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ABSTRACT

We introduce the novel OCL-PDS problem - Online Continual Learning for Pro-
gressive Distribution Shift. PDS refers to the subtle, gradual, and continuous dis-
tribution shift that widely exists in modern deep learning applications. It is widely
observed in industry that PDS can cause significant performance drop. While
previous work in continual learning and domain adaptation addresses this prob-
lem to some extent, our investigations from the practitioner’s perspective reveal
flawed assumptions that limit their applicability on daily challenges faced in real-
world scenarios, and this work aims to close the gap between academic research
and industry. For this new problem, we build 4 new benchmarks from the Wilds
dataset (Koh et al., 2021), and implement 12 algorithms and baselines including
both supervised and semi-supervised methods, which we test extensively on the
new benchmarks. We hope that this work can provide practitioners with tools to
better handle realistic PDS, and help scientists design better OCL algorithms.

1 INTRODUCTION

In most modern deep learning applications, the input data undergoes a continual distribution shift
over time. For instance, Figure 1a demonstrates a satellite image classification task and a toxic
language detection task with such temporal distribution shift. Such distribution shift can cause sig-
nificant performance drop in deep models, a widely observed phenomenon known as model drift.
A critical problem for practitioners, therefore, is how to deal with what we term progressive distri-
bution shift (PDS), defined as the subtle, gradual, and continuous distribution shift that widely
exists in modern deep learning applications. In this work, we explore handling PDS with online
continual learning (OCL), where the learner collects, learns, and is evaluated on online samples
from a continually changing data distribution.

In this work, we introduce the novel OCL-PDS problem formulated in Section 2. The OCL-PDS
problem is closely related to two research areas: domain adaptation (DA) and continual learning
(CL), in which there is a rich body of academic work. However, through a literature review and our
conversations with practitioners, we find that there still remains a gap between the settings widely
used in academic work and in real industrial applications. To close this gap, we commit ourselves to
thinking from a practitioner’s perspective, which is the core spirit of this work. Our primary goal
is to build tools for investigating the real issues practitioners are facing in their day-to-day work.
To achieve this goal, we challenge the prevailing assumptions in previous work, and propose three
important modifications to the conventional DA and CL problem settings:

1. Task-free: One point conventional DA and CL settings have in common is assuming clear
boundaries between distinct domains (or tasks), but practitioners rarely apply the same
model to very different domains in industry. In contrast, OCL studies the task-free CL
setting (Aljundi et al., 2019b) where there is no clear boundary, and the distribution shift
is continuous. Moreover, in OCL both training and evaluation are online, unlike previous
task-free CL settings with offline evaluation, which is not as realistic in a “lifelong” setting.

2. Forgetting is allowed: Avoiding catastrophic forgetting is a huge topic in CL, which usu-
ally requires no forgetting on all tasks. However, remembering everything is actually im-
practical, infeasible and potentially harmful, so OCL-PDS only requires remembering re-
cent knowledge and important knowledge which is described by a regression set (Sec. 2.2).
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(a) FMoW-WPDS benchmark. (b) CivilComments-WPDS benchmark.
Figure 1: FMoW-WPDS and CivilComments-WPDS benchmarks which we build in this work.

3. Infinite storage: Previous work in CL usually assumes a limited storage (buffer) size.
However, storage is not the most pressing bottleneck in most industrial applications. Thus,
in OCL-PDS, we assume an infinitely large storage where all historical samples can be
stored. However, the learner cannot replay all samples because it would be too inefficient.

In Appendix A.5 we will compare OCL-PDS to previous settings in detail. Then, in Section 3, we
will build 4 new benchmarks for OCL-PDS including both vision and language tasks, and we make
every effort to make sure that they can reflect real PDS scenarios that practitioners need to deal with.
Then, we will explore OCL algorithms in Section 4, and implement 12 supervised/semi-supervised
OCL algorithms1 and baselines adapted to OCL-PDS, which we test extensively on our benchmarks
in Section 5. Our key experimental observations include: (i) A task-dependent relationship between
learning and remembering; (ii) Some existing methods have low performances on regression tasks;
(iii) SSL helps improve online performance but requires a critical virtual update step.

Contributions. Our contributions in this work include: (i) Introducing the novel OCL-PDS prob-
lem which more closely aligns with practitioners’ needs; (ii) Releasing 4 new benchmarks for this
novel setting; (iii) Adapting and implementing 12 OCL algorithms and baselines, including both
supervised and semi-supervised, for OCL-PDS; (iv) Comparing these algorithms and baselines with
extensive experiments, which leads to a number of key observations. We hope that this work can
inspire more practitioners and researchers to investigate and dive deep into real-world PDS.

2 THE OCL-PDS PROBLEM

2.1 PROBLEM FORMULATION

We have a stream of online data S0, S1, · · · , where each St is a batch of i.i.d. samples from distri-
bution Dt that changes with time t continuously, for which we assume that Div(Dt ∥ Dt+1) < ρ
for all t for some divergence function Div. Online Continual Learning (OCL) goes as follows:

• At t = 0, receive a labeled training set S0, on which train the initial model f0
• For t = 1, 2, · · · , T, · · · do

1. Data collection: Receive a new unlabeled data batch St = {(x(i)
t , y

(i)
t )}nt

i=1
i.i.d.∼ Dt.

2. Evaluation: Predict on St with the current model ft−1, and get some feedback
3. Fine-tuning: Update the model ft−1 → ft with all previous information

Evaluation metrics. An OCL algorithm is used for fine-tuning and is evaluated by three metrics:
1. Online performance: Denote the performance of fs on St by At

s. The online performance at
time t (as computed in Step 2 - Evaluation) is At

t−1, and the average online performance before
horizon T is defined as (A1

0 + · · ·+AT
T−1)/T .

2. Knowledge retention: In OCL-PDS the model only needs to remember two types of knowledge:
recent knowledge and important knowledge. For a certain recent time window w, the recent perfor-
mance is defined as (At−w

t−1 + · · ·+ At−1
t−1)/w. The important data is described by a regression set,

and the regression set performance is the model’s performance on this set.
3. Training efficiency: This is measured by the average runtime of the fine-tuning step, which is
very important for this online setting where the OCL algorithm is run for many times.

2.2 DETAILS

Divergence function. For distributions P and Q, Div(P ∥ Q) is the divergence from P to Q, and
can be different from Div(Q ∥ P ). According to our reasoning in Appendix B, an ideal divergence
function for OCL-PDS should be asymmetric and bounded, so we cannot use popular functions such
as total variation, Wasserstein distance, MMD, KL-divergence and JS-divergence. In this work, we
use the ϵ-KL-divergence (Eqn. (1)), whose definition and properties can be found in Appendix B.

1We call an OCL algorithm supervised if it doesn’t use unlabeled data, and semi-supervised if it does.
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Table 1: Benchmarks we build. T + 1 = total number of batches. w = recent time window.

Benchmark Description Regression Set T + 1 w

CivilComments-WPDS Toxic language detection on social media Critical data 16 5
FMoW-WPDS Satellite image classification for facilities Frequent data 25 6
Amazon-WPDS Review sentiment analysis on Amazon.com Frequent data 18 6
Poverty-WPDS Satellite image regression for wealth index Critical data 14 5

Data batch. If |St| = 1, then this is the conventional online learning setting where samples arrive
one by one. However, industry practitioners seldom update the model over a single sample, and
always collect a batch of samples before fine-tuning the model, so we consider data batches instead.

Feedback. Without any feedback, the problem is unsupervised because we only have the unla-
beled batches to fine-tune the model, which is too hard and unrealistic. Indeed, for most deployed
industrial systems, there are tools for evaluating online performance, either through some automated
metrics or feedback provided by end-users. We use the Random Label Feedback (RLF) model, where
the labels of α fraction of the samples in St are provided as feedback. α = 0, α = 1 and α ∈ (0, 1)
correspond to the unsupervised, supervised and semi-supervised learning settings, respectively.

All previous information. We allow the learner to store all previously seen samples and feedback
(though the learner cannot really replay all samples as it would be too inefficient), which is starkly
different from most previous papers in CL that assume a limited storage size.

Recent knowledge. OCL requires no forgetting on recent knowledge, because (i) in general, practi-
tioners expect the model not to forget too quickly, and (ii) in many applications the same distribution
repeats periodically, which makes recent knowledge useful. For example, satellite images in sum-
mer and winter look very different (e.g. due to snow), but the images in two consecutive summers
look similar, so in this case it is useful to remember the knowledge for at least one year.

Regression set. In the software industry, regression refers to the deterioration of performance after
an update (Yan et al., 2021). The regression set is defined as the set of data for which regression is
not allowed. In some applications, the regression set contains frequent data that appears more often
than other data; in others, it contains critical data on which making a mistake is more costly.

3 BENCHMARKS

We investigate the previous continual learning benchmarks and find that most of them are one of the
following: (i) Multiple datasets, one for each task; (ii) Perturbed image classification, e.g. permut-
ing the pixels with different random seeds; (iii) Split-class classification, e.g. split the 100 classes
in CIFAR-100 (Krizhevsky et al., 2009) into 20 groups with 5 classes per group, and make each
group a 5-way classification task. None of them is realistic enough to represent the real PDS that
practitioners need to deal with, so we build four new benchmarks for OCL-PDS.2 We build the
benchmarks with the 3-step procedure detailed in Appendix C.1. See Table 1 for a summary. Here
we briefly describe the our four benchmarks, and details can be found in Appendix C.

CivilComments-WPDS. This benchmark is based on the CivilComments-Wilds dataset (Borkan
et al., 2019), which is a toxic language detection task on social media (Figure 1b). WPDS stands for
Wilds-PDS. This benchmark models the shift in hot topics. The regression set contains critical data
- Comments with severe harassment, including identity attack and explicit sexual comments.

FMoW-WPDS. This benchmark is based on the FMoW-Wilds dataset (Christie et al., 2018), which
is a satellite image facility classification task (Figure 1a). It models the shift in time. The regression
set contains frequent data - Data from two highly populated regions: Americas and Asia.

Amazon-WPDS. This benchmark is based on the Amazon-Wilds dataset (Ni et al., 2019), which is
a review sentiment analysis task on shopping websites. This benchmark models the shift in language
use. The regression set contains frequent data - Data from 10 popular product categories.

Poverty-WPDS. This benchmark is based on the PovertyMap-Wilds dataset (Yeh et al., 2020),
which is a satellite image wealth index regression task. This benchmark models the shift in time.
The regression set contains critical data - Images from urban areas. Following Koh et al. (2021),
performances here are measured by the Pearson correlation between outputs and ground truths.

2One similar benchmark is CLEAR (Lin et al., 2021) that contains images from different years. However,
CLEAR only has vision tasks and does not have regression sets, while our benchmarks are more comprehensive.
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4 OCL ALGORITHMS

Naı̈ve baselines. There are 3 baselines for measuring the difficulty of an OCL-PDS task and in-
terpreting the performances of OCL algorithms: (i) First Batch Only (FBO), which uses the initial
model trained on the first batch S0 (including the training regression set) with ERM till the end,
serving as a lower bound of online performance, and an upper bound of regression set performance
because there is no forgetting; (ii) i.i.d. offline, which trains a new model on the new data before
evaluation, serving as an upper bound of the online performance that reflects the generalization gap;
(iii) New Batch Only (NBO), which fine-tunes the model on the new data alone and never care
about forgetting, which serves as a lower bound of the knowledge retention performance.

Supervised OCL algorithms. We implement two types of supervised algorithms: rehearsal based
methods and regularization based methods. In rehearsal based methods Ratcliff (1990); Robins
(1995), historical data is stored in a memory buffer and replayed to the learner, such as ER-FIFO
(experience replay with a first-in-first-out buffer) which fine-tunes the model on three sets of data:
new data, recent data and regression data, and the new batch replaces the oldest one (while the
regression set is never removed). Variants of ER-FIFO include ER-FIFO-RW where RW stands
for reweighting that balances the three sources of data so that they have the same probability of
being sampled in SGD, Maximally Interfered Retrieval (MIR) (Aljundi et al., 2019a) where the
model is first virtually updated on new data alone and historical samples on which the loss increases
the most are being replayed, and MaxLoss (Lin et al., 2022) where after virtual update historical
samples with the highest losses are being replayed.

Another kind of rehearsal based method is GEM-PDS which combines Gradient Episodic Memory
(GEM) (Lopez-Paz & Ranzato, 2017) and Average GEM (A-GEM) (Chaudhry et al., 2019). Denote
the gradients of the loss on the new, recent and regression data by g0, g1 and g2, respectively.
Gradient descent along g0 might cause the model to forget, so instead we find a “pseudo gradient”
g by solving the following convex optimization problem: ming ∥g − g0∥22 subject to ⟨g, g1⟩ ≥
0, ⟨g, g2⟩ ≥ 0. The constraints make sure that the loss on recent and regression data won’t increase.
The optimal g∗ can be found with a simple procedure described in Appendix D Eqn. (2).

Regularization based methods keep the model weights close to the initial weight so as to reduce
forgetting. For instance, Online L2 Regularization (L2Reg) adds a L2 norm penalty term to the
objective to pull the model weight back to the initial weight, and a variant called Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017) adds the Fisher information matrix (FIM) to the
penalty term so that weights that are more influential change less.

Semi-supervised OCL algorithms. Pseudo labeling (PL) was proposed in Lee (2013) and is
also known as self-training. Note that if ft does well on Dt, then it is likely to be able to do well
on Dt+1 due to the continuity of PDS. Thus, for an unlabeled sample x in St, define its pseudo
label simply as ft−1(x). FixMatch (FM) (Sohn et al., 2020) is a variant of PL which requires
two types of data augmentation: a strong one and a weak one. Pseudo labels are generated on the
weakly augmented samples while the model is fine-tuned on the strongly augmented samples, which
leads to a consistency regularization effect that makes the model have consistent outputs between
two augmentations. Moreover, in our implementation we include a “virtual update” step: We first
virtually update the model on new labeled data alone, use that model to generate the pseudo labels,
and then recover the model weight and fine-tune it on labeled and pseudo-labeled samples. We find
that this virtual update step is very important in our experiments.

5 EXPERIMENTS
We compare the algorithms on the 4 benchmarks we constructed for OCL-PDS. Each experiment
is run 5 times with different random seeds. For the recent performance and the regression set per-
formance (reg performance), we report both the average and the worst performances, which are the
mean and minimum of the performance over t = 1, · · · , T , respectively.3

Observation #1: Strong positive correlation between online and recent performances. In Fig-
ures 2a and 2b, we plot the average online and worst recent performances achieved by different su-
pervised OCL algorithms on the CivilComments-WPDS (α = 0.5%) and FMoW-WPDS (α = 50%)
benchmarks (α is the fraction of labeled samples), where we can see a strong positive correlation
between these two. This is also known as the accuracy-on-the-line phenomenon (Miller et al., 2021).

3The reason why we also report the worst performance is that knowledge retention is required for all t.
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(b) FMoW.
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(d) FMoW.
Figure 2: Results of supervised OCL algorithms on CivilComments-WPDS (α = 0.5%) and FMoW-
WPDS (α = 50%). Each point corresponds to one pair of algorithm and hyperparameters.
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(b) FMoW.
Figure 3: Performances of ER-FIFO-PL/FM and ER-
FIFO-RW-PL/FM (in red). FM is only used for FMoW.
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Observation #2: Correlation between online and reg performances differs among benchmarks.
In Figure 2c and 2d, we plot the average online and worst reg performances on the two datasets, and
we can see a big difference. For CivilComments-WPDS, the regression set samples (severely of-
fensive comments) are very different from most samples (normal comments), so there is an obvious
trade-off between online and reg performances, while there is no such trade-off on FMoW-WPDS.
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Figure 5: Poverty-WPDS.

Observation #3: Some existing methods do not work well on re-
gression tasks. We plot on the right the average online and worst
reg performances of different supervised OCL algorithms on Poverty-
WPDS (α = 50%), which is a regression task. We observe that while
some methods like ER-FIFO and L2Reg do better than the FBO base-
line, some others including MIR and EWC achieve lower online per-
formance than FBO which should be a lower bound. Most existing
methods have only been tested on classification tasks before, and this
experiment shows that they might not work so well on regression tasks.

Observation #4: Unlabeled data improves OCL performance. In Figure 3, we plot the perfor-
mances of ER-FIFO-PL/FM and ER-FIFO-RW-PL/FM (in red) along with the performances of all
supervised OCL algorithms (in blue) on CivilComments-WPDS and FMoW-WPDS. We can see that
with the same worst reg performance, SSL methods achieve higher average online performances, and
vice versa. We also observe that FixMatch is slightly better than PL.

Observation #5: Virtual update in PL is important. In Figure 4 we plot the performances of ER-
FIFO-PL and ER-FIFO-RW-PL on CivilComments-WPDS with different epochs of virtual update
as labeled near the points. We can see that without virtual update (0 epoch), the online performance
of PL is even lower than the FBO baseline. However, with just 1 epoch of virtual update, the online
performance rises above FBO, and with more epochs of virtual update the online performance is
higher (but with a lower reg performance). One explanation is that the virtual update step distills the
knowledge of P (Y | X) from the new distribution into the current model, so P (f ′

t−1(X) | X) is
closer to P (Y | X,Dt). Without virtual update, ft−1 only has knowledge from old distributions, so
when the model is trained on the pseudo-labeled samples, it reinforces its old knowledge but learns
little new knowledge, resulting in a low online performance but high reg performance.

Conclusion. In this work, we introduced the novel OCL-PDS problem which aims to close the gap
between academic research and industry in continual learning. We built four new PDS benchmarks,
and implemented 12 OCL algorithms and baselines which we compared on the benchmarks. One
limitation is that the assumption Div(Dt ∥ Dt+1) < ρ might not be true for all t, and abrupt shift
could happen in real applications. To detect such abrupt shift, we can use online metrics that keep
track of the model’s online performance, or we can use methods in OOD detection (Hendrycks &
Gimpel, 2017; Lee et al., 2018) and OOD performance prediction (Chen et al., 2021; Jiang et al.,
2022; Garg et al., 2022; Baek et al., 2022). Finally, there is still a gap between the benchmarks we
built in this work and real applications, and we hope that in the future there could be more datasets
containing real PDS in industry applications released for the better development of this field.
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A LITERATURE REVIEW

A.1 DISTRIBUTION SHIFT

Distribution shift in machine learning refers to the scenario where the model is tested on a dis-
tribution Q different from the distribution P on which it was trained, which is different from the
conventional machine learning setting where the training and testing sets are i.i.d. sampled from the
same distribution. Distribution shift is studied in a number of areas in machine learning, including
domain adaptation, continual learning, transfer learning, fair machine learning, long-tailed learn-
ing, etc. See Table 2 of Gulrajani & Lopez-Paz (2021) and Table 2 of Wang et al. (2022a) for a
comparison among these areas.

In general, there are two types of distribution shift problem: Domain shift and subpopulation shift
(Koh et al., 2021; Sagawa et al., 2022). In domain shift, the training and testing distributions contain
different domains, and the goal is to generalize to new domains. This problem is also called Out-
of-distribution (OOD) generalization, such that the training set is ID (in-distribution) and the test
set is OOD. Related areas include domain adaptation, domain generalization, transfer learning, etc.
In subpopulation shift, the training and testing distributions consist of the same domains, but the
relative proportions are different. Related areas include fair machine learning, long-tailed learning
(learning with imbalanced classes), etc. The difference between these two is that in subpopulation
shift, the supports of the training and testing data distributions are the same, while it is not for
domain shift.

A lot of methods have been proposed to train models that are robust to distribution shift. Here
we introduce two general methods, and in the subsequent sections we will talk about methods for
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specific areas. The most classic method is importance weighting (Shimodaira, 2000), which multi-
plies the loss on sample x with an importance weight Q(x)

P (x) , because
∫
f(x)dQ =

∫ Q(x)
P (x)dP . This

method requires that P (x) > 0 for all x such that Q(x) > 0, i.e. only works for subpopulation shift.
Another general method that is widely used today is Distributionally Robust Optimization (DRO)
(Duchi & Namkoong, 2018), which assumes that Q ∈ U(P ) where U(P ) is the uncertainty set
that contains a family of distributions that are close to P . Then, DRO trains the model on the worst
distribution in U(P ) (with the highest empirical risk), so as to ensure that the model can do well
on any distribution in U(P ) which includes Q. A lot of variants of DRO have been proposed and
being used today (Hashimoto et al., 2018; Hu et al., 2018; Sagawa et al., 2020a; Lahoti et al., 2020;
Zhai et al., 2021a;b). However, there is also a recent line of work that points out some problems
with these methods both empirically and theoretically (Byrd & Lipton, 2019; Sagawa et al., 2020b;
Gulrajani & Lopez-Paz, 2021; Xu et al., 2021; Wang et al., 2022b). Remarkably, a recent paper
Zhai et al. (2022) proved the surprising result that generalized reweighting (GRW) methods, a broad
family of methods including importance weighting, DRO and a lot more, cannot do better than ERM
for linear models and NTK neural networks (Jacot et al., 2018). Thus, there is still a huge room of
improvement for methods for distribution shift.

A.2 CONTINUAL LEARNING

Continual learning (CL), also known as lifelong learning, comes from the philosophy that a learning
agent should be able to continually learn new knowledge and improve itself with new data on its own.
As detailed in Ring (1998), a continual learner should be able to learn context-dependent knowledge
autonomously, incrementally and hierarchically. A more recent paper Liu (2020) introduced the
concept of on-the-job learning, where the learner is required to detect new tasks on its own, collect
data for the new tasks and then learn with the data. Given these general philosophical ideals, the
goal of CL is to mathematically formulate a problem setting that reflects these ideals. Here we point
our readers to the Avalanche library (Lomonaco et al., 2021), a recently released Python library that
contains many benchmarks and algorithms of continual learning.

A.2.1 SETTINGS

There are a bunch of continual learning settings, and here we discuss the most widely studied ones.

Task-incremental CL. In this setting, N tasks T1, · · · , TN are sequentially given to the learner,
who is required to learn these tasks one by one without forgetting the previous tasks. The learner
cannot see the old tasks while learning a new one, but it has a memory buffer in which it can store
data from previous tasks. The goal is to perform well on all N tasks, and the performance is usually
evaluated with the average or the minimum of the performances on all tasks. A related setting is
class-incremental CL where new classes sequentially appear. Task-incremental CL is the oldest
setting that dates back to McCloskey & Cohen (1989), which trained a feed-forward network to first
learn addition with one and then learn addition with two, and found that when learning the second
task the network forgot the first one. This work pinpointed the catastrophic forgetting problem,
and as a result many researchers today believe that “the central problem of continual learning is to
overcome the catastrophic forgetting problem” (Aljundi et al., 2019c).

Two related problems are domain-incremental CL and class-incremental CL. In domain-incremental
CL, the data of each task comes from a different domain. In class-incremental CL, samples from
new classes appear one by one.

Task-aware CL. In this setting, the tasks are not sequentially given. Rather, each sample has
a “task descriptor” indicating which task it belongs to. This setting dates back to the early paper
Ratcliff (1990) which trained a multi-layer encoder model to learn four vectors A, B, C and D,
which were provided in a cyclic fashion: ABCDABCDABCD... Then, Lopez-Paz & Ranzato (2017)
studied task-aware CL in the online learning setting where samples come in an online stream. The
goal of task-aware CL is the same as task-incremental CL: To perform well on all N tasks.

Task-agnostic CL. In task-agnostic CL, each sample still belongs to a certain task, but the “task
descriptor” is not provided. The model is still required to do well on all N tasks, and it is still

15



What do we need for successful domain generalization? ICLR 2023 workshop

evaluated by the average or the minimum of the performances on all tasks. Algorithms for this
setting usually do task inference, i.e. inferring the task from the input (Van de Ven & Tolias, 2019),
where they assume that samples from the same task are closer to each other. Note that our definition
is different from some previous work, and some previous work on task-agnostic CL like Zeno et al.
(2018) is in fact under the task-free setting.

Task-free CL. In task-free CL, there is no task at all. The data comes in an online stream and
each sample only appears once. This setting was first introduced in Aljundi et al. (2019b), where
they split a data domain into several partitions, and sequentially present each partition to the model.
At the end of training, the model is evaluated on the entire data domain, i.e. the union of all the
partitions. Thus, if the learner is allowed to store all samples and train the model on them, then the
problem becomes equivalent to supervised learning. However, the model cannot store all samples
because the storage size is assumed to be limited. This problem is also called the data incremental
learning problem in De Lange et al. (2021). We can see that in this problem, the training is online
(partitions are sequentially given), but the evaluation is offline (test once on the entire domain).

Online Continual Learning (OCL). We study OCL in this work. It is a variant of task-free CL
as there is no task in OCL. The key characteristic of OCL is that both training and evaluation are
online, which is different from the previous task-free CL problem. In OCL, for each new data batch,
the model is first evaluated on it and then trained on it. Thanks to the online evaluation, we can study
the real “lifelong” learning setting in OCL where the time horizon is infinite, which is not possible
in the previous task-free CL problem. Note that the term “online continual learning” was used in
quite a few previous papers, but most of them refer to “continual learning with online data” (such as
Yin et al. (2021)) which is not the OCL setting we define in this work.

Time series analysis. A related area is time series analysis, where the data comes from a non-
stationary online distribution, and the task is to predict future data with the current and past obser-
vations. We can see that distribution shift naturally exists in the formulation of time series analysis,
but we fail to find much work about dealing with distribution shift with time series analysis.

One setting in time series analysis that is similar to OCL is temporal covariate shift (TCS), which
was first introduced in Du et al. (2021). TCS makes the covariate shift assumption: P (Y |X) is fixed
while P (X) shifts with time. The goal of TCS is r-step ahead prediction, i.e. predicting the labels
for inputs whose ground truth labels will be revealed r steps later. Other recent papers that study
distribution shift with time series analysis include Duan et al. (2022); Gagnon-Audet et al. (2022);
Kim et al. (2022).

A.2.2 METHODS

Rehearsal based methods. The concept of “rehearsal” was first introduced in Ratcliff (1990);
Robins (1995). Rehearsal-based methods store samples in an operational memory (a memory
buffer). When the learner learns a new task, it also reviews the old samples in this buffer in order
to prevent catastrophic forgetting, known as experience replay. Almost all previous work assumed
that the buffer has a fixed size, so two key questions for these methods are: (i) Which samples to be
store in the buffer, and (ii) Which samples to be replayed to the learner.

For problem (i), the most widely used strategy is Reservoir sampling (Isele & Cosgun, 2018) which
maintains the buffer distribution to be the average of all task distributions. Other variants include
Chrysakis & Moens (2020); Kim et al. (2020). For problem (ii), MIR (Aljundi et al., 2019a) selects
the samples with the highest loss increase after a “virtual update” step to be replayed, while MaxLoss
(Lin et al., 2022) selects the samples with the highest loss after virtual update. Moreover, experience
replay (ER) can be combined with other methods. For example, MER (Riemer et al., 2019) combines
ER with meta learning, GMED (Jin et al., 2021) combines ER with adversarial attack, and Wang
et al. (2022c) combines ER with DRO.

There are alternative ways to use this buffer. For example, iCaRL (Rebuffi et al., 2017) stores
“exemplars” in the buffer and uses a nearest neighbor classifier with these exemplars. In other
words, samples in the buffer are not used for training, but used for inference. Similarly, Continual
Prototype Evolution (De Lange & Tuytelaars, 2021) maintains and continually updates a prototype
for each class, and uses a nearest neighbor classifier for inference. Another way is introduced
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in GEM (Lopez-Paz & Ranzato, 2017), where the buffered samples are not directly replayed for
training, but instead used to find a “pseudo gradient” with a convex optimization problem so that
the loss on previous tasks won’t increase. Variants of GEM include A-GEM (Chaudhry et al., 2019)
and GSS (Aljundi et al., 2019c).

Since the buffer size is assumed to be limited, a bunch of previous papers studied how to utilize the
buffer space more efficiently. One line of work proposes to learn the distributions of previous tasks
with a generative model, which includes DGR (Shin et al., 2017), FearNet (Kemker & Kanan, 2018)
and so on.

Regularization based methods. The high-level idea of these methods is to not change the model
weights too much so that the model’s performance on previous tasks won’t drop too much. One
type of methods directly add to the objective a penalty term which keeps the model weights close
to the old weights, such as EWC (Kirkpatrick et al., 2017). Another type of methods use synaptic
regularization (Zenke et al., 2017; Aljundi et al., 2019b) which controls the learning rate of each
weight, so that more influential weights change more slowly.

Architecture based methods. These methods continually update the model architecture in order
to learn the new tasks. One type of method changes the architecture by adding a “mask” to some
weights, such as Piggyback (Mallya et al., 2018) which learns a mask for each task, and learning
a hard attention mask with gradient descent (Serra et al., 2018). Another type of method uses the
isolation approach where the model has two parts - A shared part and a task specific part. When a
new task arrives, the shared part is updated very little, and a new task specific part is learned on the
new task. Examples of isolation methods include progressive neural network (PNN) (Rusu et al.,
2016), Learning without Forgetting (LwF) (Li & Hoiem, 2017), dynamically expandable network
(DEN) (Yoon et al., 2018), etc.

A.3 DOMAIN ADAPTATION

Domain adaptation (DA) is a type of distribution shift where “the tasks are the same, and the differ-
ences are only caused by domain divergence” (Wang & Deng, 2018). There is a source distribution
P and a target distribution Q with distribution shift from P to Q. During training, the learner is pro-
vided with samples from both the source and the target distributions, and conditioning on whether
the samples from the target distribution is labeled, partially labeled or unlabeled, DA is classified
as supervised, semi-supervised and unsupervised DA. Particularly, in supervised DA, the number
of target samples is usually very small so that training on these target samples alone cannot lead to
a good model. A related area is domain generalization (Gulrajani & Lopez-Paz, 2021) where the
learner does not have any samples from the target domain, even unlabeled ones.

In general, a DA algorithm consists of two parts: Feature alignment and class alignment. The goal
of feature alignment is to train a feature encoder Φ that can encode invariant features, i.e. the images
of the source and target domains in the feature space are close to each other, or Φ(P ) ≈ Φ(Q). As
summarized in Wang & Deng (2018), there are two common ways to achieve feature alignment.
The first one is adversarial-based, i.e. training a domain discriminator to distinguish features from
the source and target domains, and the features are aligned if this discriminator cannot achieve a
high performance. Methods of this type include DANN (Ganin et al., 2016), SagNet (Nam et al.,
2021), etc. The second one is discrepancy-based, i.e. minimizing a divergence function between
Φ(P ) and Φ(Q), also called the “confusion alignment loss” in Motiian et al. (2017). Methods of
this type include CORAL (Sun & Saenko, 2016), IRM (Arjovsky et al., 2019), ARM (Zhang et al.,
2021), etc. However, there are also some papers that point out the problems within these methods
(Rosenfeld et al., 2021; Gulrajani & Lopez-Paz, 2021).

Moreover, even if we have learned a feature encoder Φ such that Φ(P ) ≈ Φ(Q), we cannot be sure
that the same classifier works for both domains, because samples of different classes in P and Q
might be mapped to the same latent feature. Thus, the goal of class alignment is either to make sure
that samples of the same class are mapped together, or to train a new classifier w′ which works for
Φ(Q). Note that class alignment requires labels from the target domain which are unavailable in
unsupervised domain adaptation or domain generalization. For instance, Tzeng et al. (2015) used
soft labels for class alignment, Long et al. (2016) minimized the cross entropy on the target data
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while using a residual block to keep the source and target classifiers close, and Motiian et al. (2017)
used a similarity penalty between samples from different classes.

A.4 SEMI-SUPERVISED LEARNING

In many applications, the number of labeled samples are limited, but there are also a large number of
unlabeled samples. For example, for image classification tasks, while the labels are hard to obtain,
free images can be very easily retrieved from the internet. Semi-supervised learning studies how
to train a model on a small set of labeled samples and a large set of unlabeled samples. This is an
old area of research and there is a very rich body of work, on which we do not intend to make an
exhaustive survey here. Here we briefly discuss several types of methods that are widely being used
today, and more methods can be found in surveys such as Van Engelen & Hoos (2020).

Generating labels for unlabeled samples. Perhaps the most direct and intuitive way of leveraging
the unlabeled samples is to try to generate labels for them, and then train the model over all samples
as if they were all labeled. The simplest of such methods is pseudo-labeling (Lee, 2013), which
first trains a model over the labeled samples alone and then uses this model to pseudo-label the
unlabeled samples. This method assumes that the labeled and unlabeled samples come from the
same underlying distribution, so if a model can do well on the labeled samples, it should be able
to generate good pseudo labels for the unlabeled samples. However, the quality of pseudo labels
depends on the generalization ability of the model, and if the number of labeled samples is too small,
then the pseudo labels could contain large systematic label noise. Thus, a number of techniques have
been proposed to improve pseudo-labeling.

One such technique is consistency regularization, which is based on the following observation:
Given two transformations x′ and x′′ of the same sample x, their labels should be the same. For
instance, FixMatch (Sohn et al., 2020) uses two augmentation methods: a weak one and a strong
one. It generates pseudo labels on the weakly augmented sample x′, and trains the model on the
strongly augmented one x′′. Similarly, Noisy Student (Xie et al., 2020) also uses a weak and a
strong augmentation, but it alternates between teacher phases which generate pseudo labels and
student phases which learn these labels, until convergence. Some other work defines x′ and x′′ as
the outputs of the model at different epochs, such as Temporal Ensembling (Laine & Aila, 2017) and
Mean Teachers (Tarvainen & Valpola, 2017). There is also a line of work that leverages adversarial
attack, such as Virtual Adversarial Training (VAT) (Miyato et al., 2018).

Interpolation based methods. These methods train the model on the interpolation between la-
beled and unlabeled samples. This type of methods was initially introduced in MixUp (Zhang et al.,
2018), which interpolates between two labeled samples to combat label noise and adversarial attack
as it makes the model have linear behavior in between samples. This method is then applied to
semi-supervised learning in MixMatch (Berthelot et al., 2019), which combines MixUp with a lot
of other techniques including pseudo labeling.

Self-supervised learning. The high-level idea of self-supervised learning (also known as repre-
sentation learning) is to train a good feature extractor on the unlabeled data set with an auxiliary
task (upstream task), and then train a classifier on top of it on the labeled data set (downstream task).
The most famous and widely-used self-supervised learning technique is masked language modeling
(MLM) in NLP (Devlin et al., 2018), where the auxiliary task is predicting a masked word within a
sentence. MLM has achieved great success in NLP as the feature extractor it learns can be applied
to almost any language task and lead to good performance.

Inspired by the success of MLM, people also try to apply self-supervised learning to vision tasks.
For example, Doersch et al. (2015) extracts random pairs of patches from each image where the
auxiliary task is to learn the relative position between each pair of patches, and Gidaris et al. (2018)
rotates each image with different angles where the auxiliary task is to learn this rotation angle,
which is applied to semi-supervised learning in S4L (Zhai et al., 2019). Today, the most widely
used technique is contrastive learning, which extracts different views from each image, and the
auxiliary task is to learn which views come from the same image. The feature extractor is trained
to learn the similarity between two views: similar if they come from the same image, and different
if they do not. This idea was first introduced in Bachman et al. (2019). Currently the most popular
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contrastive learning methods include SimCLR (Chen et al., 2020), MoCo (He et al., 2020), BYOL
(Grill et al., 2020), SwAV (Caron et al., 2020), etc.

A.5 COMPARING OCL-PDS TO PREVIOUS SETTINGS

This work is related to three areas: Domain adaptation (DA), continual learning (CL), and semi-
supervised learning (SSL). DA provides a learner with labeled samples from a source distribution P
and (partially labeled, unlabeled, or no) samples from a target distribution Q, and requires it to learn
a good model on Q. Surveys on DA include Lu et al. (2018); Wang & Deng (2018); Ramponi &
Plank (2020); Wang et al. (2022a). In CL, the learner needs to continually learn new knowledge from
an online stream of data, and settings include task-incremental CL (including domain-incremental
and class-incremental CL), task-aware CL, task-agnostic CL, task-free CL and OCL. Surveys on
CL include De Lange et al. (2021); Masana et al. (2020); Biesialska et al. (2020). SSL requires the
model to learn from a training set consisting of few labeled samples and many unlabeled samples.
Surveys on SSL include Van Engelen & Hoos (2020); Ouali et al. (2020); Yang et al. (2021). A
more thorough literature review can be found in Appendix A.

There are several differences between the OCL-PDS problem and conventional DA and CL settings.
We now explain why our formulation is more relevant and thus useful for industry practitioners.

PDS vs DA. Domain adaptation and related areas like domain generalization mostly study big,
one-shot distribution shifts, i.e. training and testing on two very different domains. This has two
problems: (i) Practitioners seldom directly apply a model to a very different domain in industry.
What they would usually do is to train one model for each domain, and train a domain classifier to
distinguish among different domains; (ii) Even if a model needs to be applied to a different domain,
what practitioners would usually do is first collecting some labeled data from the new domain and
then fine-tuning the model on the data. It is rarely the case in industry that there are no labels from
the target domain as in unsupervised DA, or even no samples at all as in domain generalization.

On the contrary, OCL-PDS is a very common scenario in industry. First, PDS has been widely
reported to cause gradual performance drop in industrial applications (Martinel et al., 2016; Jaidka
et al., 2018; Huang & Paul, 2019), and practitioners do not often train new models for PDS. Sec-
ond, OCL-PDS studies the semi-supervised setting where the practitioners can collect a few labeled
samples and many unlabeled samples, which is more realistic than no labels or samples at all.

OCL vs CL. OCL falls under the task-free continual learning setting where there is a fixed task
and no clear task boundary. It is different from conventional task-incremental CL in three ways:

1. Task-incremental CL has N distinct tasks and requires a single model to learn them all, but
what practitioners would usually do in this case is to train N models, one for each task. In
contrast, in OCL-PDS the task is fixed but the data distribution is gradually and constantly
changing, so it is more reasonable to use and continually fine-tune a single model.

2. Conventional CL requires the model to remember all N tasks with a storage of size M . For
studying PDS, this requirement has three problems:

(i) It is not so practical as not all old knowledge is important - A satellite image classifier
in 2022 does not need to do very well on images in 2002 with different landscapes.

(ii) In the “lifelong” setting with N continually growing, we need M to also grow with
N (like M = O(N)). With a fixed M , it is infeasible to remember everything.

(iii) Many applications have concept shift where P (Y |X) could change, so remembering
old knowledge can be harmful to the performance on the current data distribution.
For instance, languages that were not considered offensive 20 years ago are widely
recognized as offensive today thanks to the recent civil rights movements.

Thus, OCL-PDS only requires remembering recent knowledge and important knowledge.
3. Our setting assumes infinite storage unlike previous settings. This is an over-optimistic

assumption as there are real applications where the amount of data is so huge that it is
impossible to store all data even for big companies. Real applications also have other con-
siderations such as privacy restrictions so that the data cannot be stored forever. However,
storage size is rarely the bottleneck of industrial applications. The point of this assumption
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is to not put too much effort into utilizing every bit of storage. Instead, we want to fo-
cus on other questions, such as how to leverage unlabeled data and how to improve training
efficiency, that are more important to real applications.

Other similar settings. First, OCL is different from the task-free CL formulated in some previous
work (Aljundi et al., 2019b; de Masson d'Autume et al., 2019; Wang et al., 2022c) where the training
is online but the evaluation is offline. Previous work typically splits the data domain into different
sections which the learner sees sequentially online, and in the end the learner is evaluated on the
entire domain offline. On the contrary, both training and evaluation in OCL are online: For
each new batch, the model is first tested and then trained on it. Thus, it is possible to have the real
“lifelong” learning setting in OCL where the time horizon T = ∞ but not in the previous setting.

Second, OCL-PDS is closely related to reinforcement learning (RL) and time series analysis. The
difference from RL is that in RL, the agent can learn from a number of episodes, while in OCL-PDS
the evaluation is online and one-pass. The difference from time series analysis is that time series
focuses on predicting on future data and does not care about forgetting. Moreover, though PDS
naturally resides in time series data, in our literature review (Appendix A) we find little work about
handling PDS with time series analysis. One such line of work is temporal covariate shift (TCS)
(Du et al., 2021) that assumes that P (Y | X) is always fixed, which is not assumed in OCL-PDS.

Third, there are two related settings, gradual domain adaptation (GDA) (Kumar et al., 2020) and
gradual concept drift (Liu et al., 2017; Xu & Wang, 2017), that also study gradual shift from one
domain to another with a series of distributions P0, P1, · · · , PT , where P0 is the source domain, PT

is the target domain, and Pt and Pt+1 is close for each t. Both settings only require good adaptation
performance and do not consider forgetting. However, the concept of regression set widely exists
in modern deep learning applications, and no forgetting on the regression set is a critical issue.

Finally, Cai et al. (2021) proposed a similar OCL setting, where the model is also first evaluated on
the new batch and then trained on it. However, OCL-PDS has two important distinctions: (i) Cai
et al. (2021) considered a fully supervised setting while OCL-PDS mainly uses a semi-supervised
setting that is more common in practice; (ii) OCL-PDS uses different evaluation metrics, and in
particular measures the regression set performance which was not considered in Cai et al. (2021).

B THE DIVERGENCE FUNCTION

In this section, we dive deep into one important problem in the formulation of the OCL-PDS prob-
lem: How to choose the divergence function Div(P ∥ Q) that guarantees the continuity of the
distribution shift? As mentioned in Section 2.2, Div(P ∥ Q) refers to the divergence from P to Q,
and ideally we want it to reflect the performance of a model which is trained on P and tested on Q.

To study this problem, first we will review existing divergence functions, and then we will show
that an ideal divergence function for OCL-PDS should be asymmetric and bounded, which is un-
fortunately not satisfied by any popular divergence function. Finally, we will introduce the ϵ-KL-
divergence which is used in this work.

B.1 EXISTING DIVERGENCE FUNCTIONS

This part is based on the NeurIPS tutorial by Gretton et al. (2019). Generally speaking, there are
two types of existing divergence functions: Integral probability metrics (IPMs) and ϕ-divergences.
To quickly understand these two types of divergence, think about how to determine whether two
distributions P and Q are equal. There are two ways in general: (a) Compute P − Q and see if
it is zero almost everywhere, and (b) Compute P/Q and see if it is one almost everywhere. IPMs
correspond to method (a) and ϕ-divergences correspond to method (b).

IPMs. An IPM is defined as Div(P ∥ Q) = supf∈F [EX∼P f(X)− EY∼Qf(Y )] for some func-
tion family F . Examples include total variation (TV) defined as Div(P ∥ Q) = 1

2

∫
|P (x) −

Q(x)|dx, MMD defined as Div(P ∥ Q) = ∥EX∼P [π(X)] − EY∼Q[π(Y )]∥H for some fea-
ture mapping π and reproducing kernel Hilbert space H, and the Wasserstein distance defined as
Div(P ∥ Q) = infγ∈Γ(P,Q)

∫
D(x, y)dγ(x, y) for some distance function D(·, ·).
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ϕ-divergences. A ϕ-divergence is defined as Divϕ(P ∥ Q) =
∫
ϕ
(

dP
dQ

)
dQ. For example, when

ϕ = − log, then the ϕ-divergence becomes the reverse KL-divergence, where the popular KL-
divergence is defined as DKL(Q ∥ P ) =

∫
x
Q(x) log

(
Q(x)
P (x)

)
dx (note that P and Q are reversed).

Total variation is the only non-trivial function that is both an IPM and a ϕ-divergence.

B.2 DIVERGENCE FUNCTION FOR OCL-PDS

In this part, we show that an ideal divergence function for the OCL-PDS problem should be asym-
metric and bounded.

Asymmetric. Suppose we have two very different data domains A and B. Let P = A and Q =
0.5A + 0.5B. A model trained on P would have a very poor performance on Q, because it has
never seen any samples from domain B. On the other hand, a model trained on Q could have a
good performance on P , because it has seen samples from both A and B. Thus, in this example, we
would like to have Div(P ∥ Q) > Div(Q ∥ P ), so Div should be asymmetric.

Bounded. The KL-divergence is widely used in machine learning literature, but one problem is
that it is unbounded. Recall that in the OCL-PDS problem formulation, we assume that Div(Dt ∥
Dt+1) < ρ for all t. Now consider what would happen if the function Div is unbounded, and we
want to introduce data from new domains into the problem. Specifically, Q contains samples from
new domains that are not in P , i.e. there exists x such that Q(x) > 0 and P (x) = 0. In this
situation, we must have Div(P ∥ Q) = ∞, no matter how small Q(x) is. Therefore, if Div is
unbounded like the reverse KL-divergence, then we could never introduce new domains into
the problem, which is not desirable. There is a variant of the KL-divergence called JS-divergence,
which is defined as Div(P ∥ Q) = 1

2 [DKL(P ∥ M) +DKL(Q ∥ M)] where M = 1
2P + 1

2Q.
Although it is bounded, it is also symmetric, so it is not ideal for OCL-PDS.

B.3 ϵ-KL-DIVERGENCE

In this work, we use the ϵ-KL-divergence defined as follows:

Div(P ∥ Q) = EX∼P [g(X)] + EY∼Q[log(−g(Y ))] + 1

where g(x) = − Q(x)

max{P (x), ϵ}
(1)

This divergence functions has the following properties:

(i) This function is a lower bound of the reverse KL-divergence, and it is bounded.

(ii) If g(x) = −Q(x)
P (x) , then this function is equivalent to the reverse KL-divergence (which is

its dual formulation). Thus, if for any x such that Q(x) > 0, we have P (x) ≥ ϵ, then the
ϵ-KL-divergence is equivalent to the reverse KL-divergence.

(iii) In the case where Q contains new domains that are not in P , for example Q = (1−β)P +βP̃

for some P̃ ⊥ P , then Div(P ∥ Q) = β + β log β
ϵ + (1 − β) log(1 − β) ≈ β + DKL(Q ∥

(1− ϵ)P + ϵP̃ ).

From the properties, we can see that what we are doing in the ϵ-KL-divergence is essentially adding
an ϵ lower bound to the denominator of g(x) so that the function becomes bounded.

Example. Given two groups A and B, let ρ = 0.17 and ϵ = 0.02. Then, we have the following
group weight allocation schedule which is widely used in our benchmarks:

Limitations. The major limitation of the ϵ-KL-divergence is that it cannot measure how similar
two domains are. For example, suppose we have three domains: A, B and C, and they do not
overlap with one another. Samples in A and B are very similar, but they are vastly different from
samples in C. In this case, a model trained on A can have a good performance on 0.5A + 0.5B,
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Table 2: Sample group weight allocation schedule.

t A B Div(Dt ∥ Dt+1)

0 1.00 0.00 0.1661
1 0.90 0.10 0.1674
2 0.69 0.31 0.1663
3 0.41 0.59 0.1595
4 0.15 0.85 0.1625
5 0.00 1.00

but a poor performance on 0.5A + 0.5C. However, for the ϵ-KL-divergence, we have Div(A ∥
0.5A+ 0.5B) = Div(A ∥ 0.5A+ 0.5C). We can see that the ϵ-KL-divergence cannot measure the
similarity between A and B or A and C. Another limitation is that the choice of ϵ is arbitrary and
can affect the function value. Nevertheless, even with these two limitations, we still believe that the
ϵ-KL-divergence is suitable for the OCL-PDS problem. Finally, keep in mind that no divergence
function can cover every facet of real problems in practice, and that’s why we have three important
checking steps in our benchmarking procedure described in Section C.1.

C BENCHMARK DETAILS

We build 4 new benchmarks for OCL-PDS following the guidelines listed below:

• We only use public datasets in this work.
• The benchmarks should cover a wide variety of tasks.
• The benchmarks should be realistic and can reflect the real PDS in industry.
• Naı̈ve methods should be poor on these benchmarks, so special methods are necessary.

C.1 THE 3-STEP PROCEDURE TO BENCHMARK OCL-PDS

Here we provide the 3-step procedure we use to benchmark OCL-PDS on an existing dataset:

1. Separate the data into groups (domains). For example, group the data by year. Then, do an
OOD check which verifies that there is a significant distribution shift across the groups.

2. Assign shifting group weights to the batches to create a distribution shift across the groups.4
Then, do a shift continuity check which verifies that the shift is continuous (not abrupt).

3. Design a separate regression set which does not intersect with any online batch. Then, do
a regression check which verifies that naı̈ve methods have regression on this set.

Moreover, for each batch (including the regression set), we randomly divide the batch into a training
batch and a test batch. The learner sees the training batches during OCL, and the separate test batches
are used to evaluate the recent and regression set performances. The model is never evaluated on
training samples it has already seen because it is not useful as the learner can store all these samples
in its buffer. In Appendix C.2, we will demonstrate in detail how to build one of our benchmarks
with this 3-step procedure, including how to carry out the three important checking steps.

In the rest of this section, we will first demonstrate in detail how to use the 3-step procedure de-
scribed in Section C.1 with the CivilComments-WPDS benchmark as an example. Then, we will
present the details for all other datasets, but without the detailed benchmarking procedure.

C.2 CIVILCOMMENTS-WPDS

Here we present how we construct CivilComments-WPDS from the CivilComments-Wilds dataset
with the 3-step procedure including the 3 important checking steps.

4This is not equivalent to group shift or subpopulation shift as studied in fair machine learning and long-
tailed learning (learning with imbalanced classes). The group weights here are used to control the scale of the
divergence from being too big. We simulate a gradual shift by continuously shifting the group weights.
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Step 1: Separate the data into groups. First, we investigate the metadata we have in this dataset.
In CivilComments-Wilds, apart from the target label, each sample also has the following annota-
tions: whether it contains a certain topic (male, female, LGBTQ, christian, muslim, other religions,
black, white), and whether it contains a certain type of toxicity (identity attack, explicit sexual, etc.).
Based on this metadata, we can model the distribution shift with the shift in hot topics. We separate
the samples into four groups according to their topics, as shown in the following table.

Table 3: Samples in CivilComments-Wilds are separated into 4 groups by their topics.

Group Topic # Samples # Toxic # Non-toxic
0 Normal 269,422 21,297 248,125
1 Race 37,459 10,820 26,639
2 Religion 65,816 8,106 57,710
3 Gender 75,303 10,571 64,732

We can observe that: (i) There are less toxicity in normal comments than comments about a specific
topic; (ii) The portion of toxic comments about race is much higher than that of other topics.

Then, we do the OOD check, where we verify that there is a distribution shift across the groups.
We perform this check in the following way: For each Group k, we train a model on a training set
sampled from all groups except Group k, and then test this model on a validation set sampled from
all groups except Group k, and a test sampled from Group k. The results are the following:

Table 4: OOD check results of CivilComments-WPDS (%).

Group k Topic Validation Accuracy Test Accuracy OOD Gap: Val - Test
0 Normal 87.14 94.52 -7.38
1 Race 92.90 78.86 14.04
2 Religion 92.11 89.88 2.23
3 Gender 92.20 89.80 2.40

From this table, we can see that Group 1 (race) has the largest OOD performance gap, much larger
than other groups. Thus, when allocating the groups in Step 2, we will make sure that the shift to
Group 1 is slower. Moreover, we observe that on Group 0, the gap is negative, which means that
the OOD performance is better than the ID performance (i.e. A model trained on Groups 1-3 has a
higher accuracy on Group 0 than Groups 1-3). This is a counter-intuitive phenomenon as it is usually
taken for granted that OOD performance should be lower than ID performance. The cause of this
phenomenon might be that Group 0 is much easier to learn than the other groups (for example, the
data is more concentrated and depends on fewer features).

Step 2: Assign shifting group weights to the batches. We want to model the distribution shift
with the shift in hot topics on social media. At each time t, Dt contains normal comments as well as
comments about the current hot topic, i.e. samples from Group 0 exists in every batch. We design
the schedule listed in the following table:

Table 5: Group weight schedule for CivilComments-WPDS. For each t, the weights add up to 1.

t Group 0 Group 1 Group 2 Group 3
0 1.00 0.00 0.00 0.00
1 0.90 0.10 0.00 0.00
2 0.75 0.25 0.00 0.00
3 0.60 0.40 0.00 0.00
4 0.40 0.60 0.00 0.00
5 0.40 0.30 0.30 0.00
6 0.40 0.00 0.60 0.00
7 0.40 0.00 0.30 0.30
8 0.40 0.00 0.00 0.60
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Then, we do the shift continuity check, whose point is to make sure that the distribution shift in this
schedule is continuous. This check goes as follows: For each t, we sample a set from Dt and split it
into a training set and a validation set, and then sample a test set from Dt+1. We want to make sure
that the gap between the validation and the test performances is not too large for each t. The results
are the following:

Table 6: Shift continuity check results of CivilComments-WPDS (%).

t Validation Accuracy Test Accuracy OOD Gap: Val - Test
0 94.87 92.99 1.88
1 93.49 91.31 2.18
2 90.67 88.10 2.57
3 87.56 83.59 3.97
4 85.60 89.18 -3.58
5 89.08 91.59 -2.51
6 91.63 91.69 -0.06
7 92.05 91.47 0.58

We can see that the OOD gaps are kept under 4%, as opposed to the 14.04% gap we got in the OOD
check. And we can observe the same phenomenon again: For some t, the OOD accuracy is higher
than the ID occuracy.

Then, based on these results, we design the following sample allocation schedule listed in Table 8.
The first batch contains 50000 samples, while all the other batches contain 10000 samples each.
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Figure 6: Regression check.

Step 3: Design a separate regression set. We notice that each
toxic comment is annotate which types of toxicity the comment
contains in the CivilComments-Wilds dataset. Thus, we design the
regression set as the set of comments with two types of severe toxi-
city: identity attack and explicit sexual. Such comments are critical
toxic comments that a good detector should be able to detect with
high success rate.

Then, we do the regression check, where we verify that naı̈ve meth-
ods have regression on the regression set we constructed. Here we
use the NBO baseline. As shown in Figure 6, the regression set per-
formance of NBO quickly declines to under 50% - The performance of random guessing. Thus, the
benchmarks passes this check.

Train/test split. For each t, we split St into a training set and a test set, and the regression set
is also split into a training set and a test set. These test sets are used to evaluate the recent and
regression set performances. We never evaluate the learner on data it has seen, because the learner
has an infinitely large buffer where it can store the data. Instead, we evaluate the learner on separate
i.i.d. test sets. Note that the numbers listed in Table 8 are all sizes of the training sets.

C.3 FMOW-WPDS

This benchmark is built from FMoW-Wilds. First, we separate the data into 5 groups by the year:

Table 7: Samples in FMoW-WPDS are clustered into 5 groups by their year.

Group Year # Samples
0 2002-2013 132,948
1 2014 54,575
2 2015 87,358
3 2016 140,459
4 2017 54,746
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Table 8: Sample allocation schedule for CivilComments-WPDS.

t Group 0 Group 1 Group 2 Group 3
0 50000 0 0 0
1 9000 1000 0 0
2 9000 1000 0 0
3 7500 2500 0 0
4 7500 2500 0 0
5 6000 4000 0 0
6 6000 4000 0 0
7 4000 6000 0 0
8 4000 3000 3000 0
9 4000 3000 3000 0
10 4000 0 6000 0
11 4000 0 6000 0
12 4000 0 3000 3000
13 4000 0 3000 3000
14 4000 0 0 6000
15 4000 0 0 6000

Total 131000 27000 24000 18000

Table 9: Sample allocation schedule for FMoW-WPDS.

t Group 0 Group 1 Group 2 Group 3 Group 4
0 120000 0 0 0 0
1 0 10000 0 0 0
2 0 9000 1000 0 0
3 0 6900 3100 0 0
4 0 6900 3100 0 0
5 0 4100 5900 0 0
6 0 4100 5900 0 0
7 0 1500 8500 0 0
8 0 0 10000 0 0
9 0 0 9000 1000 0
10 0 0 6900 3100 0
11 0 0 6900 3100 0
12 0 0 4100 5900 0
13 0 0 4100 5900 0
14 0 0 1500 8500 0
15 0 0 1500 8500 0
16 0 0 0 10000 0
17 0 0 0 9000 1000
18 0 0 0 6900 3100
19 0 0 0 6900 3100
20 0 0 0 4100 5900
21 0 0 0 4100 5900
22 0 0 0 1500 8500
23 0 0 0 1500 8500
24 0 0 0 0 10000

Total 120000 42500 71500 80000 46000

Then, we allocate the groups with the schedule listed in Table 9. We put 120000 samples from Group
0 into batch 0 for pretraining, and all other batches contain 10000 samples each. The regression set
is defined as the set of samples in two highly populated regions: Americas and Asia.
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C.4 AMAZON-WPDS

This benchmark is built from the Amazon-Wilds dataset. In the original paper (Koh et al., 2021),
the ID/OOD sets are divided by the reviewers, and the dataset also contains some other metadata
such as year and product categories. However, we find in our experiments that these groups cannot
create a sufficiently large distribution shift. Thus, we use the following class split method, which
has been widely used in the continual learning literature: We divide the 5 classes of this datasets
(corresponding to the 5 stars rating) into 2 groups and 2 classes - positive and negative reviews, as
shown in the following table:

Table 10: In Amazon-WPDS, the 5 stars rating are divided into 2 groups and 2 classes.

Group 0 Group 1 # Samples Group 0 Group 1
y = 0 1, 2 stars 3 stars y = 0 193,900 377,039
y = 1 4 stars 5 stars y = 1 1,087,385 2,343,846

Then, we allocate the groups to the batches with the schedule listed in Table 12. This schedule is
based on the weight schedule we obtained in Table 2. The first batch has 50000 samples from Group
1, and then we model a group shift from Group 1 to Group 0. Each subsequent batch has 5000
samples.

Finally, the regression set is defined as the set of reviews from 10 popular product categories, in-
cluding books, fashion, etc.

C.5 POVERTY-WPDS

This benchmark is build from the PovertyMap-Wilds dataset, which is a image regression task. First,
we cluster the data into 4 group by the year:

Table 11: Samples in Poverty-WPDS are clustered into 4 groups by their year.

Group Year # Samples
0 2009-2011 7129
1 2012-2013 5005
2 2014 3494
3 2015-2016 4041

Then we allocate the groups with the schedule listed in Table 13. We put all samples from Group
0 (except test samples) into the first batch for pretraining, and each subsequent batch contains 800
samples. Finally, the regression set is defined as the samples from urban areas, which can better
reflect the overall wealth index of each country. Note that this is a regression task, and we evaluate
the model performance with the Pearson correlation following Koh et al. (2021).

D ALGORITHM DETAILS

First of all, at t = 0, all OCL algorithms train the initial model on the first labeled batch and
the training regression set with empirical risk minimization (ERM). In particular, following Koh
et al. (2021), we use the cross entropy loss for classification tasks and the mean squared error for
regression tasks. The differences among the methods only appear after t > 0.

Baselines. First, note that the upper bound baseline i.i.d. offline is not an OCL algorithm because
it assumes access to Dt at time t. For each t, it trains a model on a set sampled from Dt with
a sufficiently large size and no overlapping with St. The size of the training set is different for
different benchmarks, but we always make sure that it is at least as large as the union of all batches
before time t. Then, for FBO, the algorithm does not do anything after t > 0, and the initial model
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Table 12: Sample allocation schedule for Amazon-WPDS.

t Group 0 Group 1
0 0 50000
1 500 4500
2 500 4500
3 1550 3450
4 1550 3450
5 1550 3450
6 2950 2050
7 2950 2050
8 2950 2050
9 2950 2050
10 4250 750
11 4250 750
12 4250 750
13 4250 750
14 5000 0
15 5000 0
16 5000 0
17 5000 0

Total 54450 80550

Table 13: Sample allocation schedule for Poverty-WPDS.

t Group 0 Group 1 Group 2 Group 3
0 6359 0 0 0
1 0 800 0 0
2 0 720 80 0
3 0 720 80 0
4 0 552 248 0
5 0 552 248 0
6 0 328 400 72
7 0 328 400 72
8 0 120 400 280
9 0 120 400 280
10 0 0 400 400
11 0 0 200 600
12 0 0 0 800
13 0 0 0 800

Total 6359 4240 2856 3304

is used till the end. For NBO, for each new batch St, the model is trained on the labeled portion of
St only with a fixed number of epochs of ERM, and no previous sample is replayed.

ER-FIFO and ER-FIFO-RW. In ER-FIFO, for each t > 0, the model is fine-tuned on the union
of the new labeled batch, the recent labeled batches, and the training regression set, for a fixed num-
ber of epochs (named epochs) of ERM. Specifically, the recent labeled batches and the training
regression set are stored in the memory buffer. One issue of this approach is that it does not take
into account the sizes of the batches and the regression set. For example, if the regression set is
much larger than the batches, then it will be hard for the model to learn the new knowledge. Thus,
ER-FIFO-RW alters the weights of the three data sets: the new data, the recent data and the regres-
sion data. Specifically, it uses uniform sampling over these three sets, so that each set has the same
probability of being selected.
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MIR and MaxLoss. When there are too many previous samples in the buffer, we cannot replay all
of them for efficiency. ER-FIFO-RW solves this problem by randomly sampling previous samples
to replay. However, this might not be the most efficient method, as some previous samples might
be more useful than the others for preventing catastrophic forgetting. MIR and MaxLoss are two
strategies of selecting replay samples, which operate as follows: For each iteration,

1. Sample n new samples and nkr previous samples that require knowledge retention (KR).
2. Virtual update: Fine-tune ft−1 → f ′

t−1 with ERM on the n new samples.
3. Select n samples from the nkr previous samples for replay. Specifically, MIR selects the

samples whose loss increase the most before and after virtual update, while MaxLoss se-
lects the samples with the highest loss after virtual update.

4. Recover the model to ft−1, and fine-tune ft−1 → ft with ERM on the n new samples and
the n selected previous samples.

The ratio nkr/n is named as kr size in our code, which should be greater than 1. The larger nkr

is, the more likely we can select “useful” replay samples, but the slower the algorithm.

GEM-PDS. In this method, for each iteration, we first sample n new data, nkr recent data and
nkr regression data, on which we estimate the three gradients of the loss function g0, g1 and g2,
respectively. A larger nkr allows the learner to estimate g1 and g2 more accurately. The ratio nkr/n
is still named as kr size. The pseudo gradient g∗ can be solved with the following procedure:

1. a = ⟨g0, g1⟩, b = ⟨g1, g1⟩, c = ⟨g1, g2⟩, d = ⟨g0, g2⟩, e = ⟨g2, g2⟩.
2. If a ≥ 0, d ≥ 0 then return g0.

3. p = cd− ae, q = ac− bd, r = be− c2.

4. ĝ1 = g0 −
a

b
g1. If a ≤ 0 and q ≤ 0 then return ĝ1.

5. ĝ2 = g0 −
d

e
g2. If d ≤ 0 and p ≤ 0 then return ĝ2.

6. Return ĝ3 = g0 +
p

r
g1 +

q

r
g2.

(2)

We can verify with the KKT conditions that this procedure returns the correct solution of the opti-
mization problem (e.g. see Section 5.5.3 of Boyd et al. (2004)). The model is then updated with
gradient descent along g∗.

Online L2 Regularization and EWC. Let the loss of model ft parameterized by θt (which is
the vectorized model weight) on the labeled batch of St be ℓt(θt). In online L2 regularization, we
minimize the following objective function with a fixed number of epochs of ERM:

min
θt

ℓt(θt) +
λ

2
∥θt − θ0∥22 (3)

where we add a L2 penalty between the new model weight θt and the initial model weight θ0. The
reasons why we use ∥θt − θ0∥22 instead of ∥θt − θt−1∥22 are:

1. θ0 has a very good regression set performance, which is not guaranteed for θt−1. So using
∥θt − θ0∥22 ensures a higher regression set performance.

2. If T is very large, then the model weight can still change a lot if we use ∥θt − θt−1∥22 (as
the change accumulates with t), so knowledge retention cannot be guaranteed.

In EWC, the objective function is the following:

min
θt

ℓt(θt) +
λ

2
∥diag(Ft)(θt − θ0)∥22 (4)

where Ft is the Fisher information matrix (FIM), and diag(Ft) only contains the elements on the
diagonal of Ft. Following Kirkpatrick et al. (2017), we estimate diag(Ft) from the first-order deriva-
tives of the loss function on nkr samples for knowledge retention. The ratio nkr/n is still named as
kr size. With a larger nkr, we can estimate Ft more accurately. λ is named as lbd.
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Pseudo Labeling (PL) and FixMatch (FM). In PL and FM, there are two hyperparameters: the
number of epochs of the virtual update step epochs v, and the number of epochs of the real fine-
tuning step epochs r. Virtual update is done with ERM on the labeled samples only, while real
fine-tuning is done with a supervised OCL algorithm on the union of labeled and pseudo-labeled
samples. Thus, PL and FM can be combined with any supervised OCL algorithm, which we denote
by adding the suffix “PL” or “FM” to the algorithm, such as ER-FIFO-PL and ER-FIFO-FM.

E EXPERIMENT DETAILS

E.1 SETUP

Following Koh et al. (2021), we use a DistilBert-base-uncased for CivilComments-WPDS and
Amazon-WPDS, a DenseNet-121 for FMoW-WPDS, and a ResNet-18 for Poverty-WPDS. For the
training hyperparameters, we generally use the same ones as in Koh et al. (2021), with one exception
that we use a multi learning rate decay scheduler for the two vision benchmarks as we find that it
can produce better performances than the old scheduler.

For each experiment we report the following 6 metrics:

• For online performance, we report the average online performance (avg online) within a
finite T .

• For knowledge retention, we report the average recent performance (avg recent) and
the worst recent performance (worst recent), which is the average and the minimum
of the recent performance over t = w, · · · , T . We also report the worst performance
because knowledge retention is required for every t. Likewise, we also report the average
reg performance (avg reg) (regression set performance) and the worst reg performance
(worst reg). As mentioned in Section C.1, we use separate test batches to evaluate the
recent and reg performances.

• For training efficiency, we report the average runtime (avg time) of the method over
t = 1, · · · , T . Note that the time used to train the initial model (t = 0) is not computed in
the average runtime.

Each experiment is run on a single NVIDIA V100 GPU. Each experiment is run 5 times with differ-
ent random seeds, and the mean and the standard deviation of the results are reported. In particular,
for each benchmark we use 5 fixed initial models: We train 5 initial models on the first batch and the
training regression set with ERM for a fixed number of epochs with different random seeds, and then
use these 5 models as initial models for all methods. This both alleviates the effect of randomness
in the initial models and saves time. Under this setting, FBO can also serve as an upper bound of
the worst regression set performance, which is the regression set performance at t = 1 for every
method.

E.2 RESULTS

In Table 14 we list the notations we use in the results. The results are reported in Tables 15-18.

29



What do we need for successful domain generalization? ICLR 2023 workshop

Table 14: Notations of algorithms.

Algorithm Hyperparameters Notation Example
NBO epochs NBO-epochs NBO-5
ER-FIFO epochs ER-FIFO-epochs ER-FIFO-5
ER-FIFO-RW epochs ER-FIFO-RW-epochs ER-FIFO-RW-5
MIR epochs, kr size MIR-epochs-kr size MIR-5-4
MaxLoss epochs, kr size MaxLoss-epochs-kr size MaxLoss-5-4
GEM-PDS epochs, kr size GEM-PDS-epochs-kr size GEM-PDS-5-4
L2Reg epochs, lbd L2Reg-epochs-lbd L2Reg-5-0.1
EWC epochs, lbd, kr size L2Reg-epochs-lbd-kr size EWC-5-0.1-4
ER-FIFO-PL epochs v, epochs r ER-FIFO-PL-epochs v-epochs r ER-FIFO-PL-10-5
ER-FIFO-RW-PL epochs v, epochs r ER-FIFO-RW-PL-epochs v-epochs r ER-FIFO-RW-PL-10-5
ER-FIFO-FM epochs v, epochs r ER-FIFO-FM-epochs v-epochs r ER-FIFO-FM-10-5
ER-FIFO-RW-FM epochs v, epochs r ER-FIFO-RW-FM-epochs v-epochs r ER-FIFO-RW-FM-10-5

Table 15: Results on CivilComments-WPDS (α = 0.5%). Accuracies in %.

Algorithm Avg Online Avg Recent Worst Recent Avg Reg Worst Reg Avg Time
FBO 81.45 (0.37) 84.79 (0.96)
i.i.d. offline 90.03 (0.19)
NBO-100 89.19 (0.39) 89.08 (0.23) 85.12 (1.28) 55.20 (7.54) 30.07 (11.67) 95.61 (0.85)

ER-FIFO-1 82.62 (0.34) 82.92 (0.30) 77.42 (0.97) 83.81 (0.41) 81.46 (1.00) 309.04 (1.12)
ER-FIFO-RW-3 85.27 (0.70) 85.87 (0.54) 81.42 (1.44) 80.93 (0.57) 75.90 (1.71) 7.75 (0.04)
ER-FIFO-RW-10 83.94 (0.31) 84.09 (0.47) 79.48 (0.64) 83.32 (0.43) 80.63 (1.09) 24.48 (0.04)
ER-FIFO-RW-100 81.84 (0.59) 81.95 (0.78) 76.42 (1.54) 84.48 (0.68) 82.64 (1.10) 248.83 (3.52)

MIR-10-4 87.33 (0.30) 86.70 (0.51) 80.99 (1.30) 75.94 (1.98) 57.57 (3.95) 40.99 (0.12)
MIR-100-4 84.16 (0.15) 83.36 (0.38) 77.36 (1.11) 82.29 (0.97) 74.65 (0.95) 419.84 (2.08)
MIR-10-10 86.85 (0.29) 86.06 (0.58) 79.57 (1.42) 77.71 (1.43) 60.21 (4.29) 75.31 (0.37)
MIR-100-10 83.72 (0.18) 83.09 (0.28) 77.21 (0.48) 83.00 (0.65) 78.96 (1.60) 757.66 (5.90)

MaxLoss-10-4 87.32 (0.31) 86.76 (0.51) 81.04 (0.80) 76.25 (1.90) 57.15 (2.91) 31.27 (0.09)
MaxLoss-100-4 84.18 (0.44) 83.36 (0.40) 77.22 (0.79) 82.39 (1.32) 74.31 (1.74) 317.14 (1.47)
MaxLoss-10-10 86.81 (0.34) 86.05 (0.46) 79.96 (1.11) 77.63 (1.31) 60.35 (2.31) 52.46 (0.41)
MaxLoss-100-10 83.71 (0.18) 83.12 (0.35) 77.66 (0.58) 82.73 (0.95) 77.99 (1.03) 502.09 (6.19)

GEM-PDS-10-4 87.59 (0.39) 87.64 (0.28) 82.96 (1.01) 76.13 (1.38) 66.78 (4.01) 68.15 (0.07)
GEM-PDS-30-4 87.61 (0.55) 87.58 (0.45) 82.83 (1.01) 74.92 (2.53) 61.88 (8.54) 195.42 (0.29)
GEM-PDS-10-10 86.95 (0.43) 86.86 (0.46) 82.22 (0.59) 78.33 (1.37) 71.28 (2.31) 149.77 (0.14)
GEM-PDS-30-10 86.72 (0.43) 86.60 (0.62) 80.60 (1.61) 77.52 (1.71) 64.50 (6.38) 456.54 (0.72)

L2Reg-10-1.0 88.35 (0.38) 88.51 (0.42) 84.87 (0.81) 70.51 (3.19) 59.10 (3.88) 10.33 (0.13)
L2Reg-10-10.0 87.13 (0.48) 87.20 (0.61) 82.09 (0.62) 75.63 (2.90) 67.15 (4.56) 9.82 (0.12)
L2Reg-10-100.0 86.11 (0.35) 86.03 (0.51) 80.18 (0.97) 78.07 (2.07) 69.46 (5.63) 9.76 (0.12)
L2Reg-100-1.0 87.54 (0.39) 87.35 (0.42) 82.04 (0.71) 74.56 (2.21) 65.30 (3.71) 94.03 (0.67)
L2Reg-100-10.0 86.91 (0.37) 86.65 (0.49) 80.94 (0.91) 76.30 (2.21) 68.32 (2.54) 91.92 (0.71)
L2Reg-100-100.0 86.18 (0.35) 85.93 (0.46) 79.98 (1.04) 78.05 (1.87) 69.80 (3.40) 93.58 (0.39)

EWC-10-1.0-4 88.50 (0.45) 88.54 (0.55) 84.49 (1.28) 68.74 (3.76) 54.83 (5.17) 38.86 (0.37)
EWC-10-10.0-4 87.51 (0.25) 87.39 (0.45) 82.06 (1.16) 74.67 (2.09) 65.57 (2.81) 39.00 (0.44)
EWC-10-100.0-4 85.62 (0.18) 85.38 (0.38) 79.34 (0.79) 79.75 (1.46) 74.30 (3.14) 38.81 (0.08)
EWC-100-1.0-4 86.56 (0.32) 86.36 (0.45) 80.70 (0.98) 77.53 (2.04) 71.48 (3.50) 371.97 (1.27)
EWC-100-10.0-4 86.24 (0.31) 86.01 (0.48) 80.24 (1.01) 78.21 (1.80) 72.01 (3.56) 371.44 (0.86)
EWC-100-100.0-4 85.20 (0.21) 84.79 (0.43) 78.73 (0.82) 80.44 (1.44) 75.44 (3.06) 368.17 (3.44)

ER-FIFO-PL-0-1 77.22 (1.83) 76.54 (2.06) 69.66 (2.17) 85.66 (1.31) 83.76 (0.87) 510.40 (8.05)
ER-FIFO-PL-1-1 85.21 (0.57) 86.46 (0.48) 82.81 (0.79) 79.54 (0.72) 73.69 (2.45) 526.34 (4.13)
ER-FIFO-PL-3-1 87.28 (0.33) 88.22 (0.38) 84.59 (1.02) 76.26 (1.49) 68.86 (2.63) 514.51 (4.14)
ER-FIFO-PL-10-1 87.94 (0.35) 88.76 (0.32) 85.72 (0.44) 73.82 (2.14) 64.97 (4.44) 501.86 (1.50)

ER-FIFO-PL-RW-0-1 76.55 (1.05) 75.92 (1.97) 69.13 (2.96) 86.39 (0.76) 84.36 (1.08) 499.08 (1.22)
ER-FIFO-PL-RW-1-1 84.94 (0.85) 85.97 (0.91) 82.32 (1.44) 80.26 (1.40) 75.84 (1.36) 531.59 (7.74)
ER-FIFO-PL-RW-3-1 87.08 (0.30) 88.29 (0.28) 84.79 (0.97) 76.60 (0.94) 68.59 (0.56) 522.92 (8.41)
ER-FIFO-PL-RW-10-1 87.65 (0.46) 88.64 (0.37) 85.57 (0.63) 75.28 (2.13) 67.58 (3.41) 512.99 (2.48)
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Table 16: Results on FMoW-WPDS (α = 50%). Accuracies in %.

Algorithm Avg Online Avg Recent Worst Recent Avg Reg Worst Reg Avg Time
FBO 68.00 (0.24) 84.54 (0.21)
i.i.d. offline 83.04 (0.25)
NBO-5 71.78 (0.08) 73.03 (0.06) 71.27 (0.26) 76.84 (0.23) 72.71 (0.47) 161.90 (2.11)

ER-FIFO-2 74.01 (0.10) 76.04 (0.12) 74.38 (0.34) 83.91 (0.09) 80.82 (0.49) 1458.19 (239.67)
ER-FIFO-RW-2 72.77 (0.04) 74.56 (0.16) 73.07 (0.15) 81.84 (0.17) 80.34 (0.30) 226.31 (10.83)
ER-FIFO-RW-5 73.33 (0.11) 75.21 (0.06) 73.72 (0.28) 82.33 (0.12) 80.27 (0.34) 480.61 (20.08)
ER-FIFO-RW-10 73.56 (0.09) 75.80 (0.08) 74.31 (0.29) 82.63 (0.08) 80.21 (0.19) 953.56 (96.59)

MIR-2-2 69.75 (0.09) 70.74 (0.25) 68.68 (0.57) 79.25 (0.25) 76.48 (0.66) 357.74 (3.26)
MIR-2-4 71.29 (0.06) 72.36 (0.10) 70.44 (0.20) 80.81 (0.16) 79.19 (0.52) 460.35 (9.11)
MIR-2-10 72.59 (0.08) 73.95 (0.08) 72.27 (0.15) 81.90 (0.25) 80.92 (0.20) 710.30 (54.07)

MaxLoss-2-2 69.66 (0.21) 70.53 (0.30) 68.15 (0.81) 79.23 (0.13) 76.40 (0.56) 318.70 (3.33)
MaxLoss-2-4 71.34 (0.07) 72.46 (0.05) 70.52 (0.32) 80.86 (0.12) 79.40 (0.35) 361.38 (25.58)
MaxLoss-2-10 72.64 (0.08) 74.00 (0.10) 72.37 (0.21) 81.90 (0.30) 80.90 (0.32) 553.68 (18.74)

GEM-PDS-2-2 72.07 (0.08) 73.21 (0.19) 71.49 (0.33) 79.10 (0.15) 75.19 (0.45) 240.80 (3.06)
GEM-PDS-2-4 72.04 (0.11) 73.14 (0.09) 71.54 (0.34) 79.16 (0.23) 75.54 (0.75) 502.77 (41.03)
GEM-PDS-2-10 72.05 (0.07) 73.21 (0.13) 71.45 (0.37) 79.17 (0.21) 75.86 (0.38) 969.29 (5.54)

L2Reg-2-0.1 69.61 (0.11) 70.14 (0.19) 66.43 (0.28) 81.59 (0.17) 78.84 (0.95) 76.42 (1.15)
L2Reg-2-1.0 67.90 (0.14) 68.32 (0.20) 63.78 (0.61) 82.30 (0.21) 80.30 (1.00) 79.84 (1.27)
L2Reg-2-10.0 68.02 (0.12) 68.74 (0.26) 63.34 (0.43) 83.74 (0.19) 82.92 (0.30) 79.94 (0.99)

EWC-2-0.1-4 70.16 (0.16) 70.76 (0.24) 67.72 (0.43) 81.94 (0.10) 80.20 (0.60) 239.01 (1.32)
EWC-2-1.0-4 68.51 (0.16) 69.01 (0.27) 64.84 (0.49) 82.93 (0.14) 81.73 (0.42) 288.53 (26.63)
EWC-2-10.0-4 68.13 (0.12) 68.84 (0.20) 63.96 (0.35) 83.69 (0.11) 83.21 (0.14) 287.97 (26.06)

ER-FIFO-PL-3-3 74.25 (0.15) 76.34 (0.22) 74.49 (0.48) 84.00 (0.18) 80.34 (0.43) 1881.01 (6.93)
ER-FIFO-PL-5-3 74.36 (0.08) 76.47 (0.23) 75.00 (0.58) 83.95 (0.13) 80.20 (0.50) 1924.03 (15.96)
ER-FIFO-PL-3-5 74.55 (0.06) 76.54 (0.24) 74.96 (0.42) 84.40 (0.10) 80.90 (0.60) 3071.01 (28.59)
ER-FIFO-PL-5-5 74.62 (0.05) 76.67 (0.13) 74.91 (0.21) 84.29 (0.11) 80.65 (0.23) 3128.51 (54.12)

ER-FIFO-PL-RW-3-3 73.40 (0.04) 75.28 (0.25) 73.80 (0.40) 82.12 (0.16) 79.80 (0.37) 573.71 (9.83)
ER-FIFO-PL-RW-5-3 73.49 (0.09) 75.43 (0.18) 73.90 (0.34) 82.10 (0.19) 80.07 (0.24) 622.28 (6.41)
ER-FIFO-PL-RW-3-5 73.50 (0.15) 75.41 (0.26) 73.70 (0.46) 82.27 (0.08) 79.52 (0.14) 891.74 (9.63)
ER-FIFO-PL-RW-5-5 73.46 (0.04) 75.42 (0.14) 73.89 (0.21) 82.26 (0.06) 79.40 (0.31) 944.21 (6.73)

ER-FIFO-FM-3-3 74.81 (0.09) 76.91 (0.15) 75.36 (0.62) 84.37 (0.11) 80.80 (0.18) 2022.45 (179.49)
ER-FIFO-FM-5-3 74.80 (0.06) 76.86 (0.13) 75.27 (0.17) 84.32 (0.16) 80.36 (0.42) 2084.54 (183.02)
ER-FIFO-FM-3-5 75.10 (0.07) 77.19 (0.13) 75.46 (0.15) 84.70 (0.16) 80.96 (0.27) 3056.44 (52.54)
ER-FIFO-FM-5-5 75.16 (0.05) 77.33 (0.19) 75.75 (0.60) 84.71 (0.10) 80.88 (0.39) 3268.89 (307.79)

ER-FIFO-RW-FM-3-3 73.44 (0.05) 75.37 (0.30) 73.80 (0.37) 81.87 (0.19) 79.62 (0.35) 572.95 (2.68)
ER-FIFO-RW-FM-5-3 73.40 (0.08) 75.31 (0.12) 73.83 (0.30) 81.80 (0.05) 79.52 (0.41) 642.91 (37.83)
ER-FIFO-RW-FM-3-5 73.71 (0.05) 75.72 (0.15) 74.04 (0.41) 82.27 (0.08) 79.38 (0.44) 896.77 (4.61)
ER-FIFO-RW-FM-5-5 73.75 (0.15) 75.68 (0.13) 74.32 (0.25) 82.31 (0.05) 79.52 (0.33) 971.52 (39.10)
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Table 17: Results on Amazon-WPDS (α = 0.5%). Accuracies in %.

Algorithm Avg Online Avg Recent Worst Recent Avg Reg Worst Reg Avg Time
FBO 84.85 (0.20) 93.78 (0.26)
i.i.d. offline 94.15 (0.19)
NBO-100 90.49 (0.41) 90.68 (0.34) 88.58 (0.95) 92.22 (0.43) 88.63 (0.76) 105.68 (1.74)

ER-FIFO-1 87.12 (0.34) 88.06 (0.28) 84.70 (0.40) 93.58 (0.16) 93.02 (0.28) 314.64 (1.60)
ER-FIFO-RW-10 88.47 (0.67) 89.32 (0.73) 86.85 (1.62) 93.63 (0.30) 93.00 (0.37) 17.09 (0.06)
ER-FIFO-RW-100 86.65 (0.21) 87.39 (0.31) 83.22 (1.07) 93.68 (0.20) 93.11 (0.37) 181.74 (1.46)

MIR-10-4 89.46 (0.46) 90.19 (0.51) 88.00 (1.55) 93.31 (0.34) 91.82 (0.94) 28.88 (0.23)
MIR-100-4 86.99 (0.48) 87.87 (0.59) 84.28 (0.87) 93.62 (0.38) 92.86 (0.67) 286.59 (2.91)
MIR-10-10 89.15 (0.61) 89.95 (0.66) 87.28 (2.16) 93.45 (0.36) 92.21 (0.82) 47.99 (0.24)
MIR-100-10 87.16 (0.36) 88.07 (0.42) 84.68 (0.38) 93.78 (0.26) 93.24 (0.29) 479.84 (11.69)

MaxLoss-10-4 89.42 (0.43) 90.14 (0.54) 87.52 (2.01) 93.33 (0.28) 91.82 (0.84) 24.37 (0.17)
MaxLoss-100-4 87.06 (0.69) 87.88 (0.75) 84.42 (1.17) 93.72 (0.33) 93.13 (0.41) 247.32 (6.66)
MaxLoss-10-10 89.32 (0.57) 90.06 (0.61) 87.78 (1.78) 93.49 (0.27) 92.41 (0.57) 34.72 (0.24)
MaxLoss-100-10 87.11 (0.45) 88.06 (0.66) 84.73 (1.18) 93.73 (0.30) 93.18 (0.30) 358.98 (3.47)

GEM-PDS-10-4 89.94 (0.46) 90.50 (0.41) 88.74 (1.11) 92.94 (0.46) 90.65 (0.47) 37.30 (0.18)
GEM-PDS-30-4 90.32 (0.47) 90.84 (0.35) 89.22 (1.08) 92.55 (0.43) 89.64 (0.66) 111.27 (0.22)
GEM-PDS-10-10 89.77 (0.61) 90.42 (0.51) 88.20 (1.79) 93.10 (0.46) 91.30 (0.45) 82.24 (0.20)
GEM-PDS-30-10 90.26 (0.58) 90.81 (0.55) 89.32 (1.23) 92.80 (0.26) 89.93 (1.16) 239.08 (0.97)

L2Reg-10-0.1 89.01 (0.43) 89.79 (0.45) 86.72 (2.43) 93.23 (0.47) 91.46 (1.00) 11.06 (0.16)
L2Reg-10-1.0 88.00 (0.51) 88.83 (0.57) 85.14 (1.48) 93.62 (0.20) 92.94 (0.35) 8.52 (0.05)
L2Reg-10-10.0 86.67 (0.30) 87.46 (0.35) 82.21 (1.26) 93.75 (0.18) 93.26 (0.18) 8.53 (0.07)

EWC-10-0.1-4 89.32 (0.43) 90.05 (0.46) 87.06 (2.60) 93.20 (0.35) 91.21 (1.21) 26.12 (0.41)
EWC-10-1.0-4 88.94 (0.45) 89.77 (0.49) 86.48 (2.77) 93.34 (0.27) 91.60 (1.27) 23.02 (0.21)
EWC-10-10.0-4 88.52 (0.48) 89.32 (0.57) 85.75 (2.05) 93.58 (0.24) 92.72 (0.34) 23.34 (0.24)

ER-FIFO-PL-0-1 85.75 (1.09) 86.39 (1.27) 80.91 (2.85) 93.94 (0.10) 93.39 (0.17) 428.25 (11.42)
ER-FIFO-PL-1-1 87.84 (0.57) 88.94 (0.69) 86.21 (1.57) 93.77 (0.22) 93.17 (0.27) 427.75 (7.14)
ER-FIFO-PL-3-1 88.97 (0.36) 89.98 (0.26) 87.72 (0.48) 93.66 (0.28) 92.92 (0.42) 422.17 (2.50)
ER-FIFO-PL-10-1 89.47 (0.40) 90.39 (0.38) 88.42 (1.43) 93.20 (0.13) 92.07 (0.36) 419.94 (1.45)

ER-FIFO-RW-PL-0-1 85.28 (1.37) 85.96 (1.41) 80.30 (2.62) 93.66 (0.44) 92.97 (0.58) 277.10 (0.58)
ER-FIFO-RW-PL-1-1 88.21 (0.95) 89.03 (1.09) 85.95 (2.30) 93.79 (0.25) 93.15 (0.33) 278.52 (1.28)
ER-FIFO-RW-PL-3-1 89.19 (0.43) 90.03 (0.40) 87.56 (1.09) 93.68 (0.15) 92.88 (0.38) 274.58 (0.62)
ER-FIFO-RW-PL-10-1 89.84 (0.54) 90.56 (0.49) 88.95 (1.30) 93.39 (0.31) 91.80 (0.59) 280.12 (1.85)

Table 18: Results on Poverty-WPDS (α = 50%). Results are Pearson correlations.

Algorithm Avg Online Avg Recent Worst Recent Avg Reg Worst Reg Avg Time
FBO 0.781 (0.024) 0.638 (0.017)
i.i.d. offline 0.832 (0.010)
NBO-100 0.813 (0.003) 0.831 (0.004) 0.780 (0.010) 0.583 (0.012) 0.520 (0.035) 204.69 (2.12)

ER-FIFO-50 0.791 (0.007) 0.806 (0.008) 0.748 (0.050) 0.633 (0.018) 0.549 (0.109) 881.86 (57.91)
ER-FIFO-RW-50 0.793 (0.006) 0.807 (0.009) 0.753 (0.028) 0.641 (0.016) 0.612 (0.024) 244.83 (3.85)
ER-FIFO-RW-100 0.798 (0.007) 0.812 (0.009) 0.765 (0.045) 0.641 (0.018) 0.611 (0.032) 426.77 (2.04)
ER-FIFO-RW-150 0.799 (0.004) 0.813 (0.007) 0.765 (0.044) 0.643 (0.015) 0.608 (0.021) 629.51 (8.50)

MIR-30-4 0.737 (0.021) 0.759 (0.016) 0.691 (0.050) 0.579 (0.015) 0.502 (0.036) 256.05 (31.52)
MIR-100-4 0.750 (0.007) 0.773 (0.015) 0.702 (0.023) 0.585 (0.007) 0.524 (0.043) 847.82 (27.40)
MIR-30-10 0.759 (0.010) 0.779 (0.016) 0.694 (0.060) 0.602 (0.008) 0.561 (0.019) 719.60 (42.89)
MIR-100-10 0.774 (0.007) 0.793 (0.011) 0.747 (0.029) 0.611 (0.014) 0.568 (0.031) 2148.85 (137.06)

MaxLoss-30-4 0.727 (0.023) 0.752 (0.020) 0.688 (0.038) 0.575 (0.014) 0.509 (0.024) 274.64 (25.15)
MaxLoss-100-4 0.740 (0.019) 0.760 (0.023) 0.677 (0.039) 0.584 (0.017) 0.471 (0.182) 818.20 (19.62)
MaxLoss-30-10 0.754 (0.012) 0.776 (0.016) 0.695 (0.053) 0.601 (0.008) 0.561 (0.015) 557.77 (23.40)
MaxLoss-100-10 0.770 (0.010) 0.790 (0.015) 0.734 (0.054) 0.610 (0.017) 0.569 (0.029) 1643.23 (116.68)

GEM-PDS-30-4 0.771 (0.005) 0.800 (0.009) 0.783 (0.009) 0.634 (0.014) 0.622 (0.015) 338.23 (7.42)
GEM-PDS-100-4 0.777 (0.006) 0.809 (0.005) 0.793 (0.013) 0.640 (0.010) 0.627 (0.012) 1125.91 (36.97)
GEM-PDS-30-10 0.761 (0.004) 0.786 (0.009) 0.773 (0.013) 0.634 (0.014) 0.622 (0.019) 750.12 (4.47)
GEM-PDS-100-10 0.767 (0.005) 0.798 (0.006) 0.781 (0.012) 0.640 (0.009) 0.629 (0.011) 3247.20 (472.93)

L2Reg-100-0.1 0.797 (0.007) 0.804 (0.004) 0.743 (0.027) 0.614 (0.012) 0.559 (0.032) 249.46 (19.51)
L2Reg-100-1.0 0.792 (0.006) 0.807 (0.004) 0.783 (0.008) 0.642 (0.005) 0.619 (0.010) 247.66 (6.89)
L2Reg-100-10.0 0.780 (0.010) 0.799 (0.006) 0.778 (0.013) 0.641 (0.004) 0.616 (0.008) 247.39 (7.83)

EWC-100-0.1 0.726 (0.009) 0.744 (0.012) 0.719 (0.018) 0.625 (0.010) 0.601 (0.013) 884.09 (12.90)
EWC-100-1.0 0.735 (0.004) 0.753 (0.007) 0.734 (0.007) 0.648 (0.003) 0.628 (0.007) 714.14 (61.72)
EWC-100-10.0 0.716 (0.004) 0.731 (0.007) 0.718 (0.006) 0.652 (0.006) 0.636 (0.015) 719.71 (66.79)
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