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Abstract

This paper introduces a counter-example based approach for
solving probabilistic conformant planning (PCP) problems.
Our algorithm incrementally generates candidate plans and
identifies counter-examples until it finds a plan for which the
probability of success is above the specified threshold. We
prove that the algorithm is sound and complete. We further
propose a variation of our algorithm that uses hitting sets to
accelerate the generation of candidate plans. Experimental re-
sults show that our planner is particularly suited for problems
with a high probability threshold.

1 Introduction
Probabilistic conformant planning (PCP) (Domshlak and
Hoffmann 2006, 2007) is a planning problem in which an
agent without observations is tasked to reach the goal with
a certain probability guarantee. Because the agent does not
have access to observations, the solution to a PCP problem is
a sequence of actions. There is uncertainty about the initial
state, given by a discrete initial state distribution and uncer-
tainty in the effects of actions; in this paper, we focus on
PCP with unknown initial states.

PCP is a generalisation of conformant planning (CP)
(Smith and Weld 1998) that assumes that the plan should
succeed with probability 1. This assumption often means
that CP plans are overly conservative in order to account
for all unlikely situations: there may be no solutions within
the horizon (maximum number of actions that we want to al-
low). Solutions to PCPs for similar domains are often shorter
as they are allowed to (selectively) ignore unlikely contin-
gencies. This is similar to the chance-constraints (Birge and
Louveaux 2011).

Consider the scenario in Figure 1, where a blind
robot wants to reach the destination (x2, y2) with-
out prior knowledge of its initial position. Probability
distributions to his initial positions are given as fol-
lows: {(x1, .2), (x2, .7), (x3, .1)} for the x-coordinate, and
{(y1, .2), (y2, .7), (y3, .1)} for the y-coordinate. Since x and
y are independent, we can compute the probability of each
initial position by simple multiplication. For example, the
probability that the robot starts in (x1, y2) is .2 × .7 = .14.
At each step, the robot can choose to move left (L), right
(R), up (U), or down (D). The grid is surrounded by walls
to prevent the robot from moving outside. If the robot hits
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Figure 1: Graphical representation of the GRID problem. The
initial location of the robot is unknown with its initial ver-
tical and horizontal locations indicated by the probabilities
labeling rows and columns, respectively (e.g., the probabil-
ity of starting in (x1, y2) is .2 ∗ .7 = .14). The arrows in-
dicate the possible moves in each state. The goal is to reach
the center location with probability .75.

the wall, it will not move but just stand still. We assume that
moving left and right is eligible only when the robot is on
row y1. What sequence of moves will make the robot arrive
at (x2, y2) that ensures the combined probability of satisfied
initial positions at least being .75? A valid plan for this ex-
ample is U L R D. This plan works since if the robot initially
stands at any location both in the two top-most rows and the
two left-most columns, it will eventually reach (x2, y2), and
the probability of these satisfied initial positions is .81.

1.1 Related Work
In principle, PCP problems can be solved by tracking the be-
lief states (probability function over the current state) over
all executions up to the length of the planning horizon, and
determining whether a goal state was reached with expected
probability. In practice, relatively efficient algorithms have
been developed that do not exhaustively expand all possi-
ble eventualities in the above sense. POND (Bryce, Kamb-
hampati, and Smith 2006) placed in an international plan-
ning competition, and implemented a PCP procedure. Its
approach involves the application of heuristic search tech-
niques and planning graph heuristics initially developed for
non-deterministic planning. POND further uses Sequential



Monte Carlo to generate a set of samples (particles) that rep-
resent the distribution over reachable relaxed planning graph
layers, and the probability that a particle takes on a partic-
ular value is proportional to the probability of that value in
the true distribution. The performance of POND is more af-
fected by the number of states, not the complexity of the
problem.

Probabilistic-FF (Domshlak and Hoffmann 2006, 2007)
is another state-of-the-art planner. This algorithm integrates
Conformant-FF’s techniques with weighted model count-
ing in (weighted) CNFs to define both the search space and
the heuristic function. In particular, Probabilistic-FF extends
Conformant-FF belief state formula to construct Bayesian
networks, uses weighted model-counting to determine the
probability of goals in a belief state, and adapts the heuris-
tic function of Conformant-FF to the probabilistic setting.
However, Probabilistic-FF faces challenges in determining
the optimal frequency of applying specific actions early in
the plan for achieving high confidence in goal attainment.
Additionally, the heuristic function of Probabilistic-FF yield
bad estimates in some problems.

In 2006, Huang (2006) proposed an innovative algorithm
that combines knowledge compilation and search for PCP.
The algorithm encodes the PCP problem into a proposi-
tional formula, where a subset of propositional variables
(chance variables) is assigned probabilities. Subsequently,
it compiles these formulas into a Deterministic Decompos-
able Negation Normal Form (d-DNNF, introduced in Sec-
tion 4.1), which can be used to compute the satisfied prob-
ability of a plan. The algorithm computes the upper bounds
on the success probability at each node of the search tree, or
for each partial plan generated during search, enabling the
pruning of a depth-first search for optimal plans.

Some other PCP are also outstanding. For example, Hyafil
and Bacchus (2003) encode the problem by Constraint Sat-
isfaction Problem (CSP) to search a plan; Taig and Brafman
(2013) translate PCP problem to classical planning problem
and the translation approach is built upon the techniques of
Palacios and Geffner (2009); Taig and Brafman (2014) de-
signed another approach in 2014, solving the problem by
relevance-based compilation method.

Grastien and Scala (2020) introduced a counter-example
based approach CPCES, for solving CP problems. CPCES
starts with an empty counter-example set (sample) and an
empty candidate plan π. It then iteratively follows two steps:
First, it uses a SAT solver to search for a counter-example
(initial state) ce that invalidates the current π, adding ce
to the sample; Second, it treanslates the CP problem into a
classical planning problem using a multi-interpretation and
uses a classical planner to determine a new candidate plan
π. The updated π agrees with all the initial states in the sam-
ple. CPCES repeats these two steps until either no counter-
example can be found, which indicates that the last candi-
date plan is a valid solution for the CP problem, or no can-
didate plan can be found, which means there is no solution
to the CP problem.

Inspired from CPCES (Grastien and Scala 2020) and
Huang’s algorithm (Huang 2006), our approach involves en-
coding the problem using a propositional formula and us-

ing a deterministic DNNF to assess the probability of a set
of counter-tags (defined in Section 3) to a candidate plan.
Our algorithm then translates the PCP problem to a classical
problem by using counter-tags and uses classical planner to
find a plan.

This paper is structured as follows: we begin by providing
the background of this paper. Then we introduce a counter-
example based approach to solving PCP problems. Follow-
ing that, we detail the process of computing a set of counter-
tags and the candidate plan corresponding to these counter-
tags. Additionally, we discuss the improvements made to our
approach by applying hitting set. Finally, we present the ex-
perimental results and conduct an analysis.

2 Problem and Background Definitions
Given a propositional formula φ, we write vars(φ) the set of
propositional variables in φ. Every formula is understood as
a conjunction ϕ =

∧
ϕi; it may consist of a single conjunct

or even none.
A PCP problem is a tuple P = ⟨F,A, I,G, τ⟩. F is a set

of Boolean facts. A state s ⊆ F is a subset of true facts;
this state is also understood as the conjunction

∧
f∈s f ∧∧

f∈F\s ¬f and as the assignment s[f ] = True iff f ∈ s.
A is a set of actions, where each action a ∈ A is a tuple
⟨name(a), pre(a), coneff (a)⟩. Here, name(a) is the unique
action name, pre(a) is a propositional formula over F
called the precondition. A precondition is trivial if it is true.
coneff (a) = {⟨con1, eff

+
1 , eff

−
1 ⟩, . . . , ⟨conk, eff

+
k , eff

−
k ⟩}

is a set of conditional effects. In each conditional effect
⟨con, eff +, eff −⟩, con is a propositional formula called the
condition; eff + and eff − are sets of positive effects and neg-
ative effects, respectively.

The action is applicable in a state s iff s |=
pre(a). The positive effects of a in s are Pos(a, s) =⋃

⟨con,eff +,eff −⟩∈coneff (a),s|=con eff
+, and the negative ef-

fects Neg(a, s) are computed similarly. The state s′ after
executing an action a is s[a] = s ∪ Pos(a, s) \ Neg(a, s).
I : 2F → [0, 1] is the initial probability function; when
there is only one initial state i, we write I = {i} instead of
I = {i → 1} ∪ {s → 0|s ̸= i}. The probability function I
is extended to sets of states with I(S) =

∑
s∈S I(s). G is a

propositional formula over F called the goal, which is a con-
dition the algorithm aims to achieve. τ is a rational number
between 0 and 1 and is called the probability threshold.

In this article, we assume that each planning prob-
lem whose name is decorated is defined as a tuple
⟨F,A, I,G, τ⟩ with the corresponding decoration. For in-
stance, a problem PY

X is implicitly defined as the tuple
⟨FY

X , AY
X , IYX , GY

X , τYX ⟩.
A plan π = name(a1) . . .name(ak) is a sequence of ac-

tion names.1
A plan is valid for a state s if: (i) each action aj is appli-

cable in state s[a1]...[aj−1], and (ii) it leads to a goal state:

1Traditionally, a plan is instead defined as a sequence of ac-
tions; using action names makes it possible to compare plans for
problems that feature different actions—for instance because they
are defined over a different set of facts—but the same action names.



s[π] |= G. We write JπK the set of states in which π is valid.
A plan π is valid for the problem P , written π ∈ Π(P), if
the probability of it being valid in the initial state is at least
τ : I(JπK) ≥ τ .

The problem in Figure 1 includes six facts F =
{x1, x2, x3, y1, y2, y3} and 4 actions A = ⟨L, R, U, D⟩ (left,
right, up, down). Actions L and R have precondition y1 – I.e.,
the agent can only act to move horizontally when located in
the top row. There are nine initial states. The goal is x2 ∧ y2
and τ = .75.

The initial probability function is

I =

{ {x1, y1}→.04 {x1, y2}→.14 {x1, y3}→.02
{x2, y1}→.14 {x2, y2}→.49 {x2, y3}→.07
{x3, y1}→.02 {x3, y2}→.07 {x3, y3}→.01

and I(s) = 0 for any other state.
A PCP problem with τ = 1 corresponds to a CP problem.

A PCP problem with only one initial state i is equivalent to
a classical planning problem.2

We now present the concepts of tag and context (Pala-
cios and Geffner 2009). We define a subgoal to be a con-
junct of the goal formula, or some action precondition. A
fact f1 depends on another fact f2 if there is a conditional
effect ⟨con, eff +, eff −⟩ that satisfies f2 ∈ vars(con) and
f1 ∈ eff +∪eff −. A context c(ϕ) of a subgoal ϕ is the union
of facts vars(ϕ) with all other facts they depend on, transi-
tively. In other words, the context of a subgoal includes all
the facts whose truth in the initial state can influence the va-
lidity of the subgoal in any state during the execution. Given
a context c, the tag of initial state i is the intersection of i
with c: tc(i) = i∩ c; we generally add the context to the tag
and write the tag as a pair ct = ⟨c, t⟩. The set of tags of P is
Tags(P).

Our running example of Figure 1 features three subgoals:
x2 and y2 (i.e., each from the goal), and y1 (precondition of
actions L and R). Consider ssubgoal ϕ = y1. Here, y1 de-
pends on y2 from conditional effect ⟨y2, {y1}, ∅⟩ of U, and
y2 depends on y3. Hence, the context of ϕ is {y1, y2, y3}, the
facts characterising the agent’s vertical position. This means
that, to decide if action L is applicable after applying the
known sequence of actions a1, . . . , ak from the unknown
initial state i, knowing the vertical location of the robot in
i suffices.

3 A Counter-Example Based Approach
In this paper, we develop a counter-example based approach
similar to CPCES (Grastien and Scala 2020). In our running
example, from sample {(x2, y1), (x2, y2)}, CPCES might
propose candidate plan π = UD, a sequence of action valid
for both states. This plan is not conformant because it is not
valid in state (x1, y3). If that state is added to the sample, the
candidate plan at next iteration might be U U L R D.

One could be tempted to use a similar approach for PCP
problems with the difference that a counter-example is gen-
erated only if the probability of success I(JπK) for current

2Note, in this case a sequential execution will achieve the goal
with probability 1 or 0.

# it Counter-tags CTS Proba Cand. plan.
0 - - - ε
1 x1, x3, y1, y3 {x1, x3} .3 L
2 x1, x2, y1, y2, y3 {x2} .7 L R
3 x3, y1, y2, y3 {y2} .7 U R L D
4 x1, y3 {x1, y3} .28 U L R D
5 x3, y3 None N/A -

Table 1: Example execution of OURALGO for the running
example with τ = .75.

candidate plan π is below the threshold. However, this pro-
cedure is not complete. Indeed, if there is a state from which
the goal is unreachable, then adding this state to the sample
will corrupt it. This is because, if this procedure is to iter-
atively find plans with higher probability of success, then
each call to the classical planner must pose a soluble clas-
sical problem. By adding states from which the goal is not
reachable to the starting conditions, the posed classical prob-
lem is not soluble.

In our running example, if we assume that there is a wall
from the bottom row to the middle row—i.e., the robot can-
not move from y3 to y2— then adding state (x1, y3) would
mean that no more candidate plan can be generated although
the problem is solvable for τ ≤ .9. More generally, the sam-
ple could be corrupted by a combination of states.

Instead, we build on top of the tag/context theory (Pala-
cios and Geffner 2009). We say that a tag is a ‘counter-tag’
(introduced in Section 4) to a candidate plan if the plan al-
ways fails to achieve one of its subgoals associated with the
context when the initial state satisfies the tag. Counter-tags
implicitly represent large groups of initial states (potentially
exponentially large ones) in which the plan is invalid. Our
algorithm (OURALGO) computes a ‘counter-tag set’ (CTS)
that covers the initial belief with probability at least (1− τ).
Then, when computing candidate plans in later iterations,
OURALGO makes sure that the plan is valid for (or consis-
tent with) at least one of these tags.

Table 1 illustrates the execution of OURALGO for our run-
ning example with τ = .75. Notice that since all tags are sin-
gletons, we represent them with facts instead of sets: when
we say ‘tag x1’, we actually mean ‘tag {x1} over context
{x1, x2, x3}’.

0. The first candidate plan is the empty plan π0 = ε.
1. The counter-tags to π0 are x1, x3, y1, and y3: e.g., exe-

cuting π0 for an agent starting in x1 will fail to achieve
the goal. A counter-tag set is {x1, x3}, as these two tags
add up to probability 0.3 > 1 − 0.75. From that point
on, the candidate plans should be such that either x1 or
x3 will not be a counter-tag. OURALGO chooses π1 = L
which is consistent with x3.

2. The table lists the counter-tags to π1; note that y2 is a
counter-tag as action L cannot be applied when the agent
is in y2. A counter-tag set is {x2} with probability mass
.7. Since this CTS contains only one tag, future plans
will all make sure that x2 is no longer a counter-tag. In
this round, π2 = LR is chosen as candidate plan, which



Algorithm 1: OURALGO

1: Input: PCP problem P
2: Output: a plan π for P , or UNSAT
3: B := ∅ ▷ a set of counter-tags
4: π := ε ▷ candidate plan
5: loop
6: CTS := compute CTS(P , π) ▷ explained in

Section 4
7: if CTS = ⊥ then return π
8: B := B ∪ {CTS}
9: π := compute candidate plan(P , B) ▷ explained in

Section 5
10: if π = ⊥ then return no plan

is consistent with both x1 and x2. Notice that OURALGO
chooses a plan consistent with x1, while it chose x3 in the
first iteration: unlike CPCES, OURALGO does not com-
mit to a state/tag.

3. OURALGO keeps running and finds increasingly sophis-
ticated candidate plans.

4. Consider the fourth counter-tag set, {x1, y3}. Note that
while x1 represents probability p1 = .2 and y3 probabil-
ity p2 = .1, their combined probability is not p1+p2 = .3
but .28. OURALGO computes plan π4 = U L R D.

5. Finally, {x3, y3} are counter-tags to π4, but their com-
bined probability is 0.19, which is less than 0.25. As no
CTS exists, the last candidate plan π4 must be a valid
plan. Indeed, π4 has probability of success of .81 ≥ τ .

OURALGO is summarised in Algorithm 1. B collects the
counter-tag sets computed so far, and candidate plan π starts
with ε. OURALGO computes a new counter-tag set; if no
such set exists, the current candidate plan is a solution. Oth-
erwise, the set is added to B. Next, OURALGO computes a
candidate plan that is consistent with at least one tag of each
counter-tag set from B; if no such plan exists, then there is
no solution to the planning problem. Otherwise, a new iter-
ation starts.

4 Computing Counter-Tags
We define counter-tags and explain how to verify if a tag
is a counter-tag. As described in Section 3, counter-tags are
useful in that (i) they allow one to talk about many states in
which a plan is invalid without enumerating these states, and
(ii) they help find the next candidate plan.

The definition of counter-tags is based on the notion of
a projected planning problem. Projection restricts the plan-
ning problem to a context, and sets the initial state to be a
tag. We define the projection bottom up, from simple objects
to complex ones.

Definition 1 Let ct = ⟨c, t⟩ be a tag.

• The projection of a conjunction φ =
∧

j∈{1,...,k} φj over
ct is Proj (φ, ct) =

∧
j∈{1,...,k}.vars(φj)⊆c φj .

• The projection of a set of conditional effects coneff over
ct is the subset of conditional effects Proj (coneff , ct) =
{⟨con, c∩ eff +, c∩ eff −⟩ ∈ coneff | eff + ∪ eff − ⊆ c}.

• The projection of action a over ct is Proj (a, ct) =
⟨name(a),Proj (pre(a), ct),Proj (coneff (a), ct)⟩.

• The projection of P = ⟨F,A, I,G, τ⟩ over ct is the clas-
sical planning problem Proj (P, ct) = Pct defined by
Fct = c, Act = {Proj (a, ct) | a ∈ A}, Ict = {t}, and
Gct = Proj (G, ct).

A counter-tag to a plan is a tag such that the plan is invalid
in the projected problem.

Definition 2 A counter-tag to π is a tag ct ∈ Tags(P) such
that π ̸∈ Π(Proj (P, ct)). The set of all counter-tags to π is
CTags(π).

To verify if a tag is a counter-tag to a plan, one can sim-
ply simulate the execution of the plan and check that each
precondition and the goal condition are satisfied. The main
property of a counter-tag is that any initial state in which
a plan is invalid features a counter-tag to the plan. For tag
ct = ⟨c, t⟩, we write JctK the set of initial states i that satisfy
this tag: i ∩ c = t; furthermore, given a set C of tags, we
write JCK the set of initial states that satisfy at least one of
these tags: JCK =

⋃
ct∈C JctK.

Theorem 1 The set of states in which candidate plan π is
invalid is JCTags(π)K.

Proof sketch of Theorem 1 is in the Appendix. Theorem 1
characterises the states in which a candidate plan is invalid.
Of particular interest is the fact that one does not need to
enumerate all initial states.

4.1 Deterministic DNNF
The probability of a set of counter-tags selected in each
iteration is hard to compute by simply summing up the
probability of each initial state. To enhance efficiency, we
use Deterministic Decomposable Negation Normal Form,
d-DNNF (Darwiche and Marquis 2002), since it permits
polynomial time implementations of computing probability
(Darwiche 2001; Huang 2006).

d-DNNF is a language for propositional formulas that sat-
isfies decomposability and determinism conditions. Decom-
posability guarantees that the variables within each conjunc-
tion are distinct, and do not overlap. Determinism guarantees
that the disjuncts within any disjunction are logically contra-
dictory – E.g., if ϕ1 ∨ ϕ2 appears as a subformula, then we
also know ¬ϕ1∨¬ϕ2. d-DNNF enables computation of cer-
tain logically complex queries in polynomial time in the size
of the formula.

Let φ be a formula in d-DNNF over a set of Boolean
(‘chance’) variables X = vars(φ). Let P : X → [0, 1]
be the a-priori probability of each variable to be true (P is
independent for each variable). Then the probability that a
random assignment of the variables of X satisfies φ, written
count(φ), can be computed in polynomial time (Darwiche
2001; Darwiche and Marquis 2002; Huang 2006).

4.2 Computing the Probability of a CTS
In this section, we show how to compute the probability of
the set of states JCK using d-DNNFs.



Importantly, in order to be able to use symbolic tools to
reason about the probability of a set of states, we need the
distribution function I to be represented symbolically.

We assume that the set F of facts is partitioned into m
subsets F1, . . . , Fm (i.e., F = F1 ∪ · · · ∪ Fm and for all
j, k, Fj ∩ Fk = ∅). We further assume that each subset
Fj is associated with a oneof probability distribution Mj of
Fj , i.e., a probability distribution over some subsets of Fj .
The probability of an initial state i is then the product of the
probabilities of the intersections of this state with each Fj :
I(s) = M1(i ∩ F1)× · · · ×Mm(i ∩ Fm).

In our running example, the set of facts is partitioned into
Fx = {x1, x2, x3} and Fy = {y1, y2, y3} and the oneof
probability distributions are:

Mx =

{{x1} 7→ 0.2
{x2} 7→ 0.7
{x3} 7→ 0.1

My =

{{y1} 7→ 0.2
{y2} 7→ 0.7
{y3} 7→ 0.1

In this example, the subsets Fx and Fy both match a context,
but this is not true in general.

Consider a oneof probability distribution Mj over Fj , and
let us write {i1, . . . , ik} the domain of Mj (i.e., Mj(ip)
is defined for all p ∈ {1, . . . , k}). We create a set Xj =
{χj,1, . . . , χj,k} of k chance variables and, for each index
p, a formula that associates χj,p with ip as follows:

φj,p =

(
χj,p ∧

∧
q<p

¬χj,q

)
→

 ∧
f∈ip

f ∧
∧

f∈Fj\ip

¬f

 .

Finally, we write φj =
∧

p∈{1,...,k} φj,p.
In other words, for any Boolean assignment α of F ∪Xj

that satisfies φj , if χj,ℓ is the chance variable with the low-
est ℓ-index such that α[χj,ℓ] is true, then the state i repre-
sented by α satisfies i ∩ Fj = ij . Finally, we need to set
the appropriate probabilities of the chance variables; these
probabilities are calculated as follows:

χp 7→ Mj(ip)/

(
1−

∑
q<p

Mj(iq)

)
.

Given a formula φ that represents a set of states (such as the
set JCK), the probability of the initial state satisfying φ can
be computed via:

count(∃F. φ ∧
∧

j∈{1,...,m}

φj). (1)

In our running example, the value of chance variables un-
der Mx and My are {χx,1 = 0.2, χx,2 = 0.7/(1 − 0.2) =
0.875, χx,3 = 1}, {χy,1 = 0.2, χy,2 = 0.7/(1 − 0.2) =
0.875, χy,3 = 1}, respectively. The formulas associated
with these chance variables are:{

x1→χx1

x2→χx2 ∧ ¬χx1

x3→χx3 ∧ ¬χx1 ∧ ¬χx1

{
y1→χy1

y2→χy2 ∧ ¬χy1

y3→χy3 ∧ ¬χy1 ∧ ¬χy1

This six-clause formula φ has the property that each as-
signment of chance variables satisfying the formula will re-
sult in a unique initial state. In general, the probability of this

state is determined by the production of values of chance
variables assigned as true.

Given a set of counter-tags C, the initial states with
chance variables represented by C can be expressed as:

φ ∧
∨
c∈C

c

By compiling the above formula into d-DNNF, the probabil-
ity of initial states represented by a set of counter-tags can
be computed via the function count.

5 Computing a Candidate Plan
In this section, we show how to generate a classical planning
whose solution set is exactly all the plans that are valid for a
given set of CTS. For this purpose, we first show two oper-
ators that take as input two classical planning problems and
compute a problem whose solution set is the union or the
conjunctions of that of the input problems. Then we show
how to use these operators.

5.1 Operations on Planning Problems
The following operations assume that the planning problems
have disjoint sets of facts. If this is not the case, we assume
that the facts are renamed to satisfy this condition.

Definition 3 Let P1 and P2 be two classical planning prob-
lems with F1 ∩ F2 = ∅ and {name(a) | a ∈ A1} =
{name(a) | a ∈ A2}. The conjunction of P1 and P2 is
the classical planning problem P = P1 ⊗ P2 where

• F = F1 ∪ F2, i = i1 ∪ i2, G = G1 ∧G2, and
• A = {a1 ⊗ a2 | a1 ∈ A1 ∧ a2 ∈ A2 ∧ name(a1) =
name(a2)} where a = a1 ⊗ a2 is defined by
– name(a) = name(a1),
– pre(a) = pre(a1) ∧ pre(a2), and
– eff (a) = eff (a1) ∪ eff (a2).

⊗ is called ‘conjunction’ because of the following result:

Lemma 1 Let P1 and P2 be two classical planning prob-
lems. The following holds: Π(P1 ⊗ P2) = Π(P1) ∩Π(P2)

Proof sketch of Lemma 1 is in the Appendix. It is easy to
extend Lemma 1 to multiple problems: Π(P1⊗· · ·⊗Pn) =
Π(P1) ∩ · · · ∩Π(Pn).

Definition 4 Let P1 and P2 be two classical planning prob-
lems with F1 ∩ F2 = ∅ and {name(a) | a ∈ A1} =
{name(a) | a ∈ A2}. The disjunction of P1 and P2 is the
classical planning problem P = P1 ⊕ P2 = ⟨F,A, I,G⟩
where

• F = F1 ∪ F2, i = i1 ∪ i2, G = G1 ∨G2, and
• A = {a1 ⊕ a2 | a1 ∈ A1 ∧ a2 ∈ A2 ∧ name(a1) =
name(a2)} where a = a1 ⊕ a2 is defined by
– name(a) = name(a1),
– pre(a) = pre(a1) ∨ pre(a2), and
– eff (a) = eff (a1) ∪ eff (a2).

Unlike the conjunction, the disjunction requires an addi-
tion condition in order to get the expected behaviour.



Lemma 2 Let P1 and P2 be two classical planning prob-
lems. If P1 and P2 are such that their action preconditions
are trivial (∀j ∈ {1, 2}. ∀a ∈ Aj . pre(a) = true), then the
following holds: Π(P1 ⊕ P2) = Π(P1) ∪Π(P2)

Proof sketch is in the Appendix. It is easy to extend
Lemma 2 to multiple projected problems: Π(P ′

1 ⊕ · · · ⊕
P ′
n) = Π(P ′

1) ∪ · · · ∪Π(P ′
n).

For example, consider the candidate plan π = D, and
{x3} and {y3} are counter-tags to π. Since {x3} belongs
to c1 and {y3} belongs to c2, we can have P ′

x⊕P ′
y in which

the goal is x2 ∨ y2.
To use the disjunction operator, we need planning prob-

lems with trivial preconditions. This is achieved with the
trivialisation operation. Essentially, fact ζ is added to the
problem. This fact is initially true and must remain true.
When an action is taken whose original precondition is not
satisfied, then ζ is made false through a conditional effect.

Definition 5 The trivialisation of planning problem P is the
planning problem Triv(P) = P ′ defined by
• F ′ = F ∪ {ζ} where ζ ̸∈ F is a new fact;
• A = {Triv(a) | a ∈ A} where Triv(a) =
⟨name(a), true, eff (a) ∪ ⟨¬pre(a), ∅, {ζ}⟩⟩;

• I ′ = {(i ∪ {ζ} 7→ v) | (i 7→ v) ∈ I} ∪ {(i 7→ 0) | i ⊆
F};

• G′ = G ∧ ζ;
• τ ′ = τ .

Lemma 3 Let P be a planning problem. The following
holds: Π(P) = Π(Triv(P)).

Prove sketch of Lemma 3 is in the Appendix.

5.2 Putting it All Together
Given a set T of CTS, we show how to generate a new plan-
ning problem (composite problem) such that all the valid
plans are exactly those that the counter-tag sets are not
counter-examples to:

PB = PT1
⊗ · · · ⊗ PTn

where B = {T1, . . . , Tn} and

PTi
= Pc1 ⊕ · · · ⊕ Pcm

where Tk = {c1, . . . , cm} and Pck is the trivialisation of the
projection of P over ck. The composite problem is a classi-
cal planning problem.

At each iteration, OURALGO must generate a new
counter-tag set (or terminate). The number of counter-tag
sets is finite: the algorithm must terminate.

6 Conjunctive Goals
Our general approach requires to compute candidate plans
from the set Π(P1)∩ · · · ∩Π(Pn) where Π(Pj) = Π(Pij)∪
· · · ∪ Π(Pjkj ). This is difficult because it leads to planning
problems with disjunctive goals (as hinted at by the union
operator ∪).

Notice that any candidate plan then belongs to the set
Π(PH) = Π(P1h1

) ∩ · · · ∩ Π(Pnhn
) where for all j,

hj ∈ {1, . . . , kj}, i.e., H = {h1, . . . , hn} forms a hitting

Algorithm 2: OURALGOHIT

1: Input: PCP problem P
2: Output: a plan π for P , or UNSAT
3: B := ∅ ▷ a set of counter-tags
4: π := ε ▷ candidate plan
5: loop
6: while π = ⊥ do
7: H := unique min hit(B)
8: if H = ⊥ then return no plan
9: π := compute candidate plan(P , H)

10: CTS := compute CTS(P , π)
11: if CTS = ⊥ then return π
12: B := B ∪ {CTS}

set (Slaney 2014) of the set of counter-tag sets B. If H were
known in advance, finding this plan would be much faster
because it only involves conjunctive goals.

To leverage this property, we propose to first search over
the set of minimal hitting sets of B. This is summarised on
Alg. 2. OURALGOHIT chooses a hitting set H , searches for
a plan in PH and, if it fails, moves to the next hitting set.
Searching for a candidate plan involves an extra loop to it-
erate over the hitting sets. Method unique min hit returns a
different hitting set at each iteration. If all hitting sets fail to
lead to a plan (Line 7 where the set of hitting sets has been
exhausted), then there is no plan.

7 Experiments
We compared four different probability thresholds:
τ ∈ {0.99, 0.90, 0.75, 0.5}. The classical planners used in
our implementations are the Fast Forward (FF) (Hoffmann
2001) and Madagascar 3 (Rintanen 2014).

Both OURALGO and OURALGOHIT are tested in the ex-
periments. In Table 2 and Table 3, column FF-OUR corre-
sponds to FF used in OURALGO; column FF-HIT corre-
sponds to FF used in OURALGOHIT; column MAD-OUR
corresponds to Madagascar used in OURALGO; column
MAD-HIT corresponds to Madagascar used in OURALGO-
HIT. As FF times out for nearly all problems at a probability
threshold of 0.5, we only executed Madagascar under the 0.5
probability threshold. We did also experiment using classi-
cal planners based on the Fast Downward System (Helmert
2006) but do not include those results due to poor runtime
performance in the preprocessing component of that tool on
composite problems we encounter in our study. Due to space
limitations, not all experimental results are presented in the
tables. Full results are in the supplementary material.

We ran experiments over the set of benchmarks from
Zhang, Grastien, and Scala (2020). We modified these CP
problem benchmarks by incorporating a uniform distribu-
tion into the initial states. The benchmark set contains 6
domains: BOMB, COINS, DISPOSE, ONEDISPOSE, LOOK-
GRAB, and UTS. Because OURALGO and OURALGOHIT
randomly select counter-tags in each iteration, to mitigate

3We ran algorithm C with R=1.2, checking horizons from 0 to
50, using ∃-step -semantics.



the impact of randomness on the experiment, each instance
was solved nine times, and we report the median result.
Timeout was set to 1800 secs. The experiment was con-
ducted on an Intel(R) Core(TM) i7-7700 CPU with 8 cores
and 16 GB memory. The experiment did not include a com-
parison with other PCP planners, such as probabilistic-FF
and POND, as these planners were developed decades ago
and would not compile and/or run correctly on systems
available to us.

The probability threshold 0.99 problems perform best
over all the other probability threshold. This is because in
each iteration the probability of counter-tags over 0.01 is
enough to be used to search next candidate plan. In some
problems, such as DISPOSE p-8-1 and UTS p7, there is only
one context and the probability of any single initial state is
more than 0.01, so only one counter-tag is needed in each
iteration. This makes the composite problem become much
easier to be solved as there is no disjunctive goal. Also, be-
cause of this reason, the benefit of hitting set strategy is
not exhibited. For example, solving DISPOSE p-8-1 problem
takes almost the same time by FF-OUR and FF-HIT.

As the probability threshold τ decreases, the performance
of both OURALGO and OURALGOHIT gradually deterio-
rates. This phenomenon is due to two reasons. First, as the
number of contexts (intuitively, dimensionality) of a prob-
lem becomes large, so too does the typical length of clauses
in the goal of composite problem. Thus, for low values of τ ,
we will oftentimes have many and long clauses in the goal
of composite problem. The fact is that there are many cor-
relates with the number of iterations required to solve the
problem, and therefore the runtime. Moreover, for lower val-
ues of τ the number of clauses in the goal of the composite
problem being posed is typically high. In practice, for low
values of τ in problems with many initial states, we require
many iterations of our algorithm to find a valid plan of PCP.
The fact is that there are many correlates with the number
of iterations required to solve the problem, and therefore the
runtime. Both the length and number of clauses impact the
performance of the base classical procedure, thus also nega-
tively impacts overall performance.

The algorithms we have described have a performance
profile that is quite different to that of incumbent algorithms.
Specifically, POND and probabilistic-FF exhibit their fastest
performance with lower values of τ , with published per-
formance degrading significantly with values of τ close to
1. (Domshlak and Hoffmann 2007). This is an interesting
phenomenon, as our algorithm is good at handling high
probability thresholds because it uses counter-tags for plan
searches, and the higher the probability threshold, the fewer
counter-tags are required, i.e., intuitively, as τ approaches
1 the problem becomes more-and-more like a typical fully
conformant problem. In doing so, our algorithm effectively
mitigates the inherent weaknesses found in other algorithms.

OURALGOHIT outperforms OURALGO significantly us-
ing both FF and Madagascar as the subplanner, especially
when τ < .99. This is what we expected, as there are mul-
tiple counter-tags in each iteration for all the problems with
τ < .99, and hitting set helps classical planners in select-
ing which counter-tag needs to be satisfied in the subse-

quent candidate plan. This can be evidenced by the ratio (r)
of classical planner runtime to the total runtime (shown on
the supplementary material). When τ < .99, the value of r
in OURALGOHIT is significantly lower than in OURALGO.
For example, when solving BOMB p20-10 with τ < .99
using Madagascar, the r value in OURALGO is over 50%,
while in OURALGOHIT, it is less than 20%. In principle,
there are various strategies for choosing a hitting set, instead
of simply choosing smallest one. For example, our algorithm
could heuristically take the initial state distribution into ac-
count when selecting hitting sets.

We observe that Madagascar performs better in solving
problems with a small τ compared to FF. For example,
when using OURALGO with a probability threshold of 0.75,
MAD-OUR takes 14.8s to solve COINS p10, whereas FF-
OUR times out. Another example is using OURALGOHIT
with a probability threshold of 0.5, where MAD-HIT suc-
cessfully solves UTS p9 and p20, whereas FF-HIT times out.
This outcome implies that, in our algorithm, various classi-
cal planners can be chosen for different types of problems to
enhance search efficiency. This underscores the flexibility of
our algorithm.

8 Conclusion
In this article we present a counter-example based approach
to solving PCP problems with uncertain initial states. In
OURALGO, a PCP problem is projected onto contexts, and a
set of counter-tags is then selected whose probability is com-
puted according to a d-DNNF representation. OURALGO
iteratively defines a composite problem (classical planning
problem) that, at the limit, faithfully represents some under-
lying PCP of interest. At each iteration a classical plan is
computed for the current composite problem at hand, or oth-
erwise it is shown to be unsolvable. If the latter is the case,
the underlying PCP has no solution. Otherwise, either a plan
for the PCP is found corresponding directly to the classical
plan, or that plan is used as a basis for refining the classi-
cal problem for a subsequent iteration. Composite problems
with disjunctive goals are hard to solve using classical plan-
ning systems, such as Mad and FF. Hence, we developed
OURALGOHIT, introducing a hitting set to assist the clas-
sical planner in selecting subgoals that can be satisfied by
candidate plans.

From experimental results, we confirm the effective
performance of both OURALGO and OURALGOHIT in
solving PCP problems, and OURALGOHIT outperforms
OURALGO. Our approach excels in addressing PCP prob-
lems with a high probability threshold, while other well-
known PCP planners like probabilistic-FF and POND are
good at solving PCP problems with a low probability thresh-
old. This feature enables our approach to compensate for the
weaknesses of current PCP planners, providing the planning
community with enhanced options for solving PCP prob-
lems with high probabilities.

Another advantage of our approach is flexibility, allowing
us to choose the classical planner based on the type of PCP
problems and the features of different classical planners.

In the future, we can further improve OURALGOHIT by
using better strategies in selecting hitting sets.



Domain Instance τ = .99 Runtime(s) / Iterations τ = .90 Runtime(s) / Iterations
FF-OUR FF-HIT MAD-OUR MAD-HIT FF-OUR FF-HIT MAD-OUR MAD-HIT

BOMB p20-5 4.19/21 4.32/12 4.85/21 5.11/13 - 3.49/5 63.1/50 3.61/6
BOMB p20-10 4.18/21 3.53/13 5/21 4.82/12 - 2.99/5 79.6/109 3.26/6
BOMB p20-20 3.23/20 2.88/9 5.08/18 3.16/6 - 2.24/5 - 2.49/4
BOMB p100-10 - - - 1093/30 - - - -
BOMB p100-100 - 394/30 - - - - - -
COINS p10 1.34/17 1.48/17 2.43/17 2.33/17 1.25/17 1.31/17 2.23/17 2.4/16
COINS p12 15.1/49 15/49 46.9/49 47.5/49 14.7/49 14.9/49 54.1/49 50.9/49
COINS p16 33.1/49 33.2/49 - - 32.3/49 35.4/49 - -
COINS p20 32.4/49 35/49 - - 32.7/49 34.2/49 - -
DISPOSE p-4-1 1.92/17 1.95/17 31.4/17 35.7/17 - 26.3/121 - 236/83
DISPOSE p-4-2 6.9/33 7.74/33 125/33 127/33 - 357/497 - -
DISPOSE p-4-3 21.4/49 21.8/49 280/49 330/48 - - - -
DISPOSE p-8-1 691/65 705/65 - - - - - -
LOOKGRAB p-4-1-1 0.87/5 1.04/4 1.27/4 1.48/6 1.15/5 1.19/5 13.5/4 0.86/3
LOOKGRAB p-4-1-2 0.48/2 0.52/2 0.57/2 0.55/2 0.51/2 0.52/2 0.63/2 0.6/2
LOOKGRAB p-4-1-3 0.51/2 0.52/2 0.59/2 0.56/2 0.53/2 0.52/2 0.63/2 0.61/2
LOOKGRAB p-8-1-2 - - - - - - - -
ONEDISPOSE p-2-2 0.68/7 0.67/7 1.1/9 1.14/9 - 1/8 274/23 1.5/9
ONEDISPOSE p-2-3 2.84/8 3/8 6.2/16 6.01/18 - 165/16 - 330/31
ONEDISPOSE p-4-2 - 153/40 - - - - - -
UTS p7 2.03/15 1.81/15 90.1/13 67.1/13 - 22.5/92 - 89.8/20
UTS p8 2.71/17 2.79/17 269/15 227/14 - 41.3/121 - 199/21
UTS p9 3.3/19 3.74/19 - - - 68/154 - -
UTS p20 4.89/21 5.25/21 - - - 104/191 - -
UTS p40 48.4/41 50/41 - - - - - -

Table 2: Performance of OURALGO and OURALGOHIT when probability threshold τ is .99 and .9. This table presents the
runtime and the number of iterations. FF-OUR is FF used in OURALGO; FF-HIT is FF used in OURALGOHIT; MAD-OUR is
Madagascar used in OURALGO; MAD-HIT is Madagascar used in OURALGOHIT. “-” means TIMEOUT.

Domain Instance τ = .75 Runtime(s) / Iterations τ = .50 Runtime(s) / Iterations
FF-OUR FF-HIT MAD-OUR MAD-HIT MAD-OUR MAD-HIT

BOMB p20-5 - 7.48/9 - 6.7/9 - 1.91/2
BOMB p20-10 - 3.38/5 82.5/57 4.86/7 5.31/3 1.73/2
BOMB p20-20 - 4.14/7 2.38/3 3.62/4 3.22/2 1.85/2
BOMB p100-10 - - - - - -
BOMB p100-100 - - - - - -
COINS p10 - 17.9/121 14.8/27 11/60 16.3/32 18.8/95
COINS p12 - - - - - -
COINS p16 - - - - - -
COINS p20 - - - - - -
DISPOSE p-4-1 - - - 214/186 - 42.2/71
DISPOSE p-4-2 - - - - - -
DISPOSE p-4-3 - - - - - -
DISPOSE p-8-1 - - - - - -
LOOKGRAB p-4-1-1 1.75/5 1.17/4 35.4/5 1.31/4 2.35/3 0.82/2
LOOKGRAB p-4-1-2 0.6/2 0.59/2 0.92/2 0.63/2 1.12/2 0.75/2
LOOKGRAB p-4-1-3 0.64/2 0.59/2 1.09/2 0.64/2 1.28/2 0.74/2
LOOKGRAB p-8-1-2 - - - 190/15 - 101/9
ONEDISPOSE p-2-2 - 2.48/14 - 4.01/20 84.2/21 5.32/6
ONEDISPOSE p-2-3 - - - - - -
ONEDISPOSE p-4-2 - - - - - -
UTS p7 - 435/1002 827/4 65.5/22 234/2 31.3/12
UTS p8 - - - 97.1/17 - 115/23
UTS p9 - - - 162/24 - 107/13
UTS p20 - - - - - 108/11
UTS p40 - - - - - -

Table 3: Performance of OURALGO and OURALGOHIT when probability threshold τ is .75 and .5.
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