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Abstract

We revisit the sample and computational complexity of the rank-1 tensor completion prob-
lem in ®£1Rd, given a uniformly sampled subset of entries. We present a characterization
of the problem which reduces to solving a pair of random linear systems. For example, when
N is a constant, we prove it requires no more than m = O(d?logd) samples and runtime
O(md?). Moreover, we show that a broad class of algorithms require €2(dlogd) samples,
even under higher-rank scenarios. In contrast, existing upper bounds on the sample com-
plexity are at least as large as d'-5u(1) logQ(l) d, where p can be ©(d) in the worst case.
Prior work obtained these looser guarantees in higher-rank versions of our problem, and
tend to involve more complicated algorithms.

1 Introduction

Tensor completion is a higher-order generalization of the well-known matrix completion problem (Candes &
Tao, 2010; |(Candes & Recht| |2012)). More precisely, an N-fold, order d tensor U is a multi-dimensional array
whose entries U(;, .. ;) are specified by an ordered tuple of N indices, each in [d] := {1,...,d}. We denote
®@N | R? as the set of all such tensors. Stated loosely, the problem is to recover the entirety of a tensor U
observing only a small subset of its entries.

If U is arbitrary, then this task is impossible without observing all dV entries of U. As in matrix completion,
the situation becomes interesting when U has a low-rank structure. Conceptually, this means U’s entries are
described by an interaction of a small number of variables—far fewer than dV. In practice, the framework
of tensor completion enjoys several applications in diverse areas such as recommender systems (Nguyen &
Uhlmann| [2023)), image and video processing (Wang et al.| [2025)), and bioinformatics (Liu et al., 2022)). We
refer to Kolda & Bader] (2009); [Song et al.| (2019)) for an excellent overview of other applications.

In this work, we revisit the problem of rank-1 tensor completion. A tensor U € ®£1Rd is said to be rank-1
if there exists {uy,...,uy} C R? such that

Ulirizin) = ()i, - (02)iy oo (un)iy V(01,02 i) € [d]Y, (1)

or U=u; ®- - ®uy, where ® denotes the vector outer product. Perhaps the most fundamental variant,
we consider the setting in which the estimation algorithm only has access to uniformly drawn entries and is
required to be correct with bounded error probability. Specifically, we study the following:
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Problem: Rank-1 Tensor Completion
Input: m uniform samples (with replacement) from entries of rank-1 tensor U € @ ;R?
Output: Oracle access to U where U = U w.p. (with probability) > 2/3

Note that the choice of 2/3 is by convention rather than technicalities[] Given an algorithm for the above
consuming m samples, one can use the standard method of amplification to obtain an algorithm using
O(m log(%)) samples and succeeding with probability > 1 — §. Specifically, one would re-run the sampling
procedure and algorithm on the same input U and, for each entry, take majority across the outputs.

We are interested in the sample and time complexity of the above as dependent on d and N. Our contributions
include a simple algorithm—applicable to rank-1 tensors with nonzero entries—and lower bounds against a
broad class of estimation algorithms.

Our main results are summarized as follows, assuming infinite precision arithmetic throughout. Suppose U
is an arbitrary rank-1 tensor with nonzero entries, and N =< 1 is a constant independent of dE]

o There exists an algorithm that solves Rank-1 Tensor Completion which draws m < d?logd
samples and can be implemented in time < md?.

e Moreover, m 2 dlogd samples are information-theoretically necessary for Rank-1 Tensor Com-
pletion to be solvable.

The full results are detailed in Theorem Theorem and Corollary The main technical novelty
of our work is a reduction between Rank-1 Tensor Completion and a particular matrix sketch problem,
detailed in Section In addition to revealing an equivalence between the sample complexities of each
problem, the algorithm therein serves as a means of achieving a novel analysis of the tensor completion
problem.

A key challenge in our approach is that the matrix sketch must be performed over the field Fo—a problem
which lacks a thorough study in the previous literature. Over R, matrix sketching can be studied using
tools from leverage score sampling (e.g. |Cohen et al.| (2015)). Unfortunately, these tools require the additive
structure of R, relying on matrix Chernoff bounds. We address this challenge by characterizing the sampling
process as a random walk on a graph related to the matrix’s rowspace. In this way, we relate the number of
samples used by the algorithm to the walk’s mixing time. This argument culminates in Lemma which
plays a key role in Theorem [1.3]

For higher-rank tensor completion problems, it is well-known that the complexities above are impacted by
the incoherence u of the input tensor class—perhaps surprisingly, our bounds have no such dependence. This
observation seems to have gone undescribed in the current literature. In effect, this work serves to elucidate
the sample complexity gap between the rank-1 and general rank problem variants. To properly contextualize
these points, we review some basic definitions.

Definition 1.1 (e.g. [Cai et al| (2019); Singh et al. (2020)). The rank of a tensor U € ®N RY is the
minimum integer such that U = 22:1 Ay @ - @ ung holds for vectors {u1 g, ..., unitp_; C R? and
scalars { i}, C R.

Definition 1.2 (e.g. [Liu & Moitra| (2020)); [Singh et al| (2020)). A rank-r tensor is called p-incoherent if
each of the following subspaces are p-incoherent

ui k ug g upn, k
span{ , Seey }, k=1,2,... N. (2)
i kll2” [laz,kll2 lun k2

In the rank-1 case, U =u; ® - -- ® uy being p-incoherent simply means ||u;|loc < \/p/d Vi € [d] (e.g. |Liu
& Moitral (2020); [Singh et al.| (2020)).

1Just as in, for example, the well-known definitions of complexity classes BPP and RP.
2d > N in practice, with tensors of N > 5 rarely seen in applications. Thus, we focus on dependence in d.
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Prior Work The study of both rank-1 tensor completion and its sample complexity is a novel pairing.
Therefore, in this section we trace the literature separately from each angle.

On one hand, our problem is a basic case of the well-studied exact tensor completion problem under uniform
sampling. As such, we describe the prior bounds obtained for the rank-1 case. We note that some of
these bounds are for the ezpected sample complexity under the Bernoulli model (Candes & Taol 2010)).
Rest assured, the comparison is not that imprecise due to standard Chernoff bounds for binomial random
variables.

Popularly, the earliest guarantees for matrices (N = 2) were given in |Candes & Tao| (2010); [Recht| (2011));
|Candes & Recht| (2012). Notably, these exhibited a strong dependence of 1 on the sample complexity, culmi-
nating in |Chen| (2015) establishing that < dulog? d samples suffice for d~©™) failure probability tolerance.

For cubic tensors (N = 3), the works [Jain & Obh| (2014)); [Xia & Yuan| (2019); Liu & Moitral (2020) indicate
o1

a scaling increase to < d*®u®® log ) d for a comparative failure tolerance. The theory for N > 4 has re-
ceived much less attention, with the first results from Krishnamurthy & Singh| (2013)), although for adaptively
chosen entries. These scaled as < du@®™)NOM) log% for tolerance dd. Under varying structural assump-
tions, the works Montanari & Sun| (2018)); [Stephan & Zhu| (2024); Haselby et al. (2024) make significant
advancements, but still with dependence on ). Since 1 can be ©(d) in the worst case, this substantiates
our assertion that our above results elucidate a complexity gap between Rank-1 Tensor Completion
and these more generic problemsEl We emphasize that these works do not focus on rank-1 tensors, so it is
reasonable to anticipate the improvements established in this work.

On the other hand, a distinct series of works Kiraly et al.| (2015); Kahle et al,| (2017)); Rendon Jaramillo|
(2018); |Singh et al.| (2020)); Zhou et al.| (2024) have focused on the completability of a fixed, partially observed
rank-1 tensor (i.e. the solution set for the polynomial system in equation . Perhaps as a testament to
the non-triviality of this problem, these works invoke advanced tools from algebraic geometry and matroid
theory (Kirély et al., 2015; Rendon Jaramillo, |2018). We emphasize these do not study the sampling aspect
of our problem.

The algorithms of these prior works tend to be quite intricate, albeit specialized for the harder problem of
general rank tensor completion. A few popular methods are alternating minimization (Jain & Oh), 2014;
& Yuan, 2019} [Liu & Moitral, [2020) and semidefinite programming / sum-of-squares hierarchies (Chen et al.,
2015; [Potechin & Steurer], 2017; |Zhou et al., 2024), amongst others. For a more complete overview, we refer
to Cai et al.| (2019); |Liu & Moitra| (2020); [Haselby et al.| (2024).

By contrast, in this work we describe a linear algebraic characterization, which was independently observed
by [Singh et al| (2020) and [Stephan & Zhu| (2024)). However, the former did not leverage this to study the
statistical hardness of our problem, and the latter’s discussion was limited to symmetric Boolean tensors. In
this work we address both of these limitations, showing Rank-1 Tensor Completion admits an extremely
simple algorithm, whose main bottleneck is solving a O(d?) x O(d) system over Fa. As a consequence, the
toolbox for our analysis only consists of elementary linear algebraic and probabilistic arguments. Before
detailing our results, we overview the notation to be used throughout this work.

Notation Throughout, Fo denotes the finite field of order 2. For o, 5 € R, we write o < 3 if a < Cf for
some absolute constant C' > 0, and o < 8 if & < 8 and § < a. We reserve bold \mathsfit for tensors (e.g.
U), upper-case \mathbf for matrices (e.g. U), and lower-case \mathbf for vectors (e.g. u). All vectors are
conventionally column vectors, unless otherwise stated. We denote ey, for k € [d] as the indicator row vector
for [d], interpreting the ey’s having entries in Fy or R, wherever clear from context. For two row vectors x
and y, we denote [x,y] as their concatenation. For a nj X ny matrix A and the vector b with n; elements, we
denote their induced linear system over a field K by the augmented matrix [ A | b]k, regardless of whether
the system is consistent or not. For a scalar-valued function f applied to a tensor, matrix, or vector, we
mean entry-wise. For a matrix B, we denote B; as its i row. We denote the rowspace of a matrix B
over field K by rowg(B). The Frobenius norm of a tensor is given by ||U||% = D Girsin) U%ily--~7iN)' We

denote the set of all N-fold, order d tensors with nonzero entries as ®£\;1Rio. For random variables X and

3Two lower bounds are given in|Candes & Tao| (2010); [Singh et al.| (2020) (Theorem 1.7 and Theorem 5, resp.). These seem
to suggest a multiplicative p(V) is missing from our upper bound, but their hard instances do not apply.
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Y admitting a joint distribution, H(Y | X) denotes the conditional entropy of random variable Y given X.
For two scalar-valued functions f and g, f o g denotes their composition.

Our Results In this work, we show the following.

Theorem 1.3. IfU € ®£V:1Rio is a rank-1 tensor, then there exists an algorithm solving Rank-1 Tensor

Completion using m < (dN)?logd uniformly drawn entries, and can be implemented in time < gN +md?,
where q is the number of queried entries of U.

To prove it, in Section [2[ we show every rank-1 tensor in ®£1Rd¢0 is in correspondence with a pair of linear
systems—one over Fo, and the other over R. The former system "encodes information" about the signs of
the tensor’s entries, whereas the latter system does so for their magnitude. In a precise sense, we show that
the "information" revealed by sampling an entry corresponds to the "information" encoded by one row of the
associated augmented matrix. These systems are overdetermined, so it suffices to obtain just a small subset
of their rows. In essence, this characterization illuminates that the sample complexity can be studied through
a matrix row sketch problem over Fy. Unfortunately, the structure of these linear systems also imply that
the resulting algorithm cannot be trivially extended to higher-rank versions of our problem. Nonetheless,
this reduction is highly valuable in our problem setting.

We also present a lower bound against a broad class of estimation algorithms, defined below, which matches
the above result up to a factor in d when N < 1. As a result, the proposed analysis only shows the above is
nearly-optimal in d, although the analysis is indeed optimal if U is required to be unsigned—we elaborate on
this subtle point at the end of Section [2l For the same reason, we believe this is an artifact of our particular
upper bound technique, rather than the high-level approach. We leave its resolution as an open problem.

Definition 1.4 (randomized estimation algorithm). We say A is a randomized estimation algorithm for a
random tensor U, random observation subset S C [d), and internal random bits B € {0,1} if its output
is determined by the outcome of all three, i.e. A(U, S, B) satisfies H(A(U, S, B) | U, S, B) = 0. Moreover,
we say the estimator draws m samples if |S| = m.

Theorem 1.5. Let 0 > 0. There exists a distribution D over rank-1 tensors in {U € ®£1Ri0 U |lee < 0}

and absolute constants ng € N and C' > 0 such that, for dN > ng, any randomized estimator U drawing less
than CdlogdN samples from U ~ D suffers error |[U —U||p > ovVdN—1 w.p. >1/3. Therefore, there is no
algorithm to solve Rank-1 Tensor Completion when m is below this threshold.

Lower bounds in the field are usually stated in a different sense—that if too few samples are taken, then
there would likely exist distinct tensors agreeing on the observed entries. The standard conclusion is that any
algorithm that solely bases its decision on the observed entries must fail (Candes & Tao, |2010; [ Krishnamurthy
& Singhl 2013). However, this conclusion might be unsatisfying since it does not quantify the error, nor
clarifies whether extra randomness is useful. This motivates the style of our bound.

Notably, Theorem [1.5| extends to higher-rank tensors, under a benign "consistency"' assumption. Due to its
highly technical statement, we expound Assumption [6.2]in Section [6} To summarize, it roughly asserts that
the estimator’s error is weakly increasing for perturbations to its input. In some sense, this class captures
algorithms whose precision worsens with higher "noise". For such algorithms, the following lower bound
holds.

Corollary 1.6. Let o > 0. Let ng and C be as in Theorem|[I.5 and assume dN > ng. If a Hadamard matriz
of order d em’st then there exists a distribution D over tensors of rank 2 r in {U € ®£1Rio :||U|leo < 0}

such that any randomized estimator U satisfying Assumption and drawing less than CdlogdN samples
suffers error |U — Ul||r 2 oVdN—1 w.p. >1/3.

Concluding our main results, we delve into a characterization of rank-1 tensors in ®£\L1Ri0 which forms the
foundation of our algorithm and its analysis.

4Recall such a matrix is d x d, has entries in {£1}, and admits mutually orthogonal columns.
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2 Nonzero Rank-1 Tensors in Exponential Form

In this section, we describe a characterization of rank-1 tensors in ®£V:1Rio, which is at the core of Algo-
rithm |1} Suppose that U € ®£\L1Rd¢0 satisfies equation 1| for some column vectors uy,...,uy C R Let us
define x € R as

(u1)1
up ’
s (u1)d
X 1= - : (3)
Uy (un )1
(un)d
Setting this aside, we focus on U, which we can re-write as follows for all (iy,...,ix) € [d]V.

U(ih

2,0 0N)

sign <H;V_1(ue)u> 'Hiv_l(ue)n

~ (L sen () (o0 (32 roelcuna))

= Ul(il,iz,...,iN) exXp (U/(/il,ig,...,iN)) (4)

Noting that Uzil,iz,...,iw) =
that the entry U/(i1,’i2,...,’iN) resembles the parity function on the sign of these variables. Hence, using an

appropriate 1-1 transformation ¢ between {£1} and {0,1} (e.g. ¢(z) := —3(z — 1)), we obtain that the
{u,}), solve the following linear systems over Fy and R:

—1 iff an odd number of the variables (u1);, ... (un);, are negative, we observe

N
S (posig)(w)i,) = (posign) (Ug,...i) mod 2

N
>, (logoabs)((ue);,) = (logoabs) (Ui, ia,..in)) -

We now describe the coefficient matrix of these systems. Let 7 : [d]¥ — [dV] denote a fixed bijection
throughout. Defining each row as A, iy) i= [€i,, €4y, €] for all (i1,...,in) € [d]Y, we have

Ariy,....in) (@ 0 sign)(x) = (@ osign) (U, iy,....in))  mod 2
A, in)(ogoabs)(x) = (logoabs) (U(il,iz,“.,m)> .
Hence, there is a unique 1-1 tensor-to-vector map vec, such that the above is equivalent to

A(posign)(x) = (¢ osign) (vec, U) mod 2
A (logoabs)(x) = (logoabs) (vec, U).

To avoid overloading notation throughout, we let f := ¢ o sign o vec,; and f := log oabs o vec,, so

A(posign)(x) = f(U) mod 2
A(logoabs)(x) = f(U).

Notably, A’s rows enumerate all d"¥ possible vectors of size dN obtained by concatenating N row vectors
from {ey}re(q) (each row corresponds to a unique tensor entry). This observation enables a simple proof of
a result we use extensively—that A has the same rank considered as matrix over Fs or R.

Lemma 2.1. The matriz A satisfies ranky, (A) = rankg(A) = dN — (N —1).



Published in Transactions on Machine Learning Research (6/2025)

Proof. See Section O

In summary of the previous observations, we have the following.

Observation 1. For any tensor U € ®£1Ri0,

U is rank-1 = linear systems [A | f(U)]r, and [A | f(U)]r are both consistent. (5)

Furthermore, if for a rank-1 tensor T € ®£1R‘;§0 the joint solution sets of

([Af(M]e, [A]f(M)]r) and ([A ] f(U)]r.[A ] F(U)]r) (6)

are equivalent, then U = T.

Indeed, equation [6] is the consequence of the following procedure. Supposing we had access to a solution of
y1 of [A| f(U)]r,, and a solution y2 of [A | f(U)]g, then we could recover the tensor from

U = vec; (07} (Ay1) ® exp(Ays))

where ® denotes the Hadamard product. Therefore, the crux of the issue is accessing these solutions.
Fortunately, as we’ll formalize, this can be achieved by observing sufficiently many random entries of U.

To preface, for each subset S C [d]", we define the row selection matriz Dg as the matrix such that
DsA = Aﬂ(il’“wiN) V(il,...,iN) €S, (7)

where the rows adhere to the ordering induced by m. We similarly define D 5 for the complement S = [d]V\S.
As a result, there is always a row permutation matrix Pg € {0, 1}dN xd™ where

_ [DsA
er-(520)

As we’ve established, since each entry corresponds with a particular row of augmented systems, we have the
next observation.

Observation 2. Let U € ®fV:1RiO be rank-1 tensor, and let S C [d)N. Then the subset of entries
{U(ir,..sin) Yin,oin)es are in correspondence with the pair of linear systems

(8)

[DsA | Dsf(U)Jg,, [DsA |Dsf(U)]r. 9)

Combining Observation [JJand Observation [} it is immediate that S just needs to satisfy that equation [ has
the same joint solution set as ([A | f(U)]r,, [A|f(U)]r) to complete the tensor via the aforementioned
procedure.

In Section [5] we show the sufficient conditions are rowp,(DgA) = rowr,(A) and rowg(DgsA) = rowg(A).
In other words, given that these hold, any joint solution to equation [g] yields a joint solution of the overall
systems. The exact procedure is described in the pseudocode for Algorithm [T}

Hence, we can use Algorithm [I| to solve Rank-1 Tensor Completion by simply running it for a randomly
drawn S. Clearly then, we only need to show these conditions hold with sufficient probability. To this end,
we prove the following lemma, which states O(d?logd) samples suffice, although we conjecture it can be
improved to O(dlogd). Since the result below is crucial for Theorem we elaborate on this conjecture
following our overview of the proof technique.

Lemma 2.2. Let S be the subset of indices induced by m uniformly drawn rows of A, with replacement.
Then, m < (dN)?logd samples suffice to ensure both simultaneously hold w.p. > 2/3.

rowp, (DsA) = rowr,(A), rowgr(DgA)=rowg(A) (10)
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Algorithm 1 Rank-1 Linear System Solver
LiN)ES for S C [d]N

Input: Tensor entries {U(ila'n;iN)}(il;“
Output: ﬂ(il,...’iN) for each desired (iy,...,iy) € [V
1: y1 + any solution y to DgAy = Dgf(U) over Fy
2: yy + any solution y to DgAy = Dgf(U) over R

3: return 0(i17-~~;iN) = ¢_1(<Aﬂ(i1>.-.,i1\f)7y1>)eXp(<A7r(i1,-..,iN)ay2>) for (ila R 7iN) € [d]N

Proof. See Section [4] O

At a high-level, our proof views rowp,(DgA) as the result of a sequentially constructed subspace W of A’s
rowspace. We correspond the sample paths of this random process to trajectories on a Markov chain whose
states are indexed by (dim W, W). Due to the first state coordinate, the chain jumps to a new state no more
than ranky, (A) times before hitting the absorbing state (rankp,(A),rowy,(A)). As a result, the measure of
the "bad" event {rowy,(DgA) # rowr, (A)} is given by the cumulative measure of the "bad" trajectories, i.e.
those that stagnate and never hit the absorbing state.

It turns out to be simple to prove the chain self-loops w.p. < 1 — 1/d. Moreover, by pigeonholing, every
"bad" trajectory of length T' > rankp, (A) has Q(T — rankp, (A)) self-loops. Thus, the measure of each "bad"
trajectory shrinks exponentially with rate rate éQ(T —ranky, (A)). A counting argument shows there are
no more than @V 'k=(A) "had" trajectories, from which we show O(dlogd™ k= (A)) = O((dN)?logd)
samples suffice. To handle the other condition (over R), we show it readily follows from the next well-known
fact in tandem with Lemma 2.1}

Fact 2.3. For any binary matriz B, ranky, (B) < rankg(B).

Therefore, it is clear that the bottleneck for improvement is the sample complexity of sketching A over Fa:
supposing that U was unsigned, then A would only need to be sketched as a real matrix. By well-known
results in leverage score sampling (e.g. |Cohen et al.| (2015)), one only needs to observe O(dlogd) rows of a
rank O(d) real matrix to recover its rowspace, if it has uniform leverage scores. And one can easily verify
that A satisfies this condition. This implies that the algorithm would be optimal in d for this special case,
leaving no particular reason to believe the Fy sketch requires Q(d? log d). For the interested reader, we refer
to Lemma [4.1] as the candidate for improvement.

In the remaining sections, we build up towards Theorem [I.3] beginning with establishment of A’s rank in
the next section.

3 Proof of Lemma 2.1]

To give a preview, our strategy is to construct a considerably simpler matrix whose rowspace is identical to
A’s. We then show that this matrix has the claimed rank. Additionally, the structure of these matrices will
be a useful reference to streamline the proofs in the next sections. We now provide details of the proof.

To start, fix an arbitrary row [e;,,...,e;] € {A1,..., Agv}, and let & € {0, 1}(@-DN+1IxAN he the following
F5-valued matrix:
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e, e, e, €iy
e; +e;
(31 —+ €3
e; +eq
(31 -+ €2
(31 + €3
: : . : [ein"'ﬂeiN]
e —+ €eq e CI)l
d = = @2 (11)
e] + eg .
e +e3 q)'
. N
e +eg4
e+ e
(s3] + €3
e; t+eq

For the next claims, recall that A’s rows consist of all d"V possible vectors of size dN obtained by concate-
nating N row vectors from {ey.}re[q-

Lemma 3.1. rowp,(®) = rowp, (A).

Proof of Lemma[3.1. By the above assertion, the first row of @ is a row of A. Consider any other row of ®.

This row can be expressed as the sum [e;, ey, ...,ej]+[e1,...,e1,e;,e1...,e;] mod 2 for some k € [d]—both
of which are also rows of A. Hence, each individual row is contained in rowp,(A), so rowp, (®) C rowp, (A).
On the other hand, for an arbitrary row [e;,,...,e;,] of A, we can write

N
(€1 rejy] = (€1, eiy] + Zkzl[Od, ...,0g,(e1 +e;,)+ (e1+e€5,),04,...,04] mod 2.
Each of the summands are evidently in the rowspace of ®. Hence, rowp, (A) C rowg, (P). O

Lemma 3.2. dimrowy,(®) =dN — (N —1)

Proof of Lemma[3.3. We first establish that each submatrix ®; for i € [N] has full row rank. Without loss
of generality, consider the rows of ®;. Assume by contradiction ¢ := (¢q,...,¢cq—1) # 04-1 € ]Fg_1 describes
a trivial linear combination of them, i.e.

., c; + Zi:l ci€i+1,0q,..., Od] =04y mod 2.

Since no subset of es,...,e4 sums to 0g4, Zld:_ll c;e;+1 must be identically 04, but this necessitates that
¢ = 04-1, contradiction. An analogous argument applies for every submatrix. Thus, rankg,(®;) = -+ =
rankp, (Py) =d — 1.

It is easy to see that any linear combination of rows in ®q,...,®y result in a nonzero vector. Hence, the
stacked matrix (®1;Po;...; Py) constitutes a linearly independent set of size (d — 1)N. We now elucidate
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that the first vector is also linearly independent of this stacked matrix. To this end, assume by contradiction
that there exists some linear combination of rows in ®1,...,®x that sum to [e;,,...,e;,], with coefficients

ci=[c', %, eN] = ((ef, .. ch 1) s (e, elly) EIF(d LN

Picking any k € [N], the k" column-block satisfies

d-1
elg c +§ ‘ 1clei+1:eik_ mod 2.

If e;, = ey, then the first sum dictates c’f, . ,6571 must have odd parity and contributes a single bit overall.
But then the second sum contributes an odd number of bits. This yields a mismatch between the parity on
both sides. If e;, # e;, then second sum must have all cf’s as zero except for one of them, but then the first
sum contributes a single bit, a contradiction for the same reason as before. Thus, the (d — 1)N + 1 rows of
® span a linear space of dimension dN — (N — 1).

O

Lemma and Lemma together imply rowp, (A) = dN — (N — 1). For easy reference, we state a trivial
corollary following from the fact that [e;,,...,e;,] was initially picked arbitrarily.

Corollary 3.3. For any [e;,,...,eiy] € {A1,...,Agn} chosen to construct ®, the rows of ® in equation
consist of a basis of rowr, (A).

To handle the case of R, one can apply an almost identical proof to establish the analogous claims for a
R-valued matrix @, which instead contains rows of the form [0g4,...,04,€1 —€;,,0q,...,04]. We relegate the
full matrix description to the Appendix [B] Following this, the proof of Lemma is complete.

4 Proof of Lemma

To prove Lemma we can view the rowspace of DgA as the the cumulative span of the random variable
sequence Y7, Yo, ..., Y, where Y; g Unif({Aq,...,Agv }).

Importantly, by Fact and Lemma whenever we have rowp,(DgA) = rowp,(A) we also
have rowg(DgA) = rowg(A). Therefore, to prove our choice of m suffices it is enough to show
dimspan{Y; ...Y,,} = ranky, (A) w.p. > 2/3. Before proceeding to the proof, we assume the next claim
holds, which we verify in the sequel.

Lemma 4.1. Suppose W is a subspace of rowg,(A) and W contains at least one element of {Aq,...,Agn}.
If dim W < rankg, (A), then there are at least AN~ rows of A which are each linearly independent of W.

The main message of the above is that as long as W is "missing a direction" in A’s rowspace, there are at
least 1/d fraction of rows that would increase its dimensionality.

Lemma 4.2. Let Y1,Ys,... where Y; s Unif({A1,...,Agn}). We have that m < (dN)?*logd samples
suffice to ensure dimspan{Ys,...,Y,,} = rankg,(A) w.p. > 2/3.

Proof of Lemma[-3 Let m be a positive integer. To each sequence y = (y1,...,ym) € {A1,...,Agn}™ we
associate another sequence h¥ = (hq,...,h,) where hY := span{yi,...,ys} is the cumulative span of the
first ¢ vectors of the sequence y. Consider the directed graph G = (V, E) in which

Vi={(a,W) | « € [rankg, (A)], W is a subspace of rowp,(A)}

The edgeset F is defined as follows. For each m € Ny and each y € {A4,..., Ay~ }™, we include in E the
directed edge
((dimh{,hY), (dimh} ,h{ ;) €V xV

for all t € [m — 1], emphasizing that self-loops are allowed. Plainly stated, the construction places paths on
the graph tracking the cumulative span and its dimension for every possible sequence. Notably, V' includes
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the vector v* := (rankp, (A), rowg,(A)) because A trivially has a sequence of rankp, (A) vectors whose span
is rowp, (A). In particular, v* has only a single outgoing edge, which is also a self-loop.

It follows that the joint distribution of Y7,Y5,... defines a time-homogeneous Markov chain vy, v5,... on
the state space V. For each (v1,...,v,,) € Paths(G), denote (01, ...,0s) as the truncated path obtained by
removing self-loops, i.e. any vertex whose previous vertex is identical to itself, and 97, = vy. It follows that
the probability dimspan{Yy,...,Y,,} # rankg,(A) is at most

]P)(Xm # v ) - Z(1)1 ..... V) EPaths(G) vy, #v* ]P)(Xl = U1 Xon = ’Um)

(a) _ _
- Z(vl,4..,vm)ePaths(G):vk;ﬁv*,Vke[m] P(Xl =01 X = Um)

vy

(e
< 1— =
- Z(vl,...,vm)GPaths(G):vkyév*,Vke[m] < d

P(X1 =91,... X5 = 0p) X H P (vy is self—loop)l[vk is self-loop]
k=1
1 ) (# self-loops in (v1,...,vm))

(v1,.-,Um ) EPaths(G):vp #v* ,VkE[m]

(d) m—rankp, (A)+1
’y -
- (v1,.-,vm ) EPaths(G):vy #v* ,VKE[m]

(z) e_%wdj\[ rankp, (A)

(f)

<13

where (a) follows since v* is an absorbing state; (b) follows by the Markov property and time-homogeneity;
(¢) uses the observation that P(X;41 = v | X; =v) < 1—dV"1/dV for v € V' \ {v*} by Lemma (d)
uses the observation that there are > m — rankg,(A) + 1 self-loops in paths never reaching v*, otherwise
> (m —1) — (m — rankyp,(A) + 1) = rankp, (A) — 2 of the edges are associated with an increase of the
cumulative span’s dimension—implying the chain has to reach v*; (e) uses the observation that there are
at most < dV™ sequences in {Aq,..., Agv}™, each of which contributes to at most one length 7 loop-less
walk in the graph. Since the path mustn’t terminate at v*, m < rankg, (A), from which the bound follows.
Finally, (f) follows from choosing m = rankp, (A) — 1+ [dlog(3d™ ™k (A))] " which is O((dN?)log(d)) since
ranky, (A) = O(dN) (c.f. Lemma .

[
Now, it just remains to verify Lemma

Proof of Lemma[{-1. Consider the set of vectors

P :=[0g4,...,04, €1 +e€; ,04,...04] € {0,1}V
N——r

nth position

which are defined for all ¢ € [d] \ {1} and n € [N]. There must exist a ¢} which is linearly independent of
W. Otherwise W contains the subspace row, (®) (® is defined in equation [11))—but rows, (®) = rowg, (A)
by Corollary which contradicts the dimension of W. For this ¢}, consider the set of unordered vector
pairs {{a,b} €{A1,...,A;n}?|a+b=¢" mod 2}.

Notably, this set contains exactly d¥ ! pairs, as one must fix the column-block in the n** position to be e;
for one, which fixes the other to be e;—varying over the last N — 1 column-blocks with d choices for each.
For each pair, at least one of a or b must be linearly independent of W, for otherwise it contradicts that ¢
is not in the subspace W. Hence, one can find > dV~! rows of A, each individually linearly independent of
w. O

In the next section, we prove the correctness of Algorithm [f}

10
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5 Proof of Theorem [1.3]

Let m denote the quantity in Lemma [£:2] of the previous section. The algorithm asserted in Theorem [I.3]
simply draws m/ := max{m,dN} = O((dN)?logd) samples, takes S as the set of associated indices, and
runs Algorithm [I] for this input S.

The runtime is immediate. Indeed, the systems in steps (1) and (2) are size m’ x dN and consistent, so
Gauss-Jordan on each terminates in time O(m’(dN)?). The algorithm takes an additional O(N) time per
queried entry in step (3), thus O(¢N + m/(dN)?) overall.

We now turn towards establishing the correctness of Algorithm [I} As our choice of m’ satisfies Lemma
we have that rowy,(DgA) = rowr,(A) and rowg(DgsA) = rowg(A) holds w.p. > 2/3. Thus, it suffices to
prove the following.

Lemma 5.1. Let U € ®1N:1R;léo be a rank-1 tensor. Assume the input S satisfies both
rowp,(DgA) = rowp,(A), rowgr(DgA) =rowg(A).
Then, the output of Algom'thm satisfies U=u.

To start, we establish a useful helper lemma.

Lemma 5.2. Suppose Ax = b is a consistent linear system over a field K, for which

Suppose rowg (A1) = rowg (A). If x* satisfies A1x* = by, then Aox™ = by holds (and evidently Ax* = b).

Proof of Lemma[5.3 By consistency there exists a z such that A;z = by and Asz = by. Since x* satisfies
A x* = by, we have x* — z € kerg(A;) = rowg(A1)+ = rowg(A)+ = kerg(A). Hence, A(x* —z) =0, i.e.
Ax* = Az implying Asx* = Asz = bs. O]

Now, we have all the tools to prove Lemma [5.1

Proof of Lemma[5-1. From equation |8} let Pg € {0, 1}dN xd" he a permutation matrix such that

_ (DsA _ (Dsf(U) ap _ (Dsf(U)
By Observationboth systems [DgA | Dgf(U)]r, and [DsA | Dsf(U)]r are consistent—hence steps (1)

and (2) return a y; and ys for which DgAy; = Dgf(U) and DgAys = Dg f(U).

We invoke Lemma to the two systems induced by equation Specifically, we assign A < PgA,
b + Pgf(U) and use that DgAy; = Dgf(U), upon which the lemma lets us conclude PgAy; = Pgf(U).
Had we instead taken b < Pgf(U) and used DgAy, = Dgf(U), we would conclude PsAy,; = Psf(U).
Since Pg is a row permutation, this implies

Ay = f(U), Ay = f(U).
Hence, recalling the map ¢ and the definition of f and f,

0 1 (Ay1) = (signovec,)(U)
exp(Ay2) = (abs o vec)(U).

Evidently,
which is what we wanted to show. ]

11
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6 Proof of Theorem [1.5, Corollary [1.6]

As we’ll describe, the lower bound in Theorem [I.f]is a consequence of the following.

Lemma 6.1. Consider a variant of the coupon collector problem in which there are N € Nsg urns, each
containing d € N~ unique balls. Suppose each draw is given by a uniformly random choice of one ball from
each and every urn, for a total of N balls per draw.

There exists absolute constants ng € N and C' > 0 such that dN > ng implies that if less than CdlogdN
draws are taken, then at least one ball is missed w.p. > 2/3.

By the classic variant, it is easy to see §2(dlogd) is necessary. Since our main result strives for optimal
d dependence, this would be enough. For this reason we leave the proof to Appendix [A] which involves
recursively applying Hoeffding’s lemma to a particular martingale sequence. However, we feel this result
clarifies the "coupon collector effect" frequently referred to in the tensor completion literature—often as a
remark used to justify the presence of logarithmic factors in the upper bounds. In contrast, our lower bound
explicitly uses such an argument. We now detail the lower bound’s proof.

Proof of Theorem[1.5 Let uy,...,uy w Unif({£o~ }4) and let the random tensor U be given by U :=

u; ®---@uy. Recalling each entry of U is dependent on N out of dN variables (c.f. equation , we say
a sampled entry U, ;) collects the variable (ug)e if the former is dependent on the latter. We can
correspond the samples with the coupon collecting procedure in Lemma [6.1] Concretely, we assign each u;
to the urn 4, and each coordinate variable (u;); with the 4t ball in the i** urn. Let m denote the quantity
indicated by (the proof of) Lemma Supposing the algorithm collects less than m samples, i.e. |S| < m,
then by Lemma [6.1] the algorithm won’t collect some variable (uy )y w.p. > 2/3. We condition on this event
for the rest of the proof.

Denote U¥ (w) as U conditioned on the assignment of all the variables in uy, ..., uy except (ug )¢ to values
specified by outcome w. Similarly, let Ui/é/ (w) and ur? (w) denote the nonrandom tensor obtained from these
by then fixing (ug )¢ to +0~ and —o ¥, respectively. For each w, Uill (w) and ur? (w) are vectors in the
inner product space (92, R% |- || ). Hence, they are bisected by the hyperplane (T, U¥* (w) —U¥* (w)) = 0,
separated by distance

1l ! pl 1 1 ) N*l
JUEY (@) = U @)llr = 1207 ) @ (@iapwi)lle = [20%| (Vord) = 20Va T,

Fixing the outcomes of S and B (where S outcomes are restricted to the aforementioned event), we have

that the algorithm output is constant under outcomes Ui[ (w) and usY (w), and must lie on one side of
hyperplane. However, w.p. > 1/2 the target tensor is on the other side of the hyperplane, incurring error

> oVd¥T wp. > (2/3) - (1/2) = 1/3. O

Under the following assumption, we now prove Corollary by approximating the support of the above
distribution by tensors of rank 2 r. Recall this property essentially asserts the estimator’s error is weakly
increasing for perturbations to its input.

Assumption 6.2. Let D, D’ be two distributions over @~ ;RY. The randomized estimator A(-, S, B) satisfies
a.s. (almost surely) over randomness in S, B, and draws U ~ D, T ~ D’

Proof of Corollary[1.6, We fix an arbitrary € € (0,0). Consider a Hadamard basis over dimension d. From
this basis we may obtain a set of d” mutually orthogonal rank-1 tensors with entries in +1, say 7. We let
Vy,...,V, denote an arbitrary but fixed r-size subset of 7.

Let uy,...,un i Unif({£(c — e)l/N}d) and let the random tensor Vg be given by Vg :=u; ® - - - ® up.

12
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For each K € R and outcome w, we define U (w) := Vo(w) + % >_i_; V;. Let D} be the distribution of
the random variable U . Notably, for K > r/e we have a.s. that ||Uk||« < o and U is at least rank-(r —1),
due to possible cancellations.

Suppose by contradiction that A is a randomized estimator where m is below the threshold in Theorem [I.5]
but w.p. > 2/3 we have that |A(Ug, S, B) —Uk||r < (1/2)0vVdN~1, where S and B are as in definition
By reverse triangle inequality, ||A(Uk, S, B) — Vollr — ||[Vo — Uk|lr < (1/2)ovVdN~1, implying

1 T
AUk, 5, B) = Vollr < (1/2)0Vd¥=1 + || > Villr
i=1

= (1/2)oVa T + Vi
= (1/2)0VaN-1 + %\/dTV

Taking K > 27’\/&/0, we have a contradiction to Theorem since w.p. > 2/3

I A(Vo, S, B) —Vo|r < [[A(Uk,S,B) — Vo|r < oV VdN-1.

7 Conclusion and Open Questions

This paper presents a novel analysis of the rank-1 tensor completion problem, which recasts it in terms
of a special pair of linear systems and leverages this viewpoint to improve upon the previously established
sample complexity bounds. When N < 1, we prove that O(d?log d) uniformly observed entries are sufficient
to exactly recover a rank-1 tensor with nonzero entries (c.f. Theorem [1.3), while Q(dlogd) samples are
necessary (c.f. Theorem , even for higher-rank tensors (c.f. Corollar. Notably, neither quantity
depends on the incoherence .

One of our main challenges involves a novel matrix sketch problem over Fs, leading to the sample complexity
upper bound’s quadratic dependence on d. As asserted at the end of Section [2] we conjecture the upper
bound can be improved to O(dlogd) to match the lower bound, primarily by refining Lemma This is
motivated by the observation that the algorithm is optimal in d when the input tensor U is unsigned, as
detailed at the end of Section [2] We leave the resolution of this conjecture to the future work.
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A Appendix A : Proof of Lemma [6.1]

In this section, we prove Lemma

o Let Z} for i € [N] denote the random variable counting the remaining balls in urn i yet to be seen
by and including the ' draw.

o Let I} for i € [N] denote the indicator random variable which is "1’ if the #!* draw sees a previously
unseen ball in urn 4, and is ’0’ otherwise.

o Let F; denote the natural filtration generated by the random variables {Z%, Zi,... Zi}N |

Finally, denote Z; := vazl Ziand I := Y oic1 I}. In what follows, it is helpful to note that Z; 1 = Z; — I;41.
Lemma A.1. For any s >0, d> 2, and t € Nyg, we have

t dN

- (13)

E(eisz’f*l) <e SZSN

Proof. Denoting o :=1 — é,

E(e™*%+1) = E(E(e "~ 1+) | 1))
= E(e*SZf]E(eSIt“ | 7))

: _éZ‘HE ‘+1|.7:t)

(%) E (esZ,, H eSE(I§+1—Ft))+S;>

i=1

N .
() 2N —sZ, sz—z
=es Ele tHe d
i=1

2N Zy
=e 3 E (e_SZteSTt)

<e SN (1+a? +at 4 ta? ) (efsat'Zl)

—~
)
~

2N 2, 4 2(t—1)y o tog
eF 1+ +a*+ 4« )e sa’(d—1)N

SZTN(l+a+a2+-~-+a(t71))e—sat(d—l)N

IA

e

2
s“dN tdN
yooTsa

IN

e

where (a) follows since each urn is sampled from independently; (b) applies Hoeffding’s lemma; (¢) uses the
observation that, given the filtration up to time ¢, the i** urn at time ¢ 4+ 1 "sees" a new ball if sampling one
of Z! uncollected balls out of d; (d) is the first recursive application of the bound; and (e) uses the simple
observation that the first draw always "sees" N balls, so a.s. Z; = (d — 1)N.

O

We are now in a position to prove Lemma
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Proof of Lemma[6.1. Fix § € (0,1) to be decided later. Assume that the following holds

t < BdlogdN.
We have (1—3)' > e

~

—i > (dN)~?, so that for any s > 0 and € > 0, by Lemma
2
P(Zip1 < €) < e E(e™*%041) < ese 5

2
(A ey 2

~

—3(any'
Let us constrain € € (0, 3(dN)'~7) and take s = -1 (3(dN)' =% —¢) to give

9 2
P(Zt+1 < € S 7N = 175 — 6) > .
Suppose € = £(dN)'~# and dN > 7 so that

1-28
P(Zisr < = (dN)1 8) < exp( MN;)

In particular, for 8 = 1/4 and dN > 78, this implies

vdN 1
]P)(Zt-',-l < 1) < ]P)(Zt-',-l < (dN)3/4) < exp ( Cgi ) < 5

Thus, P(Z;41 > 1) > 2
B =1/4 and dN > T78.

w

In other words, w.p. > 2/3 there remains an unseen ball if equation holds for

B Appendix B: & for Proof of Lemma

In establishing the R rank of A, the following matrix is referred to

1 €y €is €in
€1 — €
€ —e3
€1 —€q
€] — €
€] —e3
: . : [eiu'“aeiN}
e — ey cen @1
d .= ®y
€] — €y .
€1 —e€3 :
Oy
€1 —€q

€1 — €
€1 —e€g3
€1 —€g
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