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Abstract

Alzheimer’s Disease (AD) is a progressive neu-001
rodegenerative disorder that leads to demen-002
tia, and early intervention can greatly bene-003
fit from analyzing linguistic abnormalities. In004
this work, we explore the potential of Large005
Language Models (LLMs) as health assistants006
for AD diagnosis from patient-generated text007
using in-context learning (ICL), where tasks008
are defined through a few input-output exam-009
ples. Empirical results reveal that conventional010
ICL methods, such as similarity-based selec-011
tion, perform poorly for AD diagnosis, likely012
due to the inherent complexity of this task. To013
address this, we introduce Delta-KNN, a novel014
demonstration selection strategy that enhances015
ICL performance. Our method leverages a delta016
score to assess the relative gains of each train-017
ing example, coupled with a KNN-based re-018
triever that dynamically selects optimal “repre-019
sentatives” for a given input. Experiments on020
two AD detection datasets across three open-021
source LLMs demonstrate that Delta-KNN con-022
sistently outperforms existing ICL baselines.023
Notably, when using the Llama-3.1 model, our024
approach achieves new state-of-the-art results,025
surpassing even supervised classifiers.1026

1 Introduction027

Large Language Models (LLMs), powered by ad-028

vanced deep learning and vast cross-disciplinary029

training data, have transformed Natural Language030

Processing (NLP) (Zhao et al., 2023; Fan et al.,031

2024). They show promise in specialized fields032

like clinical medicine and healthcare (Bubeck et al.,033

2023; Cui et al., 2024; Belyaeva et al., 2023; Jin034

et al., 2024). However, their ability to outperform035

traditional AI in tasks requiring deep understand-036

ing and nuanced analysis remains uncertain (Wang037

et al., 2023b).038

In this paper, we investigate LLM’s capabilities039

in a crucial healthcare challenge: Alzheimer’s Dis-040

1Our code will be released.

Figure 1: The Cookie Theft picture description task.

ease detection. AD is a severe neurodegenerative 041

disorder affecting 55 million people worldwide, 042

ranking among the most costly diseases2. Our ap- 043

proach focuses on identifying AD patients based on 044

their descriptions of a given image, such as the well- 045

known Cookie Theft picture (Figure 1). Traditional 046

machine learning methods typically rely on feature 047

extraction (e.g., linguistic analysis) (Fraser et al., 048

2016, 2019; Barral et al., 2020) or embedding- 049

based models (e.g., BERT) (Balagopalan et al., 050

2021) to convert speech into vectors for classifica- 051

tion. However, NLP has shifted from task-specific 052

models to task-agnostic foundation models (Rad- 053

ford et al., 2019; Brown, 2020), enabling LLMs to 054

not only simplify the diagnostic process but also 055

offer interpretable reasoning, providing clinicians 056

with valuable insights into their decision-making 057

(Perlis, 2023; Nori et al., 2023a,b). 058

A major challenge in leveraging LLMs for AD 059

detection is how to effectively teach them to learn 060

from very limited data (i.e., few hundreds exam- 061

ples). In-context learning (ICL)—where a model 062

performs a new task by conditioning on a few input- 063

label pairs during inference—has emerged as a 064

powerful and widely adopted strategy for handling 065

complex tasks, which is applicable in data-poor sce- 066

narios. One common approach involves similarity- 067

based selection, where examples resembling the 068

target input or output are chosen. This method has 069

2https://www.who.int/news-room/fact-sheets/
detail/dementia.
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shown strong performance in tasks like question070

answering, commonsense reasoning, and text-to-071

SQL generation (Liu et al., 2022; Su et al., 2023;072

Li et al., 2025), but one concern is that the adopted073

similarity metrics may only capture a shallow un-074

derstanding of the text. In order to enhance the075

model’s understanding of the target sample, Peng076

et al. (2024) proposed a method that minimizes077

the conditional entropy between the demonstration078

and target, demonstrating improvements on both079

classification and generation tasks.080

Other concerns include that ICL is highly sen-081

sitive to the selection of demonstration examples082

(Lu et al., 2022; Iter et al., 2023) and often strug-083

gles with tasks requiring complex reasoning (Peng084

et al., 2023). In light of these limitations, not sur-085

prisingly, our preliminary experiments reveal that086

existing ICL methods perform poorly on AD detec-087

tion from text, which arguably requires the model088

to capture very subtle and complex linguistic and089

conceptual differences.090

To address these challenges, we introduce a091

novel demonstration selection method, denoted as092

Delta-KNN, that practically quantifies the expected093

gain of each example. This gain, referred to as the094

delta score, measures the improvement in model095

performance before and after including a demon-096

stration. Using a small held-out set, we construct a097

delta matrix that stores performance gains for all098

examples. At inference time, we first identify target099

“representatives” by finding the nearest neighbors100

based on text similarity between the target sam-101

ple and the held-out examples. Then, we select102

demonstrations that maximize the expected gain103

for these representatives. Extensive experiments104

on two AD detection datasets confirm the effective-105

ness of our approach, consistently outperforming106

existing demonstration selection methods. Addi-107

tionally, we evaluate its robustness across different108

LLMs and explore its synergy with prompt engi-109

neering, achieving state-of-the-art (SOTA) perfor-110

mance comparable to supervised baselines.111

In summary, (1) we introduce a novel ICL112

method designed to capture complex linguistic and113

conceptual nuances, making it particularly pow-114

erful in data-scarce scenarios; (2) Our approach115

achieves state-of-the-art performance, surpass-116

ing existing ICL baselines in detecting dementia,117

which is one of the most costly diseases worldwide;118

(3) Through extensive experiments, we show that119

the benefits of our method are conveniently model-120

and prompt-agnostic.121

2 Related Work 122

Language Analysis for AD detection. Clini- 123

cal studies have established a strong connection 124

between speech and language abnormalities and 125

AD pathology (Sajjadi et al., 2012; Rodríguez- 126

Aranda et al., 2016). Research in this area mostly 127

relies on data from the Cookie Theft picture de- 128

scription task, particularly from the DementiaBank 129

(Becker et al., 1994) and ADReSS (Luz et al., 2021) 130

datasets, and utilize semantic, syntactic, and lexical 131

features (Ahmed et al., 2013; Fraser et al., 2016, 132

2019; Jang et al., 2021), with some studies also 133

incorporating information unit analysis, such as 134

counting object mentions in the picture (Masrani 135

et al., 2017; Favaro et al., 2024). While these meth- 136

ods achieve strong performance, they often rely 137

on manual data annotation and feature engineer- 138

ing. To reduce the need for labor-intensive pro- 139

cesses, recent studies have explored deep learn- 140

ing approaches, including transfer learning (Zhu 141

et al., 2021; Balagopalan et al., 2021; Agbavor 142

and Liang, 2022), neural networks (Kong et al., 143

2019; Fritsch et al., 2019; Bouazizi et al., 2023), 144

and LLMs (Achiam et al., 2023). However, given 145

the complexity of AD detection from text, naively 146

prompting LLMs does not yield promising results 147

(Wang et al., 2023b). Instead, more sophisticated 148

in-context learning strategies are required to fully 149

explore LLM’s inner specialist capabilities. 150

Demonstration Selection in ICL. Few-shot in- 151

context learning (ICL) with LLMs has demon- 152

strated performance comparable to supervised fine- 153

tuning across various tasks like reasoning (Wei 154

et al., 2022; Dong et al., 2022). However, its ef- 155

fectiveness remains highly dependent on demon- 156

stration selection, leading to instability (Lu et al., 157

2022; Peng et al., 2023). While Lu et al. (2022) 158

explored the impact of example order, they did not 159

propose a method for selecting better examples. 160

Liu et al. (2022) found that semantically similar 161

examples improve ICL, later extended by incor- 162

porating more diverse demonstrations (Su et al., 163

2023). Other studies have focused on enhancing 164

model understanding through ranking mechanisms 165

(Wu et al., 2023), perplexity-based prompt eval- 166

uation (Gonen et al., 2023), and conditional en- 167

tropy to assess model comprehension (Peng et al., 168

2024). While these methods perform well on stan- 169

dard benchmarks, they remain untested in tasks like 170

AD detection, where capturing subtle linguistic dif- 171

ferences and reasoning-based cues is critical. 172
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Figure 2: Delta-KNN retriever pipeline consists of two parts: (1) construct a delta matrix ∆ by calculating the
performance gain from each demonstration example; (2) search for nearest neighbors (e.g., docj2 , docj3 ) for target
docx in a vector space. The best demonstration example (doci1) maximizes the average delta score over nearest
neighbors (δpdoci1 , docj2q, δpdoci1 , docj3q).

3 Method173

Our demonstration selection method consists of174

two modules: the first module constructs a per-175

formance gain matrix using LLMs, referred to as176

the Delta Matrix (∆). Each cell in ∆ contains a177

delta score (δ) to represent the improvement or178

degradation contributed by a specific demonstra-179

tion doci to a target docx. The second module em-180

ploys an embedding-based retriever, which priori-181

tizes demonstration examples based on their vector182

similarity to the target example. By integrating the183

outputs of both modules, we compute the average184

delta score (δ̄) for the k nearest neighbors of each185

example in the training set. The optimal demon-186

stration example is identified as the one with the187

highest aggregated delta score (argmaxpδ̄q). This188

process is illustrated in Figure 2, and we describe189

each module in detail in the following sections.190

Delta Matrix Construction with LLM. We con-191

struct the Delta Matrix by prompting the LLM in192

both zero-shot and one-shot scenarios. In the zero-193

shot scenario, the input to the LLM consists of the194

text from a document docj . To elicit a probabil-195

ity alongside the predicted label, we include the196

cue phrase “Give a prediction with a probability”197

in the prompt, which has shown good calibration198

capabilities (Tian et al., 2023). P0 is the proba-199

bility of the correct label for zero-shot prediction:200

P0pŷ|docj ; θq where θ refers to LLM parameters.201

In the one-shot scenario, the predicted label and202

probability are obtained by appending the whole203

example i (text and label) prior to the text of docj .204

Similarly, we obtain the probability of correct pre-205

diction in one-shot: P1pŷ|doci, docj ; θq. 206

The delta score for a demonstration example 207

doci relative to the target docj is defined as the 208

difference between P1 and P0: 209

δpdoci, docjq “ P1pŷ|doci, docj ; θq´P0pŷ|docj ; θq

(1) 210

In a training set D with d number of documents, 211

the Delta Matrix ∆ is a d ˆ d matrix where each 212

cell ri, js contains a delta score δpdoci, docjq, rep- 213

resenting the relative gain when doci is used as a 214

demonstration for docj : 215

@doci P D, docj P D, i ‰ j,∆ “ δpdoci, docjq
(2) 216

Similarity-based k Nearest Neighbors (KNN). 217

We hypothesize that the average delta score δ̄ de- 218

rived from guiding the documents most similar 219

to the target document is more informative and 220

effective. Thus, we include a second module to 221

select the most similar documents. Specifically, 222

we use a embedding model to convert documents 223

to vector representations. For each target docx, 224

we identify its k nearest neighbors docj1 , docj2 , 225

..., docjk from the training set based on the dis- 226

tances in the embedding space. Using predefined 227

similarity metrics, such as cosine similarity, the 228

neighbors are ranked such that docj1 ă docj2 if 229

cospdocj1 , docxq ą cospdocj2 , docxq. Note that 230

the number of neighbors can vary: k P r1, ds. In 231

practice, we conduct simulations across a range 232

of k values within the training set using five-fold 233

cross validation and apply the optimal k value to 234

the test documents. 235

A key element in this step is the embedding 236
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model, which projects sentences into a latent se-237

mantic space. We choose OpenAI embeddings238

(Neelakantan et al., 2022) as text encoder because239

it has shown superior results on a series of infor-240

mation retrieval tasks (Xian et al., 2024; Lin et al.,241

2023), surpassing methods such as BM25 (Robert-242

son et al., 2009), leaned sparse representations uni-243

COIL (Ma et al., 2022), and other semantic em-244

bedding APIs (Kamalloo et al., 2023). Precisely,245

we employ the latest text-embedding-3-large246

model3. Additionally, we compare this with repre-247

sentations obtained directly from LLMs (§5.5).248

Delta-KNN Retriever. By combining the two249

modules described above, we compute the av-250

erage delta score (Equation 1) of each demon-251

stration doci over the k most similar documents252

(docj1 , ..., docjk ) to docx:253

δ̄pdoci, ¨q “
1

k

k
ÿ

k1“1

δpdoci, docjk1 q (3)254

This delta score represents the expected gain255

when using doci as a demonstration to the target256

docx. Mathematically, we aim to find the best doci257

by solving the following optimization problem:258

doci˚ “ argmax
dociPD

δ̄pdoci, ¨q (4)259

where doci˚ is the example that maximizes the260

average delta score. In n-shot ICL, we rank the ex-261

amples in descending order and concatenate them262

to form the context tdoci1 , ...docinu prior to the263

target docx.264

The Delta Matrix offers an intuitive map to guide265

the demonstration selection. Different from exist-266

ing similarity-based methods (Nori et al., 2023b)267

or text-understanding-based retrieval approaches268

(Peng et al., 2024), our method is grounded in em-269

pirical evidence of performance gains observed270

from semantically similar documents.271

4 Experimental Setup272

4.1 Datasets and Evaluation Metrics273

Picture Description Task, such as the one shown in274

Figure 1, is a widely used task to capture deficits or275

abnormalities in language (Yorkston and Beukel-276

man, 1980; Favaro et al., 2024). In this work, we277

use two datasets that contain Cookie Theft picture278

description for AD detection: ADReSS and Ca-279

nary. ADReSS (Alzheimer’s Dementia Recog-280

nition through Spontaneous Speech) Challenge281

3https://openai.com/index/
new-embedding-models-and-api-updates/

dataset (Luz et al., 2021) is a curated subset of 282

DementiaBank’s Pitt Corpus (Becker et al., 1994) 283

that is matched for age and gender. It consists of 284

156 speech recordings and transcripts from AD (N 285

= 78) and non-AD (N = 78) participants, and is 286

divided into a training set and a test set. Canary is 287

collected by Jang et al. (2021), comprising 63 pa- 288

tients recruited from a specialty memory clinic and 289

67 healthy controls from the community. Patients 290

are either diagnosed with AD or exhibiting initial 291

symptoms of Mild Cognitive Impairments poten- 292

tially progressing to AD. Canary includes longer 293

documents with greater variations in length, gen- 294

der, and age compared to ADReSS (see details 295

in Appendix A), making it a more challenging 296

dataset while more accurately reflecting clinically 297

collected data. 298

For evaluation metrics, we use (1) Accuracy 299

(ACC), (2) Area Under the Curve (AUC) which 300

captures the ability to distinguish between Patient 301

and Control under different thresholds, (3) Sen- 302

sitivity (SEN): the True Positive rate for Patient 303

detection, and (4) Specificity (SPE): the True Neg- 304

ative rate for Control detection. 305

4.2 Baselines 306

We compare our approach with popular demon- 307

stration selection methods. Since constructing the 308

Delta Matrix relies on information from a training 309

set, we also benchmark with supervised methods. 310

Demonstration Selection Methods. Including: 311

(1) Zero-Shot: A special case of ICL where no 312

demonstration example is given. 313

(2) Random Sampling: Randomly select ex- 314

amples for each target i. 315

(3) Similarity-based Top-k Selection: Pro- 316

posed in Liu et al. (2022) and has been widely 317

used for health-related ICL (Nori et al., 2023b,a), 318

where examples are embedded in a vector space 319

and the nearest neighbors (calculated using cosine 320

similarity) are selected as demonstration. 321

(4) Text-understanding-based CE Selection: 322

A recent approach that quantifies understanding 323

by measuring the Conditional Entropy (CE) of the 324

target input given a demonstration and it selects 325

examples that minimize the CE (Peng et al., 2024). 326

Supervised Baselines. Including: 327

(1) Statistical Machine Learning Classifiers: 328

Traditional methods that use feature extraction 329

(e.g., lexico-syntactic and semantic features) and 330

supervised algorithms like Support Vector Space 331
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Method
ADReSS-train ADReSS-test Canary

ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE

Zero-shot 62.20.0 60.10.0 98.10.0 22.20.0 57.61.0 57.61.0 100.00.0 15.32.0 73.30.4 72.11.0 79.40.0 67.70.7

Random 68.42.2 71.93.1 84.02.3 48.86.3 75.74.3 81.52.6 93.12.0 58.39.0 73.12.7 75.33.7 72.03.3 74.12.5
Top-k Select. 69.01.6 71.92.5 88.32.3 45.71.7 70.12.0 80.00.8 91.73.4 48.62.0 71.02.5 75.02.2 76.70.7 65.74.2
CE˚ Select. 67.42.3 74.51.3 85.21.5 45.73.1 70.11.0 76.42.6 93.12.0 47.22.0 73.31.9 78.40.9 79.92.0 67.24.4

Delta-KNN (ours) 79.21.2 78.91.3 69.10.9 85.21.5 80.53.9 85.80.9 70.85.9 86.12.0 78.51.5 79.80.9 70.60.8 85.82.2

Table 1: AD detection results (accuracy, AUC, sensitivity, specificity) on ADReSS train set, ADReSS test set, and
Canary using different demonstration selection methods. We compare with zero-shot, random sampling, Top-k (Liu
et al., 2022), and CE˚-based (conditional entropy) selection (Peng et al., 2024). All results are averaged over three
runs with standard deviation in subscription. Best score per column is in bold.

(SVM) (Luz et al., 2021), Random Forest (RF)332

(Luz et al., 2021), Logistic Regression (LR) (Jang333

et al., 2021), and simple structure Neural Network334

(NN) (Balagopalan et al., 2021). We replicate a few335

studies and report results in §5.7 and Appendix B.336

(2) Transfer Learning-based Language Mod-337

els: Pretrained Language Models (PLMs) like338

BERT (Devlin, 2018) encode rich linguistic infor-339

mation and are often fine-tuned for classification340

tasks without the need for manual feature extrac-341

tion. We fine-tune a BERT model by following342

Balagopalan et al. (2021) (details in Appendix C)343

and include results from a SVM classifier which344

uses GPT-3 embeddings for contextualized input345

(Agbavor and Liang, 2022).346

(3) Supervised Fine-tuning: It is a common347

approach to adapt LLMs for downstream tasks by348

training on task-specific data, updating some or all349

parameters. We employ LoRA (Hu et al., 2022), a350

parameter-efficient fine-tuning strategy.351

4.3 Implementation Details352

Our experiments are conducted on Llama-3.1-8B-353

Instruct (Dubey et al., 2024). To assess the robust-354

ness of our method, we also test it on Qwen2.5-7B-355

Instruct (Yang et al., 2024) and Mistral-7B-Instruct-356

v0.3 (Jiang et al., 2023), see §5.6.357

For zero-shot and few-shot ICL, we use a low358

temperature (0.01) and set top_k sampling to 50.359

We use 4-shot learning with two positive and two360

negative examples. The impact of in-context exam-361

ples is discussed in §5.3. To address the potential362

non-determinism of LLMs (Ouyang et al., 2023;363

Song et al., 2024), each experiment is tested three364

times. We present the average scores along with the365

standard deviation. For LLM fine-tuning, we em-366

ploy LoRA technique (Hu et al., 2022) and train the367

model for one epoch, with details in Appendix D.368

Given the complexity of this task (Bouazizi et al.,369

2023; Favaro et al., 2024), we carefully design370

prompts with comprehensive instructions to en- 371

hance the model’s understanding and diagnostic 372

capabilities. Our prompt includes: Role—“You 373

are a medical expert in Alzheimer’s Disease” to 374

establish domain expertise, Context—a concise 375

introduction to the Cookie Theft picture descrip- 376

tion task, and Linguistic—key linguistic features 377

the model should focus on. In addition, we incor- 378

porate a Guided Chain of Thought (G.-CoT) rea- 379

soning step (Kojima et al., 2022), prompting the 380

model to analyze specific linguistic aspects such as 381

vocabulary richness and syntactic complexity, sup- 382

ported by clinical observations (Ash and Grossman, 383

2015; Forbes-McKay and Venneri, 2005; Bouaz- 384

izi et al., 2023). A complete prompt template 385

(Role+Context+Linguistic; Demonstrations; 386

G.-CoT) is provided in Appendix E. Preliminary 387

zero-shot experiments validate the effectiveness of 388

this prompt design. To further analyze its impact, 389

we introduce variations by ablating different com- 390

ponents and evaluating them in §5.2. 391

5 Experiments 392

We conduct experiments to show the effectiveness 393

of Delta-KNN compared with other ICL methods 394

(§5.1) and examine the influence of prompt engi- 395

neering (§5.2) and hyperparameters (§5.3, §5.4). 396

Further investigation involves using different em- 397

bedding methods (§5.5) and LLMs (§5.6), with a 398

comparison against supervised classifiers (§5.7). 399

5.1 Delta-KNN vs. Other Demonstration 400

Selection Methods 401

Table 1 presents AD detection results on the 402

ADReSS and Canary datasets using Random 403

sampling, Top-k, and CE-based selection. Addi- 404

tionally, we report zero-shot results. We prompt 405

LLM with the (Role+Context+Linguistic; 406

Demonstrations; G.-CoT) template, with all ICL 407

methods containing four demonstrations with 408
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Role Con. Ling. CoT G.-CoT
ADReSS-train ADReSS-test Canary

Delta-KNN (Rdm, Topk, CE) Delta-KNN (Rdm, Topk, CE) Delta-KNN (Rdm, Topk, CE)

(1) ✗ ✗ ✗ ✗ ✗ 73.0 Ó 13.9 Ó 17.6 Ó 12.7 69.8 Ò 0.3 Ó 2.8 Ò 0.8 63.1 Ó 2.3 Ó 2.3 Ó 3.9
(2) ✓ ✓ ✗ ✗ ✗ 72.7 Ó 2.1 Ó 2.4 Ó 3.3 69.1 „ 0 „ 0 Ó 2.9 70.0 Ó 3.8 Ó 3.8 Ó 4.1
(3) ✓ ✗ ✓ ✗ ✗ 73.1 Ó 7.8 Ó 13.1 Ó 6.9 74.4 Ó 5.3 Ó 2.6 Ó 1.2 68.1 Ó 9.1 Ó 2.2 Ó 2.7
(4) ✓ ✓ ✗ ✓ ✗ 73.6 Ó 5.9 Ó 4.9 Ó 6.3 74.6 Ó 2.1 Ó 2.8 Ó 2.8 71.5 Ó 9.7 Ó 4.3 Ó 10.2
(5) ✓ ✗ ✓ ✓ ✗ 74.5 Ó 10.2 Ó 14.5 Ó 16.3 74.6 Ó 11.1 Ó 13.2 Ó 16.7 65.1 Ó 3.6 Ó 6.9 Ó 7.7
(6) ✓ ✓ ✓ ✓ ✗ 80.0 Ó 9.9 Ó 11.1 Ó 8.6 83.6 Ó 13.8 Ó 10.4 Ó 12.5 70.8 Ó 7.5 Ó 7.7 Ó 9.6
(7) ✓ ✓ ✓ ✗ ✓ 79.2 Ó 10.8 Ó 10.2 Ó 11.8 80.5 Ó 2.8 Ó 8.4 Ó 8.4 78.5 Ó 5.4 Ó 7.5 Ó 5.2

Table 2: Delta-KNN performance (accuracy) using different prompt engineering strategies (Role, Context, Linguistic
cues, chain-of-thought reasoning (CoT), and Guided CoT) on ADReSS and Canary datasets, in comparison with
Random sampling (Rdm), Top-k selection (Liu et al., 2022), and Conditional Entropy (CE) (Peng et al., 2024)
baselines. Ó, Ò, and „ symbols refer to lower, higher, and same accuracies compared to Delta-KNN, respectively.

balanced labels (§5.3). The k value in Delta-KNN409

is set to 13, which is based on empirical results on410

training sets (§5.4).411

A first interesting observation from Table 1 is412

that zero-shot prompting almost always predicts413

participants as Patients, achieving as high as 100%414

sensitivity while failing to identify Controls, a bias415

particularly evident in the ADReSS dataset. With416

in-context learning, models exhibit more balanced417

predictions—most ICL methods significantly im-418

prove specificity, with higher accuracy and AUC419

scores. This shows that learning from examples420

helps correct the model’s initial bias. Random421

sampling performs well overall, suggesting that422

exposure to a diverse input distribution benefits423

ICL (Nori et al., 2023a). Surprisingly, the recent424

CE-based selection delivers mixed results. While425

it improves performance on Canary, it falls short426

on ADReSS compared to Random sampling and427

Top-k selection. In contrast, our proposed method428

consistently outperforms all selection methods on429

both datasets, achieving a 5´10% and 5% accuracy430

improvement on ADReSS and Canary, respectively.431

Notably, Delta-KNN excels at identifying speech432

from healthy controls (SPE: 70´85%) while main-433

taining strong performance in detecting patients434

(SEN: 70%). Overall, our method attains an opti-435

mal AUC score (79´85%), highlighting the strong436

discriminative power of the selected examples.437

5.2 Impact of Prompting Engineering438

It is known that a model’s performance can be sig-439

nificantly affected by its prompt, often in surprising440

ways (Feng et al., 2024; Sivarajkumar et al., 2024;441

Salinas and Morstatter, 2024; Sclar et al., 2024).442

To examine the impact of prompt engineering and443

assess the robustness of our approach, we conduct444

ablation studies on prompt engineering. Precisely,445

we systematically vary the prompt design by grad-446

ually removing task-related information, ranging 447

from a minimal prompt (lacking background de- 448

tails and CoT reasoning cues) to a comprehen- 449

sive prompt containing all key components, i.e., 450

(Role+Context+Linguistic; G.-CoT). 451

In Table 2, we test seven variations using Delta- 452

KNN, comparing it with Random sampling, Top k, 453

and CE-based selection. The results clearly show 454

that task-related information is crucial: with- 455

out prompt engineering (Prompt 1), Delta-KNN 456

achieves 69% accuracy on ADReSS-test and 63% 457

on Canary, which are 11 and 15 points lower than 458

the best-performing design (Prompt 7). Adding 459

background details such as Role, Context, and 460

Linguistic (Prompts 2 and 3) improves accu- 461

racy by 5%, confirming the importance of domain- 462

specific context. When including a simple Chain- 463

of-Thought (CoT) cue phrase “First explain step- 464

by-step and then give a prediction.”, prompts 4 465

and 5 give further gains. Although marginal, it 466

significantly enhances interpretability by making 467

the model’s reasoning more transparent. Finally, 468

combining all background information with CoT 469

(Prompt 6) boosts performance, with the highest 470

accuracy achieved using our Guided CoT (Prompt 471

7). Remarkably, across all prompt settings, Delta- 472

KNN consistently outperforms other demonstration 473

selection methods, demonstrating its robustness un- 474

der different prompting strategies. 475

5.3 Impact of In-Context Examples 476

To assess the impact of in-context learning, we 477

gradually increase the number of examples (N ) 478

from 0 to 12. As shown in Figure 3, performance 479

generally improves with more examples. 480

Interestingly, when using only one example, 481

most selection methods experience a sharp perfor- 482

mance drop compared to zero-shot, likely due to bi- 483

ased label distribution in demonstrations (Min et al., 484

6



Figure 3: Impact of the number of in-context examples
on ADReSS (left) and Canary (right) train sets.

2022). In contrast, Delta-KNN outperforms zero-485

shot, indicating its ability to select the most ben-486

eficial example (i.e., with the highest delta score)487

for the target input. When demonstrations include488

a balanced mix of positive and negative samples,489

Top-k, Random Sampling, and CE-based selec-490

tion show improvements, particularly on ADReSS.491

However, on Canary, few-shot only begins win over492

zero-shot when N ě 4. Across datasets, in-context493

performance increases, peaking at N “ 4, after494

which it fluctuates and stabilizes. Thus, we select495

four in-context examples for our experiments.496

5.4 Impact of k value in Delta-KNN497

To evaluate the impact of k in Delta-KNN, we sys-498

tematically vary k from 1 to 20 and perform cross-499

validation on the train sets of ADReSS and Canary.500

As shown in Figure 4, performance initially im-501

proves as k increases, then declines and fluctuates.502

Empirically, we find that k “ 13 yields the best503

results on both datasets, so we adopt this value.504

We further examine the effect of k under differ-505

ent prompts and observe varying optimal values.506

This suggests that determining the optimal num-507

ber of target “representatives” in the Delta Matrix508

is non-trivial, as it possibly depends on multiple509

factors, including the prompt, language model, sim-510

ilarity computation, and text embedding model. As511

a result, determining the best k requires a case-by-512

case approach. For this reason, we rely on a held-513

out training set to empirically identify the best k.514

In future work, we aim to develop more advanced515

methods for optimizing this hyperparameter.516

5.5 Delta-KNN using Other Text Encoders517

Beyond OpenAI embeddings, we investigate LLM518

hidden states as text representations, based on the519

assumption that the same LLM can better capture520

subtle linguistic nuances. We perform experiment521

with Llama-3.1-8B-Instruct using two common522

Figure 4: Impact of k value in Delta-KNN on ADReSS
and Canary train sets with prompt (R+C+L; G.CoT).

strategies: extracting embedding of an appended 523

[EOS] token at the end of the text (Wang et al., 524

2023a) and computing mean-pooled hidden states. 525

Both approaches are applied at the first (L0), mid- 526

dle (L8, L16, L24), and the final layer (L32). 527

Figure 5 presents the 4-shot ICL results on 528

ADReSS-train using three encoding methods: Ope- 529

nAI embeddings, [EOS] token and mean-pooled 530

hidden states. Surprisingly, LLM-derived embed- 531

dings do not outperform external embeddings, with 532

the best [EOS] and mean-pooled representations 533

achieving 74.5% and 77.3% accuracy, respectively. 534

Comparing the two approaches, we observe that 535

mean-pooling provides more stable performance, 536

while [EOS] embedding shows greater variance 537

across different layers. The choice of layer also sig- 538

nificantly impacts performance: mid-layers such 539

as L16 and L24 outperform the last layer (L32), 540

suggesting that mid layers encode richer seman- 541

tic meaning, which is in line with Chuang et al. 542

(2023). Presumably, a single layer’s hidden states 543

may capture only limited aspects of the input text. 544

Future work could explore combining representa- 545

tions from multiple layers to enhance text encoding 546

(Li et al., 2025). Additionally, we note recent ad- 547

vancements in transforming LLMs into effective 548

text encoders, such as LLM2Vec (BehnamGhader 549

et al., 2024). Applying these methods could further 550

boost the performance of Delta-KNN. 551

Figure 5: ADReSS-train performance using OpenAI
embedding-3-large vs. Llama-3.1-8B hidden states
([EOS] and mean-pooling) over different layers.
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ADReSS-train ADReSS-test Canary

Mistral-7B-Instruct-v0.3
Zero-shot 52.30.5 67.71.0 63.10.8
Random 62.02.8 70.82.1 55.00.4
Top-k Select. 53.22.3 63.53.1 62.30.0
CE Select. 61.11.9 66.74.2 58.83.5
Ours 69.91.4 76.05.2 72.30.4

Qwen2.5-7B-Instruct
Zero-shot 61.60.5 66.82.2 63.50.4
Random 62.02.8 57.31.0 64.63.8
Top-k Select. 58.81.4 66.72.1 53.16.2
CE Select. 58.80.5 65.85.3 60.01.5
Ours 63.40.5 67.70.0 66.12.7

Table 3: AD detection accuracy using Mistral and Qwen
LLMs, with prompt (Role+Context+Linguistic;
G.-CoT). The best score within each LLM is in bold.

5.6 Delta-KNN with Other LLMs552

We test the robustness of Delta-KNN on Mistral-553

7B-Instruct-v0.3 and Qwen2.5-7B-Instruct mod-554

els. The results in Table 3 demonstrate that our555

method consistently outperforms other demonstra-556

tion selection baselines across all tested LLMs,557

with Llama achieving the highest overall per-558

formance on both datasets. A closer analy-559

sis of performance variations across different560

prompts reveals that LLMs respond differently561

to the same instructions (detailed scores in Ap-562

pendix F). In essence, Llama and Mistral perform563

best when provided with comprehensive prompts564

that include complete background information565

(Role+Context+Linguistic) and encourage step-566

by-step reasoning before making a prediction (CoT).567

In contrast, Qwen achieves its highest accuracy568

when prompted for a direct answer without ex-569

plicit reasoning (Role+Linguistic). Interestingly,570

other demonstration selection methods also experi-571

ence performance drops on Qwen when used more572

complex prompts, suggesting that prompt effective-573

ness is model-dependent. However, our approach574

remains robust and consistently improves perfor-575

mance across different prompting scenarios.576

5.7 Delta-KNN vs. Supervised Baselines577

Finally, we benchmark our Delta-KNN ICL with578

supervised baselines, see results in Table 4. Tradi-579

tional supervised methods, such as statistical ma-580

chine learning and transfer-learning approaches,581

achieve strong results. However, fine-tuning LLMs582

on this task does not lead to performance gains583

and instead underperforms compared to smaller584

supervised classifiers. This is expected, as our585

extremely small dataset likely lacks diversity and586

ADReSS-train ADReSS-test Canary

Statistical ML Classifiers
SVM (2021) 80.7 79.9 51.93.5
NN (2021) 76.2 77.1 -
RF (2021) 73.8 75.7 68.71.9
LR (2021) - - 69.21.4

Transfer learning-based PLM
BERT (2021) 81.21.9 p˚81.8) 79.33.2 p˚83.3) 71.72.6
GPT-3+SVM (2022) 80.9 80.3 -

Fine-tuned LLM
Llama-3.1-8B 70.82.3 77.10.1 63.84.1

Delta-KNN ICL
Ours (Llama) 80.01.3 83.62.0 78.51.5

Table 4: Accuracy using supervised baselines vs. ours.
On Canary, we re-implement SVM, RF, and LR fol-
lowing Jang et al. (2021). We fine-tune BERT (with
p˚q scores directly from Balagopalan et al. (2021)) and
Llama. Best score per column is in bold.

leads to overfitting (Garcia et al., 2023). This find- 587

ing aligns with Vieira et al. (2024), which shows 588

that fine-tuning Llama on limited datasets (1k sam- 589

ples) can degrade performance. For ICL, we eval- 590

uate Delta-KNN using model-optimized prompts, 591

i.e., the best-performing prompt for each dataset, as 592

shown in §5.2. Excitingly, our approach achieves 593

a new SOTA accuracy of 78.5% on Canary while 594

delivering competitive performance on ADReSS. 595

Beyond strong performance, LLMs offers addi- 596

tional value by providing interpretable explanations 597

that can assist doctors in diagnosis. To explore this, 598

we conduct a qualitative study, where clinicians in 599

our group compare LLM predictions with their own 600

notes from a subset in Canary (Appendix G). Our 601

findings suggest that LLMs strictly follow instruc- 602

tions and provide structured and insightful analyses, 603

complementing human diagnosis. 604

6 Conclusion 605

We investigate the potential of LLMs as health as- 606

sistants for AD detection, focusing on enhancing 607

ICL. To tackle with limited data and the complexity 608

of the task, we propose a novel demonstration selec- 609

tion method based on empirical evidence to quan- 610

tify relative gains and identify optimal examples. 611

Extensive experiments show that our approach con- 612

sistently outperforms existing baselines, achieving 613

substantial gains, particularly on the more challeng- 614

ing Canary dataset. Moving forward, we intend to 615

investigate alternative text encoding techniques and 616

strategies for hyperparameter optimization. Intrigu- 617

ingly, our method can be easily adapted for other 618

data-poor scenarios and future applications such as 619

integration with multimodal foundation models. 620

8



Limitations621

Constructing the Delta Matrix involves pairwise622

computations with a time complexity of Opn2q,623

where n represents the number of training ex-624

amples. In practice, we leverage vLLM (https:625

//github.com/vllm-project/vllm) for acceler-626

ated LLM inference. Given our small-data sce-627

nario, these computations remain feasible within628

standard computational resources. For prompts629

requiring only short answers (i.e., no CoT reason-630

ing), inference for 10, 000 examples completes in631

approximately 10 minutes. Prompts incorporating632

CoT reasoning take around 1.5 hours. Notably,633

fine-tuning an LLM for just one epoch requires a634

similar runtime yet yields inferior results compared635

to our ICL approach. To scale our method to larger636

datasets, a possible solution is to apply clustering637

to the training examples, selecting a representative638

subset before constructing the Delta Matrix.639

For nearest neighbor selection (KNN), we ex-640

plore multiple approaches, utilizing both an exter-641

nal text encoder from OpenAI and LLMs’ inter-642

nal hidden states. Our findings indicate that using643

LLM’s inner embeddings does not enhance per-644

formance. However, improvements in similarity645

computation could be achieved through learning a646

similarity metric via contrastive learning or adopt-647

ing advanced techniques to transform LLMs into648

more effective text encoders, such as LLM2Vec.649

Further advancements in this point could also help650

in optimizing the hyperparameter k.651

Finally, we evaluate Delta-KNN across three652

LLMs from different families to assess the robust-653

ness of our approach. We focus on small-to-mid654

size models (7B–8B), balancing computational ef-655

ficiency with strong performance. Testing our656

method on larger models or state-of-the-art open-657

source reasoning models, such as DeepSeek-R1, is658

an exciting direction for future exploration.659

Ethical Considerations660

The diagnosis of neurodegenerative disease is com-661

plex and relies on many indices. Automatic AI662

systems could provide clinicians with further clues,663

possibly alleviating the need for the patients to go664

through expensive and invasive screening tests, but665

this is a long-reach goal. In the healthcare domain,666

there is a risk that AI-generated predictions or anal-667

yses may be misinterpreted or directly relied upon668

as expert diagnoses. We emphasize the need for669

caution in their use. It is clear that the systems de-670

veloped can not substitute for a human expert, as 671

a diagnosis is a medical act. Moreover, linguistic 672

clues and reasoning generated from LLMs, while 673

crucial, have to be interpreted together with pa- 674

tient’s clinical notes. 675

We carefully select the datasets used in this study 676

to minimize potential biases and ensure that no 677

private information—such as participants’ health, 678

clinical, or demographic data—is disclosed. This 679

is a main reason for us exclusively testing with 680

open-source language models. As authorized mem- 681

ber of DementiaBank, we strictly follow its us- 682

age guidelines and ethical considerations. For 683

the Canary dataset, the data collection process re- 684

ceived approval from the Clinical Research Ethics 685

Board, and details regarding the Institutional Re- 686

view Board (IRB) approval will be provided. 687

The conception, implementation, analysis, and 688

interpretation of results were conducted solely by 689

the authors without any AI assistance. We used 690

ChatGPT to help us check the grammar during 691

writing. 692
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A Data Statistics and Preprocessing1071

Statistics. Table 5 shows the length (average and1072

standard deviation of number of tokens, tokenized1073

by BERT model), demographic (age, gender) and1074

clinical (cognitive tests) information on ADReSS1075

and Canary datasets.1076

Analyzing document length, we observe that1077

healthy controls generally produce longer speech1078

compared to AD patients, with more detailed de-1079

scriptions and longer sentences. However, docu-1080

ments in the Canary dataset are significantly longer1081

than those in ADReSS and exhibit greater variation1082

in length. The large variability suggests that Ca-1083

nary presents a more challenging dataset for AD1084

detection.1085

Pre-processing. For ADReSS dataset, we extract1086

clean texts by removing interviewer’s content and1087

special tokens such as non-verbal sounds encoded1088

in the CHAT (Codes for Human Analysis of Tran-1089

scripts) format. We only use the textual transcripts.1090

For Canary dataset, participants completed four1091

tasks–pupil calibration, picture description, para-1092

graph reading, and memory recall–during which1093

both language and eye movement data were col-1094

lected. In this study, we only utilize data from the1095

picture description task. we use WhisperX (Bain1096

et al., 2023) to first automatically transcribe the1097

original speech data. The transcripts are manu-1098

ally verified by a human annotator to correct word1099

spellings and speaker diarization.1100

B Supervised Classifiers1101

Following Jang et al. (2021), we re-implement the1102

supervised methods using Support Vector Machine1103

(SVM), Logistic Regression (LR), and Random1104

Forest (RF), all implemented with the Scikit-learn1105

library (Pedregosa et al., 2011). To ensure robust1106

evaluation, we perform 10-fold cross-validation1107

using ten different random seeds. The average1108

scores are given in Table 6, in comparison with1109

our Delta-KNN results.1110

ADReSS Canary

AD Control AD Control

Training
# Doc 54 54 63 67
Avg. # Token 122.2 134.9 150.9 206.2
Std. # Token 76.2 85.2 102.5 156.4
Age 66.7 ˘ 6.6 66.4 ˘ 6.5 72 ˘ 9 62 ˘ 15
Gender 24M / 30F 24M / 30F 31M / 34F 22M / 45F
Cognitive 17.1 ˘ 5.5 29.1 ˘ 1.0 18 ˘ 7 27 ˘ 3

Test
# Doc 24 24 - -
Avg. # Token 115.8 154.9 - -
Std. # Token 66.2 107.6 - -
Age 66.1 ˘ 7.4 66.1 ˘ 7.1 - -
Gender 13M / 11F 13M / 11F - -
Cognitive 19.5 ˘ 5.4 28.9 ˘ 1.5 - -

Table 5: Dataset demographic and clinical statistics. On
cognitive tests, ADReSS reports Mini-Mental Status
Examination score (MMSE); Canary reports Montreal
Cognitive Assessment score (MoCA). - not applicable.

Model ACC AUC SEN SPE

SVM 51.9 ˘ 3.5 43.3 ˘ 6.8 25.2 ˘ 10.8 79.7 ˘ 5.4
RF 68.7 ˘ 1.9 73.6 ˘ 1.9 67.0 ˘ 2.9 70.2 ˘ 4.0
LR 69.2 ˘ 1.4 73.6 ˘ 1.4 69.9 ˘ 1.0 68.3 ˘ 2.3

Ours 78.5 ˘ 1.5 79.8 ˘ 0.9 70.6 ˘ 0.8 85.8 ˘ 2.2

Table 6: Comparison of supervised classifiers (top) and
our Delta-KNN ICL approach with Llama (bottom). RF:
random forest, LR: logistic regression. Supervised re-
sults are averaged over 10-seed 10-fold cross-validation.

Note that noting that our results differ slightly 1111

from those reported in Jang et al. (2021), as we 1112

do not use the exact same training samples (79 1113

Patients and 83 Controls vs. our dataset with 63 1114

Patients and 67 Controls). Additionally, we employ 1115

different speech-to-text methods, which may have 1116

led to variations in the transcripts. 1117

C BERT Fine-tuning 1118

We fine-tune BERT on ADReSS-train and Canary 1119

following Balagopalan et al. (2021), using the 1120

bert-base-uncased model (Devlin, 2018). We 1121

use the [CLS] token from the final hidden state 1122

as the aggregate representation and pass it to the 1123

classification layer. BERT model is fine-tuned for 1124

10 epochs with a learning rate of 2e ´ 5, the same 1125

as in Balagopalan et al. (2021). Scores in Table 4 1126

regarding BERT are averaged over five runs. 1127

D Llama Fine-tuning 1128

We also explore the feasibility of fine-tuning LLMs 1129

directly on our datasets. Given the extremely small 1130

size of our training data, we adopt LoRA (Hu et al., 1131
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Hyperparameters Selected

BitsAndBytes Quantisation

use_4bit_quantization True
use_nested_quant True
bnb_4bit_compute_dtype bfloat16

PEFT LoRA

Lora r 8
Lora alpha 16
Lora dropout rate 0.1
Bias none
Task type CAUSAL_LM
Target modules q_proj,k_proj,v_proj,o_proj

Training Arguments

Training epoch 1
Batch size 1
Optimizer adam
Learning rate 1e ´ 4
Learning rate scheduler cosine
Warm-up ratio 0.0
Weight decay 1e ´ 4

Table 7: Hyperparameters for Llama-3.1-8B-Instruct
fine-tuning.

2022), a parameter-efficient fine-tuning approach.1132

Specifically, we use low-rank (r “ 8) and low-1133

alpha (α “ 16) values while restricting updates to1134

attention modules (Q,K, V,O) to mitigate overfit-1135

ting.1136

We fine-tune for a single epoch, as the training1137

loss converges well, while additional epochs lead to1138

a rebound in validation loss, indicating overfitting.1139

All experiments are conducted on a single NVIDIA1140

A100 40G GPU.1141

For hyperparameter selection, we tested mul-1142

tiple configurations, including different rank1143

values (8, 16), alpha values (16, 32), and1144

target modules (“all-linear”, “q_proj,v_proj”,1145

“q_proj,k_proj,v_proj,o_proj”). Our results show1146

that using lower alpha and dropout rates, combined1147

with attention-only target modules, yields the best1148

performance. Detailed values for hyperparameters1149

are presented in Table 7.1150

E Prompt Templates1151

We provide prompting template used in our experi-1152

ments in Table 9 on the next page.1153

F Results with Mistral and Qwen1154

We present AD prediction results us-1155

ing Mistral and Qwen with the prompt1156

(Role+Context+Linguistic; Demonstrations;1157

Diagnosis MoCA
Prediction

LLM Human

Case 1 AD 3 P P
Case 2 Mild-moderate AD 16 P P
Case 3 AD 16 P P
Case 4 Mild AD 25 P H
Case 5 aMCI˚ 27 P P

Case 6 Healthy control 21 H P
Case 7 Healthy control 25 P H
Case 8 Healthy control 28 H H
Case 9 Healthy control 29 H H
Case 10 Healthy control 30 H H

Table 8: Llama and human prediction on ten cases in
Canary. aMCI˚: Amnestic mild cognitive impairment
(aMCI). Prediction highlighted in red is incorrect.

G.-CoT) in Table 10, while results with other 1158

prompts are shown in Table 11, both on page 16. 1159

As discussed in §5.6, different LLMs respond 1160

differently to the same prompt. Generally, more 1161

comprehensive prompts tend to yield better perfor- 1162

mance, as observed with Llama and Mistral. How- 1163

ever, Qwen performs better with a simpler prompt. 1164

As shown in the last section of Table 11, Qwen 1165

achieves its highest accuracy when provided with 1166

Role+Linguistic and no CoT reasoning (prompt 1167

3). When additional background information and 1168

CoT reasoning are introduced, its performance de- 1169

clines across all demonstration selection methods. 1170

G Case Study on LLM’s Prediction 1171

We conduct a qualitative study to examine how 1172

LLM-generated diagnoses compare with those 1173

made by a clinician in our research group. Specifi- 1174

cally, we ask the clinician to provide diagnoses and 1175

reasoning for ten participants based solely on their 1176

picture description task outputs—without access to 1177

clinical notes—using similar instructions given to 1178

the LLM, see “Instruction to human” in Table 12 1179

and Table 13. 1180

Table 8 shows the predictions made by both the 1181

clinician and the LLM, alongside the ground-truth 1182

diagnoses and each participant’s Montreal Cogni- 1183

tive Assessment (MoCA) score. In this evaluation, 1184

the clinician correctly diagnosed eight cases, while 1185

Llama, utilizing Delta-KNN ICL, correctly identi- 1186

fied nine. To illustrate the comparison in greater de- 1187

tail, we present the predictions and analyses from 1188

both the LLM and the clinician for Case 4 (Ta- 1189

ble 12) and Case 7 (Table 13). 1190

In both cases, the clinician diagnosed the sub- 1191
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Template

Background
Prompt

Role: You are a medical expert in Alzheimer’s disease.

Context: The Boston Cookie Theft picture description task is a well established speech assessment
in Alzheimer’s disease. During the task, participants are shown the picture and are asked to describe
everything they see in the scene using as much time as they would like. The objects (also known as
information units) in this picture includes: “cookie”, “girl”, “boy”, “woman”, “jar”, “stool”, “plate”,
“dishcloth”, “water”, “window”, “cupboard”, “curtain”, “dishes”, “sink”.

Linguistic: You analyze linguistic features in the patient’s speech, such as lexical richness, syntactic
complexity, grammatical correctness, information units, and semantic coherence. Based on the partici-
pant’s description of the picture, provide an initial diagnosis of dementia patient (P) and healthy control
(H).

Example
Prompt

Zero-shot: None

Demonstration: Example: ## Text: <text> ## Answer: healthy control (H). ## Text: <text> ## Answer:
dementia patient (P).

Question
Prompt

CoT: Given the text below, classify the participant as a dementia patient (P) or healthy control (H). First
explain step-by-step and then give a prediction with a probability.

Guided CoT: Given the text below, classify the participant as a dementia patient (P) or healthy control (H).
Please first reason from the following perspectives: (1) Vocabulary richness: such as the usage of different
words; (2) Syntactic complexity: such as the length of the sentence and the number of subordinate
clauses; (3) Information content: whether the participant describe most of the information units in the
picture; (4) Semantic coherence: such as the usage of connectives and the change in description from one
information unit to another; (5) Fluency and repetitiveness: whether the text is fluent with less repetitive
sentences. Based on your reasoning, please give a prediction and the corresponding probability.

Table 9: Prompt template used for AD detection.

jects as healthy controls, whereas Llama predicted1192

them as patients. A closer analysis reveals that1193

Llama follows a strictly structured approach by1194

sequentially analyzing the input according to the1195

Guided Chain-of-Thought prompt (G.-CoT, shown1196

in Table 9) before summarizing its findings. In1197

contrast, the clinician relies on pragmatic consider-1198

ations, focusing on higher-level cognitive markers1199

such as inference, causality statements, and logical1200

event sequences. However, this approach appears1201

to overlook lower-level linguistic cues, such as lex-1202

ical and syntactic patterns.1203

The clinician’s diagnostic approach aligns more1204

closely with human reasoning, as it highlights as-1205

pects that may be particularly revealing in assessing1206

AD. Meanwhile, Llama’s analysis is systematic and1207

precise, offering high readability and interpretabil-1208

ity. Its diagnosis is directly rooted in the input1209

text, providing detailed explanations for each as-1210

pect. For instance, it explicitly points out struc-1211

tural errors, such as: “There are some errors in1212

sentence structure, such as ‘And his mother is not1213

really thinking about washing up because the water1214

is running over the sink.’.” This level of detailed1215

reasoning and explanation could be valuable in as-1216

sisting clinicians by offering an additional layer1217

of linguistic analysis that might otherwise be over-1218

looked. 1219
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Method
ADReSS-train ADReSS-test Canary

ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE

Llama-3.1-8B-Instruct
Zero-shot 62.20.0 60.10.0 98.10.0 22.20.0 57.61.0 57.61.0 100.00.0 15.32.0 73.30.4 72.11.0 79.40.0 67.70.7
Random 68.42.2 71.93.1 84.02.3 48.86.3 75.74.3 81.52.6 93.12.0 58.39.0 73.12.7 75.33.7 72.03.3 74.12.5
Top-k Select. 69.01.6 71.92.5 88.32.3 45.71.7 70.12.0 80.00.8 91.73.4 48.62.0 71.02.5 75.02.2 76.70.7 65.74.2
CE˚ Select. 67.42.3 74.51.3 85.21.5 45.73.1 70.11.0 76.42.6 93.12.0 47.22.0 73.31.9 78.40.9 79.92.0 67.24.4
Delta-KNN (ours) 79.21.2 78.91.3 69.10.9 85.21.5 80.53.9 85.80.9 70.85.9 86.12.0 78.51.5 79.80.9 70.60.8 85.82.2

Mistral-7B-Instruct-v0.3
Zero-shot 52.30.5 61.51.0 94.40.0 10.20.9 67.71.0 76.31.3 100.00.0 35.42.1 63.10.8 65.30.3 77.81.6 49.30.0
Random 60.22.8 69.12.0 91.70.9 28.74.6 70.82.1 78.58.2 91.74.2 50.00.0 55.00.4 58.61.0 79.41.6 32.12.2
Top-k 53.22.3 69.64.2 88.95.6 17.60.9 63.53.1 74.01.6 91.70.0 35.46.2 62.30.0 69.21.9 84.92.4 41.02.2
CE˚ Select. 61.11.9 78.03.9 93.52.8 28.70.9 66.74.2 78.00.7 97.92.1 35.46.2 58.83.5 64.22.3 84.92.4 34.34.5
Delta-KNN (ours) 69.91.4 82.43.2 90.70.0 49.12.8 76.05.2 84.92.7 95.80.0 56.210.4 72.30.4 74.80.2 86.50.8 59.00.7

Qwen2.5-7B-Instruct
Zero-shot 61.60.5 64.92.9 94.40.0 28.70.9 66.82.2 65.52.6 97.92.1 43.810.4 63.50.4 62.50.5 69.00.8 58.21.5
Random 62.02.8 62.52.2 89.82.8 34.32.8 57.31.0 53.80.7 75.04.2 39.62.1 64.63.8 63.23.8 81.04.8 49.33.0
Top-k Select. 58.81.4 56.20.0 88.02.8 29.60.0 66.72.1 65.56.0 91.70.0 41.74.2 53.16.2 51.67.1 70.65.6 36.66.7
CE˚ Select. 58.80.5 58.91.4 88.02.8 29.61.9 65.85.3 63.812.7 91.78.3 45.88.3 60.01.5 57.40.0 68.37.9 52.24.5
Delta-KNN (ours) 63.40.5 62.72.2 82.40.9 44.40.0 67.70.0 62.21.1 85.46.2 47.96.2 66.12.7 64.83.9 71.40.0 45.55.2

Table 10: AD detection results using different demonstration selection methods on Llama, Mistral, and Qwen
models; prompt (Role+Context+Linguistic; G.-CoT). The best accuracy within each LLM is underlined while
the overall highest accuracy is in bold.

Role Con. Ling. CoT G.-CoT
ADReSS-train ADReSS-test Canary

Delta-KNN (Rdm, Topk, CE) Delta-KNN (Rdm, Topk, CE) Delta-KNN (Rdm, Topk, CE)

Llama-3.1-8B-Instruct
(1) ✗ ✗ ✗ ✗ ✗ 73.0 Ó 13.9 Ó 17.6 Ó 12.7 69.8 Ò 0.3 Ó 2.8 Ò 0.8 63.1 Ó 2.3 Ó 2.3 Ó 3.9
(2) ✓ ✓ ✗ ✗ ✗ 72.7 Ó 2.1 Ó 2.4 Ó 3.3 69.1 „ 0 „ 0 Ó 2.9 70.0 Ó 3.8 Ó 3.8 Ó 4.1
(3) ✓ ✗ ✓ ✗ ✗ 73.1 Ó 7.8 Ó 13.1 Ó 6.9 74.4 Ó 5.3 Ó 2.6 Ó 1.2 68.1 Ó 9.1 Ó 2.2 Ó 2.7
(4) ✓ ✓ ✗ ✓ ✗ 73.6 Ó 5.9 Ó 4.9 Ó 6.3 74.6 Ó 2.1 Ó 2.8 Ó 2.8 71.5 Ó 9.7 Ó 4.3 Ó 10.2
(5) ✓ ✗ ✓ ✓ ✗ 74.5 Ó 10.2 Ó 14.5 Ó 16.3 74.6 Ó 11.1 Ó 13.2 Ó 16.7 65.1 Ó 3.6 Ó 6.9 Ó 7.7
(6) ✓ ✓ ✓ ✓ ✗ 80.0 Ó 9.9 Ó 11.1 Ó 8.6 83.6 Ó 13.8 Ó 10.4 Ó 12.5 70.8 Ó 7.5 Ó 7.7 Ó 9.6
(7) ✓ ✓ ✓ ✗ ✓ 79.2 Ó 10.8 Ó 10.2 Ó 11.8 80.5 Ó 2.8 Ó 8.4 Ó 8.4 78.5 Ó 5.4 Ó 7.5 Ó 5.2

Mistral-7B-Instruct-v0.3
(1) ✗ ✗ ✗ ✗ ✗ 50.0 „ 0 „ 0 „ 0 51.0 Ó 1.0 Ó 1.0 „ 0 51.2 Ó 2.7 Ó 1.5 Ó 1.2
(2) ✓ ✓ ✗ ✗ ✗ 51.4 Ó 1.4 Ó 1.4 Ó 1.4 53.1 Ó 0.9 Ó 2.1 Ó 3.1 55.0 Ó 6.5 Ó 6.5 Ó 6.5
(3) ✓ ✗ ✓ ✗ ✗ 50.5 Ò 0.4 Ó 0.5 Ó 0.5 55.2 Ó 4.2 Ó 5.2 Ó 5.2 49.6 Ó 0.4 Ó 0.9 Ó 0.9
(4) ✓ ✓ ✗ ✓ ✗ 63.0 Ó 4.2 Ó 2.8 Ó 4.7 68.8 Ó 7.3 Ó 4.3 Ó 10.5 63.1 Ó 7.2 Ó 13.5 Ó 12.7
(5) ✓ ✗ ✓ ✓ ✗ 58.8 „ 0 Ó 9.7 Ó 1.4 65.6 Ó 4.1 Ó 10.4 „ 0 65.4 Ó 10.2 Ó 9.8 Ó 6.2
(6) ✓ ✓ ✓ ✓ ✗ 68.5 Ó 9.2 Ó 11.1 Ó 6.9 79.2 Ó 15.7 Ó 15.7 Ó 19.8 65.0 Ó 4.5 Ó 7.7 Ó 7.7
(7) ✓ ✓ ✓ ✗ ✓ 69.9 Ó 9.7 Ó 16.7 Ó 8.7 76.0 Ó 5.2 Ó 12.5 Ó 9.3 72.3 Ó 17.3 Ó 10.0 Ó 13.5

Qwen2.5-7B-Instruct
(1) ✗ ✗ ✗ ✗ ✗ 66.7 Ó 6.7 Ó 11.6 Ó 7.4 72.9 Ó 1.0 Ó 8.3 Ó 12.5 67.7 Ó 6.2 Ó 10.8 Ó 4.2
(2) ✓ ✓ ✗ ✗ ✗ 70.8 Ó 7.2 Ó 11.5 Ó 6.0 71.9 Ó 6.3 „ 0 Ó 6.3 67.3 Ó 4.2 Ó 3.1 Ó 0.5
(3) ✓ ✗ ✓ ✗ ✗ 69.4 Ó 4.6 Ó 6.6 Ó 7.4 78.1 Ó 3.1 Ó 5.3 Ó 10.4 69.2 Ó 3.6 Ó 6.5 Ó 4.2
(4) ✓ ✓ ✗ ✓ ✗ 70.0 Ò 1.8 Ó 4.7 Ó 1.9 69.7 Ó 7.2 Ò 1.2 Ó 4.2 61.9 Ò 0.4 Ó 1.5 Ò 0.6
(5) ✓ ✗ ✓ ✓ ✗ 63.9 Ó 4.2 Ó 0.5 Ó 8.3 76.0 Ó 7.2 Ó 6.8 Ó 6.8 63.1 Ò 5.4 Ó 4.6 Ó 2.2
(6) ✓ ✓ ✓ ✓ ✗ 59.7 Ó 2.6 Ò 2.8 Ó 0.9 64.6 Ó 3.1 Ó 2.1 Ó 0.9 56.9 Ó 8.7 Ó 4.0 Ó 4.5
(7) ✓ ✓ ✓ ✗ ✓ 63.4 Ó 2.4 Ó 4.6 Ó 4.6 67.7 Ó 10.4 Ó 1.0 Ó 1.9 66.1 Ó 1.5 Ó 13.0 Ó 6.1

Table 11: Delta-KNN performance (accuracy) using different prompt engineering strategies (Role, Context, Lin-
guistic cues, chain-of-thought reasoning (CoT), and Guided CoT) on ADReSS and Canary datasets, in comparison
with Random sampling (Rdm), Top-k (Liu et al., 2022) selection, and Conditional Entropy (CE) (Peng et al., 2024)
selection. Ó, Ò, and „ symbols refer to lower, higher, and same accuracies compared to the Delta-KNN, respectively.
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Case study 4 (Gold label: P)

Instruction
to Human

This experiment aims to explore how clinicians assess language in the Cookie Theft task and identify
the key criteria (reasoning processes) they use to make judgments. Below is a transcript produced by
a participant (either a dementia patient or a healthy control). Based on the participant’s description of
the picture, please provide a brief analysis (2-10 sentences). Then, make a prediction by classifying the
participant as either a healthy control (H) or a dementia patient (P).

Instruction
to LLM

See prompt template in Table 9.

Input Text “There’s a boy that’s stealing cookies from the cookie jar. And his mother is not really thinking about
washing up because the water is running over the sink. And the boy is going to fall because of the stool.
And the only thing his sister is interested in is for him to get more cookies, throw more cookies around.
And this looks like a driveway outside. And there’s some cups and two cups and a plate. And I don’t
know, anything of note? No?”

Human Healthy control.
Diagnosis There were inferences made from the picture, such as identifying individuals and assuming their

relationships (e.g., recognizing a mother, a boy, and a girl). Moreover, the participant was making
causality statements, such as predicting that the boy is going to fall because of the unstable stool.

Llama
Diagnosis

Here’s the step-by-step analysis: 1. Lexical richness: The participant uses a variety of words, including
“stealing”, “interested”, and “driveway”, which suggests a good vocabulary. 2. Syntactic complexity:
The participant’s sentences are relatively simple, with a mix of short and longer sentences. However,
there are some errors in sentence structure, such as “And his mother is not really thinking about washing
up because the water is running over the sink.” This sentence is a bit convoluted and could be rephrased
more clearly. 3. Grammatical correctness: The participant makes a few grammatical errors, such
as using “And” instead of a more formal conjunction, and using a comma splice in the sentence “And
the only thing his sister is interested in is for him to get more cookies, throw more cookies around.” 4.
Information units: The participant mentions most of the objects in the picture, including the boy, mother,
sister, cookie jar, stool, sink, cups, and plate. However, they seem to be having trouble with the window
and the scene outside, which they incorrectly identify as a driveway. 5. Semantic coherence: The
participant’s description is generally coherent, but there are some strange inferences, such as the sister
being interested in the boy throwing cookies around. Based on these observations, I would classify the
participant as a dementia patient (P) with a probability of 0.7. The participant’s description is generally
clear and coherent, but there are some errors in sentence structure, grammar, and semantic coherence
that suggest cognitive impairment. However, the participant’s vocabulary and ability to identify most of
the objects in the picture suggest that they are not severely impaired.

Table 12: The first example of a comparison between Llama’s and human’s prediction on participant 4’s speech.
Human’s prediction is incorrect, while Llama’s prediction is correct.
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Case study 7 (Gold label: H)

Instruction
to Human

This experiment aims to explore how clinicians assess language in the Cookie Theft task and identify
the key criteria (reasoning processes) they use to make judgments. Below is a transcript produced by
a participant (either a dementia patient or a healthy control). Based on the participant’s description of
the picture, please provide a brief analysis (2-10 sentences). Then, make a prediction by classifying the
participant as either a healthy control (H) or a dementia patient (P).

Instruction
to LLM

See prompt template in Table 9.

Input Text “There is a boy trying to reach a cookie jar, falling off a stool almost. His sister reaching up for a cookie.
His mother is washing the dishes. And the sink is overflowing with water. And I’m finished.”

Human Healthy control.
Diagnosis This person was making lots of role assumptions, with logical sequence of events (from dishes to water

overflowing).

Llama
Diagnosis

Here’s the step-by-step analysis: 1. Lexical richness: The participant uses a limited vocabulary, with
only 7 words or phrases to describe the scene. This is a characteristic of dementia patients, who often
experience word-finding difficulties. 2. Syntactic complexity: The participant’s sentence structure is
simple and lacks complexity. They use short, basic sentences with no subordinate clauses or embedded
phrases. This is consistent with the language patterns of dementia patients. 3. Grammatical correctness:
The participant’s sentences are grammatically correct, but there is a lack of detail and elaboration. This is
a characteristic of dementia patients, who may struggle to provide nuanced descriptions. 4. Information
units: The participant identifies 5 key elements in the scene: the boy, the sister, the mother, the cookie
jar, and the overflowing sink. However, they fail to mention other important details, such as the stool,
the sister’s actions, and the mother’s apron. 5. Semantic coherence: The participant’s description is
disjointed and lacks coherence. They jump abruptly from describing the boy’s actions to stating that
they are finished. This is a characteristic of dementia patients, who may struggle to maintain a coherent
narrative. Based on these observations, I predict that the participant is a dementia patient (P) with a
high probability of 0.85. The participant’s language patterns, including their limited vocabulary, simple
sentence structure, and lack of detail, are consistent with the characteristics of dementia patients.

Table 13: The second example of a comparison between Llama’s and human’s prediction on participant 7’s speech.
Human’s prediction is correct, while Llama’s prediction is incorrect.
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