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Abstract

We revisit the sample and computational complexity of the rank-1 tensor completion prob-
lem in ⊗N

i=1Rd, given a uniformly sampled subset of entries. We present a characterization
of the problem which reduces to solving a pair of random linear systems. For example, when
N is a constant, we prove it requires no more than m = O(d2 log d) samples and runtime
O(md2). Moreover, we show that a broad class of algorithms require Ω(d log d) samples,
even under higher-rank scenarios. In contrast, existing upper bounds on the sample com-
plexity are at least as large as d1.5µΩ(1) logΩ(1) d, where µ can be Θ(d) in the worst case.
Prior work obtained these looser guarantees in higher-rank versions of our problem, and
tend to involve more complicated algorithms.

1 Introduction

Tensor completion is a higher-order generalization of the well-known matrix completion problem (Candes &
Tao, 2010; Candes & Recht, 2012). More precisely, an N -fold, order d tensor U is a multi-dimensional array
whose entries U(i1,...,iN ) are specified by an ordered tuple of N indices, each in [d] := {1, . . . , d}. We denote
⊗N

i=1Rd as the set of all such tensors. Stated loosely, the problem is to recover the entirety of a tensor U
observing only a small subset of its entries.

If U is arbitrary, then this task is impossible without observing all dN entries of U. As in matrix completion,
the situation becomes interesting when U has a low-rank structure. Conceptually, this means U’s entries are
described by an interaction of a small number of variables—far fewer than dN . In practice, the framework
of tensor completion enjoys several applications in diverse areas such as recommender systems (Nguyen &
Uhlmann, 2023), image and video processing (Wang et al., 2025), and bioinformatics (Liu et al., 2022). We
refer to Kolda & Bader (2009); Song et al. (2019) for an excellent overview of other applications.

In this work, we revisit the problem of rank-1 tensor completion. A tensor U ∈ ⊗N
i=1Rd is said to be rank-1

if there exists {u1, . . . , uN} ⊆ Rd such that

U(i1,i2,...,iN ) = (u1)i1 · (u2)i2 · . . . · (uN )iN
∀ (i1, i2 . . . , iN ) ∈ [d]N , (1)

or U = u1 ⊗ · · · ⊗ uN , where ⊗ denotes the vector outer product. Perhaps the most fundamental variant,
we consider the setting in which the estimation algorithm only has access to uniformly drawn entries and is
required to be correct with bounded error probability. Specifically, we study the following:
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Problem: Rank-1 Tensor Completion
Input: m uniform samples (with replacement) from entries of rank-1 tensor U ∈ ⊗N

i=1Rd

Output: Oracle access to Û where Û = U w.p. (with probability) ≥ 2/3

Note that the choice of 2/3 is by convention rather than technicalities.1 Given an algorithm for the above
consuming m samples, one can use the standard method of amplification to obtain an algorithm using
O(m log( 1

δ )) samples and succeeding with probability ≥ 1 − δ. Specifically, one would re-run the sampling
procedure and algorithm on the same input U and, for each entry, take majority across the outputs.

We are interested in the sample and time complexity of the above as dependent on d and N . Our contributions
include a simple algorithm—applicable to rank-1 tensors with nonzero entries—and lower bounds against a
broad class of estimation algorithms.

Our main results are summarized as follows, assuming infinite precision arithmetic throughout. Suppose U
is an arbitrary rank-1 tensor with nonzero entries, and N ≍ 1 is a constant independent of d.2

• There exists an algorithm that solves Rank-1 Tensor Completion which draws m ≲ d2 log d
samples and can be implemented in time ≲ md2.

• Moreover, m ≳ d log d samples are information-theoretically necessary for Rank-1 Tensor Com-
pletion to be solvable.

The full results are detailed in Theorem 1.3, Theorem 1.5, and Corollary 1.6. The main technical novelty
of our work is a reduction between Rank-1 Tensor Completion and a particular matrix sketch problem,
detailed in Section 2. In addition to revealing an equivalence between the sample complexities of each
problem, the algorithm therein serves as a means of achieving a novel analysis of the tensor completion
problem.

A key challenge in our approach is that the matrix sketch must be performed over the field F2—a problem
which lacks a thorough study in the previous literature. Over R, matrix sketching can be studied using
tools from leverage score sampling (e.g. Cohen et al. (2015)). Unfortunately, these tools require the additive
structure of R, relying on matrix Chernoff bounds. We address this challenge by characterizing the sampling
process as a random walk on a graph related to the matrix’s rowspace. In this way, we relate the number of
samples used by the algorithm to the walk’s mixing time. This argument culminates in Lemma 2.2, which
plays a key role in Theorem 1.3.

For higher-rank tensor completion problems, it is well-known that the complexities above are impacted by
the incoherence µ of the input tensor class—perhaps surprisingly, our bounds have no such dependence. This
observation seems to have gone undescribed in the current literature. In effect, this work serves to elucidate
the sample complexity gap between the rank-1 and general rank problem variants. To properly contextualize
these points, we review some basic definitions.
Definition 1.1 (e.g. Cai et al. (2019); Singh et al. (2020)). The rank of a tensor U ∈ ⊗N

i=1Rd is the
minimum integer such that U =

∑r
k=1 λk u1,k ⊗ · · · ⊗ uN,k holds for vectors {u1,k, . . . , uN,k}r

k=1 ⊆ Rd and
scalars {λk}r

k=1 ⊆ R.
Definition 1.2 (e.g. Liu & Moitra (2020); Singh et al. (2020)). A rank-r tensor is called µ-incoherent if
each of the following subspaces are µ-incoherent

span
{

u1,k

∥u1,k∥2
,

u2,k

∥u2,k∥2
, . . . ,

uN,k

∥uN,k∥2

}
, k = 1, 2, . . . , N. (2)

In the rank-1 case, U = u1 ⊗ · · · ⊗ uN being µ-incoherent simply means ∥ui∥∞ ≤
√

µ/d ∀i ∈ [d] (e.g. Liu
& Moitra (2020); Singh et al. (2020)).

1Just as in, for example, the well-known definitions of complexity classes BPP and RP.
2d ≫ N in practice, with tensors of N > 5 rarely seen in applications. Thus, we focus on dependence in d.
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Prior Work The study of both rank-1 tensor completion and its sample complexity is a novel pairing.
Therefore, in this section we trace the literature separately from each angle.

On one hand, our problem is a basic case of the well-studied exact tensor completion problem under uniform
sampling. As such, we describe the prior bounds obtained for the rank-1 case. We note that some of
these bounds are for the expected sample complexity under the Bernoulli model (Candes & Tao, 2010).
Rest assured, the comparison is not that imprecise due to standard Chernoff bounds for binomial random
variables.

Popularly, the earliest guarantees for matrices (N = 2) were given in Candes & Tao (2010); Recht (2011);
Candes & Recht (2012). Notably, these exhibited a strong dependence of µ on the sample complexity, culmi-
nating in Chen (2015) establishing that ≲ dµ log2 d samples suffice for d−Θ(1) failure probability tolerance.
For cubic tensors (N = 3), the works Jain & Oh (2014); Xia & Yuan (2019); Liu & Moitra (2020) indicate
a scaling increase to ≲ d1.5µO(1) logO(1) d for a comparative failure tolerance. The theory for N ≥ 4 has re-
ceived much less attention, with the first results from Krishnamurthy & Singh (2013), although for adaptively
chosen entries. These scaled as ≲ dµO(N)NO(1) log d

δ for tolerance dδ. Under varying structural assump-
tions, the works Montanari & Sun (2018); Stephan & Zhu (2024); Haselby et al. (2024) make significant
advancements, but still with dependence on µO(1). Since µ can be Θ(d) in the worst case, this substantiates
our assertion that our above results elucidate a complexity gap between Rank-1 Tensor Completion
and these more generic problems.3 We emphasize that these works do not focus on rank-1 tensors, so it is
reasonable to anticipate the improvements established in this work.

On the other hand, a distinct series of works Király et al. (2015); Kahle et al. (2017); Rendon Jaramillo
(2018); Singh et al. (2020); Zhou et al. (2024) have focused on the completability of a fixed, partially observed
rank-1 tensor (i.e. the solution set for the polynomial system in equation 1). Perhaps as a testament to
the non-triviality of this problem, these works invoke advanced tools from algebraic geometry and matroid
theory (Király et al., 2015; Rendon Jaramillo, 2018). We emphasize these do not study the sampling aspect
of our problem.

The algorithms of these prior works tend to be quite intricate, albeit specialized for the harder problem of
general rank tensor completion. A few popular methods are alternating minimization (Jain & Oh, 2014; Xia
& Yuan, 2019; Liu & Moitra, 2020) and semidefinite programming / sum-of-squares hierarchies (Chen et al.,
2015; Potechin & Steurer, 2017; Zhou et al., 2024), amongst others. For a more complete overview, we refer
to Cai et al. (2019); Liu & Moitra (2020); Haselby et al. (2024).

By contrast, in this work we describe a linear algebraic characterization, which was independently observed
by Singh et al. (2020) and Stephan & Zhu (2024). However, the former did not leverage this to study the
statistical hardness of our problem, and the latter’s discussion was limited to symmetric Boolean tensors. In
this work we address both of these limitations, showing Rank-1 Tensor Completion admits an extremely
simple algorithm, whose main bottleneck is solving a Õ(d2) × Õ(d) system over F2. As a consequence, the
toolbox for our analysis only consists of elementary linear algebraic and probabilistic arguments. Before
detailing our results, we overview the notation to be used throughout this work.

Notation Throughout, F2 denotes the finite field of order 2. For α, β ∈ R, we write α ≲ β if α ≤ Cβ for
some absolute constant C > 0, and α ≍ β if α ≲ β and β ≲ α. We reserve bold \mathsfit for tensors (e.g.
U), upper-case \mathbf for matrices (e.g. U), and lower-case \mathbf for vectors (e.g. u). All vectors are
conventionally column vectors, unless otherwise stated. We denote ek for k ∈ [d] as the indicator row vector
for [d], interpreting the ek’s having entries in F2 or R, wherever clear from context. For two row vectors x
and y, we denote [x, y] as their concatenation. For a n1×n2 matrix A and the vector b with n1 elements, we
denote their induced linear system over a field K by the augmented matrix [ A | b ]K, regardless of whether
the system is consistent or not. For a scalar-valued function f applied to a tensor, matrix, or vector, we
mean entry-wise. For a matrix B, we denote Bi as its ith row. We denote the rowspace of a matrix B
over field K by rowK(B). The Frobenius norm of a tensor is given by ∥U∥2

F =
∑

(i1,...,iN ) U2
(i1,...,iN ). We

denote the set of all N -fold, order d tensors with nonzero entries as ⊗N
i=1Rd

̸=0. For random variables X and

3Two lower bounds are given in Candes & Tao (2010); Singh et al. (2020) (Theorem 1.7 and Theorem 5, resp.). These seem
to suggest a multiplicative µΩ(N) is missing from our upper bound, but their hard instances do not apply.
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Y admitting a joint distribution, H(Y | X) denotes the conditional entropy of random variable Y given X.
For two scalar-valued functions f and g, f ◦ g denotes their composition.

Our Results In this work, we show the following.

Theorem 1.3. If U ∈ ⊗N
i=1Rd

̸=0 is a rank-1 tensor, then there exists an algorithm solving Rank-1 Tensor
Completion using m ≲ (dN)2 log d uniformly drawn entries, and can be implemented in time ≲ qN + md2,
where q is the number of queried entries of U.

To prove it, in Section 2 we show every rank-1 tensor in ⊗N
i=1Rd

̸=0 is in correspondence with a pair of linear
systems—one over F2, and the other over R. The former system "encodes information" about the signs of
the tensor’s entries, whereas the latter system does so for their magnitude. In a precise sense, we show that
the "information" revealed by sampling an entry corresponds to the "information" encoded by one row of the
associated augmented matrix. These systems are overdetermined, so it suffices to obtain just a small subset
of their rows. In essence, this characterization illuminates that the sample complexity can be studied through
a matrix row sketch problem over F2. Unfortunately, the structure of these linear systems also imply that
the resulting algorithm cannot be trivially extended to higher-rank versions of our problem. Nonetheless,
this reduction is highly valuable in our problem setting.

We also present a lower bound against a broad class of estimation algorithms, defined below, which matches
the above result up to a factor in d when N ≍ 1. As a result, the proposed analysis only shows the above is
nearly-optimal in d, although the analysis is indeed optimal if U is required to be unsigned—we elaborate on
this subtle point at the end of Section 2. For the same reason, we believe this is an artifact of our particular
upper bound technique, rather than the high-level approach. We leave its resolution as an open problem.

Definition 1.4 (randomized estimation algorithm). We say A is a randomized estimation algorithm for a
random tensor U, random observation subset S ⊆ [d]N , and internal random bits B ∈ {0, 1}∞ if its output
is determined by the outcome of all three, i.e. A(U, S, B) satisfies H(A(U, S, B) | U, S, B) = 0. Moreover,
we say the estimator draws m samples if |S| = m.

Theorem 1.5. Let σ > 0. There exists a distribution D over rank-1 tensors in {U ∈ ⊗N
i=1Rd

̸=0 : ∥U∥∞ ≤ σ}
and absolute constants n0 ∈ N and C > 0 such that, for dN ≥ n0, any randomized estimator Û drawing less
than Cd log dN samples from U ∼ D suffers error ∥Û− U∥F ≥ σ

√
dN−1 w.p. >1/3. Therefore, there is no

algorithm to solve Rank-1 Tensor Completion when m is below this threshold.

Lower bounds in the field are usually stated in a different sense—that if too few samples are taken, then
there would likely exist distinct tensors agreeing on the observed entries. The standard conclusion is that any
algorithm that solely bases its decision on the observed entries must fail (Candes & Tao, 2010; Krishnamurthy
& Singh, 2013). However, this conclusion might be unsatisfying since it does not quantify the error, nor
clarifies whether extra randomness is useful. This motivates the style of our bound.

Notably, Theorem 1.5 extends to higher-rank tensors, under a benign "consistency" assumption. Due to its
highly technical statement, we expound Assumption 6.2 in Section 6. To summarize, it roughly asserts that
the estimator’s error is weakly increasing for perturbations to its input. In some sense, this class captures
algorithms whose precision worsens with higher "noise". For such algorithms, the following lower bound
holds.

Corollary 1.6. Let σ > 0. Let n0 and C be as in Theorem 1.5 and assume dN ≥ n0. If a Hadamard matrix
of order d exists4, then there exists a distribution D over tensors of rank ≳ r in {U ∈ ⊗N

i=1Rd
̸=0 : ∥U∥∞ ≤ σ}

such that any randomized estimator Û satisfying Assumption 6.2 and drawing less than Cd log dN samples
suffers error ∥Û−U∥F ≳ σ

√
dN−1 w.p. >1/3.

Concluding our main results, we delve into a characterization of rank-1 tensors in ⊗N
i=1Rd

̸=0 which forms the
foundation of our algorithm and its analysis.

4Recall such a matrix is d × d, has entries in {±1}, and admits mutually orthogonal columns.

4



Published in Transactions on Machine Learning Research (6/2025)

2 Nonzero Rank-1 Tensors in Exponential Form

In this section, we describe a characterization of rank-1 tensors in ⊗N
i=1Rd

̸=0, which is at the core of Algo-
rithm 1. Suppose that U ∈ ⊗N

i=1Rd
̸=0 satisfies equation 1 for some column vectors u1, . . . , uN ⊆ Rd. Let us

define x ∈ RdN as

x :=


u1
u2
...

uN

 =



(u1)1
...

(u1)d


...(uN )1
...

(uN )d




. (3)

Setting this aside, we focus on U, which we can re-write as follows for all (i1, . . . , iN ) ∈ [d]N .

U(i1,i2,...,iN ) = sign
(∏N

ℓ=1
(uℓ)iℓ

) ∣∣∣∣∏N

ℓ=1
(uℓ)iℓ

∣∣∣∣
=
(∏N

ℓ=1
sign ((uℓ)iℓ

)
) (

exp
(∑N

ℓ=1
log |(uℓ)iℓ

|
))

: = U′
(i1,i2,...,iN ) exp

(
U′′

(i1,i2,...,iN )

)
(4)

Noting that U′
(i1,i2,...,iN ) = −1 iff an odd number of the variables (u1)i1 . . . (uN )iN

are negative, we observe
that the entry U′

(i1,i2,...,iN ) resembles the parity function on the sign of these variables. Hence, using an
appropriate 1-1 transformation φ between {±1} and {0,1} (e.g. φ(z) := − 1

2 (z − 1)), we obtain that the
{uℓ}N

ℓ=1 solve the following linear systems over F2 and R:∑N

ℓ=1
(φ ◦ sign)((uℓ)iℓ

) = (φ ◦ sign)
(
U(i1,i2,...,iN )

)
mod 2∑N

ℓ=1
(log ◦ abs)((uℓ)iℓ

) = (log ◦ abs)
(
U(i1,i2,...,iN )

)
.

We now describe the coefficient matrix of these systems. Let π : [d]N → [dN ] denote a fixed bijection
throughout. Defining each row as Aπ(i1,...,iN ) := [ei1 , ei2 , . . . , eiN

] for all (i1, . . . , iN ) ∈ [d]N , we have

Aπ(i1,...,iN )(φ ◦ sign)(x) = (φ ◦ sign)
(
U(i1,i2,...,iN )

)
mod 2

Aπ(i1,...,iN )(log ◦ abs)(x) = (log ◦ abs)
(
U(i1,i2,...,iN )

)
.

Hence, there is a unique 1-1 tensor-to-vector map vecπ such that the above is equivalent to

A(φ ◦ sign)(x) = (φ ◦ sign) (vecπ U) mod 2
A(log ◦ abs)(x) = (log ◦ abs) (vecπ U) .

To avoid overloading notation throughout, we let f := φ ◦ sign ◦ vecπ and f̃ := log ◦ abs ◦ vecπ, so

A(φ ◦ sign)(x) = f(U) mod 2
A(log ◦ abs)(x) = f̃(U).

Notably, A’s rows enumerate all dN possible vectors of size dN obtained by concatenating N row vectors
from {ek}k∈[d] (each row corresponds to a unique tensor entry). This observation enables a simple proof of
a result we use extensively—that A has the same rank considered as matrix over F2 or R.
Lemma 2.1. The matrix A satisfies rankF2(A) = rankR(A) = dN − (N − 1).
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Proof. See Section 3.

In summary of the previous observations, we have the following.
Observation 1. For any tensor U ∈ ⊗N

i=1Rd
̸=0,

U is rank-1 =⇒ linear systems [ A | f(U) ]F2 and [ A | f̃(U) ]R are both consistent. (5)

Furthermore, if for a rank-1 tensor T ∈ ⊗N
i=1Rd

̸=0 the joint solution sets of(
[ A | f(T) ]F2 , [ A | f̃(T) ]R

)
and

(
[ A | f(U) ]F2 , [ A | f̃(U) ]R

)
(6)

are equivalent, then U = T.

Indeed, equation 6 is the consequence of the following procedure. Supposing we had access to a solution of
y1 of [ A | f(U) ]F2 , and a solution y2 of [ A | f̃(U) ]R, then we could recover the tensor from

U = vec−1
π (φ−1(Ay1)⊙ exp(Ay2))

where ⊙ denotes the Hadamard product. Therefore, the crux of the issue is accessing these solutions.
Fortunately, as we’ll formalize, this can be achieved by observing sufficiently many random entries of U.

To preface, for each subset S ⊆ [d]N , we define the row selection matrix DS as the matrix such that

DSA =


...

Aπ(i1,...,iN )
...

 ∀(i1, . . . , iN ) ∈ S, (7)

where the rows adhere to the ordering induced by π. We similarly define DS̄ for the complement S̄ := [d]N \S.
As a result, there is always a row permutation matrix PS ∈ {0, 1}dN ×dN where

PSA =
(

DSA
DS̄A

)
. (8)

As we’ve established, since each entry corresponds with a particular row of augmented systems, we have the
next observation.
Observation 2. Let U ∈ ⊗N

i=1Rd
̸=0 be rank-1 tensor, and let S ⊆ [d]N . Then the subset of entries

{U(i1,...,iN )}(i1,...,iN )∈S are in correspondence with the pair of linear systems

[ DSA | DSf(U) ]F2 , [ DSA | DS f̃(U) ]R. (9)

Combining Observation 2 and Observation 1, it is immediate that S just needs to satisfy that equation 9 has
the same joint solution set as

(
[ A | f(U) ]F2 , [ A | f̃(U) ]R

)
to complete the tensor via the aforementioned

procedure.

In Section 5, we show the sufficient conditions are rowF2(DSA) = rowF2(A) and rowR(DSA) = rowR(A).
In other words, given that these hold, any joint solution to equation 9 yields a joint solution of the overall
systems. The exact procedure is described in the pseudocode for Algorithm 1.

Hence, we can use Algorithm 1 to solve Rank-1 Tensor Completion by simply running it for a randomly
drawn S. Clearly then, we only need to show these conditions hold with sufficient probability. To this end,
we prove the following lemma, which states O(d2 log d) samples suffice, although we conjecture it can be
improved to O(d log d). Since the result below is crucial for Theorem 1.3, we elaborate on this conjecture
following our overview of the proof technique.
Lemma 2.2. Let S be the subset of indices induced by m uniformly drawn rows of A, with replacement.
Then, m ≲ (dN)2 log d samples suffice to ensure both simultaneously hold w.p. ≥ 2/3.

rowF2(DSA) = rowF2(A), rowR(DSA) = rowR(A) (10)
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Algorithm 1 Rank-1 Linear System Solver
Input: Tensor entries {U(i1,...,iN )}(i1,...,iN )∈S for S ⊆ [d]N

Output: Û(i1,...,iN ) for each desired (i1, . . . , iN ) ∈ [d]N

1: y1 ← any solution y to DSAy = DSf(U) over F2

2: y2 ← any solution y to DSAy = DS f̃(U) over R

3: return Û(i1,...,iN ) = φ−1(⟨Aπ(i1,...,iN ), y1⟩) exp(⟨Aπ(i1,...,iN ), y2⟩) for (i1, . . . , iN ) ∈ [d]N

Proof. See Section 4.

At a high-level, our proof views rowF2(DSA) as the result of a sequentially constructed subspace W of A’s
rowspace. We correspond the sample paths of this random process to trajectories on a Markov chain whose
states are indexed by (dim W, W ). Due to the first state coordinate, the chain jumps to a new state no more
than rankF2(A) times before hitting the absorbing state (rankF2(A), rowF2(A)). As a result, the measure of
the "bad" event {rowF2(DSA) ̸= rowF2(A)} is given by the cumulative measure of the "bad" trajectories, i.e.
those that stagnate and never hit the absorbing state.

It turns out to be simple to prove the chain self-loops w.p. ≤ 1 − 1/d. Moreover, by pigeonholing, every
"bad" trajectory of length T > rankF2(A) has Ω(T − rankF2(A)) self-loops. Thus, the measure of each "bad"
trajectory shrinks exponentially with rate rate 1

d Ω(T − rankF2(A)). A counting argument shows there are
no more than dN rankF2 (A) "bad" trajectories, from which we show O(d log dN rankF2 (A)) = O((dN)2 log d)
samples suffice. To handle the other condition (over R), we show it readily follows from the next well-known
fact in tandem with Lemma 2.1.

Fact 2.3. For any binary matrix B, rankF2(B) ≤ rankR(B).

Therefore, it is clear that the bottleneck for improvement is the sample complexity of sketching A over F2:
supposing that U was unsigned, then A would only need to be sketched as a real matrix. By well-known
results in leverage score sampling (e.g. Cohen et al. (2015)), one only needs to observe O(d log d) rows of a
rank O(d) real matrix to recover its rowspace, if it has uniform leverage scores. And one can easily verify
that A satisfies this condition. This implies that the algorithm would be optimal in d for this special case,
leaving no particular reason to believe the F2 sketch requires Ω(d2 log d). For the interested reader, we refer
to Lemma 4.1 as the candidate for improvement.

In the remaining sections, we build up towards Theorem 1.3, beginning with establishment of A’s rank in
the next section.

3 Proof of Lemma 2.1

To give a preview, our strategy is to construct a considerably simpler matrix whose rowspace is identical to
A’s. We then show that this matrix has the claimed rank. Additionally, the structure of these matrices will
be a useful reference to streamline the proofs in the next sections. We now provide details of the proof.

To start, fix an arbitrary row [ei1 , . . . , eiN
] ∈ {A1, . . . , AdN }, and let Φ ∈ {0, 1}(d−1)N+1×dN be the following

F2-valued matrix:
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Φ :=



ei1 ei2 ei3 · · · eiN

e1 + e2 0d 0d · · · 0d

e1 + e3 0d 0d · · · 0d

...
...

... . . . ...
e1 + ed 0d 0d · · · 0d

0d e1 + e2 0d · · · 0d

0d e1 + e3 0d · · · 0d

...
...

... . . . ...
0d e1 + ed 0d · · · 0d

0d 0d e1 + e2 · · · 0d

0d 0d e1 + e3 · · · 0d

...
...

... . . . ...
0d 0d e1 + ed · · · 0d

...
...

... . . . ...

0d 0d 0d · · · e1 + e2
0d 0d 0d · · · e1 + e3
...

...
... . . . ...

0d 0d 0d · · · e1 + ed



:=


[ei1 , . . . , eiN

]
Φ1
Φ2
...

ΦN

 (11)

For the next claims, recall that A’s rows consist of all dN possible vectors of size dN obtained by concate-
nating N row vectors from {ek}k∈[d].
Lemma 3.1. rowF2(Φ) = rowF2(A).

Proof of Lemma 3.1. By the above assertion, the first row of Φ is a row of A. Consider any other row of Φ.
This row can be expressed as the sum [e1, e1, . . . , e1]+[e1, . . . , e1, ek, e1 . . . , e1] mod 2 for some k ∈ [d]—both
of which are also rows of A. Hence, each individual row is contained in rowF2(A), so rowF2(Φ) ⊆ rowF2(A).
On the other hand, for an arbitrary row [ej1 , . . . , ejN

] of A, we can write

[ej1 , . . . , ejN
] = [ei1 , . . . , eiN

] +
∑N

k=1
[0d, . . . , 0d, (e1 + eik

) + (e1 + ejk
), 0d, . . . , 0d] mod 2.

Each of the summands are evidently in the rowspace of Φ. Hence, rowF2(A) ⊆ rowF2(Φ).

Lemma 3.2. dim rowF2(Φ) = dN − (N − 1)

Proof of Lemma 3.2. We first establish that each submatrix Φi for i ∈ [N ] has full row rank. Without loss
of generality, consider the rows of Φ1. Assume by contradiction c := (c1, . . . , cd−1) ̸= 0d−1 ∈ Fd−1

2 describes
a trivial linear combination of them, i.e.

[e1
∑d−1

i=1
ci +

∑d−1

i=1
ciei+1, 0d, . . . , 0d] = 0dN mod 2.

Since no subset of e2, . . . , ed sums to 0d,
∑d−1

i=1 ciei+1 must be identically 0d, but this necessitates that
c = 0d−1, contradiction. An analogous argument applies for every submatrix. Thus, rankF2(Φ1) = · · · =
rankF2(ΦN ) = d− 1.

It is easy to see that any linear combination of rows in Φ1, . . . , ΦN result in a nonzero vector. Hence, the
stacked matrix (Φ1; Φ2; . . . ; ΦN ) constitutes a linearly independent set of size (d − 1)N . We now elucidate

8
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that the first vector is also linearly independent of this stacked matrix. To this end, assume by contradiction
that there exists some linear combination of rows in Φ1, . . . , ΦN that sum to [ei1 , . . . , eiN

], with coefficients

c := [c1, c2, . . . , cN ] =
(
(c1

1, . . . , c1
d−1), . . . , ((cN

1 , . . . , cN
d−1)

)
∈ F(d−1)N

2

Picking any k ∈ [N ], the kth column-block satisfies

e1
∑d−1

i=1
ck

i +
∑d−1

i=1
ck

i ei+1 = eik
mod 2.

If eik
= e1, then the first sum dictates ck

1 , . . . , ck
d−1 must have odd parity and contributes a single bit overall.

But then the second sum contributes an odd number of bits. This yields a mismatch between the parity on
both sides. If eik

̸= e1, then second sum must have all ck
i ’s as zero except for one of them, but then the first

sum contributes a single bit, a contradiction for the same reason as before. Thus, the (d− 1)N + 1 rows of
Φ span a linear space of dimension dN − (N − 1).

Lemma 3.2 and Lemma 3.1 together imply rowF2(A) = dN − (N − 1). For easy reference, we state a trivial
corollary following from the fact that [ei1 , . . . , eiN

] was initially picked arbitrarily.
Corollary 3.3. For any [ei1 , . . . , eiN

] ∈ {A1, . . . , AdN } chosen to construct Φ, the rows of Φ in equation 11
consist of a basis of rowF2(A).

To handle the case of R, one can apply an almost identical proof to establish the analogous claims for a
R-valued matrix Φ̃, which instead contains rows of the form [0d, . . . , 0d, e1−eik

, 0d, . . . , 0d]. We relegate the
full matrix description to the Appendix B. Following this, the proof of Lemma 2.1 is complete.

4 Proof of Lemma 2.2

To prove Lemma 2.2, we can view the rowspace of DSA as the the cumulative span of the random variable
sequence Y1, Y2, . . . , Ym where Yt

iid∼ Unif({A1, . . . , AdN }).

Importantly, by Fact 2.3 and Lemma 2.1, whenever we have rowF2(DSA) = rowF2(A) we also
have rowR(DSA) = rowR(A). Therefore, to prove our choice of m suffices it is enough to show
dim span{Y1 . . . Ym} = rankF2(A) w.p. ≥ 2/3. Before proceeding to the proof, we assume the next claim
holds, which we verify in the sequel.
Lemma 4.1. Suppose W is a subspace of rowF2(A) and W contains at least one element of {A1, . . . , AdN }.
If dim W < rankF2(A), then there are at least dN−1 rows of A which are each linearly independent of W .

The main message of the above is that as long as W is "missing a direction" in A’s rowspace, there are at
least 1/d fraction of rows that would increase its dimensionality.

Lemma 4.2. Let Y1, Y2, . . . where Yt
iid∼ Unif({A1, . . . , AdN }). We have that m ≲ (dN)2 log d samples

suffice to ensure dim span{Y1, . . . , Ym} = rankF2(A) w.p. ≥ 2/3.

Proof of Lemma 4.2. Let m be a positive integer. To each sequence y = (y1, . . . , ym) ∈ {A1, . . . , AdN }m we
associate another sequence hy = (h1, . . . , hm) where hy

t := span{y1, . . . , yt} is the cumulative span of the
first t vectors of the sequence y. Consider the directed graph G = (V, E) in which

V := {(α, W ) | α ∈ [rankF2(A)], W is a subspace of rowF2(A)}

The edgeset E is defined as follows. For each m ∈ N>0 and each y ∈ {A1, . . . , AdN }m, we include in E the
directed edge (

(dim hy
t , hy

t ), (dim hy
t+1, hy

t+1)
)
∈ V × V

for all t ∈ [m− 1], emphasizing that self-loops are allowed. Plainly stated, the construction places paths on
the graph tracking the cumulative span and its dimension for every possible sequence. Notably, V includes

9
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the vector v∗ := (rankF2(A), rowF2(A)) because A trivially has a sequence of rankF2(A) vectors whose span
is rowF2(A). In particular, v∗ has only a single outgoing edge, which is also a self-loop.

It follows that the joint distribution of Y1, Y2, . . . defines a time-homogeneous Markov chain ν1, ν2, . . . on
the state space V . For each (v1, . . . , vm) ∈ Paths(G), denote (ṽ1, . . . , ṽm̃) as the truncated path obtained by
removing self-loops, i.e. any vertex whose previous vertex is identical to itself, and ṽ1 = v1. It follows that
the probability dim span{Y1, . . . , Ym} ≠ rankF2(A) is at most

P(Xm ̸= v∗) =
∑

(v1,...,vm)∈Paths(G):vm ̸=v∗
P(X1 = v1, . . . Xm = vm)

(a)=
∑

(v1,...,vm)∈Paths(G):vk ̸=v∗,∀k∈[m]
P(X1 = v1, . . . Xm = vm)

(b)=
∑

(v1,...,vm)∈Paths(G):vk ̸=v∗,∀k∈[m]
P(X1 = ṽ1, . . . Xm̃ = ṽm̃)×

m∏
k=1

P (vk is self-loop)1[vk is self-loop]

(c)
≤
∑

(v1,...,vm)∈Paths(G):vk ̸=v∗,∀k∈[m]

(
1− 1

d

)(# self-loops in (v1, . . . , vm))

(d)
≤
∑

(v1,...,vm)∈Paths(G):vk ̸=v∗,∀k∈[m]
e−

m−rankF2 (A)+1
d

(e)
≤ e−

m−rankF2 (A)+1
d dN rankF2 (A)

(f)
≤ 1/3

where (a) follows since v∗ is an absorbing state; (b) follows by the Markov property and time-homogeneity;
(c) uses the observation that P(Xt+1 = v | Xt = v) ≤ 1 − dN−1/dN for v ∈ V \ {v∗} by Lemma 4.1; (d)
uses the observation that there are ≥ m − rankF2(A) + 1 self-loops in paths never reaching v∗, otherwise
> (m − 1) − (m − rankF2(A) + 1) = rankF2(A) − 2 of the edges are associated with an increase of the
cumulative span’s dimension—implying the chain has to reach v∗; (e) uses the observation that there are
at most ≤ dNm̃ sequences in {A1, . . . , AdN }m̃, each of which contributes to at most one length m̃ loop-less
walk in the graph. Since the path mustn’t terminate at v∗, m̃ ≤ rankF2(A), from which the bound follows.
Finally, (f) follows from choosing m = rankF2(A)−1+⌈d log(3dN rankF2 (A))⌉, which is O((dN2) log(d)) since
rankF2(A) = O(dN) (c.f. Lemma 2.1).

Now, it just remains to verify Lemma 4.1.

Proof of Lemma 4.1. Consider the set of vectors

ϕn
i := [0d, . . . , 0d, e1 + ei︸ ︷︷ ︸

nth position

, 0d, . . . 0d] ∈ {0, 1}dN

which are defined for all i ∈ [d] \ {1} and n ∈ [N ]. There must exist a ϕn
i which is linearly independent of

W . Otherwise W contains the subspace rowF2(Φ) (Φ is defined in equation 11)—but rowF2(Φ) = rowF2(A)
by Corollary 3.3, which contradicts the dimension of W . For this ϕn

i , consider the set of unordered vector
pairs

{
{a, b} ∈ {A1, . . . , AdN }2 | a + b = ϕn

i mod 2
}

.

Notably, this set contains exactly dN−1 pairs, as one must fix the column-block in the nth position to be e1
for one, which fixes the other to be ei—varying over the last N − 1 column-blocks with d choices for each.
For each pair, at least one of a or b must be linearly independent of W , for otherwise it contradicts that ϕn

i

is not in the subspace W . Hence, one can find ≥ dN−1 rows of A, each individually linearly independent of
W .

In the next section, we prove the correctness of Algorithm 1.
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5 Proof of Theorem 1.3

Let m denote the quantity in Lemma 4.2 of the previous section. The algorithm asserted in Theorem 1.3
simply draws m′ := max{m, dN} = O((dN)2 log d) samples, takes S as the set of associated indices, and
runs Algorithm 1 for this input S.

The runtime is immediate. Indeed, the systems in steps (1) and (2) are size m′ × dN and consistent, so
Gauss-Jordan on each terminates in time O(m′(dN)2). The algorithm takes an additional O(N) time per
queried entry in step (3), thus O(qN + m′(dN)2) overall.

We now turn towards establishing the correctness of Algorithm 1. As our choice of m′ satisfies Lemma 2.2,
we have that rowF2(DSA) = rowF2(A) and rowR(DSA) = rowR(A) holds w.p. ≥ 2/3. Thus, it suffices to
prove the following.
Lemma 5.1. Let U ∈ ⊗N

i=1Rd
̸=0 be a rank-1 tensor. Assume the input S satisfies both

rowF2(DSA) = rowF2(A), rowR(DSA) = rowR(A).

Then, the output of Algorithm 1 satisfies Û = U.

To start, we establish a useful helper lemma.
Lemma 5.2. Suppose Ax = b is a consistent linear system over a field K, for which

A =
(

A1
A2

)
, b =

(
b1
b2

)
.

Suppose rowK(A1) = rowK(A). If x∗ satisfies A1x∗ = b1, then A2x∗ = b2 holds (and evidently Ax∗ = b).

Proof of Lemma 5.2. By consistency there exists a z such that A1z = b1 and A2z = b2. Since x∗ satisfies
A1x∗ = b1, we have x∗ − z ∈ kerK(A1) = rowK(A1)⊥ = rowK(A)⊥ = kerK(A). Hence, A(x∗ − z) = 0, i.e.
Ax∗ = Az implying A2x∗ = A2z = b2.

Now, we have all the tools to prove Lemma 5.1.

Proof of Lemma 5.1. From equation 8, let PS ∈ {0, 1}dN ×dN be a permutation matrix such that

PSA =
(

DSA
DS̄A

)
, PSf(U) =

(
DSf(U)
DS̄f(U)

)
, PS f̃(U) =

(
DS f̃(U)
DS̄ f̃(U)

)
. (12)

By Observation 1 both systems [ DSA | DSf(U) ]F2 and [ DSA | DS f̃(U) ]R are consistent—hence steps (1)
and (2) return a y1 and y2 for which DSAy1 = DSf(U) and DSAy2 = DS f̃(U).

We invoke Lemma 5.2 to the two systems induced by equation 12. Specifically, we assign A ← PSA,
b ← PSf(U) and use that DSAy1 = DSf(U), upon which the lemma lets us conclude PSAy1 = PSf(U).
Had we instead taken b ← PS f̃(U) and used DSAy2 = DS f̃(U), we would conclude PSAy2 = PS f̃(U).
Since PS is a row permutation, this implies

Ay1 = f(U), Ay2 = f̃(U).

Hence, recalling the map φ and the definition of f and f̃ ,

φ−1(Ay1) = (sign ◦ vecπ)(U)
exp(Ay2) = (abs ◦ vecπ)(U).

Evidently,
U(i1,...,iN ) = φ−1(⟨Aπ(i1,...,iN ), y1⟩) exp

(
⟨Aπ(i1,...,iN ), y2⟩

)
= Û(i1,...,iN ),

which is what we wanted to show.
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6 Proof of Theorem 1.5, Corollary 1.6

As we’ll describe, the lower bound in Theorem 1.5 is a consequence of the following.
Lemma 6.1. Consider a variant of the coupon collector problem in which there are N ∈ N>0 urns, each
containing d ∈ N>0 unique balls. Suppose each draw is given by a uniformly random choice of one ball from
each and every urn, for a total of N balls per draw.

There exists absolute constants n0 ∈ N and C > 0 such that dN ≥ n0 implies that if less than Cd log dN
draws are taken, then at least one ball is missed w.p. > 2/3.

By the classic variant, it is easy to see Ω(d log d) is necessary. Since our main result strives for optimal
d dependence, this would be enough. For this reason we leave the proof to Appendix A, which involves
recursively applying Hoeffding’s lemma to a particular martingale sequence. However, we feel this result
clarifies the "coupon collector effect" frequently referred to in the tensor completion literature—often as a
remark used to justify the presence of logarithmic factors in the upper bounds. In contrast, our lower bound
explicitly uses such an argument. We now detail the lower bound’s proof.

Proof of Theorem 1.5. Let u1, . . . , uN
iid∼ Unif({±σ

1
N }d) and let the random tensor U be given by U :=

u1 ⊗ · · · ⊗ uN . Recalling each entry of U is dependent on N out of dN variables (c.f. equation 1), we say
a sampled entry U(i1,...,iN ) collects the variable (uk)ℓ if the former is dependent on the latter. We can
correspond the samples with the coupon collecting procedure in Lemma 6.1. Concretely, we assign each ui

to the urn i, and each coordinate variable (ui)j with the jth ball in the ith urn. Let m denote the quantity
indicated by (the proof of) Lemma 6.1. Supposing the algorithm collects less than m samples, i.e. |S| < m,
then by Lemma 6.1 the algorithm won’t collect some variable (uk′)ℓ′ w.p. > 2/3. We condition on this event
for the rest of the proof.

Denote Uk′ℓ′
(ω) as U conditioned on the assignment of all the variables in u1, . . . , uN except (uk′)ℓ′ to values

specified by outcome ω. Similarly, let Uk′ℓ′

+ (ω) and Uk′ℓ′

− (ω) denote the nonrandom tensor obtained from these
by then fixing (uk′)ℓ′ to +σ

1
N and −σ

1
N , respectively. For each ω, Uk′ℓ′

+ (ω) and Uk′ℓ′

− (ω) are vectors in the
inner product space (⊗N

i=1Rd, ∥·∥F ). Hence, they are bisected by the hyperplane ⟨T, Uk′ℓ′

+ (ω)−Uk′ℓ′

− (ω)⟩ = 0,
separated by distance

∥Uk′ℓ′

+ (ω)−Uk′ℓ′

− (ω)∥F = ∥(2σ
1
N eℓ′)⊗ (⊗i̸=k′ui)∥F = |2σ

1
N |
(√

σ
2
N d
)N−1

= 2σ
√

dN−1.

Fixing the outcomes of S and B (where S outcomes are restricted to the aforementioned event), we have
that the algorithm output is constant under outcomes Uk′ℓ′

+ (ω) and Uk′ℓ′

− (ω), and must lie on one side of
hyperplane. However, w.p. ≥ 1/2 the target tensor is on the other side of the hyperplane, incurring error
≥ σ
√

dN−1 w.p. > (2/3) · (1/2) = 1/3.

Under the following assumption, we now prove Corollary 1.6 by approximating the support of the above
distribution by tensors of rank ≳ r. Recall this property essentially asserts the estimator’s error is weakly
increasing for perturbations to its input.
Assumption 6.2. Let D,D′ be two distributions over ⊗N

i=1Rd. The randomized estimator A(·, S, B) satisfies
a.s. (almost surely) over randomness in S, B, and draws U ∼ D, T ∼ D′

∥A(U, S, B)−U∥F ≤ ∥A(U + T, S, B)−U∥F .

Proof of Corollary 1.6. We fix an arbitrary ϵ ∈ (0, σ). Consider a Hadamard basis over dimension d. From
this basis we may obtain a set of dN mutually orthogonal rank-1 tensors with entries in ±1, say T . We let
V1, . . . , Vr denote an arbitrary but fixed r-size subset of T .

Let u1, . . . , uN
iid∼ Unif({±(σ − ϵ)1/N}d) and let the random tensor V0 be given by V0 := u1 ⊗ · · · ⊗ uN .

12
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For each K ∈ R>0 and outcome ω, we define UK(ω) := V0(ω) + 1
K

∑r
i=1 Vi. Let D∗

K be the distribution of
the random variable UK . Notably, for K ≥ r/ϵ we have a.s. that ∥UK∥∞ ≤ σ and UK is at least rank-(r−1),
due to possible cancellations.

Suppose by contradiction that A is a randomized estimator where m is below the threshold in Theorem 1.5
but w.p. > 2/3 we have that ∥A(UK , S, B)−UK∥F < (1/2)σ

√
dN−1, where S and B are as in definition 1.4.

By reverse triangle inequality, ∥A(UK , S, B)− V0∥F − ∥V0 −UK∥F ≤ (1/2)σ
√

dN−1, implying

∥A(UK , S, B)− V0∥F ≤ (1/2)σ
√

dN−1 + 1
K
∥

r∑
i=1

Vi∥F

= (1/2)σ
√

dN−1 + r

K
∥V1∥F

= (1/2)σ
√

dN−1 + r

K

√
dN

Taking K > 2r
√

d/σ, we have a contradiction to Theorem 1.5 since w.p. > 2/3

∥A(V0, S, B)− V0∥F

6.2
≤ ∥A(UK , S, B)− V0∥F < σN

√
dN−1.

7 Conclusion and Open Questions

This paper presents a novel analysis of the rank-1 tensor completion problem, which recasts it in terms
of a special pair of linear systems and leverages this viewpoint to improve upon the previously established
sample complexity bounds. When N ≍ 1, we prove that O(d2 log d) uniformly observed entries are sufficient
to exactly recover a rank-1 tensor with nonzero entries (c.f. Theorem 1.3), while Ω(d log d) samples are
necessary (c.f. Theorem 1.5), even for higher-rank tensors (c.f. Corollary 1.6). Notably, neither quantity
depends on the incoherence µ.

One of our main challenges involves a novel matrix sketch problem over F2, leading to the sample complexity
upper bound’s quadratic dependence on d. As asserted at the end of Section 2, we conjecture the upper
bound can be improved to O(d log d) to match the lower bound, primarily by refining Lemma 4.1. This is
motivated by the observation that the algorithm is optimal in d when the input tensor U is unsigned, as
detailed at the end of Section 2. We leave the resolution of this conjecture to the future work.
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A Appendix A : Proof of Lemma 6.1

In this section, we prove Lemma 6.1.

• Let Zi
t for i ∈ [N ] denote the random variable counting the remaining balls in urn i yet to be seen

by and including the tth draw.

• Let Ii
t for i ∈ [N ] denote the indicator random variable which is ’1’ if the tth draw sees a previously

unseen ball in urn i, and is ’0’ otherwise.

• Let Ft denote the natural filtration generated by the random variables {Zi
1, Zi

2, . . . , Zi
t}N

i=1.

Finally, denote Zt :=
∑N

i=1 Zi
t and It :=

∑
i=1 Ii

t . In what follows, it is helpful to note that Zt+1 = Zt−It+1.
Lemma A.1. For any s > 0, d ≥ 2, and t ∈ N>0, we have

E(e−sZt+1) ≤ e
s2dN

8 −s(1− 1
d )t dN

2 (13)

Proof. Denoting α := 1− 1
d ,

E(e−sZt+1) = E(E(e−s(Zt−It+1) | Ft))
= E(e−sZtE(esIt+1 | Ft))

(a)= E(e−sZt

N∏
i=1

E(esIi
t+1 | Ft))

(b)
≤ E

(
e−sZt

N∏
i=1

esE(Ii
t+1|Ft))+ s2

8

)
(c)= e

s2N
8 E

(
e−sZt

N∏
i=1

es
Zi

t
d

)
= e

s2N
8 E

(
e−sZtes

Zt
d

)
= e

s2N
8 E

(
e−sαZt

)
(d)
≤ e

s2N
8

(
e

α2s2N
8 E

(
e−sα2Zt−1

))
≤ . . .

≤ e
s2N

8 (1+α2+α4+···+α2(t−1))E
(

e−sαtZ1
)

(e)= e
s2N

8 (1+α2+α4+···+α2(t−1))e−sαt(d−1)N

≤ e
s2N

8 (1+α+α2+···+α(t−1))e−sαt(d−1)N

≤ e
s2dN

8 −sαt dN
2

where (a) follows since each urn is sampled from independently; (b) applies Hoeffding’s lemma; (c) uses the
observation that, given the filtration up to time t, the ith urn at time t + 1 "sees" a new ball if sampling one
of Zi

t uncollected balls out of d; (d) is the first recursive application of the bound; and (e) uses the simple
observation that the first draw always "sees" N balls, so a.s. Z1 = (d− 1)N .

We are now in a position to prove Lemma 6.1.
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Proof of Lemma 6.1. Fix β ∈ (0, 1) to be decided later. Assume that the following holds

t ≤ βd log dN. (14)

We have (1− 1
d )t ≳ e− t

d ≥ (dN)−β , so that for any s > 0 and ϵ > 0, by Lemma A.1,

P(Zt+1 ≤ ϵ) ≤ esϵE(e−sZt+1) ≤ esϵ+ s2dN
8 −s(1− 1

d )t dN
2 ≲ esϵ+ s2dN

8 − s
2 (dN)1−β

.

Let us constrain ϵ ∈ (0, 1
2 (dN)1−β) and take s = 4

dN ( 1
2 (dN)1−β − ϵ) to give

P(Zt+1 ≤ ϵ) ≲ exp
(
− 2

dN

(
1
2(dN)1−β − ϵ

)2
)

.

Suppose ϵ = 1
4 (dN)1−β and dN ≥ 7 so that

P(Zt+1 ≤
1
4(dN)1−β) ≤ exp

(
− (dN)1−2β

8

)
.

In particular, for β = 1/4 and dN ≥ 78, this implies

P(Zt+1 ≤ 1) ≤ P(Zt+1 ≤
1
4(dN)3/4) ≤ exp

(
−
√

dN

8

)
<

1
3 .

Thus, P(Zt+1 > 1) > 2
3 . In other words, w.p. > 2/3 there remains an unseen ball if equation 14 holds for

β = 1/4 and dN ≥ 78.

B Appendix B: Φ̃ for Proof of Lemma 2.1

In establishing the R rank of A, the following matrix is referred to.

Φ̃ :=



ei1 ei2 ei3 · · · eiN

e1 − e2 0d 0d · · · 0d

e1 − e3 0d 0d · · · 0d

...
...

... . . . ...
e1 − ed 0d 0d · · · 0d

0d e1 − e2 0d · · · 0d

0d e1 − e3 0d · · · 0d

...
...

... . . . ...
0d e1 − ed 0d · · · 0d

0d 0d e1 − e2 · · · 0d

0d 0d e1 − e3 · · · 0d

...
...

... . . . ...
0d 0d e1 − ed · · · 0d

...
...

... . . . ...

0d 0d 0d · · · e1 − e2
0d 0d 0d · · · e1 − e3
...

...
... . . . ...

0d 0d 0d · · · e1 − ed



:=


[ei1 , . . . , eiN

]
Φ1
Φ2
...

ΦN


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