing the
excess intermediate activations within a single layer, while MQSP fractionizes it to finer-grained
partitions. At last, f conducts reduce-scatter to sum up the sub-contexts Cj

i back to their ranks, as the
reduced micro-context cji . Each rank concatenates micro-contexts to produce its local context Ci.

Comparison. Compared with RL
n×L in ColAISP, MQSP requires only R L

m×L
n memory space for the

attention map. Coefficient n along column axis and coefficient m along row axis make joint efforts to
disintegrate the quadratic memory of the Transformer, enhancing the scalability of sequence length.

In concern of communication, ColAISP transfers queries and keys in rings while MQSP collectively
transfers queries and contexts, incurring comparable communication volumes. However, in the
heterogeneous network environment, e.g., a cluster with 4 nodes × 8 GPUs with Nvlink, the ring-
style ColAISP suffers from the bottleneck of the low inter-node bandwidth. In contrast, the duplex
collective MQSP benefits from the hierarchical NCCL (Nvidia). Additionally, if ColAISP adopts the
Micro-Q method to reduce memory overhead, the ring communication would be repeated m times,
unlike amortized in MQSP. Since the inputs and outputs are uncorrelated among the micro-steps, we
could alleviate communication overhead by overlapping with the other step’s computation, further
boosting efficient distributed self-attention (Appx. A.3).

3.2 DISTRIBUTED SOFTMAX

This section introduces the distributed softmax with low cost in MQSP. A similar technique could
be found in ArcFace (Deng et al., 2019) to recognize large-scale faces. ArcFace sums up the local
denominator in the forward pass, while the backward formula is simplified with a cross-entropy loss.
Here we analyze the general softmax. Defining the whole sequence of scores as [s0, s1, ..., sL−1]
(σ = max(si∈[0,L))) and the probabilities as [p0, p1, ..., pL−1], the original form is formulated as:

pi =
exp(si − σ)∑L−1

j=0 exp(sj − σ)
, ∇si == ∇pi × pi(1− pi) +

∑L−1

j ̸=i
∇pj × (−pipj) (6)

In MQSP, the scores are distributed across devices, which incurs O(n−1
n L) communications cost

and O(L) memory overhead in the form of Eq. 6. To this end, we convert the arithmetic form and
hierarchically reduce the maximum or summation, to attain an efficient distributed softmax:

pi =
θi

rsum(Θi)
, ∇si = λi − pi × rsum(Λi) (7)

Where rsum means the reduce-sum operation. θi = exp(si − σ) and its local summation is Θi.
λi = ∇pi × pi and its local summation is Λi. Please refer to Appx. A.2 for details of mathematical
derivation. It introduces only O(n− 1) complexity to allreduce-sum the scalar of local summation,
negligible compared with Eq. 6. The pseudo-code of the distributed softmax is given in Algo. 1.

Algorithm 1 The forward and backward pass of the distributed softmax.

1 # s: local attention scores
2 # [..., qDim, LocalSeqDim]
3 def d_softmax_forward(s):
4 max_local = s.max(-1) # [..., qDim]
5 max_global = all_reduce(max_local, op=MAX)
6 s_exp = (s - max_global[..., None]).exp()
7 sum_local = s_exp.sum(-1) # [..., qDim]
8 sum_global = all_reduce(sum_local, op=SUM)
9 p = s_exp / sum_global[..., None]

10 return p

1 # p: local attention probabilities
2 # p_grad: gradient of p
3 # both in [..., qDim, LocalSeqDim]
4 def d_softmax_backward(p, p_grad):
5 P = p_grad * p
6 sum_local = P.sum(-1) # [..., qDim]
7 sum_global = all_reduce(sum_local, op=SUM)
8 s_grad = P - p * sum_global[..., None]
9 return s_grad

5

Under review as a conference paper at ICLR 2023

Table 1: Memory consumption comparison of model parameters and intermediate activations for the
vanilla Transformer and the different parallel methods for the Transformer.

METHOD MODEL PARAMETERS INTERMEDIATE ACTIVATIONS

VANILLA TRANSFORMER (8 + 4
H)D2 10BDL+ 2BHL2

MEGATRON-LM3 (8 + 4
H)D

2

n (2 + 8
n)BDL+ 2BH L2

n

COLAISP (8 + 4
H)D2 11BDL

n + 2BH L2

n

MQSP (8 + 4
H)D2 10BDL

n +BD L
m + 2BH L2

mn

3.3 MEMORY USAGE ANALYSIS

This section analyzes the memory usage of the model parameters and intermediate activations in
a single Transformer layer. We omit the gradients and optimizer states proportional to the model
parameters and the statistical buffers or masks in dropout and layer normalization. B,H,L, n,
and m represent the batch size, multi-head size, sequence length, device number, and Micro-Q
number, respectively. To be concise, we assume D = dm = Hdv = Hdk, consistent with most
implementations.

As for the model parameters, the linear layers in MLP take 8D2, and the Lqkv and output layer in
self-attention take 4D2

H . It is the same for the vanilla transformer and sequence parallel methods,
while Megatron-LM3 divides it by n. For the intermediate activation, the MLP takes 5BDL, and
the self-attention takes 5BLD + 2BHL2. MQSP divides the MLP part by n and introduces the 1

mn

factor in the attention map and an all-gathered Micro-Q buffer BD L
m . We apply the same memory

analysis on Megatron-LM3 and ColAISP (Appx. A.4), as shown in Tbl. 1.

According to the analysis, tensor parallelism has memory superiority in model parameters, yet the
intermediate activations consume most memory in the long sequence Transformer. The activations
of previous methods include L or L2

n factors, which limit their sequence scalability. Contrastively,
MQSP adjusts the granularity of Micro-Q m, attaining efficient memory usage. Assuming the
remained upper bound memory for intermediate activations as M and adjusting m equivalent to n:

m = n, 10BD
L

n
+BD

L

m
+ 2BH

L2

mn
≤ M ⇒ L ≤ (

√
(
11D

2H
)2 +

M
2BH

− 11D

2H
)n = Cn (8)

The maximum L grows proportionally to n with a constant C, demonstrating the linear scalability of
MQSP. It meets L

mn ≥ 1 to ensure Micro-Q includes at least one query, which indicates Eq. 8 in the
condition of n ≤ C, L ≤ C2. Moreover, owing to the query granularity flexibility, we can set a larger
m to obtain finer-grained Micro-Q to save memory, attaining further sequence length scaling.

4 EVALUATIONS

This section evaluates the proposed MQSP, verifying its convergence quality and comparing it with
other parallel methods in sequence length scalability, memory footprint, and throughput. We further
investigate the influence of the Micro-Q setting. Specifically, we implement MQSP with Pytorch-1.9
(Paszke et al., 2019), referencing Bert (Kenton & Toutanova, 2019) implemented in the HuggingFace
transformers (Wolf et al., 2020). The experimental hardware is a private cluster, each node containing
Intel(R) Xeon(R) Platinum 8369B CPU, 760-GB of RAM, and eight 80-GB A100 GPUs with
Nvlink, resulting in 96 times intra-node bandwidth compared with inter-node (300 GBps v.s. 25
Gbps).

4.1 QUALITY OF CONVERGENCE

MQSP distributes Transformer in sequence dimension to scale up long sequences with the full
attention in the vanilla Transformer. To verify the convergence of MQSP, we experiment with our
MQSP and distributed data parallel (DDP) on the datasets, including WikiText-103 (Stephen et al.,
2017), SQuAD (Rajpurkar et al., 2016), QQP, and MRPC(Wang et al., 2018).

6

Under review as a conference paper at ICLR 2023

WikiText SQuAD

Figure 5: Part of the training loss.

TASKS(METRIC) DDP MQSP
WIKITEXT(PPL) 2.979 2.987
SQUAD(F1) 86.37 87.17

QQP(F1) 72.10 73.49
MRPC(F1) 86.38 87.99

Table 2: The convergence results.

We set the same parallel size as data parallel, e.g., n = 8 in one node, and identical training
hyperparameters. The convergence results are shown in Tbl. 2, and the training loss curves are
depicted in Fig. 5. The similar convergence quality demonstrates that MQSP provides a means for
long sequences under the guarantee of convergence, which brings exploration space for Transformer
toward longer sequences.

4.2 SEQUENCE LENGTH SCALABILITY

012 4 8 16 32
Device Number

0
1
2
3
4
5
6
7
8
9

10
11
12
13

M
ax

 S
eq

ue
nc

e
Le

ng
th

(×
10

)
MQSP-eq
MQSP-mem
ColAISP
Megatron-LM

Figure 6: Comparison of maximum sequence
lengths for training the Transformer as the GPU
scale increases.

This subsection demonstrates the superior
sequence length scalability of the proposed
MQSP. We compare the maximum sequence
lengths achieved by the Transformer using dif-
ferent distributed approaches as the number of
devices increases.

We evaluate the methods by training the BERT-
large model (Kenton & Toutanova, 2019). We
use the batch size of 16 and the Adam op-
timizer following Kenton & Toutanova. No-
tably, because the checkpointing technique in
the Micro-Q mechanism erases layers’ stacked
self-attention activations, we apply layerwise
checkpointing to eliminate the accumulated ac-
tivations across the Transformer layers for a
fair comparison. Furthermore, for each partic-
ular number of devices n, we configure MQSP
in two ways: a) MQSP-eq, where m = n for
linear scalability as analyzed in section 3.3, and
b) MQSP-mem, where m = L/n as the finest-
grained Micro-Q to investigate the largest scaling potential. MQSP-mem serves as an upper bound
reference, and for more about the Micro-Q setting, please refer to section 4.5.

As shown in Fig. 6, the maximum sequence lengths of these methods are measured on 2n GPUs,
ranging from 1 to 32. The metric data range for Megatron-LM3 is limited to 24 GPUs because the
tensor parallel size must be able to divide multi-head dimension, which is 16 in BERT-large. In
comparison, the scalability of the sequence parallel methods is less constrained.

We observe that MQSP-eq acquires 3.2× and 4.3× longer sequence than ColAISP and Megatron-
LM3 (38912 v.s. 12160/8960) when 24 GPUs, and 4.5× than ColAISP (78848 v.s. 17408) when 25

GPUs. MQSP-eq requires only a quarter of GPUs to achieve the maximum sequence of ColAISP and
Megatron-LM3, denoted by the dotted arrow lines.

As the GPUs increase, Megatron-LM3 and ColAISP climb at a consistently decreasing rate, while
MQSP-eq scales up almost linearly with a slope of C = 2464. As analyzed in section 3.3, MQSP
maintains linear scalability under the condition of n ≤ 2464, L ≤ 24642, which is practically a hardly
attainable upper bound. It demonstrates that our MQSP resolves the quadratic memory overhead
in the long sequence Transformer and achieves superior sequence length scalability. Moreover,
MQSP-mem achieves further scalability, about 2× compared with MQSP-eq, even on a single device
(6144 v.s. 2688). It proves that the flexibility of the Micro-Q brings the potential to a more extended
sequence, orthogonal to the sequence parallelism.

7

Under review as a conference paper at ICLR 2023

2500 5000 7500 10000 12500 15000 17500
Sequence Length

0

10

20

30

40

50

M
em

or
y

Fo
ot

pr
in

t
(G

B
pe

r d
ev

ice
)

MQSP
MQSP w/o l_ckpt
ColAISP
Megatron-LM3

0 5000 10000 15000 20000 25000 30000 35000
Sequence Length

0

10

20

30

40

50

M
em

or
y

Fo
ot

pr
in

t
(G

B
pe

r d
ev

ice
)

MQSP
MQSP w/o l_ckpt
ColAISP
Megatron-LM3

0 10000 20000 30000 40000 50000 60000 70000
Sequence Length

10

20

30

40

50

M
em

or
y

Fo
ot

pr
in

t
(G

B
pe

r d
ev

ice
)

MQSP
MQSP w/o l_ckpt
ColAISP

2500 5000 7500 10000 12500 15000 17500
Sequence Length

10

20

30

40

50

Th
ro

ug
hp

ut
(k

To
ke

ns
/s

)

MQSP
MQSP w/o l_ckpt
ColAISP
Megatron-LM3

A
B

(a) 1n8g

0 5000 10000 15000 20000 25000 30000 35000
Sequence Length

6

8

10

12

14

16

18

Th
ro

ug
hp

ut
(k

To
ke

ns
/s

)
A

MQSP
MQSP w/o l_ckpt
ColAISP
Megatron-LM3

(b) 2n16g

0 10000 20000 30000 40000 50000 60000 70000
Sequence Length

4

6

8

10

12

14

16

Th
ro

ug
hp

ut
(k

To
ke

ns
/s

)

MQSP
MQSP w/o l_ckpt
ColAISP

B

(c) 4n32g

Figure 7: Comparison of the memory footprint and the token throughput with sequence length scaling
up. w/o l ckpt means without layer checkpointing.

4.3 MEMORY FOOTPRINT

In the sequence length experiment, MQSP achieves longer sequences with superior scalability,
reflecting the advantage of MQSP’s low memory footprint. Here, we conduct a more specific memory
footprint comparison. Inheriting the model and training settings from the previous section, we arrange
the experimental environments as 1n8g, 2n16g, and 4n32g, where XnY g represents Y -GPUs
of X nodes in our cluster. MQSP below represents MQSP-eq for linear scalability setting. In
addition, since the checkpointing in Micro-Q erases most stacked activations, we also evaluate MQSP
without layer checkpointing, w/o l ckpt for short, to compare the memory and throughput. With
the consistent hardware resources, we scales up the sequence length and compare their maximum
allocated memory during training, as shown in the top row of Fig. 7.

Except for Megatron-LM3’s advantage in short sequences with fewer model parameters, MQSP
occupies less memory footprint than other methods on most configurations, saving up to 78.6%
memory when 17408 on 4n32g, as denoted by the dotted arrow line. Even with stacked activations,
MQSP w/o l ckpt also requires less memory in long sequences. It indicates that MQSP expects
less memory to support the training of long sequence Transformer. Furthermore, the memory
advantage of MQSP grows with longer sequences, benefiting from its advantageous memory efficiency
in self-attention.

4.4 THROUGHPUT

Token Throughput. In addition to the capability for training longer sequence Transformer, training
efficiency also deserves attention. We also conduct the token throughput comparison, as shown in
the bottom row of Fig. 7. The throughputs generally decline with sequence length scaling up due
to the quadratic computation complexity in self-attention. For the maximum sequence in different
environments, MQSP achieves similar token throughput, demonstrating that MQSP could scale up
N× sequence length with N× devices and N× time consumption.

In 1n8g, Megatron-LM3 has throughput advantages, and MQSP w/o l ckpt is comparable
with ColAISP, while MQSP scales up to 18432 sequence without a significant drop in throughput.
When training longer sequences, which are 8192 for Megatron-LM3 and 17408 for ColAISP, their
insufficient scalability incurs the inter-node parallel group, marked as A and B in Fig. 7. Our
MQSP supports the same length within one node, achieving 2.1× and 3.3× throughput per device
to Megatron-LM3 and ColAISP, respectively. MQSP also has throughput advantages in multi-node
environments, benefiting from efficient collective communications. In addition, MQSP w/o l ckpt

8

Under review as a conference paper at ICLR 2023

gains further throughput with less recomputation while maintaining better sequence scalability than
other methods.

Time Ratios. To analyze the throughput advantage of MQSP, we measure the time consumption ratios
in a Transformer layer for MQSP and ColAISP. Configuring two environments as 1n4g and 2n16g,
we train these two sequence parallel methods on their maximum sequence and profile the execution
timeline of the forward passes. Here we adopt no overlapping to directly show the intra-node and
inter-node communication costs. Fig. 8 exhibits the ratios of each part.

6%

22%

32%

13%

1% 11%

15%

(a) MQSP-1n4g

5%

19%
36%

13%

12%

16%

(b) ColAISP-1n4g

0%

25%

36%

17%
1%

19%

1%

(c) MQSP-2n16g

1%

12%

8%
12%

65%

3%

(d) ColAISP-2n16g

6%

22%

32%

13%

1% 11%

15%

Lqkv
q·k
Softmax
p·v
S_commu
Commu
MLP

Figure 8: Pie charts of time consumption with the communication part emphasized. The numeric suffix
represents the number of nodes and GPUs. It indicates MQSP’s efficient inter-node communication.

The order parts are the projection of Lqkv, dot-production of q and k, softmax or d-softmax, v
reweighting, d-softmax communications, ring or conjugate communications, and the MLP. It demon-
strates that d-softmax introduces negligible communication costs. The communication costs occupy
acceptably low ratios in intra-node scope for both MQSP and ColAISP, 11% and 12%, respectively.
In an inter-node environment, the inadequate bandwidth between nodes results in different increased
communication ratios, 19% for MQSP but 65% for ColAISP, as a sharper performance drop. It proves
that the duplex collective communication adopted by MQSP brings an advantage in a heterogeneous
network environment, compared with ColAISP’s ring-style one restricted by the lowest link.

4.5 MICRO-Q SETTING

1 2 4 8 16 32 64 128 256 512
Micro-Q m

0

5

10

15

20

25

30

M
em

or
y

Us
ag

e
(G

B)

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (k

To
ke

ns
/s

)

Figure 9: Memory (bar) and throughput (line)
for different Micro-Q settings.

Micro-Q serves as the core part of the proposed
MQSP, introducing the number m of Micro-Q as a
new hyperparameter. Thus this subsection explores
the effect of how we set m. Training the BERT-
large on 8192 sequence on 2n16g, we vary m to
measure the maximum allocated memory and the
throughput. As shown in Fig. 9, the memory gain
saturates as m reaches a certain level, for Micro-
Q’s attention computation is no longer where the
maximum memory allocation occurs. Moreover, the
throughput drops slowly as m increases and then
drops off rapidly after the memory gain saturates.
The reason could be that excessive segmentation
results in inefficient tiny computations and communications. The result indicates that we could make
the trade-off between speed and memory, benefiting from the flexibility of the Micro-Q mechanism.

5 CONCLUSION

This paper presents the Micro-Query sequence parallelism, an efficient distributed method for linearly
scaling long sequence Transformer. MQSP achieves distributed self-attention through all-gathering
queries, maintaining only partial columns of attention map with a low-cost distributed softmax.
Furtherly, MQSP introduces the finer-grained query, Micro-Q, to reuse memory among the rows
of attention map, jointly decomposing the quadratic memory. MQSP attains 4.5× sequence length
compared with ColAISP and 4.3× with Megatron-LM3, achieving up to 78848 sequence on 32 A100
GPUs. The flexibility of Micro-Q boosts further scalability orthogonally, even on a single device.
MQSP saves 78.6% memory and achieves 3.3× speedup in memory and throughput evaluations.
With guaranteed convergence, MQSP facilitates scaling longer sequence Transformer.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
Vivit: A video vision transformer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 6836–6846, 2021.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Zhengda Bian, Hongxin Liu, Boxiang Wang, Haichen Huang, Yongbin Li, Chuanrui Wang, Fan Cui,
and Yang You. Colossal-ai: A unified deep learning system for large-scale parallel training. arXiv
preprint arXiv:2110.14883, 2021.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European conference on computer
vision, pp. 213–229. Springer, 2020.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. In International Conference on Learning Representations,
2021.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
loss for deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 4690–4699, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2021.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R.
Ganger, and Phillip B. Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. ArXiv,
abs/1806.03377, 2018.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32, 2019.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer models.
arXiv preprint arXiv:2205.05198, 2022.

Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Sequence parallelism:
Long sequence training from system perspective. arXiv e-prints, pp. arXiv–2105, 2021.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12009–12019, 2022.

Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia. Memory-efficient
pipeline-parallel dnn training. In International Conference on Machine Learning, pp. 7937–7947.
PMLR, 2021.

10

Under review as a conference paper at ICLR 2023

Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. Video transformer network. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3163–3172, 2021.

Nvidia. Nvidia collective communication library (nccl), 2022. https://github.com/nvidia/
nccl.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In International Conference
on Learning Representations, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In ICML, 2021.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP, 2016.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. {ZeRO-Offload}: Democratizing {Billion-Scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551–564, 2021.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Merity Stephen, Xiong Caiming, Bradbury James, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou,
Jingren Zhou, and Hongxia Yang. Unifying architectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. In ICML, 2022.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn M. Fung, Yin Li,
and Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention.
Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial
Intelligence, 35 16:14138–14148, 2021.

11

https://github.com/nvidia/nccl
https://github.com/nvidia/nccl

Under review as a conference paper at ICLR 2023

PengCheng Yang, Xiaoming Zhang, Wenpeng Zhang, Ming Yang, and Hong Wei. Group-based
interleaved pipeline parallelism for large-scale dnn training. In International Conference on
Learning Representations, 2022.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems, 33:17283–17297, 2020.

A APPENDIX

A.1 PSEUDO-CODE

Communication Operators.

Algorithm 2 The pseudo-code of the conjugate communication operators.

1 class AllGatherQMicro(autograd.Function):
2 def forward(ctx, q_micro):
3 q = all_gather(q_micro)
4 return q
5 def backward(ctx, q_grad):
6 q_micro_grad = reduce_scatter(q_grad)
7 return q_micro_grad

1 class ReduceScatterC(autograd.Function):
2 def forward(ctx, c):
3 c_micro = reduce_scatter(c)
4 return c_micro
5 def backward(ctx, c_micro_grad):
6 c_grad = all_gather(c_micro_grad)
7 return c_grad

Micro-Q Implementation.

Algorithm 3 The pseudo-code of the implementation of Micro-Q in self-attention.
1 class DistributedSelfAttention(nn.Module):
2 def forward(self, x):
3 Q, K, V = L_qkv(x)
4 c_micro_lst = []
5 for q_micro in Q.chunk(m):
6 c_micro = checkpoint(self.softmax_reweight, q_micro, K, V)
7 c_micro_lst.append(c_micro)
8 return cat(c_micro)
9 def softmax_reweight(self, q_micro, K, V):

10 Q_ = AllGatherQMicro.apply(q_micro)
11 attn_scores = matmul(_Q, K.T()) / sqrt(d_k)
12 attn_probs = DistributedSoftmax.apply(attn_scores)
13 C_ = matmul(attn_probs, V)
14 c_micro = ReduceScatterC.apply(C_)
15 return c_micro

A.2 MATHEMATICAL DERIVATION OF DISTRIBUTED SOFTMAX

Consider an arbitrary row of the attention map of the scores and probabilities as Srowk,:, Prowk,: ∈
R1×L. To be specific, they include [s0, s1, ..., sL−1] and [p0, p1, ..., pL−1]. For a numerically stable
softmax, si would minus their maximum value σ = max(si∈[0,L)) before exponentiating:

pi =
exp(si − σ)∑L−1

j=0 exp(sj − σ)
(9)

Mathematically, according to the derivative Jacobian matrix of softmax:
∂pi
∂si

= pi(1− pi),
∂pi
∂sj

= −pipj(i ̸= j) (10)

For the training error e, the gradients for si could be backpropagated as:

∇esi =
∑L−1

j=0
∇epj ×

∂pj
∂si

= ∇epi × pi(1− pi) +
∑L−1

j ̸=i
∇epj × (−pipj)

(11)

12

Under review as a conference paper at ICLR 2023

Specifically, we get each device’s local maximum scores σi = max(sj∈[il,(i+1)l)) before commu-
nicating to collect σ = rmax(σi), where rmax means the allreduce-max operation. Defining the
exponent of the normalized scores as θi = exp(si − σ), we sum them up in stages:

Θi =
∑(i+1)l−1

j=il
θj , pi =

θi
rsum(Θi)

(12)

Where rsum means the reduce-sum operation. Similarly, for the backward pass, we define λi =

∇epi × pi and its local summation Λi =
∑(i+1)l−1

j=il λj . The form of backpropagation could be
changed as:

∇esi = ∇epi × pi +
∑L−1

j=0
∇epj × (−pipj)

= ∇epi × pi − pi ×
∑L−1

j=0
∇epj × pj

= λi − pi × rsum(Λi)

(13)

A.3 OVERLAPPING

As shown in Fig. 10, the computation of softmax on Micro-Q and values reweighting can overlap
with other micro steps’ communication of all-gather and reduce-scatter, offsetting the time overhead.

All-Gather Reduce-Scatter

softmax_reweight

(a) w/o Micro-Q

All
Gather_0

Reduce
Scatter_0

softmax
reweight_0

All
Gather_1

Reduce
Scatter_1

softmax
reweight_1

(b) Micro-Q w/o overlapping

All
Gather_0

Reduce
Scatter_0

softmax
reweight_0

All
Gather_1

Reduce
Scatter_1

softmax
reweight_1

(c) Micro-Q with overlapping

Figure 10: The overlapping of computation and communication.

A.4 DETAILS ON MEMORY FOOTPRINT

B,H,L, n, and m represent the batch size, multi-head size, sequence length, device number, and
Micro-Q number, respectively. Assume D = dm = Hdv = Hdk.

Vanilla Transformer.

Model parameters:

• MLP: The first linear layer dm × 4dm, and the second 4dm × dm.
• Self-attention: Lqkv layer 3× dm ×Hdk, and output layer Hdv × dm.

• Summation: 8d2m + 3Hdmdk +Hdmdv = (8 + 4
H)D2

Intermediate activations:

• MLP: Input BLdm, and intermediate BL4dm.

13

Under review as a conference paper at ICLR 2023

• Self-attention: Input BLdm, Lqkv produces 3 × BHLdk, attention scores and probabilities
2×BHL2, and reweighted value BHLdv .

• Summation:

5BLdm +BLdm +BHL(3dk + dv) + 2BHL2 = 10BDL+ 2BHL2

Megatron-LM3.

Model parameters:

• MLP: The first linear layer dm × 4dm

n , and the second 4dm

n × dm.

• Self-attention: Lqkv layer 3× dm × H
n dk, and output layer H

n dv × dm.

• Summation: 8d2
m

n + 3Hdmdk+Hdmdv

n = (8 + 4
H)D

2

n

Intermediate activations:

• MLP: Input BLdm, and intermediate BL4dm

n .

• Self-attention: Input BLdm, Lqkv produces 3 × BH
n Ldk, attention scores and probabilities

2×BH
n L2, and reweighted value BH

n Ldv .
• Summation:

BLdm +
4BLdm

n
+BLdm +

BHL(3dk + dv) + 2BHL2

n
= (2 +

8

n
)BDL+ 2BH

L2

n

ColAISP.

Model parameters: Same as the Vanilla Transformer.

Intermediate activations:

• MLP: Input B L
ndm, and intermediate B L

n4dm.

• Self-attention: Input B L
ndm, Lqkv produces 3 × BH L

ndk, attention scores and probabilities
2×BH L

nL, the ring buffer BH L
ndk, and reweighted value BH L

ndv .
• Summation:

5BLdm
n

+
BLdm +BHL(4dk + dv) + 2BHL2

n
= 11BD

L

n
+ 2BH

L2

n

MQSP.

Model parameters: Same as the Vanilla Transformer.

Intermediate activations:

• MLP: Input B L
ndm, and intermediate B L

n4dm.

• Self-attention: Input B L
ndm, Lqkv produces 3 × BH L

ndk, attention scores and probabilities
2×BH L2

mn , the all-gather Micro-Q buffer BH L
mdk, and reweighted value BH L

ndv .
• Summation:

5BLdm
n

+
BLdm +BHL(3dk + dv)

n
+
BHLdk

m
+
2BHL2

mn
= 10BD

L

n
+BD

L

m
+2BH

L2

mn

14

	Introduction
	Related Work
	Method
	Micro-Query Sequence Parallelism
	Distributed Softmax
	Memory Usage Analysis

	Evaluations
	Quality of Convergence
	Sequence Length Scalability
	Memory Footprint
	Throughput
	Micro-Q Setting

	Conclusion
	Appendix
	Pseudo-Code
	Mathematical Derivation of Distributed Softmax
	Overlapping
	Details on Memory Footprint

