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Abstract

One important challenge in evaluating the robustness of vision models is controlling1

individual nuisance factors independently. While some simple synthetic corruptions2

are commonly applied to existing models, they do not fully capture all realistic3

and relevant distribution shifts of real-world images. To overcome this challenge,4

we apply LoRA adapters to diffusion models to realize a wide range of individual5

nuisance shifts in a continuous manner. While existing generative benchmarks6

perform manipulations in one step, we argue for gradual and continuous nuisance7

shifts, as they allow evaluating the sensitivity and failure points of vision models.8

With this in mind, we perform a comprehensive large-scale study to evaluate the9

robustness and generalization of various classifiers under various nuisance shifts.10

Through carefully-designed comparisons and analysis, we reveal multiple valuable11

observations: 1) More modern and larger architectures trained on larger datasets12

tend to be more robust to various nuisance shifts and fail later for larger scales. 2)13

Pre-training strategy influences the robustness and fine-tuning a CLIP classifier14

improves the standard accuracy but deteriorates the robustness. 3) The accuracy15

drops only account for one dimension of robustness and the failure point analysis16

should be considered as an additional dimension for robustness evaluation. We17

hope our continuous nuisance shift benchmark can provide a new perspective on18

assessing the robustness of vision models.19

1 Introduction20

Machine learning models are typically validated and tested on fixed datasets under the assumption21

of independent and identically distributed samples. However, this may not fully reflect the true22

capabilities and potential vulnerabilities of models when deployed in dynamic real-world environ-23

ments. The robustness in out-of-distribution (OOD) scenarios is important in the real world. In24

safety-critical applications, decision-makers might be interested in how models perform under various25

specific nuisance shifts and severity levels. The term “nuisance shifts” refers to any intervention on26

a considered image distribution that alters the visual information while not changing the class of a27

considered target object, which can include the weather, style, or background.28

In the past, various benchmarks have been proposed to evaluate the robustness of computer vision29

models. One line of benchmarks manually collects data with nuisance shifts [1, 12, 17, 18, 20, 34,30

41, 45]. Yet, such approaches are not scalable and often include only a small variety of nuisance31

shifts. While Hendrycks and Dietterich [16] reports accuracy drops for various synthetic corruption32
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Figure 1: Benchmarking Continuous Nuisance Shifts. We find the failure point (highlighted in
red) for different models under various nuisance shifts. This enables a fine-grained understanding of
a model’s robustness in various conditions.

types and levels of corruption, they are not always relevant in the real world and do not represent all33

real-world nuisance shifts.34

On the other hand, synthetic datasets offer opportunities for evaluating deep neural networks. They35

allow the generation of various instances of a specific object class with specified context and nuisance36

shifts. While rendering pipelines allow precise control of several variables and are applied for37

benchmarking [3, 21, 23, 35], some nuisance shifts are hard to realize using traditional pipelines, such38

as weather variations like snow. Recent development in diffusion models has enabled the application39

of generative models for training [10, 15] and benchmarking vision models [29, 30, 40, 44].40

However, all previous approaches define binary nuisance shifts by considering the existence or41

absence of that shift, which may contradict their continuous realization in real-world scenarios. For42

example, the snow level in an environment can range from light snowfall to objects fully covered43

with snow. While one model might fail at both levels, a different model might only fail when the44

object is heavily occluded. Thus, it is necessary to realize continuous shifts to evaluate the sensitivity45

of vision models and their failure points.46

To overcome this shortcoming, we apply LoRA [19] adapters to realize a continuous variation of47

given nuisance shifts, and we use them for benchmarking a variety of classifiers along the following48

axes: (i) architecture, (ii) number of parameters, and (iii) pre-training and classification paradigms.49

Our new benchmark opens the path for robustness metrics beyond ImageNet accuracy: Evaluating50

on continuous levels allows computing the accuracy drop at specified scales and the failure point51

of models under a specific shift. In contrast to previous works that conduct analysis on two levels,52

our study reveals the following findings considering multiple levels of scales: 1) More modern and53

larger architectures are more robust to various nuisance shifts. 2) If a model is trained on more data54

using a classification or a surrogate loss, it is more robust independent of the standard accuracy.55

3) Fine-tuning typically improves the standard accuracy. However, its impact on robustness varies56

depending on the considered models. 4) In addition to the accuracy drop as one measure of robustness,57

the point of failure might be a similarly important quantity to consider when the robustness with58

respect to a specific shift level is of relevance. Our results show that the two quantities are not always59

aligned and should be considered as two separate dimensions of robustness.60

One essential requirement for using synthetic images for benchmarking is to ensure that the considered61

images correspond to the class distribution. Manually checking the quality of images is still common62

practice [44]. However, this does not allow scaling the analysis. Some approaches have been63

proposed for automated filtering, but there is no standard dataset for evaluating filtering strategies.64

We manually annotate a dataset with filter labels and use it to propose a filtering mechanism for65

removing out-of-class samples.66

In summary, our work makes the following contributions: (i) We provide a framework for implement-67

ing and benchmarking vision models with respect to nuisance shifts under continuous severity levels.68
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(ii) We collect an annotated dataset for benchmarking out-of-class filtering strategies. We propose69

a novel filtering mechanism and apply it to our generated images. (iii) We evaluate the robustness70

of a variety of classifiers along different scales with respect to nuisance shifts with multiple scales.71

(iv) We publish a dataset for benchmarking the robustness of classifiers with respect to 14 diverse72

nuisance shifts at six severity levels. We additionally provide 1400 trained LoRA sliders that can be73

used for computing shift levels in a continuous manner.74

2 Related work75

Robustness. When referring to natural robustness, we consider the relative accuracy drop of a76

classifier with respect to interventions that alter images from a base distribution, building on the77

formalism introduced by Drenkow et al. [9]. While the robustness to generic distribution shifts is of78

interest, we consider the robustness with respect to specific nuisance shifts that can be modeled as79

causal interventions on the environment, the appearance, the object, or the renderer. We define such80

interventions in a continuous manner on a metric scale.81

Benchmarking Robustness. Early approaches for benchmarking robustness and generalizability82

of models used fixed datasets [6, 7, 24], but this lacks scalability and fails to capture the failure points83

some models could face in real-world applications since they usually measure performances under84

the assumption of independent and identically distributed samples. To address this, a first line of85

research involves manually collecting data with nuisance shifts [1, 12, 17, 18, 20, 34, 41, 45].86

However, these methods are often time-consuming and labor-intensive because they require data87

crawling and human annotations. Moreover, they usually capture only a subset of nuisance shifts that88

models may encounter in the real world and it is challenging to ensure the independence of these89

annotated nuisances. Additionally, it is possible to manually apply additional nuisances to evaluate90

their robustness in a more controlled manner, for example with image corruptions [16] or adversarial91

attacks [5, 31, 37]. The second line of research uses synthetic data for benchmarking, which offers92

the ability to generate a large and diverse range of nuisance shifts with precise control [3, 21, 35]93

but are limited to nuisance that can be easily modelled (e.g., lighting, fog, occlusions). Recent94

developments in diffusion models have allowed some notable progress in the possibility of creating95

synthetic benchmark dataset [29, 30, 40, 44] with realistic data and more possibilities to control96

nuisances (e.g., text-guided corruptions, counterfactual). In our work, we propose a framework for97

benchmarking vision models with respect to nuisance shifts under continuous severity levels, as well98

as a novel filtering mechanism for removing out-of-class samples from synthetic data.99

3 Framework for Benchmarking100

In this section, we present our methodology to realize continuous shifts for evaluating model’s101

sensitivity with respect to such nuisance factors.102

3.1 Continuous Nuisance Shifts for Benchmarking103

For evaluating the robustness of image recognition models with respect to continuous scale nuisance104

shifts, two characteristics are desirable: (1) The severity of the considered shift can be controlled,105

allowing the estimation of the shift scale where a considered model fails. (2) Realizing a nuisance106

shift should not come along with factors of variations that might alter the class identity. The variations107

should be subtle and calibrated according to a pre-defined scale, allowing a fine-grained analysis on a108

distribution level when considering individual images.109

Methods for Realizing Continuous Shifts. A natural way to realize nuisance factors are methods110

based on text prompts [25, 29, 40]. They follow the prompt template “A picture of a {class}” and “A111

picture of a {class} in {shift}”. This, however, does not allow the gradual increase of a nuisance for112

a given image. In addition, the realized nuisance shift realized by the prompt addition “in {shift}”113

largely varies for different seeds and classes. The right figure in Fig. 3 illustrates that the nuisance114
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Figure 2: Qualitative Examples for Prompt-Based and LoRA-Based Shifts including OOC
Samples. (1) We compare shifting using two text prompts (2P) and the LoRA strategy for one
random seed. For 2P, the nuisance level is added in one step and the semantic structure clearly
changes, while LoRA adapters allow a gradual variation. (2) One example sliding where the shifting
strategy results in OOC samples for higher scales.

shift as measured by the difference of the CLIP [33] alignments of the base image and its shifted115

version to the prompt “A picture in snow” is dispersed. A qualitative example is given in Fig. 2116

A naive approach for realizing continuous shifts involves computing the difference between two117

corresponding CLIP embeddings. We explored the naive strategy following the implementation of118

Baumann et al. [2], but we did not achieve robust nuisance shifts for a variety of classes. A different119

approach that allows realizing subtle variations involves LoRA [19] adapters. LoRA are low-rank120

matrices that can characterize the directions of nuisance shifts. Gandikota et al. [11] propose a121

strategy to learn concept sliders based on LoRA adapters to learn continuous concept variations.122

Similarly, we realize a nuisance shift by training a LoRA adapter that realizes a low-rank concept123

shift s for a specific class c: PGM(X|c+ s) = PθSD(X|c) · PθLoRA(X|c, s), where samples are drawn124

from the generative model (GM) by combining the pre-trained SD model with the learned LoRA125

adapter. We apply LoRA adapters that are learned based on concepts specified by language. As126

shown in Fig. 2, applying the LoRA slider allows realizing gradual nuisance shifts. We illustrate127

the average variation of the image and the realization of the shift for the LoRA approach and the128

approach based on two prompts (2P) in Fig. 3. The variation of the images is measured using the129

cosine similarity of the DINOv2-R class tokens of the base image and the shifted images, while the130

severity of the shift is measured using the text alignment to the prompt “A picture in snow”. The131

LoRA adapter application allows gradual shifts, but the text-prompt-based application only allows132

one single scale for a given seed.133

The variation of the number of noise steps [28] with active LoRA adapters controls to what extent the134

identity and semantics are modified when increasing the LoRA scale. We do not activate the LoRA135

adapter at earlier timesteps to realize variations that do not drastically change the semantic structure136

of the image since they are constructed at earlier timestamps of the diffusion process [27].137

3.2 Accounting for the ImageNet Distribution138

We aim to evaluate a model’s robustness with respect to specific nuisance shifts s that alter the base139

ImageNet distribution p(XIN|c), which is conditioned on the 1k ImageNet classes c. For a more140

accurate estimate of the robustness with respect to a single considered shift, we desire a high model141

accuracy for the unshifted distribution. As pointed out by Vendrow et al. [40], the distribution of142

Stable Diffusion (SD) generated images p(XSD|c) differs from the ImageNet distribution, resulting143

in lower classification accuracies.Therefore, we use the textual inversions provided by Vendrow et al.144

[40] to account for the ImageNet distribution and call it IN*: p(XIN*|c) = p(X|c).145
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Figure 3: Evaluation of Snow Sliding: (1) Image variation is computed using the cosine similarity
of DINOv2-R class tokens. (2) Computation of the shift measured by the CLIP difference of the base
image and its shifted version. (3) Distribution of the applied shifts for various scales and 2P.

4 The Benchmarking Dataset146

To evaluate filtering strategies for removing OOC samples, we collect a dataset. This section presents147

this dataset and the selected filtering strategy.148

Filtering of OOC Samples. Current diffusion models allow the generation of diverse and realistic149

images x ∼ p(X|z) that are consistent with a desired condition z = [c, si] that involves the considered150

ImageNet class c ∈ N | 1 ≤ c ≤ 1000 and the variable si ∈ R corresponding the level of a considered151

nuisance shift i. However, due to their probabilistic formulation, the generated sample might deviate152

from the the condition z. While low-likely samples are in general not necessarily desired, long-tail153

samples also occur in the real world. For benchmarking applications, we are particularly concerned154

if the generated samples deviate from the original class c, i.e., the considered class cannot be155

characterized anymore. We call such samples “out-of-class” (OOC) samples [29]. Applying a LoRA156

adapter can leave the naturally learned manifold of the diffusion model and is, therefore, more prone157

to OOC samples (see Fig. 2). Evaluating the sensitivity to specific nuisance shifts requires removing158

the OOC samples generated by the shift’s application. Therefore, we collect a dataset of generated159

images to evaluate the sliding process and strategies to automatically remove OOC samples.160

Dataset for Evaluating OOC Filtering Strategies. To select a filter for detecting OOC samples, we161

collected a dataset for manual labeling: We pursue the following strategy:(i) In the first stage, 24k162

images are generated for 20 seeds, 5 LoRA scales, and 2 shifts per class for 100 random ImageNet163

classes in total. We select two very different shifts: One shift corresponds to a natural variation164

(snow), and the second shift corresponds to a style shift (cartoon style). (ii) Since we aim to find165

OOC samples that arise due to the application of the LoRA adapters, we remove all start samples166

without any shift that are low-likelihood samples, i.e. have a low text-alignment, and that are not167

classified as the corresponding class by multiple classifiers. After removing hard starting samples, the168

labeling dataset consists of around 18k images. (iii) To reduce the labeling effort, we filter out all easy169

samples that are (1) correctly classified by DINOv2-R and (2) one out of three classifiers (ResNet-50,170

DeiT-B/16, or ViT-B/16). (3) An additional requirement such that a sample is considered easy is171

a sufficiently high text alignment. (iv) Each hard image is labeled by two human annotators. To172

increase the dataset quality, we include soft labels if the image partially includes some characteristics173

of the class. So, each annotator can choose from the labels ‘class’, ‘partial class properties’, and ‘not174

class’. An image is defined as OOC sample if at least one annotator considers the image as an OOC.175

For the remaining samples, an image is considered IC (in-class) if at least one annotator labeled the176

image a clear sample of the corresponding class. All details on the labeling strategy and the dataset177

statistics are found in Appendix A.178

OOC Filtering Strategy. A filter serves its purpose if it removes all OOC samples, corresponding to179

a high true positive rate (TPR), while not removing too many in-class samples, which corresponds180

to a low false positive rate (FPR). Instead of simply applying a CLIP threshold as in Vendrow et al.181

[40], we consider a combinatorial selection approach, which requires two out of four detectors to be182

active. (i-ii) First, we consider text alignment to ‘a picture of a {class}’ and to ‘a picture of a {class}183

in {shift}’ computed via CLIP. (iii-iv) Additionally, we consider the cosine similarity to the starting184

images using the CLIP image encoder and the class tokens of DINOv2-R.For (i) and (ii), we select185
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Figure 4: Classification Accuracies on the Labeled and the Filtered Dataset. The accuracy curves
of a ResNet-50 and DINOv2-based classifier are comparable, which validates automatic filtering. We
provide more results for more classifiers in Fig. 6.

the filtering thresholds such that 90% of the labeled OOC samples are removed. We do not require186

the detection of all OOC samples since ImageNet includes some class ambiguities. The threshold is187

selected in accordance with the highest achieved accuracies of classifiers on ImageNet [36, 42, 43].188

The selected filter reaches a TPR of 87.9% and a FPR of 12.0% with an accuracy of 88.0%, while the189

simple CLIP-based thresholding reaches a TPR of 89.9% and a FPR of 35.7% with an accuracy of190

65.1%. While being mostly effective, the filtering mechanism does not remove all OOC samples.191

Therefore, we plot the classification accuracy of DINOv2-R and ResNet-50 for the labeled and the192

filtered version in Fig. 4. These results show that the filtered dataset results in comparable accuracy193

drop as the labeled dataset for both considered shifts.194

5 Benchmark195

In this section, we discuss our benchmark. We present the evaluations on the OOD-CV dataset and196

the large scale analysis of ImageNet classifiers.197

5.1 Evaluation on OOD-CV dataset198

To measure the robustness, Zhao et al. [45, 46] introduce a benchmark dataset (OOD-CV) that199

includes out-of-distribution examples of then object categories for five different individual nuisance200

factors (e.g., weather) on real data. OOD-CV is the only real-world dataset that provides accurate201

labels of various individual nuisance shifts. However, it only provides the coarse label weather for all202

weather-related nuisances instead of fine-grained labels such as rain, snow, fog or other. Following203

a similar approach in Sec. 4, we assign the fine-grained label using CLIP similarity. We detail the204

strategy for annotating OOD-CV using CLIP similarity and provide visualizations in Appendix A. We205

evaluate classifiers on both benchmarks. Specifically, we first train different classifiers (i.e., ResNet-206

50, ViT, and DINO-v2-ViT) on the training set of the OOD-CV benchmark. We then evaluate their207

performance on the data generated using our approach. Besides, we also evaluate their performance208

on the OOD-CV benchmark for each annotated sub-nuisance independently. As shown in Fig. 5, the209

accuracy remains more or less constant with an accuracy around 95% up to a nuisance scale of 1.5.210

From 2.0, the accuracy starts dropping, with the nuisance of fog and sand having the biggest impact.211

The resulting accuracy is consistently worse or similar to the accuracy of the highest nuisance scale212

of our generated data for the corresponding nuisance. We hypothesize that the bigger drop is due to a213

major limitation of the OOD-CV benchmark dataset: the nuisances are not completely disentangled,214

and part of the accuracy drop originates from various other factors (e.g., image quality, image size,215

and noise). Another hint confirming that hypothesis is the slight accuracy increase (up to +2.5%)216

for the rain and snow nuisances when increasing the nuisance scale from 0.0 to 1.5. Given that the217

models were trained on OOD-CV benchmark training set, and evaluated on our generated data. Thus,218

when corrupting the data with snow or rain, which closely relates to noise or pixelation from zooming219

in, the data becomes closer to the training data of the OOD-CV benchmark. Hence, the OOD-CV220

benchmark does not fully disentangle the annotated nuisances. In contrast, our approach allows for221

fine-grained control of nuisances, for a more complete understanding of a model’s capability.222
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Figure 5: Accuracies and Failure Point Ratios for the OOD-CV Benchmark. The continuous
scale nuisance shifts allow identifying the failure points of the models, while the OOD-CV dataset
only provides the accuracy drop: horizontal lines show the average score for each sub-nuisance of the
OOD-CV test dataset.
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Figure 6: Accuracies on the Labeled Dataset for Snow and Cartoon Shifts. The accuracy drops
on the labeled dataset showcase that various classifiers have varying sensitivities on different shifts.

5.2 Evaluated Models and Experimental Setup223

We use our benchmark to evaluate the models along the following axes:224

(i) Architecture. To compare architectures with a comparable number of parameters, we consider225

ResNet-50 [13], ViT-B/16 [8], DeiT-B/16 [38], DeiT-3-B/16 [39], and ConvNeXt-B [26]. All models226

are trained in a supervised manner.227

(ii) Model Size. For ViT, we consider the small, medium, base, large, and huge variants of DeiT-3.228

For CNN, we consider the ResNet variants, e.g., 18, 34, 50, 101, and 152.229

(iii) Paradigm and Training Data. The selection of the training paradigm and the amount of training230

data are highly coupled. Therefore, we evaluate a set of models that differ with respect to the used231

data as well as their pre-training and classification strategy. We compare two supervised models:232

One model trained on IN1k, and the other model trained on IN21k and then fine-tuned on IN1k.233

To evaluate the effect of learning strategies, we include two more models that are trained on IN1k:234

A masked autoencoder (MAE) [14] and DINOv1 [4]. Additionally, we also include a VLM-based235

classifier using a pre-trained CLIP-model [33] and DINOv2 [32]. We include the zero-shot variant of236

CLIP and a version that is fine-tuned on IN1k. All models use ViT-B/16 as the backbone. Furthermore,237

we evaluate a diffusion classifer [22] on a smaller subset.238

Implementation Details. As pointed about in Sec. 3.2, we use textual inversions to account for239

the ImageNet distribution. To evaluate the relance of this approach, we generate 200 images of 100240

randomly selected ImageNet classes using standard SD2.0 and SD2.0 with the textual inversions of241

IN*. To illustrate the distribution gap, we compute the accuracies for ResNet-50 and DeiT. They242

achieve an accuracy of 68.2% and 71.6% for the SD distribution and 74.1% and 79.1% for the IN*243

distribution, which equals an accuracy drop of 6% and 8%, respectively. We perform all the following244

experiments using the IN* distribution. We use SD2.0 and we activate the LoRA adapters for the last245

75% of noise steps. Due to the computational complexity, we perform sliding for 100 classes. To246

get an estimate of the robustness on a scale of ImageNet, we classify 1k classes using off-the-shelf247

classifiers without applying masking, as e.g., done by Hendrycks et al. [17]. We ablate in Appendix A248

how the number of classes influences the robustness evaluations.249
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Figure 7: Benchmarking Classifiers and Shifts. The visualization of accuracy drop and the
distribution of failure points is provided for all shifts and the three considered axes.

Our filtering mechanism removes some samples along the sliding trajectory, i.e., some seeds only250

include images from lower scales. To account for balanced dataset, we only evaluate the models for251

seeds that still contain all scales.252

5.3 Analysis & Findings253

Following Hendrycks et al. [17], we report the accuracy drop for 5 scales and 14 diverse shifts254

as a measure of robustness in Fig. 7a and the distribution of failure points in Fig. 7b and Fig. 7c.255

We list the shifts and more evaluations in Appendix A and discuss the findings in the following.256
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More modern architectures improve the robustness even when using the same training data: In257

our benchmark, DeiT3 achieves the highest robustness, while ConvNeXt and DeiT reach a similar258

performance. Interestingly, ResNet-152 is more robust than the standard ViT variant (Fig. 7a, Arch.).259

ConvNeXt fails later than ViT and ResNet-152: The cumulated number of failure points in Fig. 7b260

is mostly consistent with the observations of the accuracy drops. However, we identify the following261

learnings when performing the failure point evaluation: While the accuracy drop did not allow to262

clearly differentiate the performance between ViT and DeiT, the failure mode-based evaluation shows263

a significantly better performance of the ConvNeXt model (Fig. 7b, Arch.). Similarly, ConvNeXt264

fails later than ResNet-152.265

Larger models are more robust: This follows the results in Hendrycks et al. [17]. Our analysis266

shows that this behavior can be consistently reported for varying shift severities and for all considered267

nuisance factors (Fig. 7a, Model size). For this axis, the evaluation of the failure point is in line with268

the accuracy drop (Fig. 7b, Arch.).269

Using more data improves robustness: The most robust classifiers were trained on large datasets,270

such as the CLIP models on LION or DINOv2 on LVD-142M. We report a better robustness for the271

model that was pre-trained on IN21k as well (Fig. 7a, Paradigm).272

MAE is the most robust pre-training strategy: When comparing the models trained on the273

same dataset size, we observe that the fine-tuned MAE achieves the best robustness. (Fig. 7a,274

Paradigm) We use the DINOv1 model with a linear head for classification. Interestingly, it has a275

lower robustness than the ViT that was trained using a supervised loss. This might be attributed to the276

lower performance when only using linear probing. E.g., while the supervised approach (SUP-IN1k)277

showed better performance (Fig. 7a, Paradigm) than the MAE-based approach, MAE fails in average278

later than SUP-IN1k in case it fails (Fig. 7b, Paradigm).279

Some models have a larger accuracy drop but fail later. Failure points are therefore a reasonable280

additional metric to evaluate the robustness of models with respect to continuous shifts.281

Fine-tuning improves the accuracy but deteriorates the robustness for CLIP: The CLIP classifier282

applied in a zero-shot manner is more robust (Fig. 7a, Paradigm) while having a lower average283

accuracy: 89.5% vs. 84.2%. We report all accuracies in Appendix A.284

Diffusion classifiers seem not to be more robust than discriminative models. We evaluate285

the accuracy drop of the DiT-based diffusion classifier for 1k images on a subset of our dataset286

(around 400 images) for the snow and the cartoon style shift due to computational constraints. When287

comparing the performance on the same reduced dataset, the accuracy drops for the LoRA scale 2 of288

snow (cartoon) shift by around 0.12 (0.37) percent points for the diffusion classifier using the L1 loss289

computations strategy [22] and by around 0.12 (0.30) percent points for a ViT-B model trained on290

IN1k. The accuracy drops reported for the evaluated discriminative models on the subset are almost291

in line with the experiments on the labeled dataset Fig. 6. We provide more results in Appendix A.292

Failure points differ across different types of shifts: Comparing the failure point of various models293

largely differs when considering individual shifts as shown in Fig. 7c. Snow can be considered as an294

example shift that slightly changes the appearance and mainly adds a disturbance factor in the image.295

While there are some differences, the qualitative distribution is comparable for all models. On the296

contrary, the cartoon and sketch variation correspond to a style shift. Here, the failure points of less297

robust models are more concentrated.298

6 Conclusion299

This work fills the gap in generative robustness benchmarks that did not allow the application of a300

continuous shift level. In addition, we introduced the concept of failure points for benchmarking,301

providing an additional dimension to measure robustness. We applied LoRA adapters to realize fine-302

grained alterations of the image and benchmarked various classifiers along three axes. Furthermore,303

we discussed the importance of detecting out-of-class class samples when benchmarking using304

diffusion-generated images. We hope our proposed benchmark can motivate further research in the305

domain of using generated images for evaluating the natural robustness of vision models. Future306

work can improve the calibration and composition of various nuisance shifts.307
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