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Abstract001

Named Entity Recognition (NER) and Named002
Entity Linking (NEL) are core tasks in entity003
extraction, yet their robustness is limited when004
applied to noisy documents, such as those gen-005
erated by Optical Character Recognition (OCR)006
over historical documents. Although large lan-007
guage models (LLMs) have shown strong zero-008
shot and few-shot performance on NER and009
NEL tasks, prior work has largely focused010
on using LLMs as direct predictors. In this011
study, we investigate the feasibility of using012
LLMs as evaluators to estimate the quality of013
NER/NEL outputs in the absence of human-014
annotated ground truth. Focusing on OCRed015
texts where gold labels are scarce, we design016
and analyze supervised approaches to improve017
LLMs’ quality estimation. We design super-018
vised based methods to improve quality judg-019
ments from LLMs and systematically compare020
their alignment with gold labels. Experiments021
on the HIPE-2020 benchmark across English,022
French, and German languages demonstrate023
that fine-tuned LLMs provide reliable estimates024
of output quality. Our findings suggest that025
LLM-based evaluation can support quality con-026
trol and enable evaluation in noisy settings. Our027
source code is publicly available at XXX1028

1 Introduction029

The digitization of historical documents has sig-030

nificantly advanced research in the humanities, so-031

cial sciences, and archival studies by converting032

vast collections of handwritten and printed records033

into machine-readable formats. This transforma-034

tion relies heavily on Optical Character Recogni-035

tion (OCR) technologies, which enable automated036

text extraction from scanned images and facilitate037

large-scale search, and analysis. However, histor-038

ical documents present substantial challenges for039

OCR due to diverse layouts, physical degradation,040

1To be provided after paper publication.

and low-resource languages, resulting in noisy and 041

error-prone outputs (Nguyen et al., 2019). 042

With the increasing digitization of large-scale 043

document collections across domains such as his- 044

torical archives, government records, and scientific 045

literature, there is a growing need to assess the qual- 046

ity of these digital texts—especially when they are 047

used as input to downstream tasks like NER and 048

NEL. However, in many real-world scenarios, the 049

ground truth annotations for these tasks are missing, 050

making direct evaluation of extraction quality dif- 051

ficult. Traditional text-level metrics such as Word 052

Error Rate (WER) and Character Error Rate (CER), 053

while commonly used to evaluate transcription or 054

OCR quality, are not well-suited for assessing the 055

impact on NER or NEL performance, as shown in 056

work (Hamdi et al., 2023). These metrics fail to 057

capture task-specific errors that affect entity iden- 058

tification and linking. This highlights the need for 059

alternative, task-aware and reference-free evalua- 060

tion methods that can better estimate the utility and 061

reliability of digitized documents in the context of 062

entity-centric NLP applications 2. 063

Despite these challenges, digitized historical cor- 064

pora offer valuable opportunities for large-scale 065

entity extraction (EE). NER and NEL can reveal 066

patterns and relationships within unstructured his- 067

torical texts despite facing difficulties due to ortho- 068

graphic variation, shifting grammar, and evolving 069

entity references, which lead to degraded perfor- 070

mance compared to modern datasets (Hamdi et al., 071

2023). Recent LLMs, including GPT-3.5, GPT- 072

4 (Achiam et al., 2023), and LLaMA (Grattafiori 073

et al., 2024), have been found to be successful in 074

entity extraction (Tudor et al., 2025), yet their per- 075

2For example, NLB system (Goh, 2017) mistakes “MoST”
(intended to reference the "Museum of Shanghai Toys") with
the word “most” in general text, falsely implying that a mu-
seum is referenced in the text. In large-scale applications such
as historical research or public information portals, such errors
could distort timelines, misrepresent affiliations, or incorrectly
suggest connections that never existed.
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formance varies in low-resource or historical docu-076

ment settings (González-Gallardo et al., 2023b).077

The main problem is that the scarcity of gold-078

standard annotations in historical domains limits su-079

pervised training and evaluation for information ex-080

traction. This scarcity is due to several challenges081

specific to historical texts, including OCR errors,082

archaic language, and non-standardized spelling,083

which complicate reliable annotation. Moreover,084

the lack of clear annotation guidelines, sparse exist-085

ing labels, and the need for domain expertise make086

the creation of gold-standard datasets both difficult087

and resource-intensive.088

In response to this limitation, we advocate a089

novel approach that reframes the problem: rather090

than relying on annotated data for training or eval-091

uation, we fine-tune LLMs to act as quality esti-092

mators that assess the plausibility and correctness093

of NER and NEL outputs produced by external094

systems applied to OCRed historical documents.095

Instead of comparing outputs to gold annotations,096

our approach allows fine-tuned LLMs to internally097

assess extraction quality using linguistic and con-098

textual signals learned during training. Our work099

explores whether LLMs can effectively serve as a100

proxy for the reliability assessment of information101

extraction from imperfect OCR data.102

The contributions of our paper are three-fold:103

• We are the first to formulate the task of us-104

ing LLMs as quality estimators for NER and105

NEL outputs in OCRed historical documents,106

particularly in the absence of gold-standard107

annotations.108

• We investigate the feasibility of estimating109

the quality of NER and NEL results without110

relying on human-annotated ground truth, em-111

ploying a fine-tuning strategy with LLMs and112

a transformer-based language model (encoder-113

based model).114

• We perform a comparative analysis of LLM-115

based quality estimators against conventional116

confidence measures, demonstrating that fine-117

tuned LLMs can more accurately capture con-118

textual and historical uncertainties in EE.119

Our results suggest that LLMs, when carefully120

adapted, can serve not only as extractors but also121

as effective evaluators of historical text processing122

quality, even across multiple languages. This capa-123

bility paves the way for scalable, annotation-free124

methods in digital humanities research, enabling 125

more inclusive and multilingual exploration of his- 126

torical corpora where gold-standard annotations are 127

scarce or nonexistent. 128

The remainder of this paper is organized as fol- 129

lows: Section 2 reviews related work on NER, 130

NEL, and LLM-based output estimation. Section 3 131

introduces our problem formulation and presents 132

the proposed modeling approach. Section 4 de- 133

scribes the experimental setup, including data con- 134

struction, synthetic supervision, and evaluation pro- 135

tocols. Finally, Section 6 offers a discussion of the 136

findings and concludes the paper. 137

2 Related work 138

Since the main focus of our paper is evaluating 139

the performance of EE tasks, specifically NER and 140

NEL, we first discuss these tasks and then review 141

related work on estimation using LLMs. 142

NER tasks Recent work has explored the ap- 143

plication of LLMs to NER, moving beyond tradi- 144

tional token- or span-level classification approaches 145

(Nadeau and Sekine, 2007; Hanh et al., 2021; Liu 146

et al., 2021; Sun et al., 2024; Moncla and Zeghidi, 147

2025). LLM-based methods require distinct strate- 148

gies due to their generative nature and contextual 149

reasoning abilities. Zhang et al. (2024) propose 150

a hybrid framework that integrates a fine-tuned 151

local NER model with an LLM via an uncertainty- 152

aware linking mechanism: the local model handles 153

low-uncertainty predictions, while high-uncertainty 154

cases are delegated to the LLM for classifica- 155

tion. Wang et al. (2023) reformulate NER as a 156

text-to-text generation task, leveraging in-context 157

learning and instruction prompting (Tran et al., 158

2024a) to extract entity mentions. To reduce hal- 159

lucinated outputs, a self-verification step is intro- 160

duced for post-hoc validation. In the context of 161

historical documents, where OCR noise and lin- 162

guistic variation are prevalent, recent studies have 163

employed transformer-based models (Boroş et al., 164

2020; González-Gallardo et al., 2023a), while more 165

recent efforts have begun to explore the applicabil- 166

ity of LLMs to such settings (González-Gallardo 167

et al., 2024). These studies highlight the need for 168

robust adaptation strategies for noisy, low-resource 169

historical corpora. 170

NEL tasks State-of-the-art (SOTA) NEL ap- 171

proaches are predominantly transformer-based (Wu 172

et al., 2019; De Cao et al., 2022; Shavarani and 173
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Sarkar, 2023; Yamada et al., 2022). De Cao et al.174

(2022) model NEL as a sequence-to-sequence gen-175

eration task, where entities are produced token176

by token using an auto-regressive decoder. To177

ensure valid entity identifiers, they incorporate a178

constrained beam search guided by a prefix tree179

constructed from a knowledge base and introduce180

language marginalization techniques to enhance181

both training and inference. In contrast, Shavarani182

and Sarkar (2023) frame NEL as a token classifica-183

tion task, assigning entity links at the token level184

and aggregating predictions for efficient mention185

level linking. The use of LLMs for NEL is still186

emerging and primarily supports context enrich-187

ment or disambiguation in noisy settings (Vollmers188

et al., 2025).189

Although LLMs show promising performance,190

their effectiveness diminishes when applied to191

historical OCRed documents (González-Gallardo192

et al., 2023b, 2024).193

LLMs as quality estimators Beyond task per-194

formance, LLMs have been used as estimators and195

evaluators for various NLP tasks, including simulat-196

ing human-like judgment (Li et al., 2024), machine-197

generated text prediction (Tran et al., 2024b), out-198

put quality estimation (Lee and Lee, 2023), and199

confidence or uncertainty modeling (Liu et al.,200

2024). For instance, Kocmi and Federmann (2023)201

show that LLMs can be prompted to assess machine202

translation quality without reference translations,203

achieving SOTA performance at the system level.204

This has been widely cited as a breakthrough in205

reference-free quality estimation. Similar uses of206

LLMs for scoring and critiquing output have been207

demonstrated in tasks such as question answering208

(Lee et al., 2024) and dialogue systems (Krumdick209

et al., 2025). These trends suggest that LLMs can210

serve not only as generators for NER/NEL outputs211

but also as meta-models that assess the correctness212

and reliability of other system predictions. How-213

ever, such approaches remain underexplored for214

tasks like NER and NEL, particularly when applied215

to noisy or OCR-degraded inputs.216

To address this gap, we investigate the use of217

LLMs as quality estimators for downstream NER218

and NEL systems operating on noisy OCR input,219

without relying on ground truth annotations. Our220

approach aligns with broader efforts to build NLP221

models that are robust, interpretable, and effective222

in low-resource, high-noise environments.223

3 Problem Formulation 224

Let x ∈ X denote an OCRed input sentence, and 225

let e ∈ E be the corresponding output of an EE 226

system (e.g., predicted entity tags or entity links). 227

The true performance metric (e.g., F1 score) for this 228

input-output pair is denoted by y ∈ [0, 1], and our 229

objective is to learn a function pθ : X ×E → [0, 1], 230

parameterized by θ, such that: 231

ŷ = pθ(x, e) ≈ F1(x, e) (1) 232

This formulation casts the performance estima- 233

tion problem as a regression task, where the model 234

predicts the evaluation score directly from the input- 235

output pair. 236

3.1 Analysis Model 237

We assume a regression-based approach for testing 238

the performance of EE systems, with a focus on 239

NER and NEL. Our goal is to approximate the eval- 240

uation metric (e.g., F1 score) of a model’s output 241

without requiring ground truth labels at inference 242

time. 243

Our analysis model consists of three primary 244

components: (1) joint input encoding, (2) feature 245

projection, and (3) regression output. An overview 246

is illustrated in Figure 1. The OCRed texts are first 247

processed by the external NER/NEL model to gen- 248

erate entity recognition and linking results. These 249

outputs, along with the original OCRed texts, are 250

then integrated in the Join module to form a uni- 251

fied representation for feature extraction. The final 252

output is the predicted F1 score of the task. The 253

following sections provide a detailed breakdown of 254

each step in the pipeline. 255

Input Representation The input to the model is 256

constructed by combining the OCRed text sentence 257

x with the EE system output e. We represent this 258

combination as a serialized textual form: 259

x̃ = Join(x, e) 260

where Join denotes a deterministic function for 261

merging x and e. Join is used as simple text con- 262

catenation, while e includes EE predictions and EE 263

confidences (probability). The dataset is enriched 264

with synthetic data to ensure a broader range of 265

sample variations. Further details can be found in 266

Section 4.1. 267

Feature Encoding The combined input x̃ is 268

passed to a pretrained language encoder Encoderϕ, 269
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Figure 1: Overview of regression-based EE performance estimation.

which maps it to a fixed-dimensional latent repre-270

sentation:271

h = Encoderϕ(x̃) ∈ Rd (2)272

where ϕ are the encoder parameters (e.g., from273

BERT, RoBERTa, or LLMs), and h can be ex-274

tracted from a designated token (e.g., [CLS]) or by275

using mean/max pooling over token embeddings.276

Regression Head A feed-forward linear projec-277

tion layer transforms the encoded representation h278

into a scalar logit:279

z = w⊤h+ b, w ∈ Rd, b ∈ R (3)280

Output Activation To constrain the prediction281

ŷ to lie in the interval [0, 1], we apply the sigmoid282

function:283

ŷ = σ(z) =
1

1 + exp(−z)
(4)284

Training Objective The model is trained on a285

dataset of EE input-output pairs {(xi, ei, yi)}Ni=1,286

where each yi is the gold evaluation score (e.g., F1)287

computed with reference annotations. We mini-288

mize a standard regression loss:289

L(θ) = 1

N

N∑
i=1

ℓ(ŷi, yi) (5)290

where ŷi = pθ(xi, ei), and ℓ is a pointwise loss291

function, such as Mean Squared Error (MSE) or292

Mean Absolute Error (MAE):293

ℓ(ŷ, y) = (ŷ − y)2 or |ŷ − y|294

This approach enables label-free inference by295

generating performance estimates at test time with-296

out requiring ground truth labels. It supports task-297

agnostic representation, allowing the method to298

generalize across a wide range of EE tasks by 299

jointly encoding both the input text and the sys- 300

tem’s output. Additionally, it facilitates model- 301

agnostic evaluation, as it treats the output as an 302

opaque signal, making the method compatible with 303

any underlying EE system. 304

4 Experimental Setup 305

We conduct the analysis on the HIPE-2020 dataset, 306

which was developed as part of a shared task on 307

NER and NEL in historical documents. The dataset 308

consists of three language-specific subsets: French 309

(fr), German (de), and English (en), comprising 310

newspaper articles from Switzerland, Luxembourg, 311

and the United States, spanning the 19th to 20th 312

centuries. Due to the limited number of annotated 313

documents available for training dataset each sub- 314

set, we generate synthetic data to improve model 315

robustness. In the cross-lingual setting, we focus 316

on HIPE-2020-en, which lacks a dedicated training 317

set. Overall, this dataset contains 17,553 linked 318

entity mentions annotated with a fine-grained label 319

schema, including nested entities, mention compo- 320

nents, and metonymic senses. 321

4.1 Dataset Construction 322

Due to the digitization process, the OCRed text of 323

historical documents is often affected by various 324

types of noise. To simulate such degradation and 325

improve the model’s robustness to real-world OCR 326

errors, we adapt the approach proposed by Hamdi 327

et al. (2023) to simulate common errors. Ground 328

truth texts are first rendered as clean images and 329

subsequently corrupted with noise. OCR engines 330

(Tesseract and Google Cloud) are used to analyze 331

the most common errors. Further details of the 332

process, including the tools used, are provided in 333

Appendix E. These common errors are used subse- 334
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quently in the following perturbations:335

Replacement: Random characters or words are336

substituted with visually or semantically similar337

alternatives, mimicking mis-recognitions.338

Deletion: Characters or entire words are ran-339

domly removed, simulating cases in which parts340

of the text are lost or unreadable due to poor scan341

quality or document damage.342

Insertion: Extraneous characters or words are343

inserted to reflect noise artifacts, such as smudging,344

overlapping lines, or layout issues that may cause345

OCR engines to hallucinate content.346

Each perturbation is applied under three different347

conditions: (i) to entity tokens only, (ii) to the sur-348

rounding context of entities, and (iii) to all tokens349

in the text. These noise injection strategies allow350

us to systematically evaluate the model’s robust-351

ness to varying levels and scopes of OCR-induced352

distortion, particularly in the context of named en-353

tity recognition and linking in historical texts. The354

distribution of training, validation, and test samples355

after pre-processing is provided in Table 1.356

Split fr de en

Original Train Set 5,532 3,310 N/A
Synthetic Train Set 71,916 43,030 N/A
Validation Set 1,227 1,165 N/A
Test Set 1,420 1,186 528

Table 1: Data distribution across splits (original, syn-
thetic, validation, and test) for NER and NEL estimation
on the HIPE-2020 dataset.

4.2 EE Model357

NER We adopt the XLM-RoBERTa3 model358

(XLM-R)4. This model is fine-tuned separately on359

the training split of each dataset. It serves as the360

external model for obtaining NER results, as it361

achieves the best results for the NER task across362

each dataset. Since the HIPE-2020 dataset is anno-363

tated at the document level and often exceeds the364

model’s maximum token length, we segment docu-365

ments into smaller units for training. Notably, we366

observe from the annotation files that entity labels367

3xlm-roberta-large-finetuned-conll03-english
4We use XLM-RoBERTa as it is a multilingual version of

RoBERTa, pretrained on 100 languages, including those used
in our experiments. Unlike RoBERTa, which is English-only,
XLM-R has shown superior performance on non-English and
zero-shot retrieval tasks (Tran et al., 2022; Tran, 2024).

can span sentence boundaries, with some annota- 368

tions relying on context from preceding sentences. 369

To preserve such dependencies, we split documents 370

at the subgraph level, each subgraph consists of a 371

few sentences. Specifically, a split occurs at sen- 372

tence boundaries where the following line does 373

not begin with an entity tag (i.e., not prefixed with 374

I-*). 375

NEL For the NEL task, we adapt the multilin- 376

gual mGENRE model De Cao et al. (2022) fine- 377

tuned on five historical datasets (AJMC, HIPE- 378

2020, TopRes19th, NewsEye, and SoNaR) avail- 379

able at the footnote link5 as external model for 380

obtaining NEL results. To ensure consistency, we 381

apply the same document segmentation strategy 382

used in NER to prepare data for NEL. 383

4.3 Regression Model 384

For the feature encoding model, we perform the 385

analysis using two different approaches: LLMs- 386

based and encoder-transformer-based. We use 387

[CLS] token as output. For LLMs-based mod- 388

els, we use LoRA (Hu et al., 2022) with r = 64, 389

α = 16, and dropout 0.1. The confidence score is 390

taken from the last softmax layer of the external 391

NER and NEL model. For other BERT-based mod- 392

els, we perform full finetuning with a lr = 1e− 5. 393

Figure 2: Join function output sample for NER and
NEL tasks.

For the Join function in Section 3, we use the 394

following format: 395

"OCR: ..." +"| Task results:..." +"| Confidence: ...". 396

The training samples for NER and NEL tasks can 397

be found in Fig. 2. 398

5impresso-project/nel-mgenre-multilingual

5

https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english
https://huggingface.co/impresso-project/nel-mgenre-multilingual


Model HIPE2020-de HIPE2020-fr HIPE2020-en
MSE (%) MAE (%) MSE (%) MAE (%) MSE (%) MAE (%)

HIPE2020-de as the training set

BERT (Devlin et al., 2019) 6.96 10.35 4.80 8.34 7.89 13.00
XLM-R (Conneau et al., 2019) 6.28 9.57 5.04 8.34 8.40 13.15
RobBERT (Delobelle et al., 2020) 6.88 10.17 4.72 8.18 7.84 12.55
LLaMA3.2 1B (Grattafiori et al., 2024) 6.06 9.85 4.67 8.68 6.51 10.16
LLaMA3.2 3B (Grattafiori et al., 2024) 6.33 10.11 4.56 9.07 6.12 11.71
Mistral 7B (Jiang et al., 2023) 7.23 10.28 5.50 8.70 8.74 13.43
Qwen2 7B (Yang et al., 2024) 5.92 9.99 5.02 9.65 7.16 13.14
Gemma 7B (Team et al., 2024) 6.55 10.11 5.05 8.83 7.26 12.42
LLaMA 8B (AI@Meta, 2024) 5.62 9.74 4.66 8.35 5.88 11.93

HIPE2020-fr as the training set

BERT (Devlin et al., 2019) 6.38 10.21 4.60 8.31 6.51 11.43
XLM-R (Conneau et al., 2019) 6.77 10.24 4.62 7.99 6.90 11.24
CamemBERT (Delobelle et al., 2020) 5.83 10.56 4.44 8.41 6.45 11.51
LLaMA3.2 1B (Grattafiori et al., 2024) 6.60 10.00 4.62 7.95 6.98 11.88
LLaMA3.2 3B (Grattafiori et al., 2024) 6.29 9.72 4.66 7.80 6.39 10.99
Mistral 7B (Jiang et al., 2023) 6.24 10.04 4.56 8.18 6.34 11.05
Qwen2 7B (Yang et al., 2024) 6.09 10.08 4.42 8.13 5.86 10.81
Gemma 7B (Team et al., 2024) 6.94 10.13 5.10 8.39 6.46 10.45
LLaMA 8B (AI@Meta, 2024) 6.62 10.00 4.58 8.05 6.00 10.56

Table 2: Performance evaluation on NER tasks given HIPE2020-de and HIPE2020-fr as the training datasets,
respectively. The highest score is highlighted in bold, and the second-highest is underlined.

5 Results399

5.1 Comparative Analysis of Models400

In this section, we evaluate the performance of401

various model types, including BERT-based mod-402

els and LLMs. For the HIPE2020-fr dataset, we403

use CamemBERT (Martin et al., 2019), a vari-404

ant of BERT pretrained specifically for French.405

For HIPE2020-de, we adopt RobBERT (Delobelle406

et al., 2020), a BERT-based model tailored for Ger-407

man. As a result of the ablation study, in this exper-408

iment, all models are fine-tuned using the synthetic409

version of each data set, EE (results and probabil-410

ity) and optimized with MSE loss. The results are411

summarized in Table 2 and Table 3.412

NER Tasks As shown in Table 2, for the model413

trained on the HIPE2020-de dataset, LLaMA 8B414

consistently achieves the best performance across415

nearly all settings, particularly in the German416

dataset. The less parameter LLaMA 1B also shows417

strong in both monolingual and cross-lingual gener-418

alization, closely LLaMA 8B. Nonetheless, the per-419

formance differences between models are relatively420

minor, typically within 1%. This suggests that,421

under the current data constraints, overall model422

performance is effectively equivalent. One likely423

explanation for this limitation is the small size of424

the test set, which reduces the visibility of perfor-425

mance disparities.426

While performance drops slightly in cross-427

lingual settings, the decrease is modest, indicat-428

ing a certain degree of language dependency in429

the task. Notably, LLMs display greater robust-430

ness across languages, in contrast to BERT-based431

models, which suffer substantial performance 432

degradation in out-of-language scenarios. More- 433

over, when evaluating on HIPE2020-en, models 434

trained on HIPE2020-fr outperform those trained 435

on HIPE2020-de an observation consistent with 436

prior findings (Tran, 2024). Furthermore, BERT- 437

based models exhibit higher error rates on English 438

across both training settings. For example, XLM- 439

R trained in German yields an MAE of 13.15%, 440

compared to 10.16% for LLaMA 1B. 441

NEL Tasks BERT-based models generally 442

achieve strong performance in monolingual or 443

closely related cross-lingual settings, particularly 444

when the target language is well-represented in 445

the pretraining corpus. For instance, RobBERT 446

trained on the HIPE2020-de dataset yields the 447

lowest error on German (MSE: 2.61%, MAE: 448

5.17%). In contrast, CamemBERT performs signif- 449

icantly worse on the French dataset, suggesting that 450

model–language alignment alone is insufficient for 451

robust performance in all settings. 452

Interestingly, similar to observations in NER, we 453

find that models trained on French transfer more 454

effectively to English test sets than those trained on 455

German. This suggests that the French training data 456

may provide richer contextual signals that facilitate 457

better generalization across languages. 458

Despite the enhanced cross-lingual capabilities of 459

LLMs, even the best-performing models continue 460

to exhibit relatively high error rates. This high- 461

lights the intrinsic challenges of historical entity 462

recognition/linking in multilingual contexts and un- 463

derscores the need for more robust architectures 464

and richer, more diverse annotated datasets. 465
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Model HIPE2020-de HIPE2020-fr HIPE2020-en
MSE (%) MAE (%) MSE (%) MAE (%) MSE (%) MAE (%)

HIPE2020-de as the training set

BERT (Devlin et al., 2019) 2.96 5.77 8.94 13.49 4.15 8.47
XLM-R (Conneau et al., 2019) 2.85 5.28 9.75 13.65 3.47 6.49
RobBERT (Delobelle et al., 2020) 2.61 5.17 8.67 13.45 5.95 10.24
LLaMA3.2 1B (Grattafiori et al., 2024) 3.37 7.04 8.25 13.95 4.89 9.87
LLaMA3.2 3B (Grattafiori et al., 2024) 4.00 7.11 8.58 13.76 6.23 10.01
Mistral 7B (Jiang et al., 2023) 3.16 5.76 8.96 12.89 4.75 8.10
Qwen2 7B (Yang et al., 2024) 3.86 7.65 7.89 13.45 6.24 11.28
Gemma 7B (Team et al., 2024) 3.41 6.66 8.31 13.84 4.59 9.02
LLaMA 8B (AI@Meta, 2024) 3.03 6.80 7.58 13.23 4.81 9.74

HIPE2020-fr as the training set

BERT (Devlin et al., 2019) 2.84 6.05 8.67 12.83 2.68 5.99
XLM-R (Conneau et al., 2019) 2.85 5.81 9.05 13.42 2.66 5.76
CamemBERT (Delobelle et al., 2020) 4.25 7.29 8.33 12.27 6.43 10.04
LLaMA3.2 1B (Grattafiori et al., 2024) 3.56 7.38 7.56 12.23 2.85 7.03
LLaMA3.2 3B (Grattafiori et al., 2024) 2.97 6.53 8.74 13.45 2.87 7.51
Mistral 7B (Jiang et al., 2023) 3.19 5.71 7.90 11.18 4.51 7.63
Qwen2 7B (Yang et al., 2024) 3.01 6.05 8.29 12.89 3.35 7.02
Gemma 7B (Team et al., 2024) 2.91 6.32 7.27 12.02 3.75 8.00
LLaMA 8B (AI@Meta, 2024) 3.19 6.25 7.80 12.31 3.27 6.79

Table 3: Performance evaluation on NEL tasks given HIPE2020-de and HIPE2020-fr as the training dataset,
respectively. The highest score is highlighted in bold, and the second-highest is underlined.

5.2 Ablation study466

In this part, we conduct experiments with several467

setup components using probability from the EE468

task, different loss functions (MAE, MSE), and syn-469

thetic data. In this setup, we use the same model,470

LLaMA 3.2 1B (Grattafiori et al., 2024)6, utilizing471

synthetic data and the MAE objective function for472

a fair comparison. The overview results can be473

seen in Table 4.

Task Setting HIPE2020-de HIPE2020-fr
MSE (%) MAE (%) MSE (%) MAE (%)

NER
[1] 8.25 10.34 6.24 8.43
[2] 7.02 9.85 5.83 8.49
[3] 6.06 9.85 4.62 7.95
[4] 9.19 11.2 7.33 9.57

NEL

[1] 5.27 7.19 11.19 14.21
[2] 3.69 6 9.51 12.83
[3] 3.37 7.04 7.56 12.23
[4] 5.63 7.03 14.05 16.36

Table 4: Ablation study for NER and NEL tasks where
[1] is OCRed + EE results; [2] OCRed + EE (results +
prob ; [3] OCRed + EE (results + prob) + MSE loss ;
[4] OCRed + EE (results + prob) + MSE loss + W/o
synthetic.

474

For prediction NER task, the addition of proba-475

bilistic information (EE prob) leads to an approxi-476

mately 1-2% improvement in both MSE and MAE477

scores, indicating a moderate but consistent ben-478

efit. This can be attributed to the fact that high-479

confidence predictions usually correspond to com-480

mon words or clear entities, while low-confidence481

ones often indicate ambiguity or errors. As such,482

confidence serves as a valuable signal for models483

6meta-LLaMA/LLaMA-3.2-1B

to account for uncertainty. Further replacing the 484

standard configuration with MSE loss yields addi- 485

tional improvements over MAE loss, reinforcing 486

the suitability of MSE as the optimization objec- 487

tive in this setting. Incorporating synthetic training 488

data boosts performance further, achieving up to a 489

2% improvement compared to models using only 490

original data. 491

For the prediction of the NEL task, similar im- 492

provements can be observed when using synthetic 493

data and optimizing with MAE loss; however, the 494

resulting error patterns differ. The task exhibits 495

lower error rates for HIPE2020-de, around 3% in 496

MSE and 7% in MAE, but significantly higher error 497

rates for HIPE2020-fr. This inconsistency can be 498

attributed to the EE results of the external model, 499

which is analyzed in the following section. 500

5.3 Analysis 501

Effect of NER/NEL model Table 5 illustrates 502

the relationship between the performance of 503

NER/NEL models and their corresponding pre- 504

diction F1 scores. It is evident that the relatively 505

low performance of the NEL component in the 506

HIPE2020-fr dataset leads to a lower overall pre- 507

diction F1 score. Conversely, as the performance 508

of the NEL model improves, particularly through 509

fine-tuning the F1 score demonstrates a near-linear 510

improvement. This trend highlights the dependency 511

of the overall prediction accuracy on the effective- 512

ness of the underlying NEL module. 513

Effect of input length Figure 3 presents the 514

distribution of prediction errors in varying input 515

lengths, measured by the number of tokens. The 516
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(a) NER

(b) NEL

Figure 3: Prediction Error Across Token Count Bins for predictions of NER (a) and NEL (b) with LLaMA 1B.

HIPE2020-fr HIPE2020-de

Strict fuzzy Strict fuzzy

NER
L3i (winner) 0.808 0.907 0.794 0.876
XML-R * 0.828 0.917 0.798 0.885
F1 Errors ~8% ~10%

NEL
L3i (winner) 0.602 0.620 0.506 0.525
mGENRE** 0.661 0.661 0.863 0.863
F1 Errors ~12% ~6%

Table 5: NER and results (F1 score as in Ehrmann et al.
(2022)) for HIPE2020-fr and HIPE2020-de.
* Fine-tuned on seperate HIPE2020-fr/HIPE2020-de
training data.
** Fine-tuned on multiple historical dataset, evaluated
on both HIPE2020-fr and HIPE2020-de.

lower error rates observed in short sentences can517

probably be attributed to the absence of named en-518

tities or to the overall simplicity of these inputs,519

which makes them easier for the model to handle.520

In contrast, we observe a notable increase in errors521

for inputs containing approximately 300 to 500 to-522

kens. This may be due to the increased complexity523

and information density in longer sequences, which524

can overwhelm the model and lead to confusion.525

For inputs of medium length, error rates tend to be526

relatively low, with some exceptions that appear to527

result from a small number of outlier samples.528

6 Conclusion 529

In this work, we investigate the use of LLMs as 530

estimators for EE tasks, specifically NER and NEL, 531

applied to historical OCRed texts. Rather than us- 532

ing LLMs purely as task solvers, our approach re- 533

frames the estimation process as a regression prob- 534

lem, leveraging the models to provide assessments 535

of EE output quality in the absence of explicit 536

ground truth. Such a role is especially valuable 537

for uncertainty modeling and performance estima- 538

tion in low-resource or cross-lingual contexts. 539

Our findings indicate that LLM-based estimation 540

holds significant promise for assessing the quality 541

of downstream EE tasks. Interestingly, results sug- 542

gest that these tasks are relatively language inde- 543

pendent, with LLMs demonstrating stable perfor- 544

mance across different source and target languages. 545

However, despite their generalization ability, even 546

LLMs-based models still produce relatively high 547

error rates, especially on noisy OCRed text, high- 548

lighting the persistent challenge of robust entity 549

extraction in historical, multilingual settings. 550

Future work may explore leveraging agentic 551

LLMs capable of self-assessing prediction con- 552

fidence through function calling, prediction con- 553

fidence in an end-to-end manner, facilitating im- 554

proved uncertainty calibration. 555
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7 Limitations556

One limitation of the current prediction approach557

lies in the lack of interpretability inherent to LLM-558

based estimations. Since the models act as black559

boxes, it is difficult to understand or trace why a560

particular quality judgment is produced. This raises561

concerns about the transparency and reliability of562

the estimation process, especially in sensitive or563

decision-critical settings. One promising direction564

to address this is the use of reasoning models in565

the context of agentic scenarios, capable of gener-566

ating not only outcome scores but also explanatory567

rationales. Such models could be further trained568

or aligned to produce consistent, high-quality es-569

timations that might eventually serve as a proxy570

ground truth for benchmarking or guiding down-571

stream tasks. Incorporating these models as judg-572

ment agents, rather than opaque predictors, could573

significantly enhance both the accountability and574

utility of LLM-based evaluation frameworks.575

8 Ethics Statement576

This work does not pose any ethical issues. All577

the data and tools used in this paper are publicly578

available under the CC BY-NC-SA 4.0 license. No579

private data or non-public information is used in580
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A NER and NEL results on HIPE2020-fr,807

HIPE2020-de dataset808

In this section, we present the results of both NER809

and NEL tasks on the HIPE2020-fr and HIPE2020-810

de datasets.811

A.1 NER812

For NER, all chosen models are trained in a super-813

vised fine-tuning manner, as listed in Table 6.814

For the LLaMA model, we experiment with two815

different configurations: [1] unmasked - where816

we remove all attention masks from the trans-817

former blocks (i.e., converting it into a bidirectional818

encoder-like structure), and [2] causal - where we819

retain the original causal masking. Our approach820

for supervised fine-tuning of LLaMA follows the821

method described in Li et al. (2023).822

Precision Recall F1 score

HIPE2020-fr

L3i (winner) 78.6 83.1 80.8
XML-R 78.17 82.71 80.38
XML-R-large* 81.68 85.21 83.40
bert-large-cased 59.23 68.94 63.72
Unmask LLaMA2 7b 73.03 78.22 75.44
Unmask LLaMA3 3b 72.55 78.34 75.33
Causal LLaMA2 7b 51.24 62 56.11
Causal LLaMA3 3b 50.70 59.60 54.78

HIPE2020-de

L3i (winner) 78.4 80.5 79.4
XML-R 67.05 73.97 70.33
XML-R-large* 78.55 80.79 79.66
bert-large-cased 54.05 56.19 55.09
Unmask LLaMA2 7b 56.61 61.73 59.06
Unmask LLaMA3 3b 67.71 74.16 70.19
Causal LLaMA2 7b 51.50 50.94 51.22
Causal LLaMA3 3b 42.8 49.03 45.48

Table 6: Performance comparison of different models
for NER tasks. * represents -finetuned-conll03-english.

A.2 NEL 823

For NEL, we report the results of the pre-trained 824

model for each data set in Table 7.

Precision Recall F1 score

HIPE2020-fr

NIL-BSL 20.9 20.9 20.9
SBB 70.7 51.5 59.6
L3i (winner) 60.2 60.2 60.2
Finetuning mGENRE 66.1 66.1 66.1

HIPE2020-de

NIL-BSL 48.1 31.4 38.0
SBB 60.3 40.5 50.6
L3i (winner) 48.1 48.1 48.1
Finetuning mGENRE 86.3 86.3 86.3

Table 7: Performance comparison of different models
for NEL task on HIPE2020-fr

825

B Synthetic sample results 826

In Fig. 4, we show synthetic samples with different 827

strategies: [1] for entity tokens only, [2] for the sur- 828

rounding context of entities, and [3] for all tokens 829

in the text (random). 830
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Figure 4: Illustration of synthetic data generated using different strategies. The red words indicate changes from the
ground truth text.

C English Translation of the German831

Figure832

Figure 5 provides an English translation of Figure 2833

from the main text, originally presented in German.834

Figure 5: Join function output sample for NER and
NEL tasks. (English translation)

D Visualization prediction835

The worst-case predictions for the NER and NEL836

tasks are demonstrated from Fig. 6 to 9.837

E Synthetic common OCR errors838

To simulate realistic noise conditions, we first con-839

verted clean text corpora into synthetic document840

images (referred to as clean images). These im-841

ages were then degraded using AuGraphy (Groleau842

et al., 2023)7 to introduce document-level distor- 843

tions. The following parameters were applied to 844

simulate degradations: brightness texturization, 845

dirty rollers (applied twice to enhance streaking 846

artifacts), subtle noise, lighting gradient, and low- 847

ink periodic lines. These effects mimic real-world 848

conditions such as uneven lighting, faded ink, pa- 849

per aging, and scanner noise. The degraded images 850

were subsequently processed by multiple OCR en- 851

gines to extract noisy text. This approach enabled 852

us to capture a wide range of OCR error types and 853

analyze their frequency and distribution. An illus- 854

tration of the text-to-image degradation process is 855

shown in Fig. 10. 856

7https://github.com/sparkfish/augraphy
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Figure 6: Visualization errors on prediction NER on HIPE2020-de

Figure 7: Visualization errors on prediction NER on HIPE2020-fr
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Figure 8: Visualization errors on prediction NEL on HIPE2020-de

Figure 9: Visualization errors on prediction NEL on HIPE2020-fr

Figure 10: Illustration of the synthetic degradation pipeline: clean text is rendered as an image and corrupted with
various degradations.
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