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Abstract
Matrix completion aims to recover missing en-
tries in a data matrix using a subset of observed
entries. Previous studies show that side infor-
mation can greatly improve completion accuracy,
but most assume perfect side information, which
is rarely available in practice. In this paper, we
propose an orthogonal complement matrix com-
pletion (OCMC) model to address the challenge
of matrix completion with incomplete side infor-
mation. The model leverages the orthogonal com-
plement projection derived from the available side
information, generalizing the traditional perfect
side information matrix completion to the sce-
narios with incomplete side information. More-
over, using probably approximately correct (PAC)
learning theory, we show that the sample complex-
ity of OCMC model decreases quadratically with
the completeness level. To efficiently solve the
OCMC model, a linearized Lagrangian algorithm
is developed with convergence guarantees. Ex-
perimental results show that the proposed OCMC
model outperforms state-of-the-art methods on
both synthetic data and real-world applications.

1. Introduction
Low-rank matrix completion infers the entire data matrix
from the partial known elements. This method plays a
significant role in various fields, such as recommendation
systems (Ramlatchan et al., 2018; Chen & Wang, 2022;
Xu et al., 2021), multi-label learning (Xia et al., 2023; Liu
et al., 2023; Cabral et al., 2011), wireless channel estimation
(Zhang et al., 2018; 2020), and image inpainting (Chen &
Ng, 2022; Jia et al., 2022). Traditional matrix completion
methods, known as transductive matrix completion, mainly
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focus on the low-rank properties of the matrix. Techniques
such as nuclear norm minimization(Liang et al., 2022; Li
et al., 2022; Yang et al., 2021) and alternating minimiza-
tion(Jain et al., 2013; Gu et al., 2023) have been developed.

Apart from the low-rank property, studies show that if we
have some prior information for the target matrix, i.e., side
information, the accuracy can be improved furthermore.
Typical forms of side information include knowledge about
the column/row spaces (Herbster et al., 2020; Vlachos et al.,
2018; Zhang et al., 2019) and information represented by
graphs (Elmahdy et al., 2022; Suh & Suh, 2022). For graph-
based side information, recent works, such as community
detection with stochastic block models (Zhang et al., 2021)
and hierarchical similarity graphs (Ahn et al., 2024) have
established fundamental limits on sample complexity.

In this paper, we study the side information related to the col-
umn and row spaces, which arise in many practical applica-
tions. For example, in recommendation system, in addition
to a small number of known ratings, we often have access to
certain user and item features, which can help refine the rat-
ings (Zhao & Guo, 2017; Han et al., 2019). Early research
on side information focused on specific applications, such as
collaborative filtering (Menon et al., 2011; Pan et al., 2010)
and disease association prediction (Natarajan & Dhillon,
2014), integrating it with non-convex optimization methods.
To systematically analyze the problem, researchers gener-
ally assume that the side information is ”perfect”, meaning
that the available side information can fully describe the
row and column spaces of the desired matrix. Based on this
assumption, the problem has been analyzed from both the
non-convex (Jain & Dhillon, 2013) and convex (Xu et al.,
2013) perspectives, leading to the same conclusion that side
information can greatly benefit completion accuracy.

However, the perfect assumption is not always valid. In
practice, the completeness of the side information can vary
significantly (Chiang et al., 2015; Yang et al., 2020; Lu et al.,
2016). This may undermine the effectiveness of methods
relying on this assumption, making conclusions non-trivial.
For example, in recommendation systems, we may lack
complete knowledge of a user’s preferences, which could
help predict ratings. (Rafailidis & Nanopoulos, 2015; Guo
et al., 2019; Pujahari & Sisodia, 2019). Similarly, in multi-
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label learning, obtaining complete and precise item features
is often challenging (Sun et al., 2021; Liu et al., 2021; Wei
et al., 2019). Therefore, it is crucial to explore models that
account for the potential incompleteness in side information.

Unfortunately, research on incomplete scenarios remains
rather limited. Existing research methods include enhancing
the interpretability of models to achieve greater robustness
(Lu et al., 2016), which mainly address scenarios where
the side information experiences small perturbations but
do not directly discuss the model’s behavior under incom-
plete side information. Additionally, some methods address
matrix completion by decomposing the target matrix into
components and optimizing each component independently
(Yang et al., 2020; Chiang et al., 2015). However, these
approaches emphasize the properties of the matrix after var-
ious decomposition, but ignore the low-rank property of the
matrix as a whole. A more detailed description of related
work has been presented to Appendix A.

Main contributions. The main contributions of the paper
are summarized as follows:

• We propose an orthogonal complement matrix com-
pletion(OCMC) model under the incomplete side in-
formation, generalizing existing methods relying on
perfect side information to handle more general sce-
narios. Specifically, after projecting the target matrix
onto four orthogonal subspaces, we observe that the
orthogonal complement projection plays a more criti-
cal role in matrix completion. Based on these insights,
the proposed OCMC model creatively utilizes the low-
rank property of the orthogonal complement projection,
which can effectively reduce sample complexity.

• Based on the probably approximately correct (PAC)
learning theory (Angluin, 1988), we derive that the
sample complexity for OCMC model to achieve a com-
pletion error of ϵ is of the order:

min
{
O(P2 logN/ϵ2), O(X 2

√
N/ϵ2)

}
,

where P is linearly related to the incompleteness of
the side information, and X is a constant from the
nuclear norm constraint. Thus, the sample complexity
of proposed OCMC model decreases quadratically as
the completeness level increases.

• To solve the proposed OCMC model, we present an
efficient linear ADMM algorithm that reformulates the
original problem into multiple subproblems. This al-
gorithm addresses the challenge of the OCMC model,
which involves simultaneously optimizing the nuclear
norm of the entire matrix and its orthogonal comple-
ment projection. Unlike traditional ADMM methods,
we approximate the subproblems by retaining only
the second-order terms of the nonlinear component,
enabling a closed-form solution. Consequently, the

OCMC model can be solved iteratively, significantly
enhancing computational efficiency.

For synthetic data experiment, the proposed OCMC model
achieves superior completion accuracy, especially in scenar-
ios with highly incomplete side information. For real-world
datasets, including movie recommendation and multi-label
learning tasks, results show that OCMC consistently outper-
forms state-of-the-art methods, highlighting its potential for
broader applications.

Notations: Given a vector l ∈ Rm, we denote its 2-norm
by ∥l∥2. Given a matrix H ∈ Rm×n, we denote its (i, j)-th
entry by Hij , ∥H∥F its Frobenius norm, ∥H∥∗ its nuclear
norm and ∥H∥2 for its 2-norm or operation norm. We
denote the column space and row space of H by col(H)
and row(H), respectively.

2. Matrix Completion Model with Incomplete
Side Information

2.1. From Complete to Incomplete Side Information

Let R ∈ Rm×n be the rank-r desired matrix, where r ≪
min{m,n}, N = max{m,n}, indicating that R is a typical
low-rank matrix. And Ω ∈ {1, 2, . . . ,m} × {1, 2, . . . , n}
denotes the set of the indices of observed entries. We define
the sampling operator PΩ : Rn×m → Rn×m as

[PΩ(R)]ij =

{
Rij , (i, j) ∈ Ω

0, (i, j) /∈ Ω

In order to recover the matrix R from the sampling set Ω,
the nuclear norm is typically used as a convex relaxation of
the rank function (Candes & Recht, 2012):

min
X

∥X∥∗ s.t. PΩ(X) = PΩ(R). (1)

In this problem, all matrices satisfying the sampling con-
ditions form a feasible set. When the observed entries are
sufficient (Candes & Recht, 2012), the feasible set is rela-
tively small, making it highly likely that the optimal solution
corresponds to the desired matrix. However, as the num-
ber of observations decreases, the feasible set grows, and
the probability of the optimal solution being the desired
matrix decreases. In the extreme case, when there is no
observations, all matrices of the appropriate size are in the
feasible set, and the unique minimizer is the zero matrix.
The schematic diagram is shown in Figure 1.1

Based on the above discussion, increasing the number of
observations will reduce the size of the feasible set, while
side information can further narrow it without the need to
increase the number of observed entries. For example, let
matrices A ∈ Rm×rA and B ∈ Rn×rB represent the side

1The figure is generated via online plotting tool https://
www.chiplot.online/.
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Figure 1. Matrix completion under different sampling conditions.

information related to the column and row subspaces of
R, respectively. In particular, when the side information is
perfect, we have

col(R) ⊆ col(A), row(R) ⊆ col(B).

Thus, there is a projection representation relationship be-
tween R and A,B, i.e., R = AMBT , where M can be
referred to as the image matrix. In other words, the tar-
get matrix R fully lies in the spaces defined by A and B.
Therefore, we can further reduce the feasible set in (1) by
imposing the projection constraint, i.e., X = AMBT ,

min
M

∥X∥∗

s.t. PΩ(X) =PΩ(R), X = AMBT . (2)

Assuming A and B semi-orthogonal, we have ∥M∥∗ =
∥AMBT ∥∗, then (2) can be written as:

min
M

∥M∥∗ s.t. PΩ(AMBT ) = PΩ(R), (3)

leading to the IMC formulation (Xu et al., 2013).

However, when side information is incomplete, the desired
matrix can not be constrained to specific projection spaces,
as the equality constraint in (2), i.e., X = AMBT , no
longer holds. For the purpose of analysis, we introduce
the following notations. Let A ∈ Rm×rA and B ∈ Rn×rB

denote the available (incomplete) side information, and Â ∈
Rm×r̂A and B̂ ∈ Rn×r̂B denote complete (perfect) side
information. We further define Ã ∈ Rm×r̃A and B̃ ∈
Rn×r̃B as the supplementary components associated with
the perfect side information. For example,

col(R) ⊆ col(Â) = col(A) ∪ col(Ã)

row(R) ⊆ col(B̂) = col(B) ∪ col(B̃),

In this work, we define the completeness level of side infor-
mation as

completeness level =
rank(A) + rank(B)

2 rank(R)
.

Without loss of generality, we assume the column spaces
of A, B and Ã, B̃ have no overlapping, i.e., col(A) ∩
col(Ã) = ∅, col(B) ∩ col(B̃) = ∅. We also assume
that A, B, Ã and B̃ are semi-orthogonal matrices, i.e.,
ATA = I and similarly for the others.

Based on the definitions above, one has Â = [A, Ã]TA

and B̂ = [B, B̃]TB , where TA and TB refer to the transfer
matrices. Then, the target matrix R can be expressed as

R = ÂMB̂T = [A, Ã]TAMTB[B, B̃]T

= [A, Ã]M ′[B, B̃]T .

Dividing the matrix M ′ into four blocks gives

R = [A, Ã]

[
M11 M12

M21 M22

]
[B, B̃]T

=AM11BT+AM12B̃T+ÃM21BT+ÃM22B̃T. (4)

To recover the target matrix R with incomplete information
A and B, an intuitive approach is to impose the constraint
from (4) on the problem in (1), similar to the formulation in
(2). However, since Ã and B̃ are unavailable, this approach
is not valid. Nevertheless, the decomposition form of the
target matrix in (4) remains important. Both transductive
and inductive matrix completion can be derived from (4). If
no side information is available (i.e., A = B = ∅ ), the first
three terms vanish, and the fourth term becomes the entire
matrix R, reducing the model to the transaction matrix
completion. If perfect side information is available, then
the last three terms vanish. Furthermore, existing models
for incomplete side information (Chiang et al., 2015; Yang
et al., 2020) essentially separate the fully known part from
the rest, i.e., the first term from the last three in (4).

2.2. Orthogonal Complement Matrix Completion Model

To utilize the decomposition in (4) and derive a valid model
for matrix completion with incomplete information, we
define the following projection operations Rm×n → Rm×n:
PAB(·), PAB⊥(·), PA⊥B(·), and PA⊥B⊥(·),

PAB(X) = PAXPB,

PAB⊥(X) = PAX − PAB(X),

PA⊥B(X) = XPB − PAB(X),

PA⊥B⊥(X) = X − PAX −XPB + PAB(X),

where A⊥ ∈ Rm×(m−rA) and B⊥ ∈ Rn×(n−rB) repre-
sent the orthogonal complement matrix (Strang, 2000) of
A and B which satisfies: rank([A,A⊥]) = m,ATA⊥ =
0; rank([B,B⊥]) = n and BTB⊥ = 0. Additionally,
PA = AAT ∈ Rm×m and PB = BBT ∈ Rn×n repre-
sent the projection matrices related to A and B. For exam-
ple, PAB(X) refers to projecting X onto the intersection
of column space of A and row space of B.
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Table 1. The range of ranks for different matrix parts.

PART MINIMUM RANK MAXIMUM RANK

PAB(X) 0 min{rank(A), rank(B)}
PAB⊥(X) 0 rank(A)
PA⊥B(X) 0 rank(B)
PA⊥B⊥(X) 0 min{m− rank(A), n− rank(B)}
PAB(X) + PAB⊥(X) + PA⊥B(X) 0 rank(A) + rank(B)

It is worth noting that target matrix R can be expressed as

R=PAB(R)+PA⊥B(R)+PAB⊥(R)+PA⊥B⊥(R). (5)

Compared to the expression in (4), the form in (5) only
involves the incomplete side information A and B, which
may enable the valid constraint for R. However, one can
find that any matrix X ∈ Rm×n can be expressed as

X=PAB(X)+PA⊥B(X)+PAB⊥(X)+PA⊥B⊥(X), (6)

therefore, directly imposing the constraint from (6) on the
problem in (1) is not meaningful.

To address this issue and derive a valid constraint on X
from (6), it is necessary to analyze components in (5) and
ensure that the corresponding parts of X exhibit properties
consistent with (5). Specifically, since the target matrix R is
low-rank, one can find that all four components in (5) must
also be low-rank. Therefore, for the matrix completion task,
the components of candidates X in (6) must maintain the
low-rank properties to guide the recovery matrix towards the
target R. In other words, this requires restricting the feasible
set in (1) to the matrices whose components, as defined
in (6), are low-rank. Moreover, enforcing the low-rank
properties of each component in (6) enables more accurate
estimation of target matrix R with fewer observations, as
it reduces the number of parameters to be learned. This
advantage will be formally justified in Section 3.

In what follows, we will discuss how to impose the low-
rank constraints for each part in (6). Interestingly, for any
X ∈ Rm×n, one can note that the first three parts in (6),
i.e, PAB(X), PAB⊥(X), and PA⊥B(X), inherently sat-
isfy the low-rank property because they include at least
one known side information matrix factor. However, the
orthogonal complent PA⊥B⊥(X) lacks any side informa-
tion matrix factor, and its low-rank characteristics cannot
be guaranteed for any matrix X . Therefore, intuitively, it
is more important to restrict the rank of the PA⊥B⊥(X).
To facilitate the discussion, we refer to PA⊥B⊥(·) as the
orthogonal complement projection throughout this paper.

Table 1 illustrates the rank ranges of parts in (6) for an
arbitrary matrix, highlighting that the special characteristic
of R lies in the low-rank property of PA⊥B⊥(R). It can be
observed that, due to rank(A) ≤ rA ≪ m and rank(B) ≤
rB ≪ n, the maximum possible rank of the orthogonal
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(b) Nuclear norm comparison
Figure 2. We compare the rank and nuclear norm of PA⊥B⊥(R)
and PA⊥B⊥(X), where R is the desired matrix and X is a
randomly generated matrix in R100×100 with the same rank as R.

complement projection PA⊥B⊥(X) is significantly greater
than even the rest three parts combined. Thus, it is essential
to restrict the solution such that PA⊥B⊥(X) has a low rank,
consistent with the low-rank property of PA⊥B⊥(R).

Moreover, as shown in Figure 2, as the completeness of the
side information increases, PA⊥B⊥(R) and PA⊥B⊥(X)
exhibit distinct trends. Specifically, both the rank and nu-
clear norm of PA⊥B⊥(R) show the approximately linear
decreasing trend, where the rank curve of PA⊥B⊥(R) in
Figure 2-(a) is straightforward. For the nuclear norm curve
of PA⊥B⊥(R) in Figure 2-(b), since the projection is con-
structed based on the subspaces of R itself, the decay ap-
proximately at a rate of 1/r. In contrast, for a same-rank
random matrix X , the rank of PA⊥B⊥(X) remains nearly
constant, and its nuclear norm decreases more slowly—at
a rate of approximately 1/n. This is because A and B are
derived from the subspaces of the target matrix R, rather
than from X itself. These empirical observations further
highlight the distinctive low-rank property of PA⊥B⊥(R).

Based on the discussions above, to perform matrix com-
pletion with incomplete information, we use the low-rank
property of PA⊥B⊥(X) as an additional constraint in (1)
to further narrow the feasible set. Since it is not an equality
constraint, we incorporate it into the objective function and
consider solving the following problem:

min
X

∥X∥∗ + λ∥PA⊥B⊥(X)∥∗

s.t. PΩ(X) = PΩ(R). (7)
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Figure 3. The trend of components’ variation as side information completeness varies. Parts I, II, III, and IV correspond to the first four
items of (4). From left to right, the images represent increasing levels of side information completeness. The size of the shaded regions
symbolizes the proportion of each component relative to the desired matrix.

The derived model in (7) is called the orthogonal comple-
ment matrix completion (OCMC). In the objective of (7),
∥X∥∗ and ∥PA⊥B⊥(X)∥∗ are used to incorporate the low-
rank property of X and PA⊥B⊥(X), accounting for both
the global property and the property of orthogonal comple-
ment. In addition, it is easy to verify that the problem in
(7) is convex, ensuring that it is guaranteed to converge to a
global optimum.

Discussion about λ: The parameters λ in (7) is used to
adjust the weight of ∥PA⊥B⊥(X)∥∗ based on the com-
pleteness of the side information. For example, when
there is no side information, we have A = B = 0, then
∥PA⊥B⊥(R)∥∗ = ∥R∥∗, which indicates that no addi-
tional effects can be achieved because no useful information
is included. This scenario can also be interpreted as setting
λ → 0, and the problem transforms into (1). As the side
information becomes more complete, it can be learned from
Figure 2 that there is a approximately linear reduction in
∥PA⊥B⊥(R)∥∗, therefore it is reasonable to set a larger λ
in (7). By adjusting the values of λ according to the com-
pleteness of the side information, OCMC can effectively
incorporate side information into matrix completion. Fig-
ure 3 provides a visual representation of the aforementioned
trends: as the completeness of side information increases,
the proportion of the orthogonal complement projection
becomes smaller.

3. Recovery Analysis
In this section, we theoretically analyze the recovery accu-
racy and sample complexity for the proposed OCMC model
according to the PAC learning framework.

3.1. PAC Model

PAC is a theoretical framework that ensures, with enough
samples, an algorithm can produce a model with a small
generalization error and high probability (Angluin, 1988).
Using this framework, we will show the recovery error of
the proposed OCMC model in (7) is bounded.

Considering the potential presence of Gaussian noise in
observations, we relax the equality constraint PΩ(X) =

PΩ(R) in (7) by ℓ(Xij , Rij):

min
X

∑
(i,j)∈Ω

ℓ(Xij , Rij)+λ1∥X∥∗+λ2∥PA⊥B⊥(X)∥∗, (8)

where the function ℓ(·, ·) is used to measure the differences
at the observed positions. In particular, for the squared loss,
one has ℓ(Xij , Rij) = (Xij −Rij)

2. Then problem (8) can
be reformulated into the following soft constrained form:

min
X

∑
(i,j)∈Ω

ℓ(Xij , Rij)

s.t. ∥X∥∗ ≤ X and ∥PA⊥B⊥(X)∥∗ ≤ P, (9)

where X and P are related to λ1 and λ2 in (8). Similar to
the role of λ in (7), the parameter P in (9) is also related
to the completeness level of the side information. As the
completeness level increases, we set a smaller value for P .
Here, for convenience, we define the feasible set of problem
(9) as X = {X | ∥X∥∗ ≤ X , ∥PA⊥B⊥(X)∥∗ ≤ P}.

To relate model (9) to the PAC learning framework, we
define a function class F based on the set X,

F = {fX(i, j) = Xij | X ∈ X}. (10)

Based on our definition, one can find there is a one-to-one
correspondence between the function fX and the matrix
X . Then,we can treat solving problem (9) as finding a
function fX in the function class F , which minimizes the
corresponded objective value in (9), i.e.,

min
fX∈F

∑
(i,j)∈Ω

ℓ(fX(i, j), Rij). (11)

Moreover, given arbitray X, we consider two types of errors:
empirical error L̂(X) and generalization error L(X),

L̂(X) =
1

|Ω|
∑

(i,j)∈Ω

ℓ(fX(i, j), Rij),

L(X) = E(i,j)∼p[ℓ(fX(i, j), Rij)],

where p denotes the sampling distribution over the observed
entry positions in Ω. Thus, the empirical error calculates
the average loss at the observed positions, while the gener-
alization error computes the expected loss over all entries.
As we can see, the empirical error is relatively easy to cal-
culate, but the generalization error is more important and

5



Matrix Completion with Incomplete Side Information via Orthogonal Complement Projection

more challenging to obtain. To evaluate the generalization
error L(X) based on the empirical error L̂(X), we employ
the PAC model (Angluin, 1988), leveraging the Rademacher
complexity of function class F .
Lemma 3.1. (Peter L. Bartlett, 2002) Suppose ℓ(·, ·) is a
loss function with Lipschitz constant Lℓ and bounded by B
with respect to its first argument, and δ is a constant where
0 < δ < 1. Let Rℓ(F) be the Rademacher complexity of
the function class F (w.r.t. Ω and associated with ℓ):

Rℓ(F)=Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

1

|Ω|

|Ω|∑
α=1

σαl(Xiαjα , Riαjα)

,
where σα are random variables taking values of {±1} with
equal probability. Then with probability at least 1− δ, for
all f ∈ F , i.e., ∀X ∈ X , the generalization error satisfies

L(X) ≤ L̂(X) + 2EΩ[Rℓ(F)] + B

√
log(1/δ)

2|Ω|
. (12)

From Lemma 3.1, since the last term in (12) is constant,
the generalization error is influenced by the empirical error
L̂(X) and the Rademacher complexity EΩ[Rℓ(F)]. By
solving problem (9), the empirical error L̂(X) will be a
small value. Thus, the most significant factor affecting the
generalization error in (12) is the Rademacher complexity
of F , which will be discussed in the next subsection.

3.2. Main Results

In this part, we focus on analyzing the Rademacher com-
plexity of F in (10), and establish the bound for L(X) by
solving (9). Intuitively, as previously mentioned, the com-
plexity of our function class should be closely related to the
structure of the feasible set, i.e., to the parameters X and
P in Problem (9). Formally, Lemma 3.2 provides an upper
bound on the Rademacher complexity.
Lemma 3.2. Let Q ∈ Rm×m be a matrix with columns
Q = {qi}, and S ∈ Rn×n be a matrix with columns S =
{si}, which make (I+µI−PB)S = Q(I+µI−PA) = I
hold for some µ > 0. Then, with the settings in (9), the
upper-bound of Rademacher complexity of function class F
in (10), i.e., EΩ[Rℓ(F)], is given by

min

{
2LℓQSP

√
log 2N

|Ω|
,

√
9CLℓXB(

√
m+

√
n)

|Ω|

}
,

where N = max{m,n} denotes the quantity representing
the size of the matrix, Q = maxi ∥qi∥2, S = maxj ∥sj∥2,
Lℓ and B are defined in Lemma 3.1, and C is a constant.
The detailed proof of Lemma 3.2 is provided in the Ap-
pendix B. By combining Lemma 3.1 and Lemma 3.2, we
can upper bound L(X) of the OCMC model as follows.
Theorem 3.3. For the problem (9), the generalization error
L(X) can be upper-bounded by the following expression

with probability at least 1− δ,

L(X) ≤ L̂(X) + B

√
log(1/δ)

2|Ω|

+ 2min

{
2LℓQSP

√
log 2N

|Ω|
,

√
9CLℓXB(

√
m+

√
n)

|Ω|

}
,

where the related constants are defined in Lemma 3.2.2

Building on Theorem 3.3, the following lemma provides the
sample complexity guarantee of our OCMC model.
Corollary 3.4. For any ϵ > 0, we define the ϵ-error re-
covery of R if E(i,j) [ℓ(f(i, j), Rij)] ≤ ϵ. Then, when the
number of observations is on the order of

min

{
O

(
P2 logN

ϵ2

)
, O

(
X 2

√
N

ϵ2

)}
,

an ϵ-error recovery can be achieved by solving (9).

To further analyze the number of observations according to
Corollary 3.4, we can adjust λ1 and λ2 to set the value of
P as ∥PA⊥B⊥(R)∥∗ or ∥ÃM22B̃T ∥∗ in (4). As shown
in the Figure 2, the nuclear norm of the orthogonal comple-
ment projection ∥PA⊥B⊥(R)∥∗ decreases approximately
linearly with the level of completeness, suggesting that P
follows an approximately linear trend. Consequently, based
on the first term in Corollary 3.4, we can infer that as the
completeness level increases, the sample complexity de-
creases at an approximately quadratic rate. This aligns with
our intuitive understanding: the greater the completeness
of the obtained side information, the more beneficial it is
for our matrix completion task. More discussion about the
number of observations are provided in Appendix D.

4. Linear ADMM Algorithm
To solve the problem (7), we firstly introduce a variable Y
as an auxiliary variable, then (7) is reformulated as follows:

min
X,Y

∥X∥∗ + λ∥Y ∥∗

s.t. PΩ(X) = PΩ(R), Y = PA⊥B⊥(X). (13)

The augmented Lagrangian function of (13) is given by

L(X,Y ,M1,M2, β) = ∥X∥∗ + λ∥Y ∥∗

+
β

2
∥PΩ(X)−PΩ(R)∥2F +

β

2
∥Y − PA⊥B⊥(X)∥2F

+⟨M1,PΩ(X)−PΩ(R)⟩+⟨M2,Y− PA⊥B⊥(X)⟩, (14)

where M1,M2 are the Lagrangian multipliers, β is the
penalty parameter. and ⟨·, ·⟩ denotes the matrix inner prod-
uct: ⟨A,B⟩ = Tr(ABT ). For simplicity, in this paper, we

2Our analysis makes no assumption on the sampling distribu-
tion, making it more general than uniform-sampling-based results
(Xu et al., 2013; Recht, 2011). The connection between L(X) and
mean squared error is discussed in Appendix C.
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focus on the squared loss ∥ · ∥2F , while the algorithm can be
extended to accommodate any loss function.

Algorithm 1 Linearized ADMM for OCMC with Squared
Loss

1: Input: side information matrices A, B; sampled matrix
PΩ(R); maximum iterations K; parameters λ, β0, βmax,
ρ, τ

2: Output: X , Y , M1, M2

3: Initialize X0 = Y 0 = M0
1 = M0

2 = 0, k = 0
4: while k < K do
5: Update Xk+1 by solving (15)
6: Update Y k+1 by solving (16)
7: Update Mk+1

1 by (17)
8: Update Mk+1

2 by (18)
9: Update βk+1 as: βk+1 = min{βmax, ρβ

k}
10: k = k + 1
11: end while

To solve the problem (14) iteratively, let k denote the iter-
ation index. Given the current values Xk,Y k,Mk

1 ,M
k
2 ,

the variables can be updated as follows:

Xk+1 = argmin
X

L(X,Y k,Mk
1 ,M

k
2 , β), (15)

Y k+1 = argmin
Y

L(Xk+1,Y ,Mk
2 , β), (16)

Mk+1
1 = Mk

1 + β(PΩ(X
k+1)− PΩ(R)), (17)

Mk+1
2 = Mk

2 + β(Y k+1 − PA⊥B⊥(Xk+1)). (18)

the derivations of the closed solution of (15) to (18) and com-
plexity analysis are provided in Appendix E. The workflow
of our algorithm is summarized in Algorithm 1.

This enhances computational efficiency for each subproblem
can be solved iteratively and in parallel. Moreover, since
the problem in (7) is convex, Algorithm 1 will converge to
a global optimal solution after a finite number of iterations
(Yang & Yuan, 2013) and the convergence rate of linear
ADMM is O(1/k) (Fang et al., 2015; Shi et al., 2015).

5. Experimental Results
In this section, we demonstrate the effectiveness of the
proposed OCMC model and the linear ADMM algorithm
through experiments conducted on both synthetic experi-
ments and real-world applications. In the synthetic experi-
ments, we primarily investigated the relationship between
matrix completion accuracy and the number of observa-
tions under varying completeness levels of side information.
In the real-world application experiments, we focused on
the multi-label learning (Goldberg et al., 2010) and movie
recommendation (Harper & Konstan, 2015).

5.1. Synthetic Data Experiments

Settings and Baseline: We set J ,K ∈ R100×10 with ele-
ments Jij ,Kij ∼ N (0, 1), generating the low rank matrix

R = JKT ∈ R100×100 of rank 10. Side information ma-
trices A and B are derived from the SVD of R = UΣV T ,
where U ,V ∈ R100×10 and Σ ∈ R10×10. We then trans-
form U and V by multiplying them with random matri-
ces. Specifically, U is transformed as A = UT , where
T ∈ R10×d, with Tij ∼ N (0, 1), and B = V Q, following
the similar transformation, where Q is a random matrix gen-
erated similarly to T . Making T and Q column full rank,
the integer d is set as d = r×η, where η is the completeness
level. For example, with 50% completeness, η = 50%, so
d = 10 × 50% = 5. For simplicity, in our experiments,
when we refer to the completeness of side information as
50%, it means that the completeness of both the row and
column side information is 50%.

Three representative algorithms are selected as baselines:
SVT(Cai et al., 2010), Maxide(Xu et al., 2013), and Dirty-
IMC(Chiang et al., 2015). We use the relative Frobe-
nius norm difference as the performance metric: error =
∥R− R̂∥F /∥R∥F , where R is the target matrix and R̂
is the completed matrix. The sampling rate is defined as
|Ω|/m × n, where Ω is the set of the indices of observed
entries, and m,n represent the target matrix dimension.

In Figure 4, we evaluate the completion accuracy of the pro-
posed OCMC under different sampling rates. To ensure a
comprehensive evaluation, we consider three levels of com-
pleteness: low (η = 20%), medium (η = 50%), and high
(η = 80%). More experiments are provided in Appendix F.

Results: From Figure 4, we can observe that our proposed
OCMC consistently outperforms the established baselines
across all three levels of completeness. With the exception
of the Maxide, the completion accuracy of all matrix com-
pletion models improves as the sampling rate increases. The
completion accuracy of the Maxide remains at a relatively
low level. We conjecture that it is because in incomplete
situation, Maxide restricts the feasible set based on incorrect
row and column information, excluding the true matrix from
this feasible set. This situation further emphasizes the im-
portance of methods for using incomplete side information.
Among the remaining algorithms, SVT exhibits the lowest
accuracy, because it does not use any side information.

5.2. Multi-label Learning

In multi-label learning, each instance can belong to mul-
tiple categories simultaneously. Since labels and features
are often interrelated, and jointly low rank, matrix com-
pletion methods have been introduced to capture the latent
correlations (Goldberg et al., 2010).

Settings and Baseline: We compared our proposed OCMC
model with the SVT, Maxide, DirtyIMC, as well as FPC (Ma
et al., 2011a) and FNNM(Yang et al., 2020), which shows
promising results in various practical scenarios. The dataset
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Figure 4. Error VS. Sampling rate under different completion rate of side information.

Table 2. Comparison of algorithms on the ”Arts” dataset with varying sampling rates ω.

DATASET ω% SVT MAXIDE DIRTYIMC FPC OCMC FNNM

ARTS 10% 0.3500 0.5746 0.4591 0.3402 0.5249 0.5126
30% 0.4639 0.6435 0.6416 0.5012 0.7206 0.6825
50% 0.6053 0.6784 0.7648 0.6103 0.8358 0.7625
70% 0.7271 0.6991 0.8584 0.7592 0.9029 0.8326
90% 0.8695 0.7135 0.9266 0.8763 0.9596 0.9115

we selected is the web page classification from “Yahoo.com”
(Ueda & Saito, 2002), which includes 11 distinct topics. For
instance, in the “Art” category, there are 5,000 instances,
each with 432 features and 21 label categories.

We randomly pick 10% instances as the test set and use the
rest 90% as the training set. To conduct partial label assign-
ment in the training set, for each label, we randomly choose
10% positive and negative training instances and keep the
remaining training instances unknown. The percentage of
training instances ω% ranges from 10% to 90% with an in-
creasing step size of 20%. Notably, ω% also represents the
sampling rate. In this experiment, we use Average Precision
(AP) (Mazumder et al., 2010) as the evaluation metric.

Results: Table 2 summarizes the results for the ”Arts” cat-
egory. The best AP result is bold and second best result
is underline. It can be learned that our OCMC achieves
four best results and one second best result. These results
demonstrate the effectiveness of the proposed OCMC model
in leveraging incomplete side information to improve perfor-
mance in multi-label learning applications. Comparisons for
other categories are provided in Appendix F for reference.

5.3. MovieLens-100k

In this experiment, we use the MovieLens-100k dataset
(Harper & Konstan, 2015), which contains 100,000 ratings
(ranging from 1 to 5) from 943 users on 1,682 movies, and
includes 23 user features (e.g., age, gender, occupation) and
20 movie features (e.g., genre, release date).

Settings and Baseline: The data is divided into a training
set and a test set, with the proportion of the test set ranging
from 0.1 to 0.9 in increments of 0.2. The performance of
different methods is evaluated by the Root Mean Square
Error (RMSE) on the test set, defined as:

RMSE =
1

|Ω̃|

√ ∑
(i,j)∈Ω̃

(Xij −Rij)2,

where Rij is the sampled rating, Xij is the corresponding
completed rating, and Ω̃ represents the indices in the test
set. Like in multi-label learning, we choose SVT, Maxide,
DirtyIMC, FPC and FNNC as baselines.

Results: The RMSE values for all methods at different
sampling rates are shown in Table 3. The best AP result

Table 3. RMSE of algorithms on the ”MovieLens-100k” dataset with the varying training set proportion.

PROPORTION SVT MAXIDE DIRTYIMC OCMC FPC FNNM

10% 2.3824 1.4512 1.3053 1.1503 1.8050 1.3533
30% 1.5523 1.4483 1.0251 0.9826 1.2249 1.0466
50% 1.3325 1.4415 0.9532 0.9013 1.0733 0.9701
70% 1.2284 1.4392 0.9321 0.8872 1.0033 0.9283
90% 1.1423 1.4336 0.8702 0.8625 0.9533 0.8983
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is bold and second best result is underline. As the pro-
portion increases, the performance of most methods im-
proves. Among them, DirtyIMC, FNNM and OCMC are
applicable for matrix completion with incomplete side in-
formation, demonstrating better completion performance
compared to other methods. Notably, our proposed OCMC
model achieves the best performance among all benchmarks,
demonstrating its advantage in effectively leveraging incom-
plete side information for accurate recommendations.

5.4. Discussion

The experimental results on real-world datasets, as demon-
strated in the previous subsections, show that OCMC effec-
tively captures the characteristics of practical side informa-
tion. This can be attributed to the fact that the proposed
OCMC is designed for scenarios where side information is
available but incomplete, which is a common situation in
real-world applications. In the following, we justify why
side information is often incomplete in practice, from both
intuitive and geometric perspectives.

• Intuitive and practical perspective: In recommendation
systems such as MovieLens-100k, side information typ-
ically includes attributes of users (e.g., age, gender) and
items (e.g., categories, genres). However, actual user
preferences and item characteristics are influenced by
additional latent factors that are not directly available
but still affect the rating matrix. Thus, it is unrealistic
to assume that a few available features fully describe
user behavior or item semantics. A similar situation
occurs in multi-label learning, where side information
such as feature descriptors or annotations only partially
reflects the complex dependencies among labels.

• Subspace-based geometric perspective: If the side in-
formation were complete, the column (or row) space of
the target matrix would lie entirely within the subspace
spanned by the given side information. However, this
assumption does not hold in the datasets we studied. A
formal check involves projecting the target matrix onto
the side information subspace and evaluating whether
the projection error is zero. Specifically, we can check
whether the residual norm ∥PAR−R∥F = 0, where
PA = A(A⊤A)−1A⊤. A large residual norm indi-
cates that the given side information does not fully
span the target subspace. To illustrate this, the resid-
ual norms of the experimental datasets are shown in
Table 4. As observed, these residual norms are large
compared to the norms of the target matrix, confirming
the incompleteness of the side information.

These insights confirm that side information in real-world
datasets is generally incomplete. This also helps explain
the strong empirical performance of OCMC on benchmarks
such as recommendation systems and multi-label learning.

Table 4. We compuate the residual norm: ∥PAR−R∥F and its
normalized form: ∥PAR − R∥F /∥R∥F of each dataset from
MovieLens-100K and 11 datasets of ”Yahoo.com”.

CATEGORY RESIDUAL NORM NORMALIZED

MOVIELENS-100K 1122.5 0.9581
ARTS 71.2843 0.7882
BUSINESS 53.3929 0.5992
COMPUTERS 61.7102 0.7111
ENTERTAINMENT 60.3578 0.7162
EDUCATION 65.2612 0.7637
HEALTH 60.2478 0.6609
RECREATION 64.6424 0.7663
REFERENCE 52.4684 0.6862
SCIENCE 65.0822 0.7642
SOCIAL 49.5415 0.6184
SOCIETY 69.95 0.7605

6. Conclusion
In this paper, we investigated matrix completion problem
with incomplete side information. A novel OCMC model
is proposed that leverages the low-rank properties of both
the target matrix and its orthogonal complement projec-
tion. Using the PAC framework, we theoretically estab-
lish a generalization error bound for the OCMC model and
show that the sample complexity decreases quadratically
as the completeness level increases. Additionally, a lin-
ear ADMM algorithm is proposed to efficiently solve the
OCMC model, which is guaranteed to converge to a global
optimal solution. Experiments show that the OCMC model
outperforms the existing matrix completion models in both
synthetic and real-world applications, including multi-label
learning and movie recommendation. As future work, we
plan to integrate the proposed OCMC framework into neural
network-based approaches to more effectively exploit side
information and improve performance.
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Here, we present a detailed description of related work in Appendix A. Detailed proofs of Lemma 3.2 and Corollary 3.4
are provided in Appendix B and Appendix D respectively, which are the two most crucial parts of our theory. Appendix E
provides a detailed derivation of Algorithm 1. More experiments are presented in Appendix F and the full table of multilabel
learning outcome is also in the Appendix F.

A. Related Work
Transductive Matrix Completion: In most cases, matrix completion refers to transductive matrix completion. This
approach focuses on completing a low-rank matrix using a limited number of sampled entries, relying only on the low-rank
property of the matrix. Early studies on matrix completion were developed for applications like collaborative filtering , such
as the famous Netflix Prize (Koren, 2009; Töscher et al., 2009). Several theoretical foundations have been established in this
field.

One remarkable milestone was established in (Candes & Recht, 2012; Recht, 2011)., which demonstrated that, if the entries
of the desired matrix are uniformly sampled, solving the nuclear norm model

min
X

∥X∥∗ s.t. PΩ(X) = PΩ(R)

allows one to perfectly complete a low-rank matrix X ∈ Rm×n from O(N log2 N) samples, where N = max{m,n}.
(Recht, 2011) demonstrates the theory from the perspective of sampling with replacement, arriving at the same sample
complexity results. Based on these basis, a series of convex relaxation algorithms have been developed. As mentioned
above, (Candes & Recht, 2012) proposed a nuclear norm relaxation framework, while (Cai et al., 2010) introduced the
singular value thresholding approach. By calculating the following iteration, SVT combines nuclear norm relaxation with
proximal gradient methods: {

Xk = Dτ (Yk−1)

Yk = Yk−1 + δkPΩ(R−Xk).

Some studies also employ variants of the nuclear norm to approximate the rank of a matrix, such as (Gu et al., 2017; Nie
et al., 2012).

Another popular approach is by matrix factorization, which has become a widely applicable and empirically successful
method for low-rank matrix completion. In this kind of approaches, the low-rank target matrix is represented in a bilinear
form:

X = UV T ,

where U ∈ Rm×p,V ∈ Rn×p. By constraining the dimensions of the factor matrices, i.e., the size of p, we can effectively
limit the rank of the target matrix based on the principles of matrix multiplication.

The most known algorithm through matrix factorization is the alternating minimization (Jain et al., 2013), which formed a
major component of the winning entry in the Netflix Challenge.This algorithm performs matrix completion by solving the
following problem:

min
U∈Rm×p, V ∈Rn×p

∥PΩ(UV ⊤)− PΩ(R)∥2F →

{
minU∈Rm×p ∥PΩ(UV k⊤)− PΩ(R)∥2F
minV ∈Rn×p ∥PΩ(U

kV ⊤)− PΩ(R)∥2F
.

Although the overall problem is non-convex, each sub-problem is typically convex and can be solved efficiently. (Jain
et al., 2013) provided convergence guarantees for alternating minimization in matrix completion. In addition, several
gradient-based algorithms have proven effective. For instance, (Raghunandan H. Keshavan, 2010) proposed the Spectral
Matrix Completion method, considering a variant of matrix completion.

Inductive Matrix Completion: Inductive matrix completion leverages side information about the row and column spaces
of the matrix to improve the accuracy of the completion process. Various algorithms have been applied across domains like
collaborative filtering , response prediction, and gene-disease association prediction , significantly enhancing efficiency.
Most of these algorithms rely on various matrix factorization techniques.

For example, studies by (Jain & Dhillon, 2013), as well as (Xu et al., 2013), focused on matrix factorization for the matrix
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completion problem with side information. Both approaches utilize a representation trick:
R = AMBT ,

where R is the desired matrix, and A and B are side information matrices corresponding to the row and column spaces,
respectively. Their results suggest that, by optimizing

min
M

∥M∥∗ s.t. PΩ(AMB) = PΩ(R),

where the sample complexity can be reduced to O(logN).

Considering the latent noise in side information, a more recent study (Chiang et al., 2015) generalized this model by
introducing a dirty statistic model, given by:

X = AMBT +N .

Then, they optimize the following problem:
min
M ,N

∥M∥∗ + ∥N∥∗ s.t. PΩ(AMBT +N) = PΩ(R).

This work proposes a method for evaluating the quality of side information and demonstrates that sample complexity can be
reduced even with noisy side information, depending on its quality.

Additionally, (Lu et al., 2016) focused on the embedded matrix M and proposed a sparse interaction model:

min
M ,E

1

2
∥XMY T −E∥2F + λM∥M∥1 + λE∥E∥∗, subject to PΩ(E) = PΩ(R).

which achieves similar results on the effectiveness of imperfect side information in matrix completion.

B. Proof of Lemma 3.2
Proof. We separately prove that the Rademacher complexity is less than each term on the right side in Lemma 3.2.
Specifically, we will show that

Rℓ(F) ≤ 2LℓQSP

√
log 2N

|Ω|
, (19)

Rℓ(F) ≤

√
9CLℓXB(

√
m+

√
n)

|Ω|
. (20)

To prove the first inequality in (19), we mainly use the following lemma.

Lemma B.1. (Kakade et al., 2008) Let Sx = {W ∈ Rn×n | ∥W ∥∗ ≤ W}, A = maxi∈{1,2,...,m} ∥Ai∥2, Ai ∈ Rn×n, we
have

Eσ

[
sup

W∈Sx

1

m

m∑
i=1

σi trace(WAi)

]
≤ 2AW

√
log 2n

m
.

This Lemma is a corollary of Theorem 1 in (Kakade et al., 2008).

Recalling the definition of the Rademacher complexity, the Rademacher complexity of F is given by

Rℓ(F) = Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

1

|Ω|

|Ω|∑
α=1

σαℓ(Xiαjα , Riαjα)

 . (21)

Using the contraction principle of Rademacher complexity(see (Bartlett & Mendelson, 2002)), the expression in (21) is
bounded by

Rℓ(F) ≤ Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|

|Ω|∑
α=1

σαXiαjα

 . (22)
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We define the matrix Γ as follows:

Γij =

{
σα, if i = iα and j = jα

0, otherwise.

Then, by representing the inner product of matrices, we can rewrite (22) as follows:

Rℓ(F) ≤ Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|
⟨Γ,X⟩

 = Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|
tr(XTΓ)

 . (23)

To proceed with (23), we let Q ∈ Rm×m be a matrix with columns Q = {qi}, and let S ∈ Rn×n be a matrix with columns
S = {si}, where (I + µI − PB)S = I = Q(I + µI − PA) for some µ > 0. Then, we have

tr(XTΓ) = tr
[
Q(I + µI − PA)X(I + µI − PB)SΓT

]
.

Then, by substituting tr(XTΓ) in (23), we have the following inequality:

Rℓ(F) ≤ Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|
tr
[
Q(I + µI − PA)X(I + µI − PB)SΓT

] . (24)

To apply the Lemma B.1 for (24), we consider the following definition.

Definition B.2 (µ-relaxation for operation PA⊥B⊥(·)). For any matrix R ∈ Rm×n and µ > 0, we define the linear
operation Pµ

A⊥B⊥(·) as the µ-relaxation for PA⊥B⊥(·):
Pµ
A⊥B⊥(R) = (I + µI − PA)R(I + µI − PB).

The operation PA⊥B⊥(·) can be viewed as limµ→0 P
µ
A⊥B⊥(·). Here, µ is called the relaxation factor.

The advantage of Definition B.2 is that it allows the projection operation to become an invertible operation while maintaining
the constraints to some extent, as µ can be arbitrarily small. This facilitates analysis and the generalization of the results.
Based on Definition B.2, we can intuitively see that when µ is very small, the constraint on ∥Pµ

A⊥B⊥(X)∥∗ should yield a
result very close to ∥PA⊥B⊥(X)∥∗. The simulation results in Figure 5 are also consistent with this observation. Thus, we
can approximate the constraint ∥PA⊥B⊥(X)∥∗ ≤ P by ∥Pµ

A⊥B⊥(X)∥∗ ≤ P in (24).
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Figure 5. Nuclear norm ratio ∥Pµ

A⊥B⊥(X)∥∗/∥PA⊥B⊥(X)∥∗ for µ ∈ {0, 2× 10−3, 4× 10−3, 6× 10−3} and completeness levels
in {0.1, · · · , 1}, where X is a randomly generated 100× 100 matrix. The experiments were repeated ten times, and the average results
are shown. The maximum difference in nuclear norms, at the same completeness level, is less than 1.5% across different values of µ.
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Therefore, we can express (24) as follows

Rℓ(F) ≤ Eσ

 sup
∥X∥∗≤X

∥Pµ

A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|

|Ω|∑
α=1

σα [Q(I + µI − PA)X(I + µI − PB)S]iαjα


= Eσ

 sup
∥X∥∗≤X

∥Pµ

A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|

|Ω|∑
α=1

σα tr
[
qTiα(I + µI − PA)X(I + µI − PB)sjα

]
= Eσ

 sup
∥X∥∗≤X

∥Pµ

A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|

|Ω|∑
α=1

σα tr
[
(I + µI − PA)X(I + µI − PB)sjαq

T
iα

]
= Eσ

 sup
∥X∥∗≤X

∥Pµ

A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|

|Ω|∑
α=1

σα tr
[
Pµ
A⊥B⊥(X)sjαq

T
iα

] , (25)

where the final equality uses the definition of Pµ
A⊥B⊥(·) in Definition B.2.

Using Lemma B.1, we let Q = maxi ∥qi∥2, S = maxj ∥sj∥2, then the expression in (25) can be further bounded by

Rℓ(F) ≤ Eσ

 sup
∥X∥∗≤X

∥Pµ

A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|

|Ω|∑
α=1

σα tr
[
Pµ
A⊥B⊥(X)sjαq

T
iα

] ≤ 2LℓQSP

√
log 2N

|Ω|
, (26)

which concludes the proof of the first lower bound (19) in Lemma 3.2.

For the second lower bound (20), using the same trick in (Lu et al., 2016), we can divide the sampling matrix Γ into two
parts based on ”hit-time.” Specifically, by setting a threshold t, any entry Γij exceeding t indicates a frequently sampled
element, while values below t suggest infrequent samples. Using this criterion, we obtain matrices E and F as follows:

Eij =

{
Γij , Γij ≥ t

0, otherwise
Fij =

{
Γij , Γij < t

0, otherwise.
Thus, we have Γ = E + F , and the Rademacher complexity in (23) can be bounded as follows:

Rℓ(F) = Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

1

|Ω|
∑
i,j

Γij ℓ(Xij , Rij)



= Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

1

|Ω|
∑
i,j

Eij ℓ(Xij , Rij)

+ Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

1

|Ω|
∑
i,j

Fij ℓ(Xij , Rij)

 . (27)

According to the Definition B.2, we have ℓ(Xij , Riαjα) ≤ B, then the first term in (27) can be bounded as follows:

Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

1

|Ω|
∑
ij

Eijℓ(Xij , Riαjα)

 ≤ Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

B
|Ω|
∑
ij

Eij



≤ Eσ

 sup
∥X∥∗≤X

∥pAB(X)∥∗≤P

B
|Ω|

∥E∥1

 . (28)
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For the second term in (27), using the Rademacher contraction principle, we can bound it by:

Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

1

|Ω|
∑
i,j

ΓijFij

 = Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|
⟨Γ,F ⟩

 . (29)

Using Hölder’s inequality, the right-hand side (R.H.S.) of (29) can be bounded by

Eσ

 sup
|X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|
⟨Γ,F ⟩

 ≤ Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|
∥Γ∥2∥F ∥∗

 . (30)

According to (28) and (30), the Rademacher complexity can be bounded as follows:

Rℓ(F) ≤ Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

B
|Ω|

∥E∥1

+ Eσ

 sup
∥X∥∗≤X

∥P
A⊥B⊥ (X)∥∗≤P

Lℓ

|Ω|
∥Γ∥2∥F ∥∗

 . (31)

Based on Lemma 10 and Lemma 11 in (Shamir & Shalev-Shwartz, 2014) and Definition B.2, the expression in (31) can be
further bounded by:

Rℓ(F) ≤ B√
t
+

2CLℓ

√
t(
√
m+

√
n)

|Ω|
. (32)

Then, we set t as the optimal minimizer for the R.H.S. of (32), i.e., t = |Ω|B
2CLℓ

√
t(
√
m+

√
n)
, we get

EΩ[Rℓ(F)] ≤

√
9ClℓXB(

√
m+

√
n)

|Ω|
. (33)

In summary, after combining (26) and (33), we have

EΩ[Rℓ(F)] ≤ min

{
2LℓQSP

√
log 2N

|Ω|
,

√
9ClℓXB(

√
m+

√
n)

|Ω|

}
,

which concludes the proof of Lemma 3.2.

C. Extending the Generalization Bound to MSE
The generalization error bound established in Theorem 3.3 is independent of the sampling distribution. In this part, we
show how this distribution-free bound can be extended to the mean squared error (MSE), which is widely used in matrix
completion.

In Theorem 3.3, we provide a generalization error bound that holds under any sampling distributions. It is important to note
that the definition of the generalization error L(X) depends on the given sampling distribution, i.e.,

L(X) = E(i,j)∼p [ℓ(Xij , Rij)] .

In particular, for squared loss under uniform sampling, L(X) corresponds to the MSE:
MSE(X) = E(i,j)∼U

[
(Xij −Rij)

2
]
.

To clarify the connection between the bound of L(X) in Theorem 3.3 and MSE—a key evaluation metric in matrix
completion—we have the following analysis. Under the squared loss, one can find that the difference between L(X) and
MSE is that L(X) is expectation under an arbitrary sampling distribution p, while MSE assumes the uniform distribution U .
From Theorem 3.3, we denote the bound of L(X) as W , then

L(X) = E(i,j)∼p

[
(Xij −Rij)

2
]
≤ W.

Applying the total variation distance bound on expectation for discrete distributions, we obtain:
E(i,j)∼U

[
(Xij −Rij)

2
]
≤ E(i,j)∼p

[
(Xij −Rij)

2
]
+ 2M · TV (U, p) ≤ W + 2M · TV (U, p),

where M is the upper bound of (Xij −Rij)
2, and TV (U, p) represents the total variation distance between the uniform and

arbitrary sampling distributions. This result extends our bound to MSE under arbitrary sampling distributions.
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D. Discussion about the Number of Observations
We first provide a detailed derivation of Corollary 3.4. Recalling the Theorem 3.3, we have

L(X) ≤ L̂(X) + B

√
log(1/δ)

2|Ω|
+ 2min

{
2LℓQSP

√
log 2N

|Ω|
,

√
9CLℓXB(

√
m+

√
n)

|Ω|

}
.

Considering the ϵ-error recovery, i.e.
L(X) = E(i,j) [ℓ(f(i, j), Rij)] ≤ ϵ,

for any ϵ > 0, then we let

L(X) ≤ L̂(X) + B

√
log(1/δ)

2|Ω|
+ 2min

{
2LℓQSP

√
log 2N

|Ω|
,

√
9CLℓXB(

√
m+

√
n)

|Ω|

}
≤ ϵ. (34)

As discussed in Section 3, the empirical error is a relatively well-controlled quantity. Therefore, we do not consider the
impact of this term here. Then (34) can be expressed as follows:

B

√
log(1/δ)

2|Ω|
+ 2min

{
2LℓQSP

√
log 2N

|Ω|
,

√
9CLℓXB(

√
m+

√
n)

|Ω|

}
≤ ϵ. (35)

After separating the term Ω in (35), we have

B
√

log(1/δ)

2ϵ2
+ 2min

{
2LℓQSP

√
log 2N

ϵ2
,

√
9CLℓXB(

√
m+

√
n)

ϵ2

}
≤
√

|Ω|. (36)

We handle the two terms in the minimum of (36) separately. As an example, we only consider the first term. For the second
term,the approach is the same as the first term. Specifically, we have the following

B
√

log(1/δ)

2ϵ2
+ 4LℓQSP

√
log 2N

ϵ2
≤
√
|Ω|.

Taking the square of both sides of the above expressing gives(
B
√

log(1/δ)

2ϵ2
+ 4LℓQSP

√
log 2N

ϵ2

)2

≤ |Ω|. (37)

Then, expanding the square operation in (37) yields

B2 log(1/δ)

2ϵ2
+ 2B · 4LℓQSP

√
log(1/δ)

2ϵ2

√
log 2N

ϵ2
+ 16L2

ℓQ2S2P2 log 2N

ϵ2
≤ |Ω|. (38)

By ignoring the constant terms in (38) that are independent of the matrix size N and lower-order terms, we can derive the
following conclusion for the number of observations:

|Ω| = O
(
P2logN

)
. (39)

Similarly, by handling the second term in (36), we obtain the following:

|Ω| = O

(
X 2

√
N

ϵ2

)
. (40)

Combining (39) and (40), we draw the conclusion in Corollary 3.4:

|Ω| = min

{
O

(
P2 logN

ϵ2

)
, O

(
X 2

√
N

ϵ2

)}
.

We provide a detailed discussion of Corollary 3.4 under different side-information scenarios. For simplicity in our analysis,
we focus on one of the two lower bounds, as this is sufficient to demonstrate the effectiveness of our model.

• When the side information is perfect, we focus on the first lower bound. P remains invariant with matrix dimension
N , then the sample complexity required is O(logN). This result is consistent with the result of (Xu et al., 2013),
where it is proved that O(logN) observations are required for the matrix completion task by solving IMC. However,
in (Xu et al., 2013), it is assumed that the observed positions are uniformly distributed, which facilitates the analysis
using convex optimization techniques. In our proof, we leverage theories from PAC learning, thereby avoiding any
assumptions regarding the distribution of the observed positions.
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• When we have incomplete side-information, we focus on the first lower bound. The sample complexity required
is O(P2 logN), where P decreases as the completeness increases. Moreover the sample complexity decreases
quadratically with the value of P .

• When we have no side information, we focus on the second lower bound. We get X = O(
√
N) as a reasonable

assumption (Shamir & Shalev-Shwartz, 2014), then the entire sample complexity is O(N2/3), which is consistent
with the conclusion of standard matrix completion without any assumption of sampling distribution (Shamir &
Shalev-Shwartz, 2014).

It is evident that our conclusions apply to the more general matrix completion problems existing in the literature, for the
reason that our model differs from traditional decomposition-based models (Yang et al., 2020; Chiang et al., 2015). We
focus not only on the components after decomposition but also on the overall low-rank property of the matrix.

E. The details of Algorithm 1
The Detailed Derivation of Closed-Form Solutions: In this section, we provide a detailed derivation of the closed-form
solutions for Algorithm 1. Recalling (14) in Section 4

L(X,Y ,M1,M2, β) =∥X∥∗ + λ∥Y ∥∗ +
β

2
∥PΩ(X)− PΩ(R)∥2F +

β

2
∥Y − PA⊥B⊥(X)∥2F

+ ⟨M1,PΩ(X)− PΩ(R)⟩+ ⟨M2,Y − PA⊥B⊥(X)⟩,
then we solve X in (15) and Y in (16) separately.

Update X:
Xk+1 = argmin

X
L(X,Y k,Mk

1 ,M
k
2 , β)

= argmin
X

∥X∥∗ +
β

2
∥PΩ(X)− PΩ(R)∥2F +

β

2
∥Y k − PA⊥B⊥(X)∥2F + ⟨Mk

1 ,

PΩ(X)− PΩ(R)⟩+ ⟨Mk
2 ,Y

k − PA⊥B⊥(X)⟩.
Adding constant terms 1

2β ∥M
k
1 ∥2F and 1

2β ∥M
k
2 ∥2F and completing the square, we have:

Xk+1 = argmin
X

∥X∥∗ +
β

2
∥PΩ(X)− PΩ(R)∥2F + ⟨Mk

1 ,PΩ(X)− PΩ(R)⟩+ 1

2β
∥Mk

1 ∥2F

+
β

2
∥Y k − PA⊥B⊥(X)∥2F + ⟨Mk

2 ,Y
k − PA⊥B⊥(X)⟩+ 1

2β
∥Mk

2 ∥2F

= argmin
X

∥X∥∗ +
β

2
∥PΩ(X −R) +

Mk
1

β
∥2F +

β

2
∥PA⊥B⊥(X)− Y k +

Mk
2

β
∥2F . (41)

The presence of both nuclear norm terms and quadratic terms in the objective function complicates the overall problem,
making it challenging to achieve convergence through iterative methods. However, in practical implementations, we often
do not require each iterative step to be solved to high precision for the algorithm to remain viable. Building on this principle,
we propose approximating the subproblems by linearizing the quadratic terms of the objective function.

Specifically, we use the following approximate strategy to handle ∥PΩ(X−R)+
Mk

1

β ∥2F and ∥PA⊥B⊥(X)−Y k+
Mk

2

β ∥2F :

f(X) ≈ f(Xk) + ⟨gk,X −Xk⟩+ 1

τ
∥X −Xk∥2F .

where f is differentiable at Xk, gk is the gradient at Xk, and τ > 0 is the proximal parameter.

Applying the approximate strategy for the second and third parts of (41), we have:

∥PΩ(X −R) +
Mk

1

β
∥2F ≈ ∥PΩ(X

k −R) +
Mk

1

β
∥2F + 2 < PΩ(X

k −R+
Mk

1

β
),X −Xk > +

1

τ
∥X −Xk∥2F ,

∥PA⊥B⊥(X)− Y k +
Mk

2

β
∥2F ≈ ∥PA⊥B⊥(Xk)− Y k +

Mk
2

β
∥2F + 2 < PA⊥B⊥(Xk − Y k +

Mk
2

β
),X −Xk >

+
1

τ
∥X −Xk∥2F .
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Substituting the results back to (41), we obtain:

Xk+1 ≈ argmin
X

∥X∥∗ +
β

2
∥PΩ(X

k −R) +
Mk

1

β
∥2F + β < PΩ(X

k −R+
Mk

1

β
),X −Xk > +

β

2τ
∥X −Xk∥2F

+
β

2
∥PA⊥B⊥(Xk)− Y k +

Mk
2

β
∥2F + β < PA⊥B⊥(Xk − Y k +

Mk
2

β
),X −Xk > +

β

2τ
∥X −Xk∥2F

=argmin
X

∥X∥∗ + β < PΩ(X
k −R+

Mk
1

β
) + PA⊥B⊥(Xk − Y k +

Mk
2

β
),X −Xk > +

β

τ
∥X −Xk∥2F .

By adding constant and completing square, we have:

Xk+1 ≈ argmin
X

∥X∥∗ +
β

τ
∥X −Xk +

τ

2
PΩ(X

k −R+
Mk

1

β
) +

τ

2
PA⊥B⊥(Xk − Y k +

Mk
2

β
)∥2F

=argmin
X

τ

2β
∥X∥∗ +

1

2
∥X −Xk +

τ

2
PΩ(X

k −R+
Mk

1

β
) +

τ

2
PA⊥B⊥(Xk − Y k +

Mk
2

β
)∥2F . (42)

To solve this problem in (42), we utilize the following lemma.

Lemma E.1. (Cai et al., 2010; Ma et al., 2011b) Given M ∈ Rm×n and δ > 0, let M = UΣV T be the SVD of M and
I be the identity matrix. We define the following “singular value shrinkage” operator:

Sδ(M) := U(Σ− δI)+V T ,

where (a)+ := max{a, 0}. Then, it can be shown that

Sδ(M) = argmin
N

δ∥N∥∗ +
1

2
∥N −M∥2F .

Applying Lemma E.1 to (42), we have the closed form solution for updating Xk+1:

Xk+1 = S τ
2β

(
Xk − τ

2
PΩ(X

k −R+
Mk

1

β
)− τ

2
PA⊥B⊥(Xk − Y k +

Mk
2

β
)

)
.

For the update of Y ,

Y k+1 = argmin
Y

λ∥Y ∥∗ + ⟨Mk
2 ,PA⊥B⊥(Xk+1)− Y ⟩+ β

2
∥PA⊥B⊥(Xk+1)− Y ∥2F .

Adding constant terms and completing square, we have

Y k+1 = argmin
Y

λ

β
∥Y ∥∗ +

1

2
∥Y − PA⊥B⊥(Xk+1)− Mk

2

β
∥2F .

The update for Y k+1 is considerably simpler than that for Xk+1, and thus we do not require linearization. By applying
Lemma E.1, we have

Y k+1 = Sλ
β

(
PA⊥B⊥(Xk+1) +

Mk
2

β

)
.

For the regularization parameter β, we adopt an incremental strategy to accelerate algorithm convergence. Specifically, we
define a growth factor ρ and an upper limit βmax. During each iteration, β is updated as β = ρ · β until β reaches βmax, at
which point the growth stops.The updates of M1 and M2 follow the standard update rules in the ADMM algorithm.

In summary, we have:

Xk+1 = S τ
2β

(
Xk − τ

2
PΩ(X

k −R+
Mk

1

β
)− τ

2
PA⊥B⊥(Xk − Y k +

Mk
2

β
)

)
,

Y k+1 = Sλ
β

(
PA⊥B⊥(Xk+1) +

Mk
2

β

)
,

Mk+1
1 = Mk

1 + βk(PΩ(X
k+1)− PΩ(R)),

Mk+1
2 = Mk

2 + βk(Y k+1 − PA⊥B⊥(Xk+1)),

βk+1 = min{βmax, ρβ
k}.

Therefore, we have completed the detailed form of Algorithm 1.

Computational Complexity of Algorithm 1: For a target matrix R ∈ Rm×n and side information A ∈ Rm×d, B ∈ Rn×d
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(for convenience, here we assume rA = rB = d), the per-iteration complexity of the linear-ADMM algorithm for OCMC
consists of three parts:

• Calculating PA⊥B⊥(X) : O(min(dmn+ dm2, dmn+ dn2)).

• Singular value shrinkage: O(min(m2n, n2m)).

• Matrix inner product: O(mn).

The total complexity is dominated by the full SVD in singular value shrinkage step, i.e., O(min(m2n, n2m)). For large-scale
problems, we can replace the full SVD with more efficient methods, such as randomized SVD and Lanczos method, whose
complexities are O(mn+ r2m+ r3) and O(rmn), respectively, where r is rank of R.

F. More Experiments
To further validate the effectiveness, robustness, and generalizability of the proposed OCMC model, we present several
additional experiments in this appendix. These include analyses of the relationship between completion accuracy and the
completeness of side information, the sampling rate required to achieve high-accuracy completion, the impact of noisy side
information on performance, the comparison between OCMC and DirtyIMC under fully complete side information, and a
comprehensive evaluation on multi-label learning datasets. All synthetic data are generated following the setup described in
Section 5 of the main text, and all reported results are averaged over 10 independent runs to ensure statistical reliability.

Additional Results for Figure 2: To further support the observations in Figure 2, we conduct additional experiments using
matrices with different ranks. The nuclear norms of PA⊥B⊥(R) and PA⊥B⊥(X) are summarized in Table 5.

Table 5. Nuclear norm of orthogonal complement under different completeness levels of side information.

Completeness level 0 0.2 0.4 0.6 0.8 1

r = 5
Target matrix 1± 0 0.66± 0.05 0.40± 0.03 0.22± 0.03 0.08± 0.01 0± 0
Random matrix 1± 0 0.99± 0.004 0.98± 0.007 0.97± 0.005 0.96± 0.013 0.94± 0.01

r = 15
Target matrix 1± 0 0.67± 0.02 0.48± 0.02 0.24± 0.01 0.07± 0.01 0± 0
Random matrix 1± 0 0.96± 0.005 0.94± 0.004 0.90± 0.005 0.87± 0.007 0.84± 0.01

As observed from Table 5, with the increase of completeness level, the nuclear norm of the target matrix shows a sharper
decrease compared to the random matrix, which is consistent with the results in Figure 2.

Accuracy VS. Completeness: In Figure 6, we evaluate the completion accuracy of the proposed OCMC method across
different completeness levels under a fixed sampling rate. In this experiment, the target matrix is a 100× 100 rank-10 matrix,
and the sampling rate is fixed at 25%. Here, the DirtyIMC method is selected as the baseline for comparison.

From the results in Figure 6, we can observe that the completion error for both models decreases as the completeness of the
side information increases. The error obtained by OCMC is consistently lower than that of DirtyIMC, indicating that the
proposed OCMC can utilize incomplete side information more effectively.

Sampling Rate for 10%-Error Completion: In Table 6, we investigate the sampling rates required by different models
to achieve a specific completion accuracy. It is worth noting that high accuracy is often crucial in applications such as
high-precision positioning (Xiong et al., 2023) and some signal processing tasks (Zhou et al., 2023). In this experiment, we
set the target completion accuracy to a relative error of 10% and compare the sampling rate needed by OCMC, DirtyIMC,
and SVT under three completeness levels of side information: low (20%), medium (50%), and high (80%).
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Figure 6. Error VS. Completeness level of side information with 25% sampling rate.

Table 6. Sampling rates required by different models to achieve 10%-error under varying completeness levels of side information.

ACCURACY COMPLETENESS SVT MAXIDE DIRTYIMC OCMC

10% LOW(20%) 0.3903 NONE 0.3402 0.3168
MEDIUM(50%) 0.3912 NONE 0.3135 0.2692

HIGH(80%) 0.3980 NONE 0.2124 0.1853

As shown in Table 6, for any given completeness level, OCMC consistently requires the fewest samples to achieve the target
10% completion error, outperforming the benchmark methods. Specifically, OCMC uses approximately 4% fewer samples
on average than DirtyIMC. In contrast, the SVT algorithm, which does not utilize side information, consistently demands
more samples than both OCMC and DirtyIMC. Furthermore, the Maxide algorithm fails to reach the target accuracy across
all settings, which is consistent with the findings in the synthetic experiments discussed in Section 5.

Effect of Noisy Side Information: To explore the robustness of the proposed OCMC under noisy side information cases,
we conduct a experiment by adding different level of Gaussian noise into the incomplete side information, and compare
the completion error. In our experiment, the target matrix is a 100 × 100 rank-10 matrix, and the completeness level is
50%. The side information matrices A and B are corrupted by additive noise matrices EA and EB , whose entries are i.i.d.
N (0, α2/m) and N (0, α2/n), respectively. The results are summarized in Table 7.

Table 7. Completion error with varying noise level under different sampling rates.

NOISE LEVEL α = 0 α = 0.1 α = 0.3 α = 0.5

SAMPLING RATE=0.1 0.689 0.697 0.753 0.842
SAMPLING RATE=0.15 0.515 0.523 0.601 0.751
SAMPLING RATE=0.2 0.319 0.324 0.422 0.551

As shown in Table 7, OCMC can still be adapted to such scenarios and maintain reasonable performance by adjusting the
parameter λ in (7) appropriately. In such cases, as the noise level increases, the side information becomes less helpful for
matrix completion. For the extreme case when the side information is severely corrupted, we can set λ = 0, and the OCMC
model will reduce to the standard matrix completion.

Performance under Complete Side Information: In Table 8, we compare the completion errors of OCMC and DirtyIMC
in recovering a 100× 100 rank-10 matrix with fully complete side information. Since DirtyIMC is designed for scenarios
with noisy side information, we assume that the side information matrices are corrupted by Gaussian noise. Specifically, the
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noise matrices EA and EB have i.i.d. entries drawn from N (0, 0.12/m) and N (0, 0.12/n), respectively.

Table 8. Completion errors of OCMC and DirtyIMC with 100% complete side information.

SAMPLING RATE 0.10 0.15 0.20 0.25 0.30 0.35 0.40

OCMC 0.1359 0.0781 0.0310 0.0128 0.0083 0.0062 0.0010
DIRTYIMC 0.1384 0.0963 0.0329 0.0156 0.0103 0.0075 0.0032

As shown in Table 8, when the side information is complete, the proposed OCMC still outperforms DirtyIMC. However,
the performance gap between DirtyIMC and OCMC is smaller compared to the case with incomplete side information (as
illustrated in Figure 4). This is because, for the OCMC model with complete side information, the dominance of PA⊥B⊥(X)
among the last three components in Table 1 is reduced. On the other hand, the problem formulation of DirtyIMC is

min
M ,N

∥M∥∗ + λ∥N∥∗ s.t. PΩ(AMB⊤ +N) = PΩ(R),

where the matrix N represents the sum of the last three components in Table 1. This formulation treats all three components
equally. Although the contribution of PA⊥B⊥(X) in the OCMC formulation becomes less dominant with complete side
information, OCMC still benefits from focusing on it, rather than treating all three components equally.

Notably, the OCMC model is primarily designed for scenarios with incomplete side information, which reflects most
real-world situations as shown in Section 5.4. While OCMC shows reduced advantage over DirtyIMC under complete side
information, it significantly improves completion accuracy and robustness when the side information is incomplete.

Complete Table for Multi-Label Learning: From the complete results in Table 9, it can be observed that, among a total of
55 experimental categories, the OCMC model achieved 43 first-place rankings and 11 second-place rankings. Moreover, 43
first-place rankings and 49 second-place rankings were obtained by the OCMC, FNNC and DirtyIMC models. This further
highlights the significant potential of models that account for imperfect side information in multi-label learning scenarios.
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Table 9. Comparison of algorithms on all dataset with varying sampling rates ω.

DATASET ω% SVT MAXIDE DIRTYIMC FPC OCMC FNNM

ARTS 10% 0.3500 0.5746 0.4591 0.3402 0.5249 0.5126
30% 0.4639 0.6435 0.6416 0.5012 0.7206 0.6825
50% 0.6053 0.6784 0.7648 0.6103 0.8358 0.7625
70% 0.7271 0.6991 0.8584 0.7592 0.9029 0.8326
90% 0.8695 0.7135 0.9266 0.8763 0.9596 0.9115

BUSINESS 10% 0.4963 0.8614 0.6245 0.8423 0.7629 0.8425
30% 0.5806 0.8817 0.7622 0.8901 0.9159 0.8952
50% 0.6932 0.8953 0.8400 0.9335 0.9531 0.9312
70% 0.7840 0.9038 0.8942 0.9612 0.9751 0.9580
90% 0.9190 0.9092 0.9345 0.9724 0.9866 0.9769

COMPUTERS 10% 0.3594 0.6600 0.4165 0.5721 0.5796 0.5782
30% 0.4602 0.7254 0.5642 0.6610 0.7626 0.7236
50% 0.5868 0.7586 0.6900 0.7381 0.8594 0.8023
70% 0.7271 0.7796 0.7973 0.8131 0.9229 0.9036
90% 0.8471 0.7941 0.8857 0.8863 0.9608 0.9236

ENTERTAINMENT 10% 0.3623 0.6528 0.5274 0.3602 0.5867 0.5768
30% 0.5134 0.6758 0.6975 0.4822 0.7527 0.7126
50% 0.6158 0.7222 0.8058 0.6153 0.8634 0.8036
70% 0.7321 0.7566 0.8861 0.7352 0.9205 0.8623
90% 0.8392 0.7775 0.9433 0.8562 0.9598 0.9026

EDUCATION 10% 0.3791 0.6001 0.4994 0.4152 0.5637 0.5523
30% 0.4919 0.6569 0.6767 0.5274 0.7170 0.6823
50% 0.5975 0.6870 0.7915 0.6322 0.8294 0.7625
70% 0.7429 0.7163 0.8787 0.7523 0.9056 0.5426
90% 0.8547 0.7280 0.9384 0.8463 0.9521 0.9036

HEALTH 10% 0.4623 0.7472 0.5185 0.4891 0.6459 0.6437
30% 0.5409 0.7974 0.6800 0.6102 0.8225 0.7982
50% 0.6332 0.8207 0.7853 0.7143 0.9067 0.8523
70% 0.7521 0.8357 0.8663 0.8059 0.9483 0.8962
90% 0.8513 0.8469 0.9267 0.8853 0.9724 0.9470

REFERENCE 10% 0.3152 0.6494 0.4899 0.3132 0.5510 0.5260
30% 0.4836 0.7285 0.6556 0.4317 0.7424 0.7132
50% 0.5985 0.7663 0.7678 0.5733 0.8436 0.8211
70% 0.7225 0.7907 0.8567 0.7082 0.9143 0.8652
90% 0.8385 0.8087 0.9280 0.8372 0.9501 0.9125

RECREATION 10% 0.3574 0.5859 0.4847 0.3982 0.5301 0.5241
30% 0.4356 0.6694 0.6652 0.5152 0.7126 0.6782
50% 0.5726 0.7103 0.7852 0.6306 0.8271 0.7721
70% 0.7154 0.7364 0.8732 0.7532 0.9071 0.8623
90% 0.8352 0.7545 0.9360 0.8643 0.9520 0.9152

SOCIAL 10% 0.3851 0.7472 0.4855 0.2365 0.6432 0.6105
30% 0.5149 0.7975 0.6508 0.3823 0.7744 0.7685
50% 0.6248 0.8207 0.7650 0.5309 0.8769 0.8362
70% 0.7261 0.8357 0.8552 0.6656 0.9356 0.8742
90% 0.8424 0.8469 0.9243 0.8212 0.9648 0.9322

SCIENCE 10% 0.2736 0.5321 0.3970 0.2512 0.4625 0.4352
30% 0.4159 0.6338 0.5811 0.4283 0.6811 0.6251
50% 0.5624 0.6831 0.7173 0.5572 0.8019 0.7325
70% 0.7027 0.7153 0.8277 0.6971 0.8961 0.8251
90% 0.8374 0.7372 0.9124 0.8352 0.9443 0.8996

SOCIETY 10% 0.3513 0.5989 0.4811 0.2752 0.5457 0.5412
30% 0.4523 0.6657 0.6474 0.4285 0.7152 0.6852
50% 0.5963 0.7036 0.7665 0.5606 0.8268 0.7652
70% 0.7024 0.7281 0.8572 0.6983 0.9010 0.8365
90% 0.8462 0.7459 0.9258 0.8256 0.9507 0.9021
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