Hierarchical Network Fusion for Multi-Modal
Electron Micrograph Representation Learning with
Foundational Large Language Models

Sakhinana Sagar Srinivas'; Geethan Sannidhi?] Venkataramana Runkana'
TCS Research!, International Institute of Information Technology(IIIT)?
sagar.sakhinana@tcs.com, geethan.iiitp.ac.in, venkat.runkana®@tcs.com

Abstract

Characterizing materials with electron micrographs is a crucial task in fields such

as semiconductors and quantum materials. The complex hierarchical structure

of micrographs often poses challenges for traditional classification methods. In

this study, we propose an innovative backbone architecture for analyzing electron

micrographs. We create multi-modal representations of the micrographs by tok-

enizing them into patch sequences and, additionally, representing them as vision

graphs, commonly referred to as patch attributed graphs. We introduce the Hier-

archical Network Fusion (HNF), a multi-layered network structure architecture

that facilitates information exchange between the multi-modal representations and

knowledge integration across different patch resolutions. Furthermore, we leverage

large language models (LLMs) to generate detailed technical descriptions of nano-

materials as auxiliary information to assist in the downstream task. We utilize a

cross-modal attention mechanism for knowledge fusion across cross-domain repre-

sentations(both image-based and linguistic insights) to predict the nanomaterial

category. This multi-faceted approach promises a more comprehensive and accu-

rate representation and classification of micrographs for nanomaterial identification.

Our framework outperforms traditional methods, overcoming challenges posed by

distributional shifts, and facilitating high-throughput screening.
1 Introduction
Semiconductors are the foundation of modern electronics, driving advancements in computing, com-
munication systems, transportation systems, and space exploration. The precise design, development,
and testing of semiconductor devices is essential for ensuring the reliability, durability, and perfor-
mance of high-tech chips. Advanced imaging and analysis techniques[53]] are key to fabricating
and integrating nanoscale components and enabling advanced inspection, which is essential for the
development of next-generation miniaturized semiconductor devices[13]], with sizes now reaching
as small as 7 nm or even smaller. However, the increased complexity of producing chips under 7
nanometers introduces greater potential for error, jeopardizing the consistency of high-quality chip
production and magnifying variability in chip performance. The semiconductor industry utilizes
various electron beam tools, including scanning and transmission electron microscopy, to create
high-resolution images of these devices. These images, known as electron micrographs, reveal the
complex microstructures of materials, which are crucial for the accurate design and evaluation of
semiconductor devices. The fabrication of nanoscale components is a challenging task that requires
precise control over the manufacturing process. Furthermore, these images facilitate monitoring of
the process and defect detection, enabling subsequent process optimization or design adjustments
to mitigate defects. The autolabeling of electron micrographs for nanomaterial identification, while
advantageous, remains a significant challenge. Figure[T|shows the challenges in nanomaterial iden-
tification tasks. This is largely attributed to distributional shifts such as manufacturing variations
or material property changes, exacerbated by high intra-class dissimilarity within nanomaterials,
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high inter-class similarity between different nanomaterials, and the existence of visual patterns at
multiple scales or spatial heterogeneity. To overcome the challenges in this work, we propose an
end-to-end framework for automatic nanomaterial identification based on hierarchical network fusion
for multi-modal electron micrograph representation learning with large language models (referred to
as “MultiFusion-LLM" for shorthand notation). We hypothesize that electron micrographs exhibit
hierarchical dependencies among patches (segmented portions of an electron micrograph). These
dependencies can be captured using multiple patch sequences and vision graph structures at different
spatial resolutions of the patches. To explore this, we tokenize the electron micrographs into grid-like
patches to obtain a patch sequence. Additionally, we represent the micrograph as a vision graph,
where patches are connected by undirected edges that represent pairwise visual similarity. Figure
[5] shows the modalities (patch sequence, graph) that offer unique insights and assist in capturing
complex patterns. We introduce a < cls > token to the patch sequence and a virtual node to the
vision graph. This special token/virtual node encapsulates the entire patch sequence and captures
global graph information in their respective contexts. We aim to capture fine- and coarse-grained
hierarchical dependencies by treating the micrographs as sequence structures and vision graphs at
multiple scales of patch size. The main contributions of this work can be summarized:

v/ We have developed the Hierarchical Network Fusion (HNF), a cascading network architec-
ture that enhances the classification accuracy by analyzing and integrating two complemen-
tary representations of electron micrographs: patch sequences and vision graphs, which are
created at various patch sizes. Vision graphs, constructed using a nearest-neighbor graph
technique, identify local patch relationships and capture graph-structured priors. Mean-
while, patch sequences help in capturing spatial dependencies between various patches in a
micrograph, going beyond the limitations of sparse graph structure priors. The HNF is a
multi-layered network featuring an inverted pyramid architecture that generates a multi-scale
representation of an electron micrograph by creating a series of patch sequences and vision
graphs at different scales of patch size. This inverted pyramid is constructed by progressively
increasing the patch size at each layer. Each layer of the pyramid represents the original
micrograph-based patch sequence and vision graph at a distinct scale, offering increasingly
higher resolutions. By considering information at multiple scales, the HNF facilitates a
more comprehensive representation of the electron micrograph, capturing both fine- and
coarse-grained details. At each layer, the patch embeddings are iteratively refined using
bidirectional Neural Ordinary Differential Equations (Neural ODEs) [20]], while the Graph
Chebyshev Convolution (GCC) Networks [51} 28] encode the vision graphs in a layer-wise
manner to compute graph-level embeddings. A mixture-of-experts (MOE) technique with a
gating mechanism optimally combines predictions from both modalities at each layer by
calculating a weighted sum of classification token and virtual node embedding to improve
classification accuracy. This facilitates an intermodal mutual information exchange, fos-
tering interaction and knowledge integration between the two modalities. This innovative
approach enables the seamless integration of causal information from patch sequences to
refine the vision graph embeddings, and structural and semantic information from visual
graphs to ground the patch embeddings, fostering enhanced interaction and knowledge
fusion within the architecture. Our framework constructs a multi-scale representation of a
micrograph with the aim of optimally preserving both the high-level features and structural
information embedded in the graphs, as well as the causal relations embedded in the patch
sequences, thereby enabling a more comprehensive representation of the micrograph.

v/ Our approach utilizes Zero-shot Chain-of-Thought (Zero-Shot CoT) prompting with large
language models (LLMs)[10, 25 93] to generate technical descriptions of nanomaterials,
including synthesis methods, properties, and applications. We pre-train smaller language
models (LMs) [30,52] through self-supervised masked language modeling (MLM)[5}30] on
these generated textual descriptions, enabling domain-specific customization for improved
language understanding. Subsequently, we fine-tune the pre-trained LMs for task-adaptation
to compute contextualized token embeddings for nanomaterial identification tasks. We
employ a weighted sum-pooling attention mechanism to compute text-level embeddings
from token embeddings, encapsulating the vast domain-specific knowledge present in the
text data. Our approach leverages LLM-based technical descriptions on nanomaterials to
identify characteristic features that distinguish them from other nanomaterial categories,
incorporating domain-specific knowledge as auxiliary information for downstream training.

Figure 2 shows the “MultiFusion-LLM" framework. We discuss the proposed method, additional
experimental results, experimental setup, hyperparameter studies, and other details in the appendix.



2 Problem Statment

In this study, the focus is on the electron micrograph classification task, a type of inductive learning
task where the objective is to assign labels to new, unseen micrographs utilizing a labeled dataset
denoted as Dy, = (Zr,,Yr,). A multi-modal encoder, formulated as the non-linear function fy T —
Y is trained on labeled dataset to predict labels ();7) of unlabeled micrographs (Zi;). Here, v denotes
the trainable parameters. The objective is to minimize the loss function £z, which is articulated as

min £z (Ty) = D0 (T ) ()
(Ziyi)€DL
where yfred = f,(Z;) denote the multi-modal encoder predictions and ¢(-, -) denotes the cross-entropy

loss.

&7 S I e
(a) High intra-class dissimilarity: The electron micrographs of the same nanomate-
igh degree of heterogeneity.

(b) High inter-class similarity: Electron micrographs across different nanomaterial
categories (listed from left to right as porous sponges, particles, powders, and films)
exhibit a noteworthy degree of similarity.

(c) Multi-spatial scales of patterns: The spatial heterogeneity of visual patterns in

electron micrographs of nanoparticles is evident.
Figure 1: The figure provides a visual representation of the challenges of classifying electron
micrographs in the SEM dataset([4]]).
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Figure 2: Our framework includes three methods: (a) Hierarchical Network Fusion (HNF), (b)
Zero-shot Chain-of-Thought (Zero-Shot CoT) prompting with large language models (LLMs), and
(¢) an output layer modeled with the multi-head attention (MHA) mechanism [93]] for integrating
cross-domain embeddings and facilitating label prediction. LLMs take a prompt, not an electron
micrograph, as input.

3 Formalism

Let’s consider an input electron micrograph denoted by I, which has dimensions of & X w x ¢, where
h, w, and c represent the height, width, and number of channels of the micrograph, respectively. We
divide the micrograph into a grid of patches, each having dimensions of p X p X ¢, with p representing
the patch size. The number of patches along each spatial dimension is given by n = hw/p*.

Subsequently, we reshape the 3D micrograph into a 2D patch tensor, denoted as I” € R7* (%),
These patches are linearly transformed to create a new tensor, I' € R™"*?, where d is the patch




embedding dimension. To account for the position of each patch within the micrograph, we introduce
position embeddings represented by a matrix E,,, € R "*dpos - where dpos denotes the position
embedding dimension. We then add the position embedding matrix to the transformed patch tensor
T’, resulting in the final tensor I € R™*d In general, dp,,s = d. Finally, we construct a k-nearest
neighbors graph to analyze the pairwise relationships between micrograph patches. This vision
graph, denoted as G, is undirected and represents the connectivity of patches based on their pairwise
proximity. The graph structure is described by a binary adjacency matrix, A € R™*™ If patch j is
one of the k-nearest neighbors of patch ¢, then A;; = 1; otherwise, A;; = 0.

4 Experiments And Results
4.1 Datasets

Our study primarily utilized the SEM dataset[4] to automate nanomaterial identification. The expert-
annotated dataset spans across 10 distinct categories, representing a broad range of nanomaterials
such as particles, nanowires, patterned surfaces, among others. In total, it contains approximately
21,283 electron micrographs. Figure 3| provides a visual representation of the different nanomaterial
categories included in the SEM dataset. Despite the initial findings by [74] on a subset of the
original dataset, our research was based on the complete dataset since the subset was not publicly
accessible. Although the original dataset curators, [4]], did not provide predefined splits for training,
validation, and testing, we utilized the k-fold cross-validation method to evaluate our framework’s
performance. This strategy facilitated a fair comparison with popular baseline models in a competitive
benchmark setting. Furthermore, we extended our evaluation by leveraging several open-source
material benchmark datasets relevant to our study. These datasets were used to showcase the efficacy
of our proposed framework and its applicability in a broader context beyond the SEM dataset.
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Figure 3: The figure depicts the different types of nanomaterials found in the SEM dataset ([4]]) (left
to right in the first row: biological, fibers, films, MEMS, nanowires; left to right in the second row:
particles, patterned surface, porous sponges, powder; tips).

Table 1: The table presents the results of a comparative study between our proposed method and
supervised-learning based GNNss, as well as self-supervised graph contrastive learning (GCL) algo-
rithms, on the SEM dataset [4]].

Algorithms Parameters | Top-1 | Top-2 | Top-3 | Top-5

GBT[8] 7.09E+05 | 0.513 | 0.595 | 0.686 | 0.778

d GRACE[113] 7.44E+05 | 0.581 | 0.646 | 0.711 | 0.773
&) BGRL[&7] 6.92E+05 | 0.573 | 0.629 | 0.671 | 0.728
InfoGraph([82]] 6.82E+05 | 0.560 | 0.631 | 0.694 | 0.756

APPNP[64] 7.35E+05 | 0.604 | 0.713 | 0.792 | 0.823

AGNN[88] 5.22E+05 | 0.517 | 0.733 | 0.841 | 0.943

ARMA[T7] 4.57E+05 | 0.553 | 0.747 | 0.848 | 0.925

£ DNA[37) 8.48E+05 | 0.593 | 0.677 | 0.786 | 0.891
S GAT[96] 6.31E+05 | 0.507 | 0.724 | 0.807 | 0.914
° GGConv[69] 8.05E+05 | 0.583 | 0.778 | 0.841 | 0.944
E GraphConv/[[75]] 5.85E+05 | 0.623 | 0.787 | 0.875 | 0.953
g GCN2Conv[19] 6.18E+05 | 0.697 | 0.813 | 0.867 | 0.945
S ChebConv (28] 5.00E+05 | 0.547 | 0.762 | 0.834 | 0.896
E GraphConv([[75]] 6.79E+05 | 0.533 | 0.727 | 0.847 | 0.961
= GraphUNet[39] 9.57E+05 | 0.622 | 0.738 | 0.866 | 0.912
(3 MPNN[40] 5.22E+05 | 0.643 | 0.792 | 0.873 | 0.959
RGGConv([9] 6.58E+05 | 0.633 | 0.727 | 0.886 | 0.928

SuperGAT[61]] 5.54E+05 | 0.561 | 0.676 | 0.863 | 0.935

TAGConv([32] 5.74E+05 | 0.614 | 0.739 | 0.803 | 0.946
MultiFusion-LLM W/GPT-3.5 2.39E+07 | 0.947 | 0.965 | 0.986 | 0.991
MultiFusion-LLM W/Google Bard | 2.39E+07 | 0.852 | 0.899 | 0.927 | 0.953




4.2 Results

We evaluated the effectiveness of our proposed framework through a comprehensive performance
analysis, comparing it to commonly used computer vision baseline models. Our comparisons
included supervised learning models such as ConvNets and ViTs (as referenced in [2} [1]), along with
self-supervised learning techniques like Vision Contrastive Learning (VCL, as discussed in [34]).
Table [2] reports the experimental results from our study. To ensure a fair and rigorous comparison,
we conducted experiments with consistent settings across all algorithms, measuring performance
using the Top-N accuracy metric and evaluating specifically for N € {1,2,3,5}. Our proposed
framework outperforms the baseline models, showing a substantial relative improvement of 25.8% in
the Top-1 score and a marginal improvement of 5.34% in the Top-5 score compared to the next-best
baseline model, T2TViT ([110]). Table[I] presents experimental findings comparing the proposed
framework’s performance to various supervised learning-based baseline models, including several
GNN architectures ([[79, 38]]), and we use Graph Contrastive Learning (GCL, [114]) algorithms for
additional comparison. Our proposed framework achieves SOTA performance on the benchmark
dataset [4] compared to the baselines.

Table 2: The table shows the comparison of our proposed method with baseline algorithms, including
vision-based supervised ConvNets, ViTs, and self-supervised learning (VSL) algorithms.

Algorithms Parameters | Top-1 | Top-2 | Top-3 | Top-5

AlexNet([65]) 5.70E+07 | 0.493 | 0.582 | 0.673 | 0.793

£ DenseNet([57]) 2.39E+05 | 0.539 | 0.750 | 0.875 | 0.906
Z. ResNet([500) 2.72E+05 | 0.512 | 0.766 | 0.891 | 0.906
% VGG([81]) 3.44E+07 | 0.517 | 0.644 | 0.717 | 0.779
&) GoogleNet([84]) 2.61E+05 | 0.560 | 0.844 | 0.906 | 0.938
SqueezeNet([58]) 7A41E+05 | 0.436 | 0.469 | 0.609 | 0.656
Barlowtwins[[L11] 8.99E+06 | 0.138 | 0.250 | 0.328 | 0.453

SimCLR[22] 8.73E+06 | 0.157 | 0.234 | 0.359 | 0.469

7 byol[43] 8.86E+06 | 0.130 | 0.234 | 0.281 | 0.422
> moco[49] 8.73E+06 | 0.158 | 0.188 | 0.250 | 0.438
nnclr[33] 9.12E+06 | 0.144 | 0.266 | 0.313 | 0.531

simsiam[23]] 9.01E+6 0.170 | 0.266 | 0.391 | 0.500

CCTI47] 4.10E+05 | 0.600 | 0.781 | 0.875 | 0.969

CVT[102] 2.56E+05 | 0.537 | 0.750 | 0.828 | 0.953

ConViT][26] 6.00E+05 | 0.582 | 0.734 | 0.828 | 0.938

ConvVT[102] 9.23E+04 | 0.291 | 0.563 | 0.734 | 0.875

CrossViT[17] 8.35E+05 | 0.466 | 0.719 | 0.828 | 0.938

PVTC[99] 1.30E+06 | 0.567 | 0.766 | 0.813 | 0.922

SwinT[71] 2778E+07 | 0.675 | 0.766 | 0.891 | 0.938

g VanillaViT[31] 1.79E+06 | 0.623 | 0.828 | 0.859 | 0.938
= Visformer[24] 1.21E+05 | 0.371 | 0.578 | 0.641 | 0.797
z ATS[36] 3.26E+06 | 0.511 | 0.703 | 0.828 | 0.938
g CaiT[92] 3.84E+07 | 0.616 | 0.750 | 0.906 | 0.938
= DeepViT[113] 3.26E+06 | 0.512 | 0.734 | 0.875 | 0.938
“g Dino[15] 2.02E+07 | 0.047 | 0.219 | 0.391 | 0.432
] Distallation[91] 2.06E+06 | 0.516 | 0.719 | 0.844 | 0.938
= LeViT[42] 1.68E+07 | 0.597 | 0.813 | 0.875 | 0.953
E MAL[48] 3.87E+06 | 0.192 | 0.288 | 0.350 | 0.459
§ NesT[112] 1.61E+07 | 0.636 | 0.828 | 0.891 | 0.953
PatchMerger( 78] 3.26E4+06 | 0.549 | 0.719 | 0.859 | 0.922

PiT[54] 448E+06 | 0.520 | 0.703 | 0.828 | 0.953

RegionViT[16] 1.22E+07 | 0.575 | 0.797 | 0.859 | 0.922

SMIM[[104] 2.38E+06 | 0.163 | 0.297 | 0.453 | 0.609

T2TViT[110] 1.03E+07 | 0.702 | 0.859 | 0.906 | 0.938

ViT-SD[68] 447E+06 | 0.613 | 0.766 | 0.906 | 0.953
MultiFusion-LLM W/GPT-3.5 2.39E+07 | 0.947 | 0.965 | 0.986 | 0.991
MultiFusion-LLM W/Google Bard | 2.39E+07 | 0.852 | 0.899 | 0.927 | 0.953

4.3 Ablation Study

Figure [2|illustrates the overview of the framework. Our proposed framework comprises three dis-
tinct methods: (a) The Hierarchical Network Fusion (HNF) is a multi-layered, cascading network
architecture designed to enhance the classification accuracy of electron micrographs. It integrates
two complementary representations at multiple layers: (a) patch sequences, which assist in capturing
spatial dependencies among patches beyond pairwise dependencies, and (b) vision graphs, which



capture the local pairwise patch relationships. These techniques provide a detailed multi-scale rep-
resentation of the micrographs, encapsulating both fine-grained and coarse-grained details. HNF
uses an inverted pyramid structure, incorporating increasing patch sizes at each layer, and utilizes
bidirectional Neural ODEs and Graph chebyshev convolution(GCC) networks for iterative patch
embeddings refinement and the computation of the optimal node-level embeddings, respectively.
A mixture-of-experts technique further optimizes the integration of these cross-domain modalities,
fostering efficient knowledge exchange and improving classification accuracy by effectively modeling
structural, semantic, and causal information from both techniques. (b) Using Zero-shot CoT prompt-
ing with LLMs, we generate detailed technical descriptions of nanomaterials. We pre-train smaller
LM:s using masked language modeling (MLM) on these descriptions to facilitate domain-specific
customization. These pre-trained LMs are then fine-tuned for task-specific adaptation to generate
contextualized token embeddings. We apply a sum-pooling attention mechanism to obtain text-level
embeddings from these token embeddings, thereby capturing the vast domain-specific knowledge
embedded in the generated textual descriptions. (c) We use the cross-modal multi-head attention
mechanism to integrate and align information from different modalities — specifically, from hierar-
chical network fusion (HNF) and language models — into a coherent and unified representation that
captures complex, hierarchical, and potentially cross-modal patterns, emphasizing relevant features to
enhance the accuracy of the multi-class classification task. To perform ablation studies, we systemati-
cally disabled certain methods to create various ablated variants, which were subsequently evaluated
using the SEM dataset [4], with our original framework serving as the baseline for comparison. This
approach enables us to verify the effectiveness of our methods, substantiate their design decisions,
and justify their inclusion in the framework. A substantial decrease in performance of the ablated
variants, compared to the baseline, underscores the significance of the omitted method. The ablated
variants that exclude the hierarchical network fusion (HNF), large language models (LLMs), and the
multi-head attention layer are denoted as proposed framework “w/o HNF", “w/o LLMs", and “w/o
MHA" respectively. The abbreviation "w/o0" stands for "without". For the case of “w/o MHA", we
concatenate the cross-domain embeddings and transform them through a linear layer to predict the
label. The findings from the ablation study are presented in Table[3] On the SEM dataset[4], the
“w/o HNF" variant shows a substantial decline in performance relative to the baseline, evidenced by
a significant drop of 17.53% in Avg-Precision. Similarly, the “w/o LLMs" variant performs much
worse than the baseline, with a drop of 24.12% in Avg-Precision. In addition, the “w/o MHA"
variant exhibited a notable deterioration in performance compared to the baseline, manifested by
a substantial decrease of 11.9% in Avg-Precision. This is attributed to the overly simplified linear
operator in the output layer. The results of our ablation study clearly illustrate the crucial role of each
omitted method, with the ablated variants demonstrating a consistent decline in performance metrics
compared to the baseline.

Algorithms [ Avg-Precision [ Avg-Recall [ Avg-F1 Score |
MultiFusion-LLM W-GPT4 | 0.941 | 0945 | 0939 |
w/o HNF 0.776 0.753 0.745
w/o LLMs 0.714 0.726 0.721
w/o MHA 0.827 0.831 0.823

Table 3: In the ablation study, we systematically disable individual methods to assess their respective
contributions and importance. The goal of this study is to understand the impact or significance of
specific methods on the overall performance of the framework. The experimental findings reveal
the significance of the disabled methods, as indicated by the consistent decrease in performance
metrics of the ablated variants compared to the baseline. These results substantiate our hypothesis
regarding the joint optimization of HNF (see subsection and LLMs (see subsection
methods, demonstrating improved framework performance.

S Conclusion

To conclude, we have conducted the first in-depth study aimed at achieving state-of-the-art perfor-
mance in nanomaterial characterization. This study introduces the innovative MultiFusion-LLM
framework, a robust solution to the challenges associated with nanomaterial identification in electron
micrographs. By synergistically integrating multi-modal representations and leveraging the analytical
prowess of large language models, it promises more nuanced and accurate classification. Our compre-
hensive framework has outperformed traditional methods, showcasing cutting-edge performance on
cost-efficient GPU hardware. Furthermore, it has demonstrated effectiveness and computational effi-
ciency, particularly with large datasets, thereby accelerating high-throughput screening and advancing
research holding implications for the advancement of the semiconductor industries.



6 Technical Appendix
6.1 An In-Depth Empirical Insights into Nanomaterial Classification

We have conducted additional experiments to gauge the efficacy of our framework, which sheds
light on its ability to categorize electron micrographs across various nanomaterial categories. The
experimental results, presented in Table[d] demonstrate that our proposed framework can generalize to
a wide range of nanomaterials, including those with complex patterns. We evaluated the performance
of our framework using the SEM dataset[4]], employing standard metrics such as precision (P in
%), recall (R in %), and Fl-score (F1 in %). We adopt a multi-metric approach to ensure a fair
and thorough comparison with baseline models. To facilitate this, we utilize a confusion matrix
encompassing various metrics for multi-class classification. This confusion matrix aids in scrutinizing
our framework’s performance by offering insights into how it categorizes electron micrographs across
different nanomaterial categories. The metrics included in the confusion matrix are as follows: True
Positives (TP) represent micrographs that are correctly classified as belonging to a specific category.
False Negatives (FN) represent micrographs that actually belong to a category but are incorrectly
classified or missed. True Negatives (TN) represent micrographs that are correctly identified as not
belonging to a particular category. False Positives (FP) represent micrographs that are mistakenly
classified as belonging to a category despite not actually belonging to that category. These metrics
evaluate the accuracy and effectiveness of our framework in micrograph categorization. Precision
(TP / (FP + TP)) measures the proportion of correctly classified micrographs for a specific category,
while recall (TP / (FN + TP)) measures the proportion of all micrographs of a category that were
accurately identified. The F1-score is computed as the balanced mean of precision and recall. It is
important to note that the SEM dataset is highly class-imbalanced. Our framework demonstrates a
relatively higher score in the classification of nanomaterial categories with a large number of labeled
instances compared to those with fewer. This favorable performance of our proposed framework can
be attributed to its reduced dependency on nanomaterial-specific relational inductive bias, setting it
apart from traditional methods.

\ Multi-class metrics \

Category
| Precision | Recall | F1Score |
Biological 0.93140.009 | 0.943+0.007 | 0.935+0.013
Tips 0.90940.005 | 0.9194+0.008 | 0.916+0.011
Fibres 0.97940.007 | 0.965+0.012 | 0.963+0.014

Porous Sponge 0.929+0.014 | 0.94140.013 | 0.925+0.010
Films Coated Surface | 0.9384+0.005 | 0.934+0.009 | 0.941+0.008
Patterned surface 0.946+0.016 | 0.942+0.006 | 0.941£0.014

Nanowires 0.9384+0.012 | 0.9451+0.007 | 0.948+0.011
Particles 0.935£0.006 | 0.937+0.011 | 0.92940.023
MEMS devices 0.9394+0.011 | 0.93240.008 | 0.92340.009
Powder 0.9414+0.014 | 0.9284+0.009 | 0.917+0.011

Table 4: The table illustrates the effectiveness of our proposed framework in identifying individual
nanomaterial categories within the SEM dataset.

6.2 Proposed Method
6.2.1 Hierarchical Network Fusion(HNF)

We tokenize electron micrographs by dividing them into grid-like patches. This approach yields two
complementary representations of micrographs: (a) We represent an electron micrograph as a vision
graph, where patches are connected by edges that represent pairwise visual similarity constructed
using a nearest-neighbor graph technique. The vision graph captures local patch relationships and
utilizes graph-structural priors to analyze pairwise spatial dependencies within the micrograph. (b)
Additionally, we represent electron micrographs as a patch sequence, capturing pairwise spatial
dependencies beyond the original sparse graph structure between different patches within a micro-
graph. Representing electron micrographs as both patch sequences and vision graphs serves distinct
purposes in their respective contexts. We append a classification token (<cls>) to a patch sequence
to obtain an embedding of the entire patch sequence that captures global information. We augment
each vision graph by introducing a virtual node that is bidirectionally connected to all the other nodes
in the graph through virtual edges. These virtual edges represent the pairwise relations between each
real node and the virtual node. The virtual node embedding captures the long-range dependencies
between nodes by considering the global information of the vision graph. We hypothesize that
electron micrographs exhibit hierarchical dependencies among patches, which can be captured using



multiple patch sequences or vision graph structures at different spatial resolutions of the patches.
We present Hierarchical network fusion (HNF), a cascading network architecture that constructs a
multi-scale representation of an electron micrograph by creating a series of patch sequences and
vision graphs at multiple scales of patch sizes with increasing resolutions.
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Figure 4: Overview of the HNF module. The HNF module utilizes a multi-layered network with
increasing patch sizes to represent the electron micrograph-based patch sequence and vision graph at
various scales, facilitating computation of hierarchical embeddings that encapsulate the global context.
The cascaded structure incorporates multiple stacked layers; each layer involves bidirectional Neural
ODE:s and Graph Chebyshev convolution to compute patch sequence and vision graph embeddings,
respectively. A gating mechanism integrates these cross-domain embeddings, generating unified
hierarchical embeddings that offer a comprehensive view of the electron micrographs. Overall,
the HNF module, facilitates seamless information fusion at multiple scales, producing a cohesive
representation of the micrographs. < cls> is the cls token and VN is the virtual node. h! and e!
denotes the patch and node representation at layer [ of patch or node 7, respectively.
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The HNF architecture synergistically combines patch sequences and vision graphs representations at
different scales, enhancing electron micrograph analysis by seamlessly integrating global insights
through a multi-layered network structure. The layers are constructed by progressively increasing the
patch size. Each layer of the network represents the original micrograph-based patch sequence and
vision graph at different scales, with increasing resolutions. By considering information at multiple
scales, the network offers a more comprehensive representation of the micrograph, capturing both
fine-grained details and the global context. Figure[]illustrates the Hierarchical Network Fusion (HNF)
method. Each layer uses a bidirectional Neural ODE (refer to the appendix) to iteratively refine patch
embeddings, facilitating the smooth, causal evolution of the patch embedding and capturing global
inter-patch relationships and dependencies. It also incorporates a Graph Chebyshev Convolution
Network (refer to the appendix) that maps the high-dimensional discrete vision graph information to
low-dimensional node-level embeddings while optimally preserving the high-level visual features and
structural information embedded in the graphs. Additionally, at each layer, the mixture-of-experts
(MOE) technique employs a gating mechanism to combine predictions from the bidirectional Neural
ODE:s and the Graph Chebyshev Convolution methods. These predictions are integrated through a
weighted sum of their <cls> token and virtual node embeddings. The training objectives include
optimizing the weight distribution of the gating function for accurate classification of nanomaterial
categories in electron micrographs and training the methods using the weights determined by the
gating function. Overall, our framework aims to improve classification accuracy by leveraging the
strengths of multiple learning methods and optimizing the weights of the gating mechanism, which
serves as the bottleneck through which the two modalities interact to obtain the fused representation.
In the subsequent layers, the fused information is combined with the individual modalities at higher
patch resolutions. Our framework incorporates bidirectional Neural ODEs and Graph Chebyshev
networks to facilitate the exchange of mutual information between patch sequences and visual graphs
across multiple scales of patch size through the gating mechanism. This approach allows the patch



embeddings to be grounded with structural and semantic information from the vision graph while
enabling causal relations within the patch sequence to transform the graph embeddings. Overall, the
framework fosters interactive knowledge integration between modalities within its architecture.

6.3 Beyond Conventional Analysis: Leveraging LL.Ms for Nanomaterial Characterization

The advent of large pre-trained language models (LLMs), such as OpenAI’s ChatGPT [10], Google’s
PalLM [25], and Meta’s LLaMA [93], has significantly revolutionized performance in various natural
language processing tasks, achieving state-of-the-art results across a wide range of applications.
In contrast, small-scale language models (LMs), such as BERT [30] and DeBERTa [52], lack the
strong logical reasoning capabilities of LLMs and are limited in their ability to generate coherent
and contextually relevant responses compared to larger models. However, small-scale LMs are
computationally affordable for fine-tuning using labeled data for specialized task adaptation. In
addition, they allow access to logits or token embeddings for downstream applications of smaller
LMs across various tasks, aiding in explainability. Owing to their substantial model complexity and
scale, general-purpose LLMs require significant computational resources for repurposing through
fine-tuning for task-specific customization. Additionally, they do not provide access to latent token
embeddings and logits, this black-box nature can limit the interpretability of LLMs. To overcome the
challenges, the Language Modeling as a Service (LMaaS [83]]) platform provides access to LLMs
via text-based API interaction through cloud-based services. However, the integration of LLMs with
vision graphs remains an underexplored area, opening up the possibility for innovative techniques
that combine language models and graph representation learning algorithms to improve nanomaterial
identification applications. To address this, our approach capitalizes on zero-shot chain-of-thought
(Zero-Shot CoT) prompting of LLMs to generate technical descriptions of nanomaterials. We pre-
train smaller LMs on the generated textual descriptions using the masked language modeling (MLM)
technique (i.e., pre-training for domain-customization) to learn expressive token embeddings for
a better understanding of language structure and semantics. We then fine-tune smaller LMs for
downstream supervised multi-class classification task (i.e., fine-tuning for task adaptation) to compute
context-aware token embeddings. We employ weighted sum-pooling attention mechanisms to obtain
contextualized text-level embeddings from token embeddings, which are used to perform inference
in the nanomaterial identification task. Our work evaluates two LLMs: GPT-3.5-turbo, and Google
BAR GPT-3.5-turbo, a newer and larger extension of GPT-3.5 model from OpenAl, excels in
various language tasks and shows cost-effectiveness, while Google BARD is significantly larger than
GPT-3.5 models. We also utilize a pre-trained small-scale LM, DeBERTﬂSZ], which is an improved
version of the BERT architecture. The technical details of these language models are given in Table[5]
In the GPT-3.5-turbo and BARD, text generation diversity is mainly influenced by two parameters:
Top-p (nucleus sampling) and temperature. Top-p sets a probability threshold for token inclusion,
filtering out excessively rare or common tokens to balance the output. The temperature parameter
dictates the randomness of generated text; high values foster creativity, while low values ensure
focused and deterministic outputs. In our experiments, we set Top-p to 1 and temperature to O for
accurate and controlled text generation.

Table 5: Technical specifications of the LLMs and LMs. The Cost category indicates the price
for using 1k tokens, while the Date of Last Update category denotes the the most recent date the
knowledge base of the LLMs was updated.

Model Organization Cost Date of Last Update | Vocabulary Size
ChatGPT Open-Al 0.002% Jun. 2021 175B

BARD Google Free Undisclosed 1,560B
DeBERTa | Hugging Face Free N/A 50M

Zero-Shot CoT LLMs Prompting: We access LLMs via the LMaaS platform, using text-based
API interactions. We employ open-ended natural language prompts with task-specific instructions to
query the LLMs, thereby generating detailed textual descriptions pertaining to the structure, properties,
and applications of given nanomaterials. Utilizing a tailored zero-shot prompt template, we guide
the LLMs through a series of chain-of-thought prompts[[101], extracting comprehensive domain
knowledge embedded within the language model parameters to generate rich, detailed technical
descriptions of nanomaterials. The customized CoT prompt format is as follows:

*https://bard.google.com
*For more information, refer to the DeBERTa model documentation available at https: //huggingface
co/docs/transformers/index.
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Prompt 1: Introduction: Provide an overview of the nanomaterial category and its signifi-
cance in various fields. Prompt 2: Definition and Structure: Define the nanomaterial category
and describe its typical structure at the nanoscale. Prompt 3: Synthesis Methods: Explore
different methods used to synthesize or fabricate nanomaterials in this category. Discuss their
advantages and limitations. Prompt 4: Properties: Highlight the unique physical, chemical,
and electronic properties exhibited by nanomaterials in this category. Discuss how these prop-
erties differ from their bulk counterparts. Prompt 5: Applications: Explore the wide range of
applications where nanomaterials in this category are utilized. Discuss their potential impact
in fields such as electronics, energy, medicine, environmental remediation, etc. Prompt
6: Surface Modification: Describe the strategies used to modify the surface properties of
nanomaterials in this category, such as functionalization, coating, or doping. Explain how
these modifications enhance their performance or enable specific applications. Prompt 7:
Toxicity and Safety: Address the potential health and environmental concerns associated with
nanomaterials in this category. Discuss studies on their toxicity, risk assessment, and safety
measures to mitigate any potential hazards. Prompt 8: Future Directions: Discuss current
research trends and future prospects for nanomaterials in this category. Highlight emerging
technologies, challenges, and areas of active exploration.

Querying the LLMs generates technical descriptions of nanomaterial categories. It provides valuable
insights into the characteristics, properties, and applications of different types of nanomaterials.

(LLMs Response) [Textual Outputs]

In the following section, we will present our approach to integrating detailed textual descriptions into
a small-scale LM for pre-training through the masked language modeling (MLM) technique, and
fine-tuning for domain customization on the downstream supervised nanomaterial identification task.

Domain Customization: Fine-Tuning LMs Our approach employs a smaller language model (LM)
to interpret and encode the textual outputs generated by a larger language model (LLM). We leverage
the smaller LM as an intermediate network to bridge the LLMs and downstream classification layers.
The encoder-only LMs[77] are fine-tuned using a self-supervised learning approach known as masked
language modeling (MLM). In this approach, the large corpus of LLM textual outputs is processed
by randomly masking out tokens in each sentence. The model is then trained to predict the masked
words, given the context of the surrounding non-masked words. This process helps the model learn
the statistical relationships between words and phrases, thereby facilitating the generation of coherent
language representations. Briefly, we pre-train smaller general-purpose language models (referred to
as LMexp1) using the MLM technique for domain customization, enhancing language-based contextual
understanding and semantic relationship extraction for aiding downstream applications. We then
fine-tune the smaller LM for downstream task-specific adaptation to encapsulate the explanations
generated by LLMs. Post pre-training on MLM technique, we input the text sequences generated
by LLMs (denoted as Scxp) into the LMy, model, which then generates expressive, context-aware
embeddings for each token in the sentence, capturing the semantic relationships between the tokens
as follows: hexpl = LMexpl(sexpl) 2
where the context-aware embeddings are denoted as hexp € R mxd where m represents the number
of tokens in Seyp and d is token embedding dimension. We then perform sum-pooling attention
mechanism to compute a weighted sum of these token embeddings to encode the textual explanations
to obtain an text-level fixed-length embedding as follows:
a; = softmax(q;); ¢ = uThS(i)l 3)
R =" a;hl) (4)
=0

where u is a differentiable vector. The text-level embedding 7' € R? captures the essence or core
of the domain knowledge as a whole, extracted from the foundational LLMs for each nanomaterial.
We calculate the relevance score between the text-level embedding(h'*") and the electron micrograph
representations(hg,s) obtained from the hierarchical network fusion(HNF, refer to section[6.2.1)), as

detailed below, ﬁ* = arg mgx[softmax(qkhfus)]; = vT [htlextH . ||htcext] 5)

where the subscript, ¢ denotes the the total number of nanomaterial categories and v is a trainable
parameter. The above operator computes the list of scores or probabilities for each nanomaterial,
and the arg max operator selects the nanomaterial for which the probability score is maximized. We
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then select the appropriate/relevant nanomaterial text-level embedding conditioned on hierarchical
embedding (hy,s) as follows: hltci)g _ ’5’5’ ©6)

(£* denotes the nanomaterial label with the highest probability. This is essentially a matching mecha-
nism that tries to find the best pairwise alignment among the various nanomaterial text-level embed-
dings (R}, ..., h'*") and the hierarchical embedding () obtained from the hierarchical network
fusion (HNF). We utilize backpropagation error in the downstream supervised multi-classification
task to fine-tune the smaller LMs to maximize the pairwise alignment between the complementary
hierarchical embedding (hs) and its corresponding text-level embedding A{Y. To put it briefly, ~{Y
incorporates the expert knowledge obtained from foundational LLMs for the appropriate nanomaterial
underlying the electron micrographs.

6.3.1 Overall Method

Figure [2] provides an overview of the “MultiFusion-LLM” framework. Our proposed framework
comprises three distinct methods: a) Hierarchical Network Fusion (HNF) tokenizes micrographs
into patches to obtain patch sequences and construct vision graphs. It introduces a <cls> token
into the patch sequence and a virtual node for the vision graph to capture global characteristics. The
network has a multi-layered structure; each layer of the network consists of bidirectional Neural ODEs
and graph Chebyshev networks, and regulates the information flow through a gating mechanism to
learn hierarchical embeddings with increasing patch sizes across each layer. It computes cross-modal
embeddings, denoted as hy,, by integrating embeddings between modalities at different patch
resolutions, thereby facilitating the exchange of information and integration of knowledge. For more
detailed information, please refer to section b) LLMs for Incorporating Domain Knowledge:
We generate technical descriptions of nanomaterials, capturing a wide range of information including
structure, properties, and applications using Zero-Shot CoT prompting of LL.Ms. To illustrate, Table
[ provides a glimpse of the LLM-retrieved text obtained from GPT-3.5 turbo, specifically generated
to address natural language queries regarding MEMS devices. Initially, we pre-train a smaller LM
on the generated descriptions through masked language modeling (MLM). Later, we fine-tune this
small-scale LM on a downstream supervised task to encapsulate the generated explanations. We
then utilize the weighted sum-pooling attention mechanism to compute domain-specific knowledge-
incorporated text-level embeddings, denoted as h'§,. For additional details, please refer to subsection
(c) We employ the multi-head attention mechanism (MHA)[95] to fuse text-level embeddings
htfe-jfs with hierarchical embeddings h ¢, enabling the capture of contextually relevant information
and achieving semantic alignment across different cross-domain embeddings. Simultaneously, by
focusing on and aligning high-level textual descriptions (text-level embeddings) with detailed visual
representations (hierarchical embeddings), we ensure a comprehensive understanding and analysis of
electron micrographs from both descriptive and visual perspectives. This approach helps mitigate
the inherent limitations arising from high intra-class dissimilarity, high inter-class similarity, and
spatial heterogeneity in visual patterns across the electron micrographs, ultimately enhancing the
performance of nanomaterial identification tasks. We compute the Query, Key, Value projections for
the text-level embedding h'§)\, for each head h as follows:
Qt}éxl = hlﬁi[s W&m; Kt’;xt = ht;fs Wl}é.m? ‘/télxt = htfezts WX}/L.CX‘ )

Similarly, the Query, Key, Value projections for hierarchical embedding h, s for each head h as
fOl]OWS: h — hfungfus’ Kf}ﬁq — hquWI}éfusa V}[}]Lq _ hfusW\}/qus (8)

fus
We concatenate keys and values of text-level and hierarchical embeddings to create a unified repre-
sentation. Kg)ncal = [Kl}eLxU KI}LLIS] ‘/cgncal = [‘/lgm ‘/[ﬁ%} (9)
We apply Softmax attention to integrate complementary information from the cross-domain embed-
dings, focusing on relevant information and aligning them semantically.
Qe+ Qo) Kb
N
Each head outputs a new vector representation that highlights the most relevant features in the
mono-domain embeddings, tailored to specific aspects of the data.
Oh _ Ah Vh

Cross Cross * concat (1 1)

Al = Softmax ( (10)

Finally, we concatenate and linearly transform all head-specific outputs to create the final unified

cross-modal embedding. Oconcat = [OL 5y OZ oisr - -+ O ] (12)
Yeross = OconcatWOm,% (13)
p; = softmax (Wcross ) (14)
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where WS, Wg S W§ W S WE Wi Wo,,, and W are the trainable weight matrices. dj,
represents the dlmensmnahty of the key/query/value for each head, and H is the number of heads. p,
represents the probability distribution across nanomaterial categories, we apply the argmax operation
to p; to determine the framework’s predictions for the nanomaterial category. In summary, we conduct
Zero-shot CoT prompting of LLMs to generate technical descriptions of nanomaterials and pre-train
small-scale LMs using masked language modeling (MLM). Next, we jointly optimize the smaller
pre-trained LM and the hierarchical network fusion (HNF) method on supervised learning tasks.
The objective is to minimize the cross-entropy loss and enhance multi-class classification accuracy.
In summary, the MHA offers a multi-faceted approach to capture and align varied information
sources, making it a powerful tool for multi-modal data integration and analysis. It allows for a
robust, synergistic, and comprehensive representation of data, especially in contexts like nanomaterial
analysis where both modalities offer complementary insights.

6.4 Experimental Setup

The SEM dataset[4]] consists of electron micrographs with dimensions of 1024 x 768 x 3 pixels.
To facilitate our analysis, we downscale these micrographs to 224 x 224 x 3 pixels. As part of the
data preprocessing, we normalize the electron micrographs by adjusting the mean and covariance
to achieve a value of 0.5 across all channels. This normalization results in the micrographs falling
within the range of [-1, 1]. We tokenize the downscaled and normalized micrographs into discrete,
non-overlapping patches. Subsequently, we represent the electron micrographs as patch sequences
and construct vision graphs using the Top-K nearest neighbor search algorithm. Specifically, we
set the value of K to 10, 6, and 4 for each layer in the hierarchical network fusion (HNF) method,
resulting in a total of three layers. This process generates multi-scale vision graphs and patch
sequences with patch resolutions increasing of 16, 28, and 32 pixels. The patch dimension (dpos)
and position embedding dimension (d) are both set to 64. The framework is evaluated using a
10-fold cross-validation strategy and trained for 50 epochs with an initial learning rate of 1e~2 and a
batch size of 48. We have a few more hyperparameters set for the cross-modal attention layer with
the number of attention heads(H) to 4, and the dimensionality of Key/Query/Value (dy) is 16. To
enhance the performance of the MultiFusion-LLM framework, we employ two key strategies: (a)
early stopping on the validation set, which halts training when the framework’s performance on the
validation data plateaus to prevent overfitting; and (b) a learning rate scheduler that systematically
reduces the learning rate by half if the validation loss stagnates for five consecutive epochs. Reducing
the learning rate can help the framework converge to a better solution and avoid overfitting. In
addition, we utilize the Adam optimization algorithm [62] to update the trainable parameters of
the framework. Our proposed framework enhances the accuracy of multi-class classification tasks
by seamlessly integrating both large language models (LLMs) and small-scale language models
(LMs). The framework fully leverages the capabilities of LLMs in generating technical descriptions
of nanomaterials, an approach that can significantly exploit domain-specific linguistic insights critical
for nanomaterial identification tasks. The framework interacts with off-the-shelf LL.Ms through a
Language Model as a Service (LaMaaS) platform through the text-based API interactions. In this
study, we utilized GPT-3.5-turbo and Google Bard as representative LLMs. The hyperparameters
for our framework were not individually fine-tuned for each LLM. Instead, they were consistently
applied across all LLMs. This method underscores our framework’s generality, ease of use, and
compatibility with existing off-the-shelf LLMs. For decoder-only LLMs, the maximum output token
sequence length is 4096 for GPT-3.5-turbo and 4000 for Google Bard. To optimize computational
resource use, the system is trained on eight V100 GPUs, each boasting 8 GB of GPU memory,
utilizing the PyTorch framework. This configuration ensures the training process is completed within
a reasonable timeframe. Given the potentially high computational cost of using prompting with
LLMs, we conducted each experiment twice and reported the averaged results.

6.5 Baseline Algorithms

We have categorized our baseline methods into four distinct groups: Graph Neural Networks (GNNs)
([79,138]])), Graph Contrastive Learning (GCL) [[114]]), Convolutional Neural Networks (ConvNets)[2}
1], Vision Transformers (ViTs) ([22 [1]) and Vision Contrastive Learning (VCL) ([34]) algorithms
. We construct vision graphs to represent electron micrographs using the Top-K nearest neighbor
search technique. In this representation, patches are treated as nodes, and pairwise associations
between semantically similar nearest-neighbor nodes are represented as edges. For the baselines,
we avoid constructing multi-scale vision graphs with increasing patch resolutions. Instead, we set
the patch size to 32 pixels to reduce the complexity of the baseline models and set K to 5 for
finding the nearest neighbors. The baseline Graph Neural Networks (GNNs)[[79} [38]]) are used
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for the multi-class classification task on vision graphs through supervised learning. The graph
contrastive learning (GCL) algorithms ([[114]) utilize several graph data augmentation strategies to
create multiple correlated views of a vision graph. GCL aims to maximize the similarity between
positively correlated views of a graph while minimizing dissimilarity with others, thereby learning
invariant self-supervised node-level embeddings. The GCL algorithms employ the Graph Attention
Network (GAT) ([96]) as the node-level graph encoder. Graph-level embeddings are generated
by performing sum-pooling on the node-level embeddings. During inference, the Random Forest
(RF) algorithm utilizes these robust self-supervised graph-level embeddings to predict nanomaterial
categories, having been trained using supervised learning. To evaluate the effectiveness of the
unsupervised embeddings, we measure the classification accuracy of the RF model on the holdout
data. In addition, we employ baseline ConvNets ([2, [1]) operating on the regular grid of pixels in
electron micrographs for classification tasks using supervised learning. We also utilize baseline Vision
Transformers (ViTs) ([2, [L]) trained through supervised learning to analyze patch sequences within
each electron micrograph for classification tasks. Furthermore, we utilize visual-contrastive learning
(VCL) techniques ([34]]), which are self-supervised algorithms designed for contrastive learning in
computer vision tasks. We employ the ResNet backbone architecture for feature extraction.

7

Figure 5: In this illustrative example, we divided an electron micrograph (MEMS device, [4]]) into
a grid of 3 x 3 patches. The image presents various representations of the micrograph, including
a regular grid, a sequence, and a graph representation from left to right, respectively. Different
approaches for processing these representations include ConvNets that operate on pixel grids, ViTs
that operate on patch sequences, and GNNs that operate on vision graphs. These graphs represent
patches as nodes and are constructed using a nearest neighbor search algorithm, connecting patches
based on visual similarity rather than spatial proximity. Each method offers a unique perspective for
analyzing electron micrographs, providing distinct advantages and insights into patterns.

6.6 Hyperparameter Studies

We performed an in-depth hyperparameter tuning to determine the optimal hyperparameters for our
framework. The hyperparameters of the algorithm are: (1) the dimensionality of the embedding (d),
and (2) batch size (b). The hyperparameters were chosen from the following ranges: embedding
dimension (d) € [32, 64, 128, 256] and batch size (b) € [32,48, 64, 96]. We conducted hyperparam-
eter optimization using the random-search technique to achieve the optimal performance of our
proposed framework on the validation dataset, measured in terms of Top-1 classification accuracy.
For each experiment, we altered the hyperparameter under investigation to ascertain its impact on the
framework’s performance. The study determined that the optimal hyperparameters are d = 64 and
b = 48.

(d, )] (32, 48)[ (64, 48)[ (128, 48)[(256,48)  (d,b)| (64, 32)[ (64, 48)(64, 64| (64, 96)
0.94T | 0.947 | 0935 | 0927 0.943 | 0.947 | 0.939 | 0.936

Table 6: The table reports the experimental findings of the hyperparameter study.

6.7 Benchmarking with open-source material datasets

. NEU-SDIﬂ([29]) is a comprehensive database comprising 1800 grayscale electron micro-
graphs of surface defects on hot-rolled steel strips. The dataset is divided into six distinct
defect classes, each containing 300 micrographs with a resolution of 200x 200 pixels. The
defect categories include pitted surfaces, scratches, rolled-in scale, crazing, patches, and
inclusion defects. Figure[6|displays representative images from each category. We conducted
a comparative analysis using various standard algorithms to evaluate the effectiveness of our
proposed approach, specifically in the domain of multi-class classification tasks for surface
defect identification.

. CM]ﬁ consists of 600 high-resolution electron micrographs depicting corroding panels.
Each micrograph has been annotated by corrosion experts following ASTM-D1654 stan-
dards, assigning discrete ratings ranging from 5 to 9. The dataset includes 120 distinct

SDatasource: http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html
Shttps://arl.wpi.edu/corrosion_dataset
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micrographs for each corrosion rating with a spatial resolution of 512x512 pixels. Figure
[7)illustrates a selection of representative images for each rating. Our proposed method
for multiclass classification task is evaluated by comparing its performance against several
standard algorithms.

. KTH-TIPSH represents a comprehensive texture dataset, comprising 810 electron mi-
crographs, each depicting one of ten distinct material types. These micrographs, with a
resolution of 200 x 200 pixels, encompass a wide range of materials captured under different
illuminations, poses, and scales. The diverse material categories encompass textures such as
sponge, orange peel, styrofoam, cotton, cracker, linen, brown bread, sandpaper, crumpled
aluminum foil, and corduroy. Figure 8]showcases a selection of sample images from each
category. In order to assess and demonstrate the efficacy of our proposed method, we con-
duct a comparative analysis of its performance against various standard algorithms within
the domain of multi-class identification tasks.

Crazing Inclusion Pitted e Rolled-in scale  Scratches

Patches

Figure 6: The NEU-SDD dataset contains six dlStlnCt defect categories found in hot-rolled steel strips,
which are described in reference EF[@]]).

5 7 8 9
Figure 7: The CMI dataset is a collection of electron micrographs that represent five corrosion rating
categories. These categories are described in reference@

Aluminium Foil  Brown bread Cotton

Corduroy Cracker

Figure 8: The KTH-TIPS dataset contains samples of electron micrographs of ten distinct materials.
These materials are described in referencem

Table[7] presents a comprehensive comparison of the performance achieved by our proposed approach
in contrast to various baseline methods, evaluated across all datasets. The experimental results
demonstrate that our method achieves state-of-the-art performance on all datasets, underscoring the
efficacy and robustness of our framework.

6.8 Graph Chebyshev convolution

The graph convolution is a powerful tool in the realm of learning from graph-structured data. The
spectral graph convolution[83]] is a popular approach, but it can be computationally expensive for
large graphs. To tackle this issue, Chebyshev graph convolution[28]] offers a more scalable approach
that can be used to achieve similar performance in capturing the local connectivity and spectral
properties of the graph. More precisely, Graph Chebyshev Convolution is a method that approximates
the spectral graph convolution by using Chebyshev polynomials. Graph Chebyshev Convolution
allows us to apply convolutional filters on graph-structured data based on the Chebyshev polynomial

"https://www.csc.kth.se/cvap/databases/kth-tips/index.html
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Algorithms NEU-SDD CMI KTH-TIPS

% ResNet 0.906  0.928 0.941
g GoogleNet 0936 0928 0.929
§ SqueezeNet 0.955 0.943 0.963
) VanillaViT 0.962  0.968 0.972

MultiFusion-LLM 0.993  0.989 0.991

Table 7: The table presents the comparative evaluation of our proposed framework’s performance
against several benchmark algorithms on a variety of datasets.

approximation of the graph Laplacian. The Chebyshev polynomials are calculated based on the
normalized Laplacian matrix of the graph. The normalized Laplacian matrix, denoted as L, is defined

as: ~ ~ N
L=D"1Y2AD1/? (15)

where A is the normalized adjacency matrix and D is the diagonal degree matrix of the graph. The
Chebyshev approximation of the graph Laplacian up to any desired degree is obtained by using a

truncated expansion of Chebyshev polynomials, denoted as T (L), where k represents the degree of
the polynomial. These polynomials are computed recursively using the following recurrence relation
as follows:
I, iftk=0
Tw(L) =< L, ifk=1
2LTy_1 (L) — Tr—_o(L), otherwise

where [ is the identity matrix. Given an input graph feature matrix I € R™*<, where n denotes the
number of patches and d is the patch embedding dimension, and the Chebyshev polynomials denoted

by T (L). The Chebyshev graph convolution operation can be defined as follows:
K—1
E=g¢ (Z Tk(ﬁ)I®k> (16)
k=0

where o (+) is a non-linear ReLU activation function applied element-wise and O, € R¥*4 is the
parameter matrix (weights) for the k-th order Chebyshev polynomial. It is important to note that the
parameter matrices O, are typically learnable and optimized during the training process to adaptively
capture the global graph characteristics. K denotes the maximum order of the Chebyshev polynomials
and influences the expressive power of the approximation. £ € R"™* is the transformed node feature
matrix, which captures the local structure and relationships within the graph, where e¢; € R denotes
the node embedding.

6.9 Neural Ordinary Differential Equations (NODE)

Neural Ordinary Differential Equations (Neural ODE) [20] represent a deep neural network model
designed for continuous-time systems, in contrast to traditional discrete-time neural networks. In the
Neural ODE framework, we denote the hidden state of a dynamic system at a given time ¢ as z(t).
The objective is to determine the evolution of z(¢) by calculating its derivative with respect to time
to capture the temporal dynamics of the system. This derivative is represented by a parameterized
neural network function, denoted as f(z(t), ¢, ), as follows:

dz(t)

e (z(t),t,0) 17
Here, 0 represents the parameters of the neural network f(-). To compute the output of the Neural
ODE framework, an ODE solver takes the initial hidden state z(t) at the starting time point ¢, and
integrates the hidden state derivative over time to produce the hidden state z(¢;) at the specified
output time point ¢1, as described below:

a(t) = 2(te) + | Fa(t),t,0)dt (18)

to

In summary, by formulating neural networks as continuous-depth models through Neural ODEzs, this
framework can generate the hidden state of a dynamic system at any given time point and effectively
handle continuous-time data. This characteristic makes it particularly useful for modeling continuous-
time dynamic systems. Furthermore, to reduce memory requirements during backpropagation, Chen
et al. [20] introduced the adjoint sensitivity method for Neural ODEs. An adjoint, denoted as
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a(t) = %(Lt), is defined, where L represents the loss function. The gradient of £ with respect to the
network parameters € can be directly computed using the adjoint and an ODE solver:

dL o L 0f(z(t),t,0)
- /t a(t) 50 dt (19)
In essence, the adjoint sensitivity method solves an augmented ODE backward in time, enabling the
computation of gradients without the need for backpropagation through the ODE solver operations.
This means that the model doesn’t have to store intermediate results (partial derivatives) from
forward propagation, resulting in a constant memory cost as a function of the depth. In this work,
we incorporate Neural ODEs into computer vision tasks for electron micrograph classification by
segmenting an electron micrograph into a sequence of patches. The sequence length is determined
by the total number of patches generated through the tokenization of the electron micrograph,
with each patch serving as an individual token in the sequence. Treating the input sequence of
patches as a continuous-time system enables Neural ODEs to capture the evolution of the patch
embeddings smoothly and continuously. Moreover, this approach facilitates the causal modeling of
spatial relationships and transformations between consecutive patches by encoding them into patch
embeddings. In this work, we model the neural network f(-) using a transformer encoder[93]]. It
consists of a stack of encoder layers, each containing self-attention mechanisms and feed-forward
neural networks. The encoder layers capture the relationships and dependencies between the patches
in the image. We learn the bidirectional representation of sequences to capture information from
both the past and future context of a given patch in a sequence. Our bidirectional representation
learning approach incorporates two separate Neural ODEs: one that processes the sequence from left
to right (forward pass) and another that processes the sequence from right to left (backward pass).
Each pass maintains its own hidden state, and the outputs of both passes are combined through a
gating mechanism. Let’s denote the forward Neural ODE estimate of the patch embedding at time
point ¢ as z;(¢1) and the backward Neural ODE as z;(¢1) using Equation |18 A gating mechanism
is implemented to regulate the information flow from z¢(¢1) and z,(¢;), which produces a weighted
combination of representations Ay, . The gating mechanism is described as follows:
g=0(f(zr(t)) + " (m(t1))) (20)
hiy = o (g(zs(t1)) + (1 = g)(z(t1))) 2n

where f’ and f” are linear projections. In our work, the use of adaptive ODE solvers can lead to
significant time consumption. To ensure manageable training time, we use fixed-grid ODE solvers
in combination with the Interpolated Reverse Dynamic Method (IRDM) proposed by Daulbaev
et al.[27]. The IRDM employs Barycentric Lagrange interpolation[[6] on a Chebyshev grid[94] to
approximate the solution of patch embeddings during the reverse-mode differentiation (referred to as
backpropagation) through the ODE solver. By incorporating IRDM, we can reduce the computational
time during backpropagation while maintaining satisfactory learning accuracy. Specifically, we
adopt a fixed-grid ODE solver, namely the fourth-order Runge-Kutta method[12]], and implement the
interpolated reverse dynamic method with 3 Chebyshev nodes. This approach enables us to ensure
tractable training time without compromising precision.

6.10 Related Work

In this section, we will first review the backbone architectures used in computer vision. Next, we
will survey the evolution of graph neural networks, with a particular focus on Graph Convolutional
Networks (GCN)[63]] and their utilization in vision tasks. The landscape of computer vision has been
significantly shaped by convolutional networks(i.e., ConvNets or CNNs), which have brought about a
seismic shift in the field and have established themselves as the predominant architecture (LeCun et
al.[67]], Krizhevsky et al.[65], He et al.[S0]]). LeNet[67] significantly influenced the development and
popularity of ConvNets, paving the way for more advanced and deeper networks in subsequent years
across a broad spectrum of vision tasks, including image classification[65]], object detection[33], and
semantic segmentation[72]]. Over the past decade, groundbreaking advancements such as ResNet[S0],
MobileNet[56], and NAS[116, [109] have further shaped the landscape of CNN architectures. The
advent of the vision transformer(ViT)[31} 45,14} [18] has been a trailblazer, leading to the development
of a myriad of improved ViT variants[31]. These improvements encompass pyramid architectures[71}
98], local attention mechanisms[46, [71]], and position encoding techniques[103]. Inspired by the
vision transformer, researchers have also explored the potential of Multilayer Perceptrons (MLP)
in computer vision tasks[90, [89]]. By incorporating tailored modules[21} [70} 44} |86], MLP-based
techniques have demonstrated exceptional performance in general vision tasks, including object
detection and segmentation. Graph Neural Networks (GNNs) originated from the early work of
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Scarselli et al.[80]] and Gori et al.[41]], introducing the concept of spatial graph convolutional networks
with non-recursive layers[7/3] to learn from graph-structured data. Since then, spatial GCNs have
seen numerous adaptations and improvements, as proposed in previous works such as Niepert et
al.[76], Atwood et al.[3]], and Gilmer et al.[40]]. Spectral GCNs, grounded in spectral graph theory,
were first introduced in a study by Bruna et al.[11]. Subsequent methods to enhance these networks
have been proposed in studies by Kipf et al.[63], Henaff et al.[S3], and Defferrard et al.[28]. In
the realm of computer vision[ 105} |66, 60, 97], Graph Convolutional Networks (GCNs) have been
applied to diverse tasks including point cloud classification, scene graph generation, and action
recognition. Point clouds refer to sets of 3D points derived from LiDAR scans, where GCNs
have been leveraged for classification and segmentation[[66 (100, [108]]. The process of scene graph
generation involves parsing an input image into a graph representation that delineates objects and their
interrelationships, often integrating object detection with GCN techniques[107]. Furthermore, GCNs
have been instrumental in facilitating human action recognition tasks by analyzing graphs representing
linked human joints[[106} 159]. Current frameworks in the semiconductor manufacturing sector fall
short in various aspects, especially when compared to recently proposed advancements. Many existing
solutions fail to capitalize on the detailed analysis achievable through the synergy of patch sequences
and vision graphs at different scales in electron micrographs. Moreover, these frameworks typically
analyze data at a singular scale, missing the opportunities that a multi-scale approach could offer in
enhancing classification accuracy. Furthermore, the industry has yet to fully embrace the utilization of
large language models (LLMs) in generating technical descriptions of nanomaterials, a strategy that
can significantly deepen domain-specific insights critical for nanomaterial identification tasks. This
glaring gap in the integration of image-based and linguistic insights renders current architectures less
comprehensive and nuanced, potentially impeding breakthroughs in the semiconductor industry. The
proposed “MultiFusion-LLM" framework represents a pioneering approach to automatic nanomaterial
identification, addressing the prevailing challenges in semiconductor manufacturing processes. At
its core, it employs a hierarchical network fusion (HNF) architecture that amalgamates two diverse
representations of electron micrographs: patch sequences and vision graphs. These representations
undergo iterative refinement through a layered, inverted pyramid structure, integrating multi-scale
information to enhance classification accuracy. Additionally, the framework introduces a zero-shot
chain-of-thought (Zero-Shot CoT) prompting technique that utilizes large language models (LLMs) to
generate detailed technical descriptions of nanomaterials. These descriptions, rich in domain-specific
knowledge, serve as auxiliary information that bolsters identification tasks. By encapsulating both
image-based and linguistic insights, the framework aims to facilitate a more comprehensive and
nuanced analysis of electron micrographs, thereby holding significant promise for advancements in
the semiconductor industry.
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Table 8: LLM-retrieved text of GPT-3.5 for natural language queries about MEMS devices.

Query prompt

LLM-retrieved text

Introduction: Provide an
overview of the MEMS and its
significance in various fields?

Introduction: Micro-Electro-Mechanical Systems, commonly known
as MEMS, is a cutting-edge technology that integrates miniaturized
mechanical and electromechanical elements with electronics on a
single silicon chip or substrate. These systems typically consist of
components with dimensions ranging from micrometers to millimeters.
MEMS devices have revolutionized various industries and fields due
to their unique capabilities, compact size, low power consumption,
and cost-effectiveness. They enable the creation of tiny, sophisticated
systems with enhanced functionalities, making them indispensable in
numerous applications.

Significance in Various Fields:

Consumer Electronics: MEMS devices have played a crucial role
in the advancement of consumer electronics. Accelerometers, gyro-
scopes, and magnetometers in smartphones enable motion sensing,
orientation detection, and navigation. MEMS microphones are widely
used for voice and audio input in smartphones, laptops, and other
gadgets.

Automotive: MEMS sensors are fundamental to the functioning of
modern vehicles. They are used in airbag deployment systems, tire
pressure monitoring systems, electronic stability control, and more.
MEMS accelerometers and gyroscopes provide data for advanced
driver assistance systems (ADAS) and vehicle navigation.

Aerospace and Defense: MEMS technology has revolutionized
aerospace and defense applications. Inertial sensors, such as ac-
celerometers and gyroscope arrays, are vital for aircraft and spacecraft
stabilization, guidance, and control. MEMS-based pressure sensors
are used in altimeters and barometers, and microbolometers for in-
frared imaging.

Industrial Applications: MEMS devices find extensive use in indus-
trial automation and control systems. They are used for precise
measurement, monitoring, and feedback control in manufacturing
processes, structural health monitoring, and predictive maintenance.

Robotics: MEMS sensors are essential components in robotics and
autonomous systems. They provide feedback for motion control, bal-
ance, and obstacle detection, enabling robots to navigate and interact
with their environment safely.

Telecommunications: MEMS technology has been instrumental in the
miniaturization of RF switches, tunable capacitors, and filters, leading
to improved performance and efficiency in wireless communication
devices.

Energy Harvesting: MEMS energy harvesters are used to capture and
convert ambient energy sources such as vibrations, solar, and thermal
energy into usable electrical power for low-power electronic devices.

The significance of MEMS in these and many other fields stems from
their ability to offer scalable, high-performance, and cost-effective
solutions for various applications. The continuous advancement in
MEMS fabrication techniques and materials has opened up new possi-
bilities for even more innovative and diverse applications in the future.
As research and development in this field continue, we can expect
MEMS to remain at the forefront of technological progress across
numerous industries.
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Table 8: LLM-retrieved text of GPT-3.5 for natural language queries about MEMS devices.

Query prompt

LLM-retrieved text

Definition and Structure: De-
fine the MEMS and describe
its typical structure at the
nanoscale.?

Definition of MEMS: Micro-Electro-Mechanical Systems (MEMS)
refers to a class of miniaturized devices and systems that integrate
micro-scale mechanical components, electrical circuits, and some-
times optical elements on a single substrate. These components are
typically fabricated using semiconductor manufacturing techniques,
similar to those used for integrated circuits (ICs). MEMS devices
are characterized by their small size, with components ranging from
micrometers to millimeters, and they often operate in the micro/nano
scale.

Typical Structure of MEMS at the Nanoscale: MEMS devices exhibit
a wide variety of structures and designs, each tailored to their specific
application. At the nanoscale, MEMS structures often involve me-
chanical components with dimensions in the micrometer range and
electrical connections at the nanoscale level. The following are the
key components commonly found in MEMS devices at the nanoscale:

Substrate: The foundation of a MEMS device is typically a silicon
substrate. Silicon wafers are commonly used due to their excellent
mechanical properties, compatibility with semiconductor processes,
and availability in various sizes.

Mechanical Components: MEMS devices consist of micro or nano-
scale mechanical elements that can move or respond to external stim-
uli. These components may include beams, cantilevers, diaphragms,
membranes, gears, and more. The design and material of these struc-
tures depend on the specific application.

Actuators: Actuators are responsible for generating mechanical mo-
tion in MEMS devices. They can be electrostatic, piezoelectric, ther-
mal, magnetic, or other types, depending on the required movement
and sensitivity.

Sensors: MEMS sensors are vital for detecting and measuring physi-
cal quantities such as acceleration, pressure, temperature, humidity,
etc. Common MEMS sensors include accelerometers, gyroscopes,
pressure sensors, and temperature sensors.

Transducers: Transducers convert one form of energy into another.
In MEMS, they are often used to transform mechanical motion or
physical parameters into electrical signals or vice versa.

Interconnects: Nanoscale electrical interconnects provide the neces-
sary connections between the MEMS components and the external
circuits or systems. These connections are usually made using metal
traces or vias.

Control Electronics: For some MEMS devices, integrated control
electronics are present on the same chip to process, amplify, and
transmit signals to and from the mechanical components and sensors.

The fabrication of these nano/micro-scale components involves vari-
ous advanced processes, including photolithography, etching, deposi-
tion, and bonding. The choice of materials, such as silicon, polymers,
metals, and composites, is critical to achieving the desired mechani-
cal and electrical properties. The combination of these components
and their precise integration on a single substrate allows MEMS de-
vices to perform a wide range of functions across various industries,
making them a fundamental technology in the world of miniaturized
electronics and sensors.
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Table 8: LLM-retrieved text of GPT-3.5 for natural language queries about MEMS devices.

Query prompt

LLM-retrieved text

Synthesis Methods: Explore
different methods used to syn-
thesize or fabricate MEMS de-
vices in this category. Dis-
cuss their advantages and lim-
itations.?

Various methods are used to synthesize or fabricate MEMS devices,
each with its own advantages and limitations. Below are some com-
monly used synthesis methods:

Bulk Micromachining: Advantages: (a) Well-established and widely
used method, (b) Suitable for fabricating simple, 2D MEMS structures
and (c) Relatively low cost and straightforward process. Limitations:
(a) Limited design flexibility for complex 3D structures, (b) Fabrica-
tion of delicate or high-aspect-ratio structures can be challenging, and
(c) Not suitable for integrating multiple layers of different materials.

Surface Micromachining: Advantages: (a) Enables the fabrication
of complex 3D structures, (b) Suitable for high-volume production
due to batch processing capabilities, and (c) Can integrate multiple
layers of different materials. Limitations: (a) Typically limited to
planar structures, (b) Requires sacrificial layer techniques, which can
be more complicated and time-consuming than bulk micromachining,
and (c) Material choices are often limited to specific combinations
suitable for sacrificial release.

LIGA (Lithography, Electroplating, and Molding): Advantages: (a)
Capable of fabricating high-aspect-ratio structures with excellent pre-
cision, (b) Suitable for mass production of microstructures, and (c)
Compatible with various materials. Limitations: (a) Complex and
costly process due to multiple steps involved, (b) Limited to metal-
lic materials for electroplating, and (c) Difficulties in creating free-
standing structures.

Soft Lithography: Advantages: (a) Simple and cost-effective tech-
nique, (b) Suitable for rapid prototyping and small-scale production,
and (c) Enables the use of a wide range of materials, including poly-
mers and biomaterials. Limitations: (a) Limited to simple structures
and low aspect ratios, (b) Resolution and precision may not be as high
as other techniques, and (c) Not suitable for high-temperature or harsh
environments.

Silicon-on-Insulator (SOI) Technology: Advantages: (a) Provides
high mechanical stability and isolation, (b) Suitable for integrating
MEMS and CMOS components on the same chip, and (c) Excellent
electrical isolation between components. Limitations: (a) Higher
cost compared to standard silicon wafers, (b) Limited availability of
thick SOI wafers, restricting the aspect ratio of structures, and (c)
Challenges in wafer bonding and handling.

Nanolithography and Nanofabrication: Advantages: (a) Enables fabri-
cation of nanoscale MEMS devices with high precision, (b) Allows for
the development of novel and highly sensitive sensors and actuators,
and (c) Can be used to create complex nanostructures and patterns.
Limitations: (a) Expensive and requires specialized equipment, (b)
Limited to research and development due to high costs and complex-
ity, and (c) Mass production of nanoscale MEMS devices remains
challenging.

3D Printing/Additive Manufacturing: Advantages: (a) Enables rapid
prototyping and customization of MEMS devices, (b) Supports the
creation of complex 3D geometries and intricate structures, and (c)
Reduces the need for complex lithography and etching steps. Limi-
tations: (a) Limited resolution compared to traditional lithography-
based methods, (b) Material choices may be restricted for some 3D
printing techniques, and (c) Post-processing steps might be required
for improved surface finishes and accuracy.

Overall, the choice of synthesis method depends on the requirement
of material pg(}Perties, volume of production, and budget constraints.




Table 8: LLM-retrieved text of GPT-3.5 for natural language queries about MEMS devices.

Query prompt

LLM-retrieved text

Properties: Highlight the
unique physical, chemical, and
electronic properties exhibited
by MEMS in this nanomaerial
category. Discuss how these
properties differ from their bulk
counterparts.?

MEMS (Micro-Electro-Mechanical Systems) exhibit several unique
physical, chemical, and electronic properties at the nanoscale, which
differentiate them from their bulk counterparts. Below are some of
the key properties:

Size and Scale: The most obvious property of MEMS is their minia-
ture size, typically ranging from micrometers to millimeters. This
reduced scale allows for compact, lightweight, and portable devices,
which is not achievable in their bulk counterparts.

Surface-to-Volume Ratio: At the nanoscale, MEMS devices have
a higher surface-to-volume ratio compared to bulk devices. This
increased surface area enhances interactions with the surrounding
environment, leading to improved sensitivity in sensors and more
efficient reactions in chemical and biological applications.

Mechanical Properties: MEMS structures often exhibit different me-
chanical properties compared to their bulk counterparts. For exam-
ple, nanoscale mechanical components can have enhanced flexibility,
higher resilience, and reduced inertia due to their reduced mass and
size. These properties are advantageous in applications such as ac-
celerometers and gyroscopes.

Thermal Properties: The reduced dimensions of MEMS components
result in lower thermal mass and faster response to changes in tem-
perature. This property is vital for accurate temperature sensing and
thermal management in compact devices.

Electrical Properties: MEMS devices at the nanoscale can exhibit
unique electrical properties, such as high sensitivity to electrical sig-
nals. Piezoelectric and electrostatic properties are commonly utilized
for sensing and actuation in MEMS devices.

Optical Properties: Some MEMS devices, especially those incorporat-
ing optical elements, can exhibit novel optical properties due to the
interaction of light with nanoscale structures. This enables the devel-
opment of miniaturized optical sensors, displays, and communication
systems.

Material Properties: At the nanoscale, materials can exhibit different
properties than at the bulk level. For example, nanomaterials may
have altered mechanical, electrical, and optical characteristics due to
quantum effects and surface interactions. MEMS devices can leverage
these unique material properties for specific functionalities.

Sensitivity: MEMS sensors at the nanoscale are highly sensitive to
various stimuli, such as mechanical, electrical, thermal, and chemical
changes. This sensitivity enables precise measurements and detec-
tions, making MEMS devices suitable for a wide range of applications,
including healthcare, environmental monitoring, and industrial au-
tomation.

Energy Efficiency: The reduced size and lower power requirements of
MEMS devices at the nanoscale make them more energy-efficient com-
pared to bulk systems. This energy efficiency is crucial for portable
and battery-operated devices.

Integration: MEMS devices can integrate multiple functionalities,
such as sensing, actuation, and signal processing, on a single chip.
This integration capability allows for the development of complex,
multifunctional systems in a compact form factor.

In summary, the unique physical, chemical, and electronic properties
of MEMS at the nanoscale make them ideal for a wide range of
applications, including sensors, actuators, and biomedical devices.
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Table 8: LLM-retrieved text of GPT-3.5 for natural language queries about MEMS devices.

Query prompt

LLM-retrieved text

Applications: Explore the wide
range of applications where
MEMs are utilized. Discuss
their potential impact in fields
such as electronics, energy,
medicine, environmental reme-
diation, etc.

MEMS (Micro-Electro-Mechanical Systems) have found extensive
applications across various industries due to their unique properties
and miniaturized form factor. Here are some of the key applications
of MEMS in different fields:

Electronics and Consumer Devices: (a) MEMS accelerometers and gy-
roscopes in smartphones and wearable devices enable motion sensing
and orientation detection for gaming, navigation, and fitness track-
ing, (b) MEMS microphones are used in smartphones, tablets, and
other consumer electronics for voice recording and noise cancella-
tion, and (c) MEMS-based displays, such as digital micromirror de-
vices(DMDs), are utilized in projectors and digital cinema.

Healthcare and Medicine: (a) MEMS-based lab-on-a-chip devices
allow for rapid and precise analysis of biological samples, enabling
diagnostics, DNA sequencing, and disease detection, (b) Microflu-
idic MEMS devices are used for drug delivery systems, implantable
medical devices, and micro-pumps for controlled drug release, and
(c) MEMS sensors monitor vital signs in wearable health devices and
provide real-time patient data for telemedicine applications.

Automotive and Transportation: (a) MEMS accelerometers and gyro-
scopes are essential components in automotive safety systems, such
as airbags, electronic stability control, and tire pressure monitoring
systems, (b) MEMS pressure sensors are used in engine manage-
ment and emissions control systems to optimize performance and
fuel efficiency, and (c) MEMS-based inertial navigation systems pro-
vide precise navigation and positioning for autonomous vehicles and
drones.

Environmental Monitoring: (a) MEMS sensors are used for moni-
toring air quality, temperature, humidity, and gas concentrations in
environmental monitoring systems, and (b) MEMS devices enable
remote sensing and data collection for climate research and weather
forecasting.

Aerospace and Defense: (a) MEMS gyroscopes and accelerometers
are critical components in aerospace applications for attitude control,
navigation, and guidance systems, (b) MEMS pressure sensors are
used in altitude and airspeed measurements in aircraft, and (c) MEMS-
based infrared imaging devices are utilized in night vision systems for
military and security applications.

Energy Harvesting:(a) MEMS energy harvesters convert ambient en-
ergy, such as vibrations or thermal gradients, into electrical power,
providing a sustainable energy source for low-power electronics and
IoT devices.

Industrial Automation: (a) MEMS-based sensors are used for con-
dition monitoring, predictive maintenance, and feedback control in
manufacturing and industrial processes, improving efficiency and
reducing downtime.

Robotics: MEMS sensors and actuators enable precise motion control
and sensing in robots, making them more autonomous and capable of
interacting with their environment.

The potential impact of MEMS in these fields is immense. They
contribute to increased efficiency, enhanced functionality, reduced
energy consumption, and improved safety in various applications.
As MEMS technology continues to advance, we can expect further
integration, miniaturization, and performance improvements, leading
to even more innovative applications across industries and benefiting
society as a whole.
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Table 8: LLM-retrieved text of GPT-3.5 for natural language queries about MEMS devices.

Query prompt

LLM-retrieved text

Applications: Explore the wide
range of applications where
MEMs are utilized. Discuss
their potential impact in fields
such as electronics, energy,
medicine, environmental reme-
diation, etc.

Surface modification plays a crucial role in tailoring the properties
of MEMS devices in the nanomaterials category. It involves altering
the surface characteristics of the MEMS components to enhance their
performance or enable specific applications. Here are some common
strategies used for surface modification:

Functionalization: Functionalization involves attaching or grafting
specific molecules or functional groups onto the surface of MEMS de-
vices. This process enhances the surface’s chemical reactivity and al-
lows for specific interactions with target substances. Functionalization
can be achieved through chemical reactions or self-assembled mono-
layers (SAMs). Some applications of functionalization in MEMS
include:

Biomolecule Immobilization: Functionalizing the surface with
biomolecules, such as antibodies or DNA probes, enables biosensing
applications for disease detection and medical diagnostics.

Gas Sensing: The surface functionalization of MEMS gas sensors
with specific materials enhances their selectivity and sensitivity to
target gases, making them suitable for environmental monitoring and
industrial safety.

Coating: Surface coating involves depositing thin layers of materials
onto the MEMS surface to alter its properties. Coatings can be func-
tional (active) or protective (passive) in nature. Some coating methods
include physical vapor deposition (PVD), chemical vapor deposition
(CVD), and atomic layer deposition (ALD). Coatings can enhance
MEMS performance in various ways, such as: Anti-Stiction Coatings:
Coating the MEMS surface with lubricants or hydrophobic materials
reduces stiction and friction, which is crucial for reliable operation in
micro-mechanical devices.

Chemical Protection: Coatings can protect MEMS devices from chem-
ical corrosion or degradation, increasing their durability and lifespan
in harsh environments. Optical Coatings: Coatings with specific
optical properties can enhance light transmission or reflection, im-
proving the efficiency of optical MEMS devices like micro-mirrors
and displays.

Doping: Doping involves introducing impurity atoms into the ma-
terial’s surface to modify its electrical properties. This strategy is
commonly used in semiconductors to create p-type or n-type regions
and adjust the device’s conductivity. Doping is critical for MEMS
devices with electronic functionality, such as sensors and actuators.
By carefully controlling the doping process, the sensitivity, response
time, and power consumption of MEMS devices can be optimized for
specific applications.

Nanopatterning: Nanopatterning involves creating specific patterns
or nanostructures on the MEMS surface. Techniques like electron
beam lithography, nanoimprint lithography, and nanocontact printing
can be used to fabricate intricate patterns. Nanopatterning enables
applications such as:

Enhanced Adhesion: Nanostructures can improve the adhesion be-
tween MEMS components and bonding surfaces, reducing the risk
of delamination or failure. Superhydrophobicity: Nanostructured sur-
faces can achieve superhydrophobic properties, repelling water and
other liquids. This is useful in self-cleaning or water-repellent MEMS
devices.

Overall, surface modification techniques allows to fine-tune the mate-
rial’s properties, improve performance.
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Table 8: LLM-retrieved text of GPT-3.5 for natural language queries about MEMS devices.

Query prompt

LLM-retrieved text

Toxicity and Safety: Address
the potential health and envi-
ronmental concerns associated
with MEMS in this nanomateri-
als category. Discuss studies on
their toxicity, risk assessment,
and safety measures to mitigate
any potential hazards.

As with any emerging technology, there are concerns about the po-
tential health and environmental impacts associated with MEMS in
the nanomaterials category. While MEMS devices themselves are
generally considered safe, certain nanomaterials and fabrication pro-
cesses used in their production can raise toxicity and safety issues.
It’s essential to address these concerns through rigorous studies, risk
assessments, and implementation of safety measures. Here are some
key points to consider:

Nanomaterial Toxicity: Nanomaterials, due to their small size and
increased surface area, may exhibit different properties and behaviors
compared to their bulk counterparts. Some nanomaterials can poten-
tially pose health and environmental risks if they are released into
the environment or come into contact with living organisms. Toxicity
studies are essential to assess the potential harm caused by exposure
to nanomaterials used in MEMS devices.

Risk Assessment: Researchers and regulatory bodies conduct risk
assessments to evaluate the potential hazards associated with the use
of nanomaterials in MEMS devices. These assessments consider expo-
sure pathways, potential toxicity, and the likelihood of adverse effects.
Risk assessment helps in identifying potential risks and implementing
appropriate safety measures to minimize or eliminate hazards.

Safety Measures: To mitigate potential health and environmental
risks, safety measures can be implemented throughout the lifecycle of
MEMS devices. These measures include:

Engineering Controls: Implementing engineering controls during the
fabrication process to minimize exposure to hazardous materials and
ensure safe handling and disposal of nanomaterials.

Personal Protective Equipment (PPE): Providing employees with ap-
propriate PPE to prevent inhalation or skin contact with nanomaterials
during fabrication or handling of MEMS devices. Workplace Safety
Protocols: Establishing workplace safety protocols and guidelines for
the safe handling, storage, and disposal of nanomaterials and MEMS
devices. Environmental Regulation: Complying with environmental
regulations and guidelines for the safe disposal of waste materials
generated during MEMS fabrication.

Environmental Impact Assessment: Environmental impact assess-
ments evaluate the potential environmental impacts of introducing
MEMS devices into various applications. These assessments help
identify potential risks and provide insights into how to design MEMS
devices with minimal environmental impact.

Continued Research: Continued research into the toxicity of nano-
materials and the potential hazards associated with MEMS devices
is essential. As the technology advances, new materials and fabrica-
tion processes may emerge, warranting further investigation to ensure
safety.

In conclusion, while MEMS devices in the nanomaterials category
offer exciting possibilities for various applications, it is crucial to
address potential health and environmental concerns associated with
nanomaterials. Conducting thorough toxicity studies, risk assess-
ments, and implementing safety measures are essential steps to ensure
the responsible and sustainable development and use of MEMS tech-
nology. By prioritizing safety and environmental considerations, the
benefits of MEMS can be harnessed while minimizing any potential
risks.
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Table 8: LLM-retrieved text of GPT-3.5 for natural language queries about MEMS devices.

Query prompt

LLM-retrieved text

Future Directions: Discuss cur-
rent research trends and fu-
ture prospects for MEMS
Highlight emerging technolo-
gies, challenges, and areas of
active exploration.

Current research trends and future prospects for MEMS (Micro-
Electro-Mechanical Systems) are driven by a combination of techno-
logical advancements, societal demands, and industry needs. Here are
some key areas of active exploration and emerging technologies in
the field of MEMS:

Internet of Things (IoT) and Smart Devices: The proliferation of
IoT and smart devices is fueling the demand for MEMS sensors and
actuators that are smaller, more power-efficient, and capable of pro-
viding precise data. Research is focused on developing low-power,
miniaturized MEMS devices for applications in smart homes, wear-
able devices, environmental monitoring, and industrial automation,
(b) Energy Harvesting: Energy harvesting using MEMS devices is
a promising area of research. Researchers are exploring the use of
MEMS energy harvesters to capture ambient energy from vibrations,
thermal gradients, and solar radiation to power low-energy electronic
devices and sensors, (C) MEMS-NEMS Integration: The integration
of MEMS with NEMS (Nano-Electro-Mechanical Systems) is an area
of active exploration. NEMS components, due to their smaller size and
increased sensitivity, can enhance the performance and capabilities
of MEMS devices, especially in sensing and actuation applications,
(d) Nanomaterials and Nanofabrication: Advances in nanomaterials
and nanofabrication techniques are enabling the development of novel
MEMS devices with enhanced functionalities and improved perfor-
mance. Researchers are exploring nanomaterial-based MEMS devices
for applications in gas sensing, chemical detection, and bio-imaging,
and (e) 3D Printing and Additive Manufacturing: 3D printing and
additive manufacturing are being investigated for rapid prototyping
and fabrication of complex MEMS structures. This technology allows
for greater design flexibility and customization, facilitating innovation
in MEMS development.

Challenges: Despite the promising future of MEMS technology, some
challenges need to be addressed: (a) Integration Complexity: As
MEMS devices become more sophisticated and multifunctional, in-
tegration challenges arise. The integration of different materials,
electronics, and sensors on a single chip requires precise fabrication
techniques and design optimization. (b) Reliability and Longevity:
MEMS devices are often used in harsh environments, and ensuring
their reliability and longevity under such conditions is crucial. Materi-
als compatibility, stiction, and packaging issues need to be carefully
addressed, (c) Standardization: The lack of standardized processes
and testing methods for MEMS devices can hinder their widespread
adoption and commercialization. Standardization efforts are essential
to ensure consistent performance and compatibility across different
MEMS devices, and (d) Scaling and Manufacturing Costs: Scaling
down MEMS devices to nanoscale dimensions presents manufac-
turing challenges and can increase production costs. Cost-effective
fabrication methods for mass production are crucial for widespread
adoption.
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Table 8: LLM-retrieved text of GPT-3.5 for natural language queries about MEMS devices.

Query prompt LLM-retrieved text

Future Prospects: The future prospects for MEMS technology are
promising, with potential impact in various sectors: (a) Healthcare
and Medical Devices: MEMS-based medical devices are expected
to revolutionize diagnostics, treatment, and personalized medicine,
leading to better patient outcomes and healthcare efficiency, (b) Au-
tonomous Systems: MEMS sensors and actuators will play a crucial
role in enabling autonomous vehicles, drones, and robotics, advancing
automation and safety across industries, (c) Environmental Monitor-
ing and Sustainability: MEMS devices will continue to contribute
to environmental monitoring and sustainability efforts by providing
accurate data on pollution levels, climate change, and resource man-
agement, (d) Smart Cities: MEMS technology will be integral to the
development of smart cities, enabling efficient infrastructure manage-
ment, traffic control, and environmental monitoring, and (¢) Wearable
and Implantable Devices: MEMS-based wearable and implantable
devices will enable continuous health monitoring and intervention,
improving overall well-being and quality of life.

In conclusion, the future of MEMS technology holds great promise,
with advancements in nanomaterials, 3D printing, IoT, and healthcare
applications driving innovation. Addressing current challenges and
promoting collaboration between researchers, industry, and regulatory
bodies will be key to unlocking the full potential of MEMS and
realizing its transformative impact across various sectors.
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