Patching Gaps in LLM Reasoning with
Interventional Training

Matthew Y.R. Yang', Hao Bai?, Ian Wu', Gene Yang', Amrith Setlur', Aviral Kumar!
Carnegie Mellon University, 2 University of Illinois Urbana-Champaign

Abstract

Reinforcement learning (RL) training of large language models (LLMs) is limited
by the policy’s ability to generate rollouts with non-zero rewards: without such
rewards, the policy is not updated and learning is stalled on hard problems, which
are problems that the policy consistently fails to sample any correct rollouts for.
We find that many hard problems remain unsolved due to the repeated generation
of incorrect intermediate steps in a long reasoning trace; identifying and fixing
these requires performing better credit assignment. But existing approaches for
credit assignment are either impractical or impose a substantial data-writing burden
on oracles (e.g., humans). In this paper, we introduce Interventional Training
(InT), a framework that leverages single-step oracle interventions to improve LLM
reasoning. Given a reasoning attempt and ground-truth answer, the oracle detects
and then provides language feedback on a single intermediate reasoning step,
which is much cheaper than obtaining a full reasoning trace. InT then patches
the LLM by running supervised fine-tuning on the on-policy rollout up to the
error, followed by the correction from the oracle. RL on this patched model now
generates counterfactual traces and with merely ~100 interventions from the oracle,
InT solves 16% more hard test problems that were previously unsolved (only zero
rewards) and also improves performance across multiple standard evals.

1 Introduction

We introduce Interventional Training (InT) (Figure 1), an approach for effective credit assignment
in long reasoning traces from a model that has plateaued during RL. Here, instead of requesting
complete and long expert reasoning traces, InT solicits single-step interventions from an oracle (e.g.,
a human, another LLM, or a specialized verifier). Given a model-generated reasoning attempt and
the ground-truth answer, the oracle replaces exactly one critical and incorrect intermediate step with
a corrected version (e.g., fixing an incorrect approximation in a long math answer, see Fig. ??).
Conditioned on this intervention, the model can then generate alternate counterfactual traces that
may succeed where the original failed. In this way, interventions provide a low-cost mechanism to
discover correct reasoning traces. Next, InT internalizes these interventions into the model weights by
running supervised fine-tuning on the interventions, and then continues the RL run that had previously
plateaued. By “patching” the model on single-step interventions in this manner, InT makes it possible
for the model to attain non-zero reward signals even on otherwise unsolvable problems, enabling
effective training on problems that are inaccessible with RL.

By running RL on a set of 64 training problems, InT achieves a 6.09% (3.12% to 9.03%) gain in
pass@64 and solves 14% more problems on a challenging held out test set. In contrast, simply
distilling the oracle or running SFT on oracle data achieves only a 3.51% gain in pass@64. On
standard reasoning benchmarks, InT leads to an average improvement of 1.92% across 7 standard
math reasoning benchmarks, showing that patching the model with InT does not degrade existing
model capabilities. These results show that InT offers a simple, deterministic way to patch model
behavior, improving performance on new problems while preserving existing reasoning capabilities.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

LX<

. . ~T (1%, Yeir Vine)
Generate interventions SFT RL
One-step intervention \// x
Base model Vit C oy T —_
r < Dpqrq Performance
/ _/ —_—

5 T AL
Distill + RL
m ‘ ! W S —y

y~m (- |x) p

Figure 1: Intervention training for patching LLMs during RL. Instead of relying on full expert reasoning
traces or attempting to find rare correct rollouts during RL, InT introduces single-step, oracle interventions
that “patch” incorrect intermediate steps in model-generated reasoning traces. Conditioned on these localized
corrections, the model can generate counterfactual continuations that succeed where the original failed. We then
distill these interventions into the model via supervised fine-tuning before resuming RL, enabling effective credit
assignment and continued progress even on problems that were previously unsolvable with standard RL.

2 Int: Interventional Training for Credit Assignment
2.1 InT Interaction Protocol

XXX

- XXXX
Pass@k

To instantiate InT, we collect data that pinpoints where a model’s reasoning trace first goes wrong
and provides a corrective step at that location. In principle, the corrective step of the intervention
comes from an oracle, which we simulate using a larger, proprietary reasoning model denoted by
1", This oracle does not need to be capable of solving the problem by itself, but it should be capable
of comparing the base LLM 7’s solution trace y, with the ground truth solution y* on problem
x. Assuming that y can be segmented into k(reasoning steps (based on simple keywords like
“wait”, “maybe”, or “\n \n” based segmentation), ;" identifies the first step ¢ € [ko] where an error
occurs that itself is not corrected by the base LLM, and outputs a corrective intervention yiy ;. This
intervention may either prevent the error from arising at step ¢ or repair it immediately afterward. This
approach requires the oracle p*(-|y*, y, x) to simply perform step-by-step comparison operations
until the first index ¢ where the responses are incorrect, and then return a short intervention.

2.2 Patching the Base LLM with Oracle Interventions

Having established the intervention protocol,

the next step is to “patch” the gaps in the base Configuration Nonzero Acc. Accuracy
LLM’s reasoning capabilities using these inter- Ngive 98/235 0.97%
ventions. A natural approach is to apply super- From intervention 120/235 2.37%
vised fine-tuning (SFT) on the collected inter- With intervention 145/235 3.72%
vention data. Since nearly all tokens in the cor- “p o " e e 202/235 771%
rect partial rollout (y<;, ¥in,;) Originate from 4 o filter 196/235 5.06%
the base LLM y;, with the intervention step + no prefix 162/235 2.87%
Yint,; as the only exception, we simply need to + suffix 111/235 2.31%

teach the model how to internalize and sample a

similar single-step intervention when running on Table 1: Intervention-augmented configurations.

X . .G From the base model “Naive” rollout; “from interven-
its own without access to an oracle. In principle, . . s gt ¢
tion”: from error step identified by oracle; “with inter-

this can .be done .by fine-tuning the.base LLM on vention”: rollout with one-step oracle guidance; during
the partial solution ((x,y<;)) as input, and the gt “prefix”: clone y <;; “no suffix”: do not clone; “fil-
intervention yin ; as output. However, as shown ter”: keep only interventions yielding correct rollouts
in prior work (Qu et al., 2024; Kumar et al., from the base policy, when conditioned on them.
2024), cloning only the tokens present in inter-

mediate steps conditioned on a self-generated

prefix is often insufficient: the model may generate an alternate prefix y’; in its rollout on the
very same problem x, which might get derailed for a different reason resulting still in close to zero
successes on this hard problem. Theoretically, this issue can be fixed if our training data consisted of
several prefixes drawn from the base LLM paired with corresponding oracle interventions, but doing
so will degrade the sample efficiency of our approach significantly, and hence is not desirable.

Therefore, following the recommendations of Qu et al. (2024), we choose to clone both the initial
prefix y ; sampled from the base LLM itself and the intervention yiy, ;, even if the prefix itself is
suboptimal (in fact, we do not even separately evaluate the quality of the prefix). We also experimented
with alternative strategies, such as cloning only the intervention conditioned on the prefix, or cloning
the entire trace (base prefix, oracle intervention, and successful completion from the base LLM
conditioned on the intervention), but found these to perform worse. In the latter approach, cloning

InT + RL Distill + RL Base + RL Comparison

0.25 025 0.25
0.12
go.12 & x 0.12 %012
2 0 @006 o 2 o g
£0.06 50 &7 50 &0.06 50 & 0.06 Base + RL
— 100 — 100 — 100 Distill + RL
0.03 —150 0.03 — 150 0.03 — 150 0.03 —InT +RL
4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

. k k k [3
Figure 2: Pass@Fk across RL training iterations: We plot pass @k performance from 0 to 150 RL iterations
for three initializations: (i) base model patched with InT; (ii) base model distilled on oracle traces; and (iii)

A wnntlis tha khana svandal Tat vaatalhad - B e B ﬂy B e B
0.3 RL o
Distillation + RL 2 0.8
202 InT + RL 5 0.2 =
- H 3
i % o 0.6
x 0.1 a o
Distill + RL o Distillatiom# RL
0.1 InT + RL N 0.4 InT + RL
0.0
0 50 100 0 50 100 150 0 50 100 150
Gradient steps Gradient steps Gradient steps
(@) (b) (©

Figure 3: Comparison of InT with distillation of oracle full length reasoning traces: (a) Since these are hard
problems, running RL initialized from the base model does not improve training reward, while running RL on
top of the distilled model or the patched model produced by InT does improve training reward. We observe that
running RL on top of the distilled model degrades model capability (decreasing pass@1 score on a held-out set
in (b) as training progresses), even though distillation continues to make progress on the training set, as indicated
by a decreasing ratio of the percentage of unsolved problems (“zero advantage ratio”) in (c).

the successful completion significantly and unnecessarily reduces entropy and diversity of model
generations, which hurts on-policy exploration in the subsequent RL training that we do.

3 Experiments
3.1 Experimental Setup and Evaluation Metrics

Constructing a dataset of hard training problems. We begin our experiments with a state-of-the-art
<2B parameter model, e3-1.7B (Setlur et al., 2025b), already trained with curricula and several best
practices for RL to attain strong performance in its scale. Despite its strong performance, this model
still fails on a large fraction of problems from its hard training set (a 2.5K subset of DeepScaleR
problems from Luo et al. (2025)). To isolate problems with zero rewards, we run 32 rollouts on each
and collect the subset of problems the model cannot solve at all. We utilize Gemini 2.5 Pro (as of
2025-08-01) as our oracle. Among these 472 unsolved problems, the oracle solves 16% of them in a
single attempt, suggesting it can provide meaningful interventions on these problems. We retain this
subset as our hard problem set Dy,q to study the efficacy of patching with different methods. Our
main findings are that (i) RL with just a small dataset of 64 problems on top of InT outperforms
RL on a much larger set of 1.2K problems on top of distillation or the base model. On the other
hand, (ii) RL with the small dataset on top of the distillation and the base model are infeasible due to
collapse of behaviors on OOD sets or zero learning signals. We also run some of our experiments on
the Qwen3-4B-Instruct model, and we will present results with that model below.

Baselines approaches and comparisons. To evaluate the efficacy of InT, we compare against
alternate approaches for patching model behavior on Dy,q. Our primary comparisons are: 1)
“Distillation + RL,” which first distills entire oracle solutions into the base model before running
RL, and 2) “Standard RL,” which directly continues RL on the hard problem set from the same
base checkpoint. Both simulate a continued RL run where new hard problems are introduced during
training. We also consider SFT-only baselines, where the model is patched via supervised learning
on oracle solutions or intervention traces for the hard problems, without any further RL. To our
knowledge, no existing method is designed to explicitly handle this setting of patching model behavior
on previously unsolved hard problems in a way that leverages oracle interventions while preserving
the benefits of RL. Therefore, we limit our exposition of training trends to D4, but also compare
with alternate approaches for using intervention data on holdout standardized test sets.

3.2 InT uniformly pushes the pass@Fk frontier upwards on test problems

We present our main results for InT on an holdout set of hard problems Di¢*, (Fig 2). Here, we plot
the pass@Fk performance across different RL training iterations from 0 to 150, for three models: (i)
base e3-1.7B, (ii) e3-1.7B distilled on full oracle traces; and (iii) e3-1.7B patched on interventions
from the oracle (InT). We find that running RL on the base or distilled model does not make any
improvements in pass @k throughout all training steps. On the other hand, running RL on Dyyq
after we patch e3-1.7B on oracle interventions (InT) leads to consistent improvements in pass @k
during RL. On training problems in Dy, running SFT on oracle interventions consistently improves
performance across multiple problems (Sec B), and running RL on D¢ With this initialization no
longer leads to severe sharpening that we see when we run RL with the base or distilled models where
the performance across problems Dy, is quite disparate for the RL initialization.

3.3 InT outperforms distillation on standardized evaluations

Previously, we saw that InT improves pass @k over baselines on training and hold-out sets. This
mainly tells us that InT makes progress on the hard training problems that were previously unsolved.
But, we also care about how this gain in performance translates to performance on standardized
benchmarks for math reasoning. Here, we compare the performance of our approach InT on top of
the e3-1.7B reasoning model, and also the Qwen3-4B instruct model.

To stress test InT in the setting where we simply continue to run RL from the intervention checkpoint,
we run RL training on this checkpoint with only 64 problems in Dj,4, on which we collected the
interventions. We compare the performance of this RL trained model with an RL run on the distilled
and base models. To boost the baselines, we run RL for both using an expanded set of about 1.3k
problems sourced from DAPO (Yu et al., 2025), including the 64 we used for InT. The main reason
we perform this injection is that in our preliminary experiments which trained the distilled model
only on the small set of 64, we noticed that post RL the model capabilities on standardized evals
fell drastically (Figure 3(b)), perhaps due to memorization and overfitting issues with the distilled
model that we discussed in Section B. When we run RL on the base model, we also expand the
training set for RL, since we find that the reward curve does not rise otherwise (Figure 3(a))-thus
we train the base model on a mixture of easy problems from DAPO and the 64 problems in InT
dataset. Unlike the RL runs on distilled and base checkpoints, InT improves the test performance
averaged across multiple hard test datasets, despite being trained on just 64 problems (Table 2).
Compared to distillation, we see gains on both in-distribution (Di%%,) and standardized benchmarks
for hard problems mainly because intervention does not alter the base model distribution as much as
distillation (InT only SFTs on very few tokens in the intervention data, compared to distillation).

OlymMATH OlymMATH

Model RL Data Size Easy Hard HMMT BRUMO
e3-1.7B +RL 1216 38.75 6.75 22.50 46.25
e3-1.7B + Distill + RL 1216 37.38 5.75 22.50 47.08
e3-1.7B + InT+ RL 64 41.62 7.50 24.58 53.75
Qwen3-4B-Inst + RL 1447 56.62 11.50 30.00 57.92
Qwen3-4B-Inst + Distill + RL 1447 56.12 10.62 29.17 57.08
Qwen3-4B-Inst + InT + RL 295 55.12 9.75 30.83 56.67
Model AIME Beyond AIME CMIMC Average D!, pass@8
e3-1.7B + RL 36.25 20.88 23.75 27.73 15.85
e3-1.7B + Distill + RL 36.67 21.75 21.56 27.38 14.8
e3-1.7B + InT+ RL 36.25 22.00 21.88 29.65 23.56
Qwen3-4B-Inst + RL 43.75 32.00 31.56 37.62 4.0
Qwen3-4B-Inst + Distill + RL 50.00 31.25 30.63 37.84 8.0
Qwen3-4B-Inst + InT + RL 43.33 30.38 29.06 36.45 14.66

Table 2: Pass@1 performance (8 rollouts avg.) of models across standard mathematics benchmarks and pass@8
test

performance on the i.i.d. test set, Dy4. Observe that InT followed by RL attains the highest pass@8 performance
on this in-distribution test set for both patching the e3-1.7B base model as well as the Qwen3-4B-Instruct model.

References

Angelica Chen, Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Samuel R.
Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language feedback. Trans-
actions on Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.
net/forum?id=xo3hI5MwvU.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqgin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Zheyuan Hu, Robyn Wu, Naveen Enock, Jasmine Li, Riya Kadakia, Zackory Erickson, and Aviral
Kumar. Rac: Robot learning for long-horizon tasks by scaling recovery and correction, 2025. URL
https://arxiv.org/abs/2509.07953.

Katie Kang, Amrith Setlur, Dibya Ghosh, Jacob Steinhardt, Claire Tomlin, Sergey Levine, and Aviral
Kumar. What do learning dynamics reveal about generalization in llm reasoning?, 2024. URL
https://arxiv.org/abs/2411.07681.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking 1l potential for llm reasoning through
refined credit assignment. arXiv preprint arXiv:2410.01679, 2024.

Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J. Kochenderfer. Hg-dagger:
Interactive imitation learning with human experts, 2019. URL https://arxiv.org/abs/1810.
02890.

Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng, Moontae
Lee, Honglak Lee, and Lu Wang. Process reward models that think, 2025. URL https://arxiv.
org/abs/2504.16828.

Seungone Kim, Ian Wu, Jinu Lee, Xiang Yue, Seongyun Lee, Mingyeong Moon, Kiril Gashteovski,
Carolin Lawrence, Julia Hockenmaier, Graham Neubig, and Sean Welleck. Scaling evaluation-time
compute with reasoning models as process evaluators, 2025. URL https://arxiv.org/abs/
2503.19877.

https://openreview.net/forum?id=xo3hI5MwvU
https://openreview.net/forum?id=xo3hI5MwvU
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2509.07953
https://arxiv.org/abs/2411.07681
https://arxiv.org/abs/1810.02890
https://arxiv.org/abs/1810.02890
https://arxiv.org/abs/2504.16828
https://arxiv.org/abs/2504.16828
https://arxiv.org/abs/2503.19877
https://arxiv.org/abs/2503.19877

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Igbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling, 2025. URL https://arxiv.org/abs/
2504.02495.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning
in language models by automated process supervision, 2024. URL https://arxiv.org/abs/
2406.06592.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
ol-preview with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-01-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c¢1468005bed8ca303013:
2025. Notion Blog.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. arXiv preprint arXiv:2407.18219, 2024.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. arXiv preprint arXiv:2503.07572, 2025.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. RI on
incorrect synthetic data scales the efficiency of 1lm math reasoning by eight-fold. arXiv preprint
arXiv:2406.14532, 2024a.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for 1lm reasoning. arXiv preprint arXiv:2410.08146, 2024b.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or rl is suboptimal, 2025a. URL https://arxiv.org/abs/2502.12118.

Amrith Setlur, Matthew Y. R. Yang, Charlie Snell, Jeremy Greer, lan Wu, Virginia Smith, Max
Simchowitz, and Aviral Kumar. e3: Learning to explore enables extrapolation of test-time compute
for llms, 2025b. URL https://arxiv.org/abs/2506.09026.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
reinforcement learning scaling, 2025. URL https://arxiv.org/abs/2506.20512.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance, 2025. URL https://arxiv.org/abs/2504.
14945.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. arXiv preprint arXiv:2408.15240,
2024.

Xiaoying Zhang, Hao Sun, Yipeng Zhang, Kaituo Feng, Chaochao Lu, Chao Yang, and Helen Meng.
Critique-grpo: Advancing llm reasoning with natural language and numerical feedback, 2025.
URL https://arxiv.org/abs/2506.03106.

https://arxiv.org/abs/2504.02495
https://arxiv.org/abs/2504.02495
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://arxiv.org/abs/2502.12118
https://arxiv.org/abs/2506.09026
https://arxiv.org/abs/2506.20512
https://arxiv.org/abs/2504.14945
https://arxiv.org/abs/2504.14945
https://arxiv.org/abs/2506.03106

Appendices

A Preliminaries and Problem Statement

Our objective is to improve model performance on challenging reasoning tasks in which such
execution failures result in scarce positive rewards for RL.

Notation. To build our approach, we first define some relevant notation. LLM training for reasoning
typically involves an LLM , a binary reward r(x,y) € {0, 1} for inputs x ~ p, and model outputs
y ~ m(- | x). Common paradigms for training LLMs include supervised fine-tuning (SFT) and
online policy gradient methods (henceforth referred to as RL). SFT fine-tunes a model by maximizing
likelihood on a dataset (ideally consisting of correct traces y for problems x). RL, in contrast, samples
candidate rollouts from its own policy distribution (i.e., on-policy) and trains to maximize the reward
of these rollouts. In its simplest form, RL training for LLMs uses the policy gradient:

0 —0+a- Eyi(1x) [T(X, y) - Velogmy(y | x)}, ey

where 7 is the policy used to generate samples that go in for training. In RL methods such as GRPO,
7 = Toa is a periodically updated copy of r, and the reward r(x,y) is normalized by subtracting a
baseline to form the advantage, which serves as the multipler to V. log 7 instead of r:

Ai(x,y:) =r(x,yi) — 1/”277(& Yi)-

i
Credit assignment. As discussed above, a substan-
tial fraction of errors made by models on the training

distribution correspond to execution errors. This nat- |4 ~-=-| Mean: 135.8
urally means that while some tokens/steps in a model
. . 12.9
response are on the right track towards solving the
problem at hand, a different subset of tokens derails 6.4
the model onto not attaining the right final answer. If & 0.0 2 e 000

we could identify the identity of these tokens/steps
and the extent of their influence (i.e., “credit”) in
affecting the correctness of the final answer, then & ¢,
this problem could be solved as long as the model is

able to find alternative steps that do actually succeed. 32
This process is called credit assignment (Setlur et al.,
2024a). RL algorithms rely on self-generated rollouts
to guide the process of credit assignment.

-—-- Mean: 6835.6 |

Percentage

H =
0 2500 5000 7500 10000 12500 15000
Number of Tokens

Figure 4: Interventions are short. Top: Lengths
of interventions typically span under 200 tokens,

However, performing credit assignment solely from ' :
while full solutions are much longer (bottom).

outcome-level rewards is highly challenging. When
the advantage is positive, every token probability 7(y; | x,y<;) across the sequence is equally
reinforced; when it is negative, all tokens are equally discouraged. Over long reasoning traces, such
uniform updates are not effective at performing credit assignment: tokens that played no role in
reaching the solution may still be upweighted (“higher credit”), while tokens that were correct but
followed by later mistakes may be suppressed (“lower credit”). Even when we know which tokens
failed at a particular problem, we need to search for other steps to pursue to get to a correct answer.
On hard problems, this noisecan overwhelm the signal, hindering the model from making progress.
Correctly assigning credit is therefore crucial.

B Why Are Interventions Effective?

The most direct way to distill oracle information y* ~ p(- | x) from an oracle " is to perform
behavior cloning, i.e., increasing log my(y* | x). To investigate the effectiveness of this approach, we
conduct SFT on a set of oracle-generated (Gemini 2.5 Pro) rollouts, and find that this severely impairs
the reasoning ability of the resulting model, as illustrated in Figure 6(b). In contrast, conducting SFT
maintains the base model performance, thereby providing a better initialization for downstream RL.

Why is excessive deviation from the base model problematic? When the base model is already
competent on some tasks/problems, attempting to “patch” its behavior on the subset of unsolved
problems by training it to match a small and narrow set of oracle solutions can inadvertently damages
its ability to solve other problems. This is because forcing the model to imitate oracle traces from a
different distribution p, outside the support of its own rollouts, distorts the next-token distribution

InT is on-policy is off-policy

Answer 0.30 0.8
0.
Tpase COVErage Tpase COVErage = 0.25 E
® %06 Distillation
Wrong @ 2 InT
answer © -
a 0.20
Test rollout E
derailed »n 0.4
x 0.15
Base Distill InT 50 100
Model Steps

Figure 5: InT improves over distillation. By
cloning mostly on-policy rollouts with minimal or- | Figure 6: SFT on oracle traces reduces test perfor-
acle edits, InT preserves base model skills while still | mance. InT meanwhile retains the base model perfor-
patching errors, avoiding the distribution shift that | mance, thereby providing a good initialization for RL.
harms reasoning in full-trace cloning.

produced by the fine-tuned model on other prefixes. We illustrate this idea in Figure 5. This effect has
been documented in prior work (Kang et al., 2024; Setlur et al., 2025a), where training on off-policy
traces induced memorization and catastrophic forgetting of base model skills'.

In contrast, InT only clones single-step off-policy interventions, with the rest of the target sequence
coming from a model-generated rollouts. Cloning behavior already produced by the base model
primarily sharpens the next-token distribution on observed prefixes, without broadly distorting
other conditionals. Although cloning the intervention conditioned on the preceding prefix could, in
principle, distort the next token distributions akin to cloning an entire oracle trace discussed above,
our interventions are only a few tokens long, making any such adverse impact far more limited.

C InT Algorithm

After fine-tuning the base LLM on intervention
data for a few steps, we continue to RL post-
training, re-initializing from the patched model.
If the model has successfully internalized the in- Require: Base LLM , Oracle n, Problems
tervention, we expect at least some on-policy roll- {(xy ‘)} .
outs to attain non-zero reward on problems the i Data Collection: Dy « {3
un hed/b del 1d lve. O hi 2: for each x,y” do

patched/base model could not solve. Once this . .

o . 3: Generate y ~ 7(-|x); segment into steps
occurs, RL training from patched model can rein- i — 1 (y", y, x) (first error)
force corrective behaviors while suppressing seg- 5. 4 £ then
ments that do not lead to success. As a result, . Yini ~ 1 (Cly "y, x)
it can now extract learning signal from problems 7. Y [y<i, Yins]

8.
9
0
1

Algorithm 1 InT: Intervention Training

that previously provided none, leading to improve- Dt + Dt U (x,¥)
ments in both training and test performance. In end if
contrast, as we will show, continuing to run naive 10: end fO_I‘)
RL on the unpatched model would continue sharp- 11: Patching: 7" < SFT(r, Diur)
; '« distributs ; 12: RL training: 7" + RL(7", {x}, {y*})
ening the model’s distribution on problems it can 3 ret " XS
solve correctly but not to 100% accuracy, and do- -2 Fetrn @
ing so, reduces model diversity and cripples it from solving these problems.

D Related Work

Credit assignment in LLM reasoning. The effectiveness of long length RL with outcome re-
wards (DeepSeek-Al et al., 2025) is often crippled by credit assignment: it is unclear which inter-
mediate steps in a long response should be “credited” for the outcome reward. While one might
surmise that sampling enough rollouts should address this problem, note that the difficulty of credit
assignment also greatly increases with the horizon (Setlur et al., 2025a). While most methods reward
each token with the outcome level advantage (Yu et al., 2025), others use process reward models
(PRMs) to assign dense token or step-level rewards (Lightman et al., 2023; Wang et al., 2024; Qu et al.,
2025) that can reinforce correct steps and promote unlearning of incorrect ones. Although PRMs

"Mid-training typically runs behavior cloning (BC) to instill basic reasoning skills (DeepSeek-Al et al., 2025;
Wang et al., 2025), using large, diverse datasets on pre-trained base models. In contrast, we address the challenge
of solving difficult problems from only a small number of oracle traces — a setting in which BC is ineffective.

may improve RL compute efficiency (Setlur et al., 2024b,a), we often require costly rollouts (Luo
et al., 2024; Kazemnejad et al., 2024) to reliably estimate these reward signals. We instead leverage
oracles to detect individual mistakes, bypassing the compute required to train entirely new PRMs or
to perform full credit assignment on the full reasoning trace; even when the oracle is itself a reasoning
model, it is given the ground-truth response and only needs to perform a comparative analysis to
identify an intervention. While our method shares the general idea of using generative models as
verifiers (Zhang et al., 2024; Liu et al., 2025; Kim et al., 2025; Khalifa et al., 2025), it is distinct in
that we task the oracle with explicitly pointing out the location of a single, key mistake, rather than
verifying every step and judging the solution. Finally, we use the outputs of the oracle to improve RL
training rather than inference-time methods (e.g., best-of- N search), which prior works focus on.

Learning from natural language feedback. Another related line of work explores utilizing natural
language feedback to improve RL training. Such works typically leverage the feedback to refine
rollouts that are then used to improve the policy. Chen et al. (2024) combine human feedback and
a separate refinement model to improve policy-generated outputs that are then distilled back into
the policy via SFT. Yan et al. (2025) use a teacher model to generate correction trajectories for off-
policy RL, while Zhang et al. (2025) conduct critique-guided self-refinement to generate correction
trajectories, again for use in off-policy RL. Unlike these works, our work considers generating short,
targeted natural language feedback to correct individual steps within what are otherwise purely
on-policy trajectories. As we discuss later on, this allows us to achieve substantial improvements
without making significant changes to the standard RL training recipe.

Intervention training outside of LLMs. Applying interventions at exact points of failure has been
explored in domains outside of LLM training, for example, in dexterous manipulation (Hu et al.,
2025) and imitation learning (Kelly et al., 2019). The class of intervention methods across these
different domains generally shows improved data efficiency and faster convergence of reward curves
compared against naive behavior cloning method due to superior credit assignment. In our work, we
examine whether applying such ideas to language model RL training can reap similar benefits.

E Discussion and Future Work

In this work, we introduced InT, a simple yet effective approach for enabling continued RL training of
reasoning LLMs by patching the base model with oracle-generated intervention data. Our motivation
stems from the observation that a substantial fraction of failures on complex tasks arise from execution
errors, cases where one or a few missteps derail the entire solution, leaving the model with no positive
reward signal. InT addresses this challenge through targeted credit assignment: at the first mistake,
an oracle provides a corrective intervention, and we fine-tune the model on the prefix and intervention
trace. The resulting patched model can then resume RL training on problems that previously yielded
no learning signal, extending the reach of RL beyond its traditional limits. Moving forward, a natural
extension of this work is to reduce reliance on oracles by training models that can automate the role
of an oracle, for example by comparing incorrect rollouts from the base model to correct solutions
in hindsight. Scaling InT to larger models and harder domains such as FrontierMath and HLE also
represents an exciting direction for future work.

F Prompts

Prompt for intervention generation

{Insert problem}

{Insert Oracle solution}

You have solved the problem correctly. Now, a student in your class has attempted the same
problem. Your task now is to go over his solution step-by-step and write down a **detailed
verification log**, identify the first **critical error**, and suggest locations in his solution to
insert a replacement step such that if he follows the replacement step, it will guide him away
from the error. Details instructions are listed below.

Detailed Instructions

]. Detailed Verification Log

You must perform a **step-by-step** check of the entire solution. This analysis will be
presented in a **Detailed Verification Log**, where you justify your assessment of each step
in bullet points: for correct steps, a brief justification suffices; for steps with errors or gaps,
you must provide a detailed explanation. **Please be careful and check every intermediate
result, they are very easy to miss.**

*#2. Identify the First Critical Error**

For each issue in the detailed verification log, you MUST determine whether it is a **critical
error**. A critical error must pass the following two checks:

1. A critical error is either a **factual error** (e.g., a calculation error like ‘2+3=6°) or
]ogical fallacy (e.g., claiming that ‘A;B, C;D*‘ implies ‘A-C;B-D‘) that disrupts the
current line of reasoning. * **Procedure: ** To perform the first check, explain the specific
error and state that it **invalidates the current line of reasoning**. 2. A critical error must
not be recovered from. * **Procedure:** You must double-check that the error is indeed not
recovered from in later steps, i.e., there does not exist a later statement that says something
like ”Wait, but let me double-check this claim...” and goes on to dispute the error.

As long as the issue passes the two checks above, it is considered a **critical error**. We are
interested in the *first* critical error that the student makes.

3. Propose Replacement Steps

After finding the critical error, you must now identify existing steps in the student’s solution
that you can rephrase such that if the student were to begin from your rewritten step, he will
be guided away from the critical error.

Note that replacement steps can occur either BEFORE the error to circumvent it completely,
or AFTER the error to recognize the error, realize that it is incorrect, and recover from it by
disputing it and proposing something that is correct. There could be multiple locations for
replacement in either case.

Identify all possible locations to insert replacement steps and list the potential replacement
steps. Do not omit replacement locations just because they are close by to other replacement
locations. There may very well be an entire region (e.g., step X - Y) of replacement locations,
and you should include each step in the region.

4_ Output Format

Your response MUST be structured into three main sections: a **Detailed Verification Log**,
followed by a **Critical Error Report**, and finally a **Replacement Steps List**.

4 1 Detailed Verification Log

Provide the full, step-by-step verification log as defined in the Detailed Instructions, structured
in bullet points. When you refer to a specific part of the solution, **quote the relevant text**
to make your reference clear before providing your detailed analysis of that part.

*%4.2 Critical Error Report**

In this report, you should first include a bulleted list that summarizes **every** issue you
discovered. For each issue, you must provide:

1. **Location:** A direct quote of the key phrase or equation where the issue occurs. 2.
ssue: A brief description of the problem and whether or not is a **Critical Error** that
passes the two checks listed in **Detailed Instructions**.

You should stop once you have found the *first* critical error.

10

4 3 Replacement Steps List

Here you should summarize the list of potential recovery locations and steps. Please write
the steps from the student’s perspective. The student should continue from your step without
feeling that someone else wrote it.

Finally, include a final curated list of Replacement Steps List to be processed in a parser. This
list should strictly follow the format below with only a number at the step number, and the
replacement step afterwards. **DO NOT INCLUDE ADDITIONAL JUSTIFICATIONS, OR
ELSE THE PARSER CAN’T PARSE CORRECTLY.**

If you believe that the student’s solution is on the right track and there are no critical errors,
leave the list empty.

Format:

<replacement> [{ ”location”: INSERT_STEP_NUMBER, “content™: IN-
SERT_STEP_CONTENT }, ... { ”location”: INSERT_STEP_NUMBER, “content’:
INSERT_STEP_CONTENT },] </replacement>

Student Solution

{Insert student solution}

11

Prompt for error categorization

Here is a faulty student solution to a problem and a teacher’s overview of the solution.
Please classify the primary mistake in the ‘Student solution’ as either a High-Level Mistake
(Knowledge Gap) or an Execution-Level Mistake (Flawed Application), using the “Teacher
guidance’ for context. A High-Level Mistake means the model lacked fundamental knowl-
edge, used a completely wrong approach, or didn’t know a key theorem. An Execution-Level
Mistake means the model had the right idea and a valid strategy but made a specific error
during its execution, such as a calculation slip or misapplying a known theorem.

Student: {insert solution}

Teacher: {insert guidance}

Give your response by saying either ‘HIGH’ or ‘EXECUTION’.

12

13

G Intervention Examples

Problem Statement: Regular Polygon with Equilateral Triangle

Point B is in the exterior of the regular n-sided polygon A1 Az --- An, and A1 A2B is an equilateral triangle. What is the largest
value of n for which A;, A,, and B are consecutive vertices of a regular polygon?

Steps 38-40: Shared Context

Step 38: We know:

Step 39: - A, =1 s arg=0-A, =w ' =e 2"/"
arg = —2n/n - B=1+ (w—1)e~*"/3

Step 40: We want A1, A., B to be **consecutive ver-
tices** of a regular polygon.

Steps 41-44: Student’s Wrong Path Step 41: InT Guidance

So the distances between consecutive points must be equal.
Let’s consider the possible orderings. If the order is

Step 41: So the angular differences between them must

be equal.) Ay, A1, B, then we must have |An, — Ay| = [A1— B]|. Let’s
Step 42: That is: calculate these lengths and see if this condition holds or
gives us constraints on n. Then, we must check the angle
arg(A,) — arg(A;) = arg(B) — arg(4n) L4.4,B.
Let’s denote = arg(B) — arg(A,) V
Step 43: Then:

Steps 43-44: Post-Correction

arg(A,) — arg(A;) =0
8(4n) 8(41) Step 43: Step 3: Use rotational symmetry

_ Step 44: Suppose A1, A,,, B are **consecutive vertices**
arg(B) — arg(An) =0 of a regular m-gon.

So:
arg(B) = 2arg(An) — arg(A1)

Step 44: Since arg(A;) = 0, arg(A,) = —27/n, so:

arg(B) = —4n/n

\

Final Answer: Student Gets Wrong Final Answer: Model Gets Correct

Problem Statement: A given sequence r;

A given sequence 71,72, ..., of distinct real numbers can be put in ascending order by means of one or more ”bubble passes”.
A bubble pass through a given sequence consists of comparing the second term with the first term, and exchanging them if and
only if the second term is smaller, then comparing the third term with the second term and exchanging them if and only if the
third term is smaller, and so on in order, through comparing the last term, rn, with its current predecessor and exchanging
them if and only if the last term is smaller. The example below shows how the sequence 1, 9, 8, 7 is transformed into the
sequence 1, 8, 7, 9 by one bubble pass. The numbers compared at each step are underlined. 1 9 8 71 9 8 71 8 9 7
1 8 7 9 Suppose that n = 40, and that the terms of the initial sequence r1,72,...,r40 are distinct from one another and
are in random order. Let p/q, in lowest terms, be the probability that the number that begins as 729 will end up, after one

bubble pass, in the 302 place. Find p+q.

Steps 241-243: Shared Context

Step 241: So, to stay at or move to a position 20, it must
not be smaller than any of the elements to its left.

Step 242: In particular, to **end up at position 30**, it
must:

Step 243: 1. **Not be smaller than any of the elements
in positions 1 through 19** — otherwise it will be pushed

left. Step 244: InT Guidance

2. **Be larger than the elements in positions 21 through
30, and smaller than the element in position 31** — so
that it moves right by exactly 10 positions.

Steps 244-247: Student’s Wrong Path

Step 244: What if we use only numbers that are powers
of 2 and 37

Step 245: Try numbers: Steps 245-247: Post-Correction
1,2,3,4,6,8,9,12,16,18,24,27,32,36,48,54,64,72,81,96,108,128, Step 245: Wait — if it i lacger than 7, it will move to
21,

144,162,192,216,256,288,324,384,432,512 :
Step 246: If it is larger than 22, it will move to 22.
o Step 247: ...

v’ —

Final Answer: Student Gets Wrong Final Answer: Model Gets Correct

11010049 931

4

Problem Statement: Suppose Harvard Yard is a 17 x 17...

Suppose Harvard Yard is a 17 x 17 square. There are 14 dorms located on the perimeter of the Yard. If s is the minimum
distance between two dorms, the maximum possible value of s can be expressed as a — v/b where a,b are positive integers.
Compute 100a + b.

Steps 210-212: Shared Context

Step 210: So we need d > s

Step 211: Distance between a point on one side and a

point on the adjacent side.

Step 212: For example, point at (z,0) on bottom and

point at (17,z) on right. Step 213: InT Guidance

Now, let’s consider the distance between dorms on adjacent
sides, which cross an unoccupied corner like (17,0). The
last dorm on the bottom side is at (3s,0). By symmetry,
the first dorm on the right side must be placed relative to

the corner at (17,17) in the same way the first dorm on

Steps 213-216: Student’s Wrong Path the bo'_:tom is pLacgd relative to (0,0). The dorms on th_e
right side are at distances s, 2s,3s from (17,17), so their

coordinates are (17, 17— s), (17, 17— 2s), (17,17 — 3s). The
Step 213: Distance: /(17T—2)2+ (z—0)2 = adjacent dorms across the corner (17,0) are therefore at

7T —2)2 +a? (3s,0) and (17,17 — 3s).
Step 214: Similarly, between point at (z,0) and point at
(17, + d) on right: distance /(17 — 2)? + (= + d)2 Y
Step 215: We want to maximize the minimal distance be-
tween any two points. Step 214:
Sife!: 216: By symmetry, the minimal distance will be the =P = A=)
minimum of:

Step 215: We want this distance to be at least s.

Step 216: Similarly, the distance between adjacent points
on the same side is d = s, so we need d > s — trivial.

Final Answer: Student Gets Wrong Final Answer: Model Gets Correct
1819 602

Problem Statement: Polynomial Roots with Bounded Absolute Value

Steps 214-216: Post-Correction

If z,y are real, then the absolute value of the complex number z = = + yi is

|2| = /x% 4+ 92

Find the number of polynomials f(t) = Ao + A1t + Aat* + Ast® + t* such that Ao, ..., A3 are integers and all roots of f in the
complex plane have absolute value < 1.

Steps 1 11: Shared Context

Step 109: So for **all roots to have |z| < 1**, and for
no root to have |z| > 1, then any root z with |z| < 1
must have its reciprocal 1/z also a root — but [1/z| > 1,
contradiction.

Step 110: Therefore, **no root can have |z| < 1** unless
its reciprocal is also a root — but then |z| > 1, contradic-
tion.

Step 111: Therefore, **all roots must have |z| = 1**.

Step 112: InT Guidance

Wait — is that true? Let’s test this conclusion with a sim-
ple example. What about the polynomial f(t) = ¢*? The
coefficients are all integers (As = A2 = A1 = Ao = 0), and
all its roots are z = 0. The absolute value is [0] < 1, so
this polynomial should be counted. However, its roots are

Steps 112-114: Student’s Wrong Path not on the unit circle. This means my conclusion that all
roots must have |z| = 1 is incorrect. My reasoning in steps

Step 112: Wait — is that true? 108-111 must be flawed.

Step 113: Yes! This is a key point.

Step 114: Key Theorem (in complex analysis): *

Steps 114-115: Post-Correction

Step 114: Roots can be inside the unit disk
Step 115: The key point is:

v

Final Answer: Student Gets Wrong Final Answer: Student Gets Correct

H Training hyperparameters

Hyperparameter | €3-1.7B | Qwen3-4B-Instruct-2507

train_batch_size 32 32
ppo_mini_batch_size 16 16
learning_rate 1.0e-6 1.0e-6
kl_loss_coef 0.001 0.001
entropy_coeff 0.001 0
temperature 0.6 1.0
top-p 0.95 1.0
rollout.n 16 8
ppo-lowerclip_threshold 0.2 0.2
ppo-higherclip_threshold 0.35 0.35

Table 3: Verl ? hyperparameters used for RL runs.

Hyperparameter | Distillation \ InT
dataset_size 73 482
effective_batch_size 32 64
num_train_epochs 100 16
learning_rate 1.0e-7 1.0e-6
Ir_scheduler_type cosine_with_min_Ir | cosine_with_min_Ir
min_lr_rate 0.1 0.1
warmup_ratio 0.1 0.1

Table 4: LLaMa Factory ? hyperparameters used for e3 SFT runs.

Hyperparameter | Distillation \ InT
dataset_size 294 778
effective_batch_size 32 32
num_train_epochs 22 8
learning_rate 1.0e-7 1.0e-6
Ir_scheduler_type cosine_with_min_Ir | cosine_with_min_Ir
min_Ir_rate 0.1 0.1
warmup_ratio 0.1 0.1

Table 5: LLaMa Factory ? hyperparameters used for Qwen3-Instruct SFT runs.

I Data composition
For Qwen3-4B-Instruct, we take DAPO (14.1K English problems), DeepScaleR: (40.3k problems),

MathOdyssey (389 problems), Olympiad Bench (674 English, text only, Competition, Final Answer
problems), Putnam-AXIOM (492 problems), and filter down the hard problems for each model.

J Eval configuration

For e3-1.7B, we use a decoding setup with temperature 0.6, top-p 0.95, and top-k 20.

For Qwen3-4B-Instruct, we follow the official recommended configuration, using temperature 0.7,
top-p 0.8, and top-k 20.

K Use of Large Language Models

We used large language models (LLMs) as an assistive tool primarily for rephrasing arguments more
crisply and for generating LaTeX templates (e.g., tables, algorithm boxes, or figure formatting). All

16

research ideas, developments, experiments, and empirical results were conceived, executed, and
validated by the authors. The LLM did not contribute to the scientific content, claims, or findings of
this work.

L. Reproducibility Statement

We have taken extensive measures to ensure that our results are reproducible. A detailed description of
the proposed method, including the InT protocol, data collection steps, supervised fine-tuning setup,
and continuation of RL post-training, is provided in the main text (Secs. 3—6) and Algorithm 1. The
construction of the hard problem set, evaluation metrics, and baseline comparisons are described in
Sec. 6.1. Additional experimental details, ablations, and prompt templates for generating interventions
are included in the appendices (Apps. A-E). We also report pass @k metrics, bootstrapped confidence
intervals, and benchmark evaluations across both in-distribution and out-of-distribution settings (Secs.
6.2-6.3). These resources should enable independent researchers to replicate and extend both the
empirical and methodological findings of this paper.

M Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

17

	Introduction
	Int: Interventional Training for Credit Assignment
	InT Interaction Protocol
	Patching the Base LLM with Oracle Interventions

	Experiments
	Experimental Setup and Evaluation Metrics
	InT uniformly pushes the pass@k frontier upwards on test problems
	InT outperforms distillation on standardized evaluations

	Preliminaries and Problem Statement
	Why Are Interventions Effective?
	InT Algorithm
	Related Work
	Discussion and Future Work
	Prompts
	Intervention Examples
	Training hyperparameters
	Data composition
	Eval configuration
	Use of Large Language Models
	Reproducibility Statement
	Impact Statement

