X-PEFT: eXtremely Parameter-Efficient Fine-Tuning
for Extreme Multi-Profile Scenarios

Anonymous ACL submission

Abstract

Parameter-efficient fine-tuning (PEFT) tech-
niques, such as adapter tuning, aim to fine-
tune a pre-trained language model (PLM) us-
ing a minimal number of parameters for a spe-
cific task or profile. Although adapter tuning
provides increased parameter efficiency com-
pared to full-model fine-tuning, it introduces
a small set of additional parameters attached
to a PLM for each profile. This can become
problematic in practical applications with mul-
tiple profiles, particularly when a significant in-
crease in the number of profiles linearly boosts
the total number of additional parameters. To
mitigate this issue, we introduce X-PEFT, a
novel PEFT method that leverages a multitude
of given adapters by fine-tuning an extremely
small set of compact tensors for a new profile,
which serve as binary masks to adaptively se-
lect the given adapters. To efficiently validate
our proposed method, we implement it using
a large number of random adapters instead of
learned ones. Remarkably, this can be under-
stood as an adapter-based version of the super-
mask concept, aligning with the principles of
the Lottery Ticket Hypothesis. We evaluate
the performance of X-PEFT through GLUE
tasks and demonstrate that it either matches
or surpasses the effectiveness of conventional
adapter tuning, despite reducing the memory
requirements per profile by a factor of 10,000
compared to it.

1 Introduction

Transfer learning, utilizing various pre-trained lan-
guage models (PLMs) based on transformers (De-
vlin et al., 2018; Liu et al., 2020; Lan et al., 2020;
Radford et al., 2018), has demonstrated effective-
ness across a wide range of NLP tasks. Conse-
quently, it has become common practice to fine-
tune a PLM for a specific task rather than training
a model from scratch. However, as PLMs scale
up, encompassing more than billions of parame-
ters, a fine-tuning approach that updates all model

1le9
1e8
1.0+ /
5.335 o ra
P2 I

0.8 - 5330 I T T
g 100 H 200 300
[1n)
=
< 0.6
b= y
i £
L 0.4
2 p-

0.2 4 / —— X-PEFT (hard)

/ == X-PEFT (soft)
y. Adapter Tuning
0.0 T T T
0 100 200 300
of Profiles

Figure 1: Demonstrating the remarkable parameter
efficiency in terms of memory requirements of X-
PEFT in extreme multi-profile scenarios. Additional
details can be found in Section 3.1.

parameters (i.e. full fine-tuning) becomes problem-
atic. For instance, fully fine-tuning a large PLM
for a specific task not only requires more com-
putational resources for training but also necessi-
tates additional management of the fine-tuned large
PLM. Moreover, when this approach is repetitively
applied for multiple tasks, the issues exacerbate.
To mitigate these issues, parameter-efficient fine-
tuning (PEFT) approaches, such as adapter tuning
(Houlsby et al., 2019; He et al., 2022) and prompt
tuning (Li and Liang, 2021; Lester et al., 2021),
have been proposed as alternatives to fine-tuning
the entire model. These approaches are structured
similarly, introducing a small number of additional
parameters for each task and only fine-tuning those,
and Mao et al. (2022) demonstrated that various
PEFT approaches can be summarized within a uni-
fied view.

Although PEFT approaches have achieved pa-
rameter efficiency with PLMs compared to full-

model fine-tuning, practical scenarios, such as
multi-profile applications that require management
of a large number of profiles, demand even higher
parameter efficiency. Consider, for instance, a sce-
nario depicted in the LaMP (Salemi et al., 2023)
dataset, where a news organization utilizes an ar-
ticle category classifier to assign articles to their
respective categories, such as politics, economics,
entertainment, and more. There may be numerous
authors or profiles to manage, each with distinct
criteria and preferences for categorizing articles,
necessitating the management of a large number of
sets of author-specific parameters (i.e. adapters).
Another example is a personalized chatbot service,
where the number of users may continually in-
crease and user-specific parameters must be man-
aged to effectively improve user experiences.

To further improve parameter efficiency in
extreme multiple-profile scenarios, we propose
X-PEFT (eXtremely Parameter-Efficient Fine-
Tuning), a novel PEFT method that leverages a
multitude of given adapters by fine-tuning an ex-
tremely small set of compact tensors for a new
profile, serving as binary masks to adaptively se-
lect the given adapters. As depicted in Figure 1, our
X-PEFT drastically reduces the memory require-
ments of additional parameters for each profile, by
a factor of 10,000 compared to existing PEFT meth-
ods such as adapter tuning. More specifically, after
a certain number of profiles have been trained with
adapter tuning and their adapter parameters have ac-
cumulated (e.g. 150 profiles in Figure 1), each new
incoming profile is designed to reuse and adaptively
select them, rather than training a new adapter from
scratch. Therefore, our proposed method only ne-
cessitates learning and storing binary mask tensors
at the byte level, which are substantially more com-
pact than adapters.

We conduct extensive experiments to validate
our proposed method efficiently, using a large num-
ber of random adapters instead of learned ones.
Even with the use of random adapters, we demon-
strate the proper applicability of X-PEFT. Interest-
ingly, this can be viewed as an adapter-based ver-
sion of the supermask concept (Zhou et al., 2019),
aligning with the principles of the Lottery Ticket
Hypothesis (Frankle and Carbin, 2019).

Overall, our contributions can be summarized as
follows:

¢ We introduce a novel PEFT method, X-PEFT,
which achieves higher parameter efficiency by

a factor of 10,000 compared to adapter tuning
without sacrificing performance.

* We experimentally implement X-PEFT using
a large number of random adapters, based on
the principles of the Lottery Ticket Hypothe-
sis, and validate its effectiveness in extreme
multi-profile scenarios.

* We additionally apply X-PEFT in a practical
scenario using the LaMP Dataset, employing a
large number of learned adapters, and demon-
strate the efficiency of X-PEFT in terms of
both performance and memory requirements.

2 eXtremely-PEFT

The goal of X-PEFT is to achieve parameter ef-
ficiency with PLMs, especially in extreme multi-
profile scenarios where an increasing number of
profiles continuously necessitates additional mem-
ory. For this reason, we propose to simply reuse
a large number of given adapter, often in the hun-
dreds, for each new profile rather than training ad-
ditional new adapters from scratch for it. More
specifically, we introduce some learnable mask ten-
sors for each new profile, which are utilized to se-
lect and aggregate existing adapters into new ones
during inference.

In terms of combining multiple adapters, X-
PEFT is similar to AdapterFusion (Pfeiffer et al.,
2021), but it combines existing adapters, which are
fixed and shared across profiles, with lightweight
mask tensors, thereby avoiding additional fusion
layers. Moreover, as our primary focus is on ex-
treme multi-profile scenarios, X-PEFT aims to ef-
fectively leverage knowledges from a substantial
number of existing adapters, as opposed to Adapter-
Fusion, which utilizes a limited few.

In this work, we implement X-PEFT by defining
adapters with LoRA (Hu et al., 2022). However,
it is worth noting that X-PEFT can accommodate
any other type of adapters. As a LoRA adapter
consists of submodule A and B corresponds to the
down-projection and up-projection feed-forward
networks respectively, we define a model for each
profile by adding a pair of AY) and BY in each
PLM block /. Based on this setting, we assume that
N adapters {(Agl), Bi(l))}}V: , for each PLM block
[are collected in advance by using regular adapter
tuning with N profiles. After that, each new in-
coming profile is designed to adaptively select and
reuse them instead of training new ones.

eXtremely-PEFT

\ BY |

5

d (top-k)

[R

5

[. o

|
|

| H;

Mpll]

|

<)
Ith ; N,
PLM Block v

¥
0

M1

i

?

X

PLM

y
e XS

1 X<

trainable parameters:

Loy @
AD
,
AP

X)< |

d (top-k)

| e L]

H:

|

AP

B

frozen parameters

Figure 2: Illustration of our proposed method, X-PEFT. Additional details can be found in Section 2.

X-PEFT with soft masks To implement this in
a lightweight manner, we introduce two types of
mask tensors for each new profile, namely M4
and Mp. The former combines the submodule
A’s of the adapters, while the latter combines the
submodule B’s. Each mask tensor is a matrix
RE*N in which each row corresponds to a mask
for each PLM block, assigning different weights
to NV adapters, subsequently utilized to construct
new adapters A(®) and B® for each PLM block !
as follows:

N N
A0 =5 20140, BO = 3 M1, B0,
i=1 =1

where both adapters are applied to the input X i(rf)

as X(Efl)t = E(Z)A(I)Xi(rf) ! to compute the output
Xé?t Here, the weight vectors M 4[l] and Mp][l]
can be viewed as soft masks. In this approach, we
treat each mask tensor as a regular trainable weight,
similar to adapters but more compact, and apply
the softmax activation before aggregating adapters
to ensure that the weights sum to 1. This method
is quite straightforward and does not require any
special tricks to learn the mask tensors. There-
fore, during fine-tuning for each new profile, we
simultaneously and only optimize mask tensors and
task header and freeze all other parameters related
to PLM and N adapters. In terms of memory re-
quirements, it is more efficient than regular adapter

'We insert layer normalization (LN, Ba et al. (2016)) after

multiplying AW that experimentally improved the overall
performance

tuning (see Table 1), but can be further improved
by using hard masks instead of soft ones.

X-PEFT with hard masks By defining the mask
tensors with hard masks, our method achieves sig-
nificant parameter efficiency, particularly in terms
of memory requirements, in extreme multi-profile
scenarios. Hard masks require only binary masking
information during inference. This means that for
each new profile, we need to maintain only two
bit arrays: one for M4 and the other for Mp. We
implement this by ensuring that the weight vectors
M4[l] and Mp][l] are k-hot vectors for all PLM
layers, where k is the number of selected adapters
within the given IV ones. As k-hot vectors are non-
differentiable, we employ the straight-through gra-
dient estimation technique (Bengio et al., 2013) for
optimizing it through gumbel softmax (Jang et al.,
2017; Maddison et al., 2017) with top-k£ compo-
nents (see Algorithm 1 in Appendix A). Therefore,
the mask tensors with hard masks are similarly op-
timized and utilized as the soft ones, except they
are binarized into k-hot vectors after the training
and stored in a more compact way.

Parameter efficiency The number of trainable
parameters for each new profile with X-PEFT is cal-
culated as 2(IN 4 b) x L. This calculation includes
two mask weight vectors and LN affine parame-
ters across all PLM blocks, and it entirely depends
on the given number of adapters, denoted by N.
Conversely, a conventional adapter tuning method
necessitates the complete training of submodules
A and B for each profile, which is quantified as

Trainable Parameters

Memory Requirements

| |
Mode ' Formula Count | Formula Byte
| B | (N = 100) 0.3K
x_peft (hard) | (N=100)35K 1 ornig1 I (N = 200) 0.6K
| | —
e IY(N4B) XL (N=200)59K L---- - %‘_41%00))11‘(? :
| |
x_peft (soft) i (N = 400) 10.7K | 2N x L x 4 E% i 421883 igi
! ! —
single_adapter ' 2(d x b) x L 884.7K 1 2(d x b) x L x 4 3.5M

Table 1: Trainable parameters and memory requirements per profile. In this comparison, we use a bottleneck
dimension b = 64, an adapter layer input dimension d = 768, the number of PLM blocks L = 12, and the number

of given adapters N = {100, 200,400}.

2(d x b) x L. As demonstrated in Table 1, the num-
ber of trainable parameters with X-PEFT remains
constant regardless of the mask type and can be
substantially reduced, by a factor of around 100,
even when the number of adapters NV is increased
up to 400.

More interestingly, if we focus on the memory
requirements to store these trainable parameters
for each profile, X-PEFT with hard masks can fur-
ther improve the parameter efficiency by a factor of
around 10,000 compared to adapter tuning. This ul-
timately shows how X-PEFT can be used efficiently
in extreme multi-profile scenarios.

Connection to Lottery Ticket Hypothesis The
Lottery Ticket Hypothesis (Frankle and Carbin,
2019) asserts that a randomly-initialized dense neu-
ral network contains a subnetwork, initialized in a
manner that enables it to achieve test accuracy com-
parable to that of the original network after training,
for at most the same number of iterations. Further-
more, Zhou et al. (2019) introduced the concept of
a supermask, represented as a weight-level mask,
which can deliver better-than-chance test accuracy
without any training. Similarly, yet distinctively,
X-PEFT involves searching for a supermask within
a set of given adapters. This search aims to dis-
cover adapter-level masks instead of weight-level
ones. In other words, our masking granularity cor-
responds to an entire adapter, whereas Zhou et al.
(2019)’s supermask operates at the level of individ-
ual weights.

Based on this interpretation, we validate our
method with a large number of random adapters
rather than learned ones. This allows us to effi-
ciently simulate X-PEFT in extreme multi-profile
scenarios by effortlessly increasing the number of
adapters N with random adapters. Even with ran-

dom adapters, our experimental results indicate
that X-PEFT can function effectively without any
severe performance degradation (see details in Sec-
tion 3.1). Moreover, it is noteworthy that, even
when employing entirely different sets of random
adapters, performance is consistently guaranteed,
as shown in Figure 7 in Appendix B.

3 Experiments

We evaluate the effectiveness of our proposed
method, X-PEFT, by conducting experiments
across a wide variety of settings and comparing
it against baselines:

* x_peft (xp): Our proposed method, X-PEFT,
with mask tensors.

* single_adapter (sa): Standard adapter tun-
ing with a single adapter.

* head_only (ho): Fine-tuning only the down-
stream without any adapter.

Experimental settings In all experiments, we
employ bert-base-uncased (Devlin et al., 2018)
as the PLM and LoRA (Hu et al., 2022) with a
reduction factor » = 16 (bottleneck dimension
b = 48) for adapters. We set a random seed
of 42 for all experiments and conduct a separate
experiment to verify reproducibility by varying
the random seed (see Figure 7 in Appendix B).
The AdamW optimizer is used with a learning
rate of 1.0 x 1079, which underwent linear de-
cay, and the training duration for all experiments
is set to 10 epochs. We use 4 GPUs (GeForce
RTX 3090) and exploit data parallelism for all ex-
periments. Moreover, we apply gradient check-
pointing (Chen et al., 2016) to improve compu-
tational efficiency of x_peft. All experimental

Mode Adapters cola sst2 mrpc qqp stsb mnli qnli rte wnli

(MCC) (Acc) (Comb) (Comb) (Comb) (Comb) (Acc) (Acc) (Acc)

x_peft 100 (softy 040 090 0.78 0.79 0.79 0.68 082 0.58 0.34

100 (hard)y 0.39 0.87 0.76 0.76 074 063 0.76 0.61 0.32

200 (softy 044 091 0.78 0.80 0.80 0.69 083 0.60 0.37

200 (hard) 044 0.89 0.81 0.77 076 065 079 058 0.34

400 (softy 047 090 0.78 0.81 081 0.72 083 0.58 0.30

400 (hardy 046 0.89 082 078 081 0.67 0.81 0.55 027
"~ head_only - - 031 085 076 072 046 053 068 059 038
single_adapter - 043 091 076 085 080 0.80 088 060 042

Table 2: Evaluation of the GLUE tasks. In the case of hard masking, we employ k£ = 50. The scores in the table
are reported based on the official metrics provided by the GLUE dataset. When multiple official metrics exist for a
task (indicated as ‘Comb’), we present the combined score (i.e., mean). ‘Acc’ and ‘MCC’ denote accuracy and
Matthew’s Correlation, respectively. The full individual metric data can be found in the Appendix G. Underlined
values represent the best among x_pef't cases, and bold-faced values represent the best among all three modes.

cases are given an equal number of training sam-
ples to maintain fairness. We use a consistent batch
size across all experiments to ensure that parame-
ters received an equal number of updates. Unless
otherwise specified, the majority of experiments
employ a batch size of 64 and a token sequence
length of 128. For implementation, we used the
Hugging Face’s transformers (Wolf et al., 2020)
and AdapterHub’s adapter-transformers (Pfeif-
fer et al., 2020) packages.

Datasets To properly simulate multi-profile sce-
narios, we incorporate 9 tasks from the GLUE
benchmark (Wang et al., 2019b) and 4 tasks
from the more challenging SuperGLUE benchmark
(Wang et al., 2019a). Our choice of SuperGLUE
tasks (cb, boolq, axb, and axg) aligns with our
use of the bert-base-uncased model, which sup-
ports single-sentence and sentence-pair input for-
mats. We conduct evaluation for GLUE and Super-
GLUE on the development (dev) sub-dataset using
the evaluation metrics officially suggested by the
benchmark. For the axg task in SuperGLUE, we
also utilize the Winogender (Rudinger et al., 2018)
test dataset recast by Poliak et al. (2018).

We additionally conduct experiments using the
LaMP (Salemi et al., 2023) benchmark. However,
since LaMP is originally designed for prompt tun-
ing, modifications were necessary for our purposes.
Further details regarding these modifications can
be found in the Appendix D. In particular, we uti-
lize the ‘Personalized News Categorization’ dataset
from LaMP.

3.1 Experimental Results

GLUE with random adapters We conduct ex-
periments on 9 tasks using their respective datasets.
For the x_peft case, we utilize 100, 200, and 400
random adapters, to efficiently validate its effec-
tiveness, each for both soft and hard masking. As
baselines, we experiment the single_adapter and
head_only cases. The overall results are presented
in Table 2.

Our expectation was that the best evaluation
score achieved by any x_pef't experiment for each
task would fall between the evaluation scores of
head_only and single_adapter. head_only rep-
resents the lower bound, as x_peft involves train-
ing a downstream head in addition to mask ten-
sors. On the other hand, single_adapter rep-
resents the upper bound, as our objective was to
demonstrate that x_peft could achieve comparable
or superior performance to single_adapter with
significantly fewer trainable parameters.

As expected, for all tasks except wnli, x_peft’s
best evaluation scores exceed those of head_only.
Unexpectedly, in about half of the tasks, x_peft
even outperforms single_adapter in terms of
evaluation score. For tasks where x_peft falls
between head_only and single_adapter, it is
much closer to single_adapter in performance
with a negligible gap. It is noteworthy given the
significantly lower number of trainable parameters
in x_peft in comparison to single_adapter.

SuperGLUE with random adapters We con-
duct experiments on tasks cb and boolq using their
respective datasets. Additionally, we perform ex-
periments on diagnostic tasks axb and axg using

M. Adt. cb boolq axb axg axg
(Acc) (Acc) (MCC) (Acc) (GPS)
xp 100@s) .64 .67 A1 853 927
100y .68 .66 .09 48 86.6
200 () .68 .66 07 52 96.1
200 () .68 .66 .02 50 884
400 s) .68 .66 .09 51 935
400y .70 .68 12 50 948
"ho - 71 64 09 50 823
"sa - 68 65 .10 51 935

Table 3: Evaluation of the SuperGLUE tasks. For
hard masking, we employ £ = 50. ‘GPS’ denotes
Gender Parity Score, and all other symbols and text

decorations can be understood in the same context as in
Table 2.

GLUE’s rte dataset for training. For the x_peft
case, we apply the same setting of using random
adapters as the evaluation of GLUE tasks. The
overall results are presented in Table 3.

Similarly to the evaluation results of the
GLUE experiments, in all cases, x_peft’s high-
est evaluation scores match or even surpass
those of single_adapter. Unexpectedly, for cb,
head_only performs the best. This performance
from x_pef't is noteworthy considering the signifi-
cantly lower number of trainable parameters.

LaMP with learned adapters Our modified
LaMP dataset follows the schema (news_text,
news_category, author_profile), structuring
each data point for text classification while incor-
porating the author’s identity. It contains 17,005
news texts authored by 323 individuals / profiles.
On average, each author contributed 52.65 news
texts, with a standard deviation of 87.28 (ranging
from a minimum of 6 to a maximum of 640).

In our experiment for x_peft, we first randomly
select 150 authors and train adapters for each au-
thor with single_adapter(sa) to get N = 150
learned (not random) adapters (denoted by x_peft
with sa). Subsequently, we conduct individual
(per-profile) training by optimizing mask tensors
with those 150 learned adapters. As a result, we
obtain a collection of mask tensors for 173 new au-
thors. These mask tensors serve as a highly efficient
means of personalizing the model for multi-profile
scenarios. The memory requirements for this set-
ting are precisely shown in Figure 1. Essentially,
these mask tensors encapsulate a unique signature
of each author, specifically revealing how they cat-

relig
travel
sports
o) education
]
parents
° politics
L] culture & arts
.@ women
(O} style & beauty
crime
o ()
°
)
) rveranment
°
healthy living

food & drink

Figure 3: Visualization of mask tensors with t-SNE.
Each point represents an author/profile, and the color
and size of it represent the majority category assigned
by each author and the majority ratio in an article. This
shows how the mask tensors effectively capture the cat-
egorization diversity among authors.

egorize news texts in this context. We visualize
the 173 sets of mask tensors using t-SNE (van der
Maaten and Hinton, 2008) in Figure 3, along with
heatmaps illustrating the mask tensors of the two
most distant (Euclidean) profiles as shown in Fig-
ure 6. The averaged evaluation accuracy and F1
scores for all 323 authors can be found in Figure 4,
where x_peft with sa with hard masks shows
improvement compared to single_adapter.
Moreover, we conduct additional experiments
for x_peft. We assume that the first 150 authors
can be trained jointly, rather than independently,
as part of the warm-start procedure. Therefore, a
multi-task learning framework is used to train sep-
arate adapters for each author but a shared header.
In this approach, x_peft only has to train mask
tensors and reuse the shared header without any
fine-tuning. This setting (x_peft with mtl) can
not only further improve the parameter efficiency
than the previous setting (x_peft with sa), but
also significantly improve the averaged evaluation
accuracy and F1 scores as depicted in Figure 4.

3.2 Ablation Studies and Analysis

The number of given adapters (N) When ana-
lyzing training curves, X-PEFT with a higher num-
ber of adapters outperforms its counterparts. As
shown in Figure 5 (a), the training curves for the
sst2 task consistently position lower when more
adapters are used. This trend is consistent across
various tasks in the GLUE benchmark.

In terms of evaluation scores, utilizing a higher

[
==
0.675
655 .'65_" 0.652
0.65 0.646
| I I I B I
0.60 4 l
.575 576
.563
0.55 +
0.50 -j I I
*_peft *_peft *_peft *_peft single
with mtl with mtl withsa withsa _adapter
(hard) (soft) (hard) (soft)

Figure 4: Evaluation of the Modified LaMP ‘Per-
sonalized News Categorization’ Dataset. Averaged
evaluation accuracy and F1 score over 323 authors are
presented (on 30% holdout sets).

number of adapters generally corresponds to bet-
ter evaluation performance,even though they are
random adapters, as demonstrated in Table 2. How-
ever, there are some exceptions, notably in tasks
such as rte, sst2, and wnli, where an abundance
of adapters can potentially lead to overfitting.

Soft masks vs. hard masks We introduce X-
PEFT with mask tensors, which can be imple-
mented by either soft or hard masks. Each type
has its own advantages and disadvantages. To val-
idate these observations, we compare the two set-
tings across our experiments. In most experiments,
X-PEFT with hard masks demonstrated superior
generalization performance compared to the soft
ones (refer to Table 2 and Figure 4). However, as
depicted in Figure 5 (a), soft masks consistently
display a lower training loss than their hard ones.
From these results, we infer that soft masks are
more prone to overfitting, whereas hard masks en-
hance generalization capabilities.

Separate mask tensors for submodules How
can a small number of additional trainable parame-
ters (e.g., mask tensor) in X-PEFT achieve perfor-
mance that matches adapter tuning? The key factor
is the use of two mask tensors instead of just one.
When we use only one mask tensor for aggregating
adapters (i.e., including only Mp and discarding
M 4 from the bottleneck), the expressive capacity
for a new adapter is limited to /N. However, when
we use M 4 and Mp together in sequence(i.e., sep-
arate mask tensors for submodules A and B) can

express N2 cases. We conducted experiments to
investigate this aspect on the sst2 task as shown
in Figure 5 (b). Through these experiments, the
results confirm that the combination of these two
tensors can improve the performance of X-PEFT.

Top-k selection for hard masks For X-PEFT
with hard masks, & = 50 typically yields favorable
training performances. For N = 200 and N =
400, increasing k improves training performance
until reaching £ = 50, after which it begins to
decline. For N = 100, a training performance
peak is observed at k& = 30, deviating from the
pattern observed with larger IV values. Refer to
Figure 5 (c) for further insights. As k diverges
further from the value of &k = 50, the loss curves
progressively deviate from the curve of £ = 50.
In general, regardless of the value of N, k = 50
proves to be a highly reasonable choice.

4 Related Works

AdapterFusion (Pfeiffer et al., 2021) is similar to
X-PEFT in using multiple adapters, but it relies
on attention tensors (referred to as fusion layers)
for combining adapters, making it computationally
heavy. This characteristic limits the scalability of
AdapterFusion in multi-profile scenarios.

Parallel adapters (Riicklé et al., 2021) and its
scaled variant (He et al., 2022) are essentially
implementations of AdapterFusion, designed to
enable parallel computation throughout adapters.
Consequently, they inherit the limitations associ-
ated with AdapterFusion. AdapterDrop (Riicklé
et al., 2021) is built upon the AdapterFusion ar-
chitecture but focuses on pruning less significant
adapters based on their activation strength. How-
ever, the number of adapters to be pruned varies
from task to task, and it still employs attention
tensors, making it computationally intensive.

AdapterSoup (Chronopoulou et al., 2023) trains
a set of adapters and selects a subset of them for
inference. As this subset selection occurs at test
time, the selection changes with different inputs,
requiring the retention of all trained adapters at test
time, which is not scalable.

AdaMix (Wang et al.,, 2022) employs the
Mixture-of-Experts concept in adapter tuning. It
trains a route policy among layers of adaptation
modules, which comprise a mixture of adapters.
It combines the weights of adaptation modules se-
lected by an input batch for test time efficiency but
requires the retention of all the trained adapters for

(a)

(b) (c)

----- head_only = 400 soft i seees 100 11 ~-+- 100 k30
0.5 47 100sot == 400 hard 1 200 1I 100 k50
—=' 100 hard = 300 soft | .
200 soft — = 300 hard 11 400 100 k70
200 hard —-' s5_adapter — 100 mask_a 200 k30
i 200 mask_a 200 k50
S 0.4 1 . —— 400 mask_a 200 k70
= ' i i ---- 400 k30
= — 400 k50
£ s '\ —— 400 k70
b AT L »~ ~= a 2
= 0.3 1 [TV Vi detn .7 S - o o
4 {“' ™ M TNy
0.2 1 :
T T T T T T T T T
0 20 40 0 20 40 0 20 40

Logging Round (Trained for 10 Epochs)

Figure 5: Training curves for sst2 with various settings. (a) Varying the number of adapters and comparing soft /
hard masks: more adapters lead to improved loss, and soft masks generally show lower loss than hard ones. (b)
Effectiveness of separate mask tensors: the impact of having M4 and M is evident. (c) Varying k for hard masks:
k = 50 consistently shows best performance irrespective of the specific value of N.

Adapter

Figure 6: Heatmaps for mask tensors of most distant
authors. These distinct heatmaps capture the unique
characteristics of news categorization.

inference, making it less scalable.

Wu et al. (2022) employ the original approach
proposed by the Lottery Ticket Hypothesis (Fran-
kle and Carbin, 2019), applied at the adapter level
within the AdapterFusion configuration. They it-
eratively prune a portion of the adapters until win-
ning tickets are discovered. In contrast, X-PEFT
can be viewed as the process of identifying su-
permasks (Zhou et al., 2019) among parallelly ar-
ranged adapter submodules.

Including the aforementioned works, as far as
we know, X-PEFT is the first to involve hundreds
of adapters (up to 800), except for Wu et al. (2022),
which uses a maximum of 192 adapters (while oth-
ers use fewer than 100 adapters). Additionally, as
far as we know, X-PEFT is the first to apply the
supermask (Zhou et al., 2019) concept in PEFT,
particularly for multi-profile scenarios.

5 Conclusion

In this paper, we introduce eXtremely-PEFT, X-
PEFT, a groundbreaking approach to Parameter-
Efficient Fine-Tuning for pre-trained language
models (PLMs). Our work achieves an unprece-
dented 1/100 reduction in parameters compared to
adapter tuning while maintaining task performance.
We also optimize the memory requirements, mini-
mizing them to the byte level by a factor of 10,000,
which is crucial for extreme multi-profile scenarios.

Furthermore, we delve deeper into PEFT, signifi-
cantly reducing trainable parameters, thus reducing
resource and computational costs. By incorporat-
ing the principles of the Lottery Ticket Hypothe-
sis into adapter-level PEFT, X-PEFT opens new
possibilities for resource-efficient natural language
processing with PLMs.

Our work not only advances PEFT but also sets
the stage for future research in NLP, inspiring novel
applications and resource-efficient natural language
processing breakthroughs. In conclusion, X-PEFT
is a transformative development in PEFT, offering
remarkable parameter efficiency without perfor-
mance compromise.

Limitations

Due to the extensive number of adapters involved
in X-PEFT, training can be time-consuming. For
hard masking, it is possible to reduce training time
by disabling gradients for out-of-top-k adapter sub-
modules. We can also explore concepts from Par-
allel adapters (Riicklé et al., 2021) about paral-
lel computation for AdapterFusion (Pfeiffer et al.,
2021).

There are almost no datasets available for multi-
profile benchmarking. LaMP (Salemi et al., 2023)
is currently the only dataset that exists for such
purposes, but it is primarily designed for prompt
tuning. While we did conduct multi-profile exper-
iments on LaMP, these experiments necessitated
some modifications. Unfortunately, the scarcity of
multi-profile benchmark datasets limited our abil-
ity to carry out more comprehensive multi-profile
experiments.

Regarding language, our research is constrained
to English texts. The PLM utilized in our study
has been specifically trained in English, and the
datasets we employed are also in English. Future
work will need to explore an extended approach
to enhance parameter efficiency and multi-profile
scalability, especially for low-resource languages.

Ethics Statement

Gender bias in NLP models is a serious problem
that can have far-reaching consequences, poten-
tially undermining social integration and peace.
Researchers in the NLP field have a responsibil-
ity to consider and address potential gender bias
in all their efforts. The SuperGLUE benchmark
includes a diagnostic dataset focusing on gender
bias, namely axg. This is why we have included
SuperGLUE in our experimental dataset.

X-PEFT offers the advantage of enabling multi-
profile service providers to operate with minimal
memory or storage requirements, ultimately reduc-
ing the strain on data centers and contributing to a
reduction in carbon dioxide emissions. However,
it’s worth noting that the extended training times
involving multiple GPUs can be environmentally
problematic. Therefore, our ongoing research ef-
forts are dedicated to achieving more efficient train-
ing methods and conserving computational power
from an ecological viewpoint.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geof-
frey E. Hinton. 2016. Layer normalization. In
arXiv:1607.06450 [stat. ML].

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation. In
arXiv:1308.3432 [cs.LG].

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. In arXiv:1604.06174 [cs.LG].

Alexandra Chronopoulou, Matthew Peters, Alexan-
der Fraser, and Jesse Dodge. 2023. AdapterSoup:
Weight averaging to improve generalization of pre-
trained language models. In Findings of the Asso-
ciation for Computational Linguistics: EACL 2023,
pages 2054-2063, Dubrovnik, Croatia. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kiristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers).

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR 2019.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In ICLR 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Pro-
ceedings of the 36th International Conference on
Machine Learning, PMLR 97:2790-2799, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In ICLR 2022.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
International Conference on Learning Representa-
tions.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In ICLR 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
http://proceedings.mlr.press/v97/houlsby19a.html
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243

pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Roberta: A robustly optimized bert pretraining ap-
proach. In ICLR 2020.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous relax-
ation of discrete random variables. In International
Conference on Learning Representations.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Scott Yih, and Madian
Khabsa. 2022. UniPELT: A unified framework for
parameter-efficient language model tuning. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 6253—6264, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487-503, Online. Association for Computational Lin-
guistics.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulié, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. Adapterhub: A
framework for adapting transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions.

Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Ed-
ward Hu, Ellie Pavlick, Aaron Steven White, and
Benjamin Van Durme. 2018. Collecting diverse nat-
ural language inference problems for sentence rep-
resentation evaluation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the

Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers).

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. Adapterdrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing.

Alireza Salemi, Sheshera Mysore, Michael Bendersky,
and Hamed Zamani. 2023. LaMP: When large lan-
guage models meet personalization.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. In Journal of Machine
Learning Research 9 (2008).

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019a. SuperGLUE: A
stickier benchmark for general-purpose language un-
derstanding systems. arXiv preprint 1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee,
Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-
lah, and Jianfeng Gao. 2022. AdaMix: Mixture-
of-adaptations for parameter-efficient model tuning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5744-5760, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations.

Jiarun Wu, Qingliang Chen, Zeguan Xiao, Yuliang Gu,
and Mengsi Sun. 2022. Pruning adatperfusion with
lottery ticket hypothesis. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
pages 1632-1646, Seattle, United States. Association
for Computational Linguistics.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosin-
ski. 2019. Deconstructing lottery tickets: Zeros,
signs, and the supermask. In Advances in Neural
Information Processing Systems 32 (NeurIPS 2019).

https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://aclanthology.org/2020.emnlp-demos.7/
https://aclanthology.org/2020.emnlp-demos.7/
https://aclanthology.org/2020.emnlp-demos.7/
https://aclanthology.org/D18-1007/
https://aclanthology.org/D18-1007/
https://aclanthology.org/D18-1007/
https://aclanthology.org/D18-1007/
https://aclanthology.org/D18-1007/
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://aclanthology.org/N18-2002/?utm_campaign=The+Batch&%3Butm_source=hs_email&%3Butm_medium=email&%3B_hsenc=p2ANqtz-_2gcX0I5wCL5hfUcVc2J6NzgHosJeJ7BQU6R5_rT_JB5MZZN4w9GaBjt_ECBi18wQTpkUK&ref=dl-staging-website.ghost.io
https://aclanthology.org/N18-2002/?utm_campaign=The+Batch&%3Butm_source=hs_email&%3Butm_medium=email&%3B_hsenc=p2ANqtz-_2gcX0I5wCL5hfUcVc2J6NzgHosJeJ7BQU6R5_rT_JB5MZZN4w9GaBjt_ECBi18wQTpkUK&ref=dl-staging-website.ghost.io
https://aclanthology.org/N18-2002/?utm_campaign=The+Batch&%3Butm_source=hs_email&%3Butm_medium=email&%3B_hsenc=p2ANqtz-_2gcX0I5wCL5hfUcVc2J6NzgHosJeJ7BQU6R5_rT_JB5MZZN4w9GaBjt_ECBi18wQTpkUK&ref=dl-staging-website.ghost.io
https://aclanthology.org/2021.emnlp-main.626/
https://aclanthology.org/2021.emnlp-main.626/
https://aclanthology.org/2021.emnlp-main.626/
http://arxiv.org/abs/2304.11406
http://arxiv.org/abs/2304.11406
http://arxiv.org/abs/2304.11406
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.388
https://doi.org/10.18653/v1/2022.emnlp-main.388
https://doi.org/10.18653/v1/2022.emnlp-main.388
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
https://doi.org/10.18653/v1/2022.findings-naacl.123
https://doi.org/10.18653/v1/2022.findings-naacl.123
https://doi.org/10.18653/v1/2022.findings-naacl.123
https://proceedings.neurips.cc/paper_files/paper/2019/hash/1113d7a76ffceca1bb350bfe145467c6-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/1113d7a76ffceca1bb350bfe145467c6-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/1113d7a76ffceca1bb350bfe145467c6-Abstract.html

A Algorithms

We suggest the hard softmax algorithm employing
straight-through gradient estimation, as outlined in
Algorithm 1.

Algorithm 1 Hard (top-k) Softmax (Straight-
Through Gradient Estimation)

Require: Input logits, noise level nu, tempera-
ture tau and k for top-k selection
Ensure: Vector y representing the top-k elements

logits = logits + nu * Gumbel(@, 1)
y_soft = softmax(logits / tau)
indices = topk(y_soft)

y_hard = khot_encoding(indices)
y_hard = y_hard / k

y = y_hard - y_soft.detach() + y_soft

B Figures

Figure 7 illustrates our experiments with different
random seeds, revealing consistent trends in the
results. It also includes two runs with the same
random seed, demonstrating the reproducibility of
our experiments based on the random seed.

Seed 42
Seed 42
Seed 69
Seed 77

— Runo0-

Run1-
—— Run 2 -
—— Run3-

0.50 7

0.45 4

0.40 4

Training Loss

0.35 4

0.30 4

0.25 1

T T T T
20 30 40 50

Logging Round (Trained for 10 Epochs)
Figure 7: Training Loss Curves for sst2 (/N = 100,
soft) with Varying Random Seeds. While local fluctua-
tions in the loss curves differ from each other, they tend
to follow a similar trajectory globally. It’s evident that
our experiments guarantee reproducibility, as two differ-
ent runs with random seed 42 yield identical loss curves.
(The blue solid line and the orange dashed line are com-
pletely overlapped.) In terms of evaluation scores, run 0
and 1 both recorded 0.8956, run 3 recorded 0.8865, and
run 4 recorded 0.8968, with little variation among them.

C Hyper-Parameters

The major hyper-parameters are as follows:

11

* N (The number of adapters attached to an X-
PEFT model): Generally, the more adapters,
the better the performance. However, con-
sidering training budgets, 100, 150, or 200
adapters are quite good choices. Our search
space for N was {100, 200,400, 800}.

* k (k for top-k selection for hard masking): We
found that k£ = 50 is a reasonably good choice
regardless of other settings, as discussed in the
ablation studies. Our search space for k was
{1, 10, 20, 30, 40, 50, 60, 70, 80, 100}.

* b (Bottleneck dimension of adapters used in
an X-PEFT model): The bottleneck dimen-
sion of adapters used in an X-PEFT model has
no significant impact on the model’s perfor-
mance. We used a default value (48) provided
by AdapterHub. Our search space for b was
{12,24,48,96}.

» Batch size: The batch size has no significant
impact on the model’s performance. A batch
size of 64 is suitable for our technical envi-
ronment. Our search space for batch size was
{8,16, 32,64, 128}.

We used bert-base-uncased, so the following
hyperparameters were consistent across all experi-
ments:

e L (The number of blocks of the PLM)

* d (Input dimension into adapter layers)

D Modification Details for the LaMP
dataset

In our research, we utilized the LaMP-2 dataset,
specifically the "Personalized News Categorization’
dataset, which is part of the LaMP benchmark
(Salemi et al., 2023). However, several modifi-
cations were necessary to adapt this dataset for our
specific purposes.

The original LaMP-2 dataset was primarily de-
signed for prompt tuning, aiming to understand
how specific authors categorize given news arti-
cles. Each data point in this dataset consisted of
the news article text and the author’s profile. It’s
essential to clarify that the author’s profile is not
an identifier but rather a collection of news article
texts authored by that particular individual, along
with the categories assigned by the author to these
articles.

As our experiments focused on standard super-
vised classification, we needed datasets containing

pairs of news texts and their corresponding labels,
alongside the author’s identity. In other words,
our data schema needed to be in the format of
(news_text, news_category, author_id). Here,
author_id simply refers to a numerical identifier
that can also be used as a label.

To meet these requirements, we exclusively ex-
tracted the author profile data from the original
LaMP-2 dataset and proceeded to modify it accord-
ing to the specified format. Given that the same
author’s data may appear more than once in the
original LaMP-2 dataset, we took care to remove
any duplicates in our modified version.

Out of the 8,090 data points in the LaMP-2
dataset, we extracted 17,005 news texts, each cate-
gorized into one of 15 categories, authored by 323
unique authors, eliminating any duplicates.

E Training Time

Information regarding the training time for our
GLUE and SuperGLUE experiments can be found
in Table 8 and Table 9.

Here are the training times for our LaMP experi-
ments:

e x_peft with mtl (hard): 5.06 hours
e x_peft with mtl (soft): 4.90 hours

e x_peft with sa (hard): 8.36 hours
e x_peft with sa (soft): 8.40 hours

F Trained Parameters

The parameter count of bert-base-uncased is
known to be 110M. All the X-PEFT configurations
that we used in the experiments and their param-
eter counts including bert-base-uncased is as
follows (with c representing the label count for a
downstream head):

N =100 and ¢ = 2, 3, 15: 200M
N =150and ¢ = 2, 3, 15: 245M
N =200and ¢ = 2,3,15: 290M
N =400 and ¢ = 2, 3,15: 468M
N =800 and ¢ = 2,3,15: 826M

The counts of trained parameters, both including
and excluding the downstream head, are provided
in Table 4.

12

G Detailed GLUE and SuperGLUE
Evaluations

Here are the complete evaluations for the GLUE
and SuperGLUE benchmarks. Refer to Table 5 and
Table 6.

Including Header Excluding Header
N c=72 c=3 c=15

100 0.596M 0.596M 0.606M 0.004M
150 0.597M 0.598M 0.607M 0.005M
200 0.598M 0.599M 0.608M 0.006M
400 0.603M 0.604M 0.613M 0.011M
800 0.612M 0.613M 0.622M 0.020M

Table 4: Trained Parameter Count Including and Excluding Header. c denotes the label count for a downstream
head.

Mode Adapters cola sst2 mrpc mrpc qqp qqp
(MCCO) (Acc) (Acc) (F1) (Acc) (F1)
x_peft 100 (softy 0.3977 0.8956 0.7353 0.8291 0.8132 0.7643

100 (hard)y 0.3891 0.8716 0.7132 0.8146 0.7824 0.7307
200 (softy 0.4422 09106 0.7328 0.8278 0.8266 0.7793
200 (hard) 0.4446 0.8911 0.7745 0.8521 0.7933 0.7480
400 (softy 0.4654 0.8991 0.7328 0.8250 0.8345 0.7845
400 (hard) 0.4592 0.8899 0.7843 0.8562 0.8011 0.7515

single_adapter - 0.4277 0.9140 0.7034 0.8130 0.8688 0.8263

Table 5: Evaluation of the GLUE tasks (part 1). In the case of hard masking, we employ £ = 50 for top-k
selection. The scores in the table are reported based on the official metrics provided by the GLUE dataset. ‘Acc,
‘MCC, and ‘F1’ denote accuracy, Matthew’s Correlation, and F1 score, respectively.

Mode Adapters stsb stsb mnli mnli gnli rte wnli
(PCC) (SRC) (Acc) (AMM) (Acc) (Acc) (Acc)
x_peft 100 (softy 0.7888 0.7948 0.6663 0.6894 0.8182 0.5776 0.3380

100 (hard) 0.7404 0.7492 0.6186 0.6372 0.7626 0.6101 0.3239
200 (softy 0.8001 0.8076 0.6863 0.7013 0.8343 0.5957 0.3662
200 (hard) 0.7506 0.7646 0.6320 0.6597 0.7891 0.5776 0.3380
400 (softy 0.8028 0.8089 0.7074 0.7275 0.8349 0.5848 0.2958
400 (hard) 0.8115 0.8148 0.6569 0.6789 0.8083 0.5487 0.2676

single_adapter - 0.7995 0.8057 0.7934 0.8034 0.8812 0.5993 0.4225

Table 6: Evaluation of the GLUE tasks (part 2). In the case of hard masking, we employ & = 50 for top-k
selection. The scores in the table are reported based on the official metrics provided by the GLUE dataset. ‘Acc,
‘PCC, and ‘SRC’ denote accuracy, Pearson correlation, and Spearman correlation, respectively. For mnli, ‘Acc’
and ‘AMM’ denote accuracy matched and accuracy mismatched, respectively.

13

Mode Adapters cb boolq axb axg axg
(Acc) (Acc) (MCC) (Acc) (GPS)

x_peft 100 (softy 0.6429 0.6676 0.1111 0.5253 92.6724

100 (hard) 0.6786 0.6569 0.0943 0.4831 86.6379

200 (softy 0.6786 0.6599 0.0721 0.5197 96.1207

200 (hard) 0.6786 0.6648 0.0244 0.5028 88.3621

400 (softy 0.6786 0.6599 0.0916 0.5084 93.5345

400 (hard) 0.6964 0.6792 0.1203 0.5000 94.8276

single_adapter - 0.6786 0.6489 0.1027 0.5084 93.5345

Table 7: Evaluation of the SuperGLUE tasks. In the case of hard masking, we employ k& = 50 for top-k selection.
‘GPS’ denotes Gender Parity Score, and all other symbols can be understood in the same context as in Table 5 and 6

Mode Adapters cola sst2 mrpc qgp stsb mnli gnli rte wnli
x_peft 100 (softy 0.55 432 025 2607 038 2420 6.71 0.17 0.05
100 (hardy 0.57 6.12 0.26 26.69 038 2432 7.02 0.17 0.05
200 (softy 1.11 8.10 048 43.67 0.71 47.12 12.61 0.32 0.10
200 (hardy 1.11 851 050 44.13 0.71 4733 1254 0.33 0.09
400 (softy 2.16 1693 0.92 9043 140 10457 2929 0.62 0.19
400 (hard)y 2.07 1691 091 9145 141 108.14 26.15 0.78 0.19

single_adapter - 0.09 055 003 297 005 422 1.61 0.01 0.01

Table 8: Computation Cost of the GLUE tasks (Training Time, Hours).

Mode Adapters cb boolqg axb axg
x_peft 100 (softy 0.02 0.60 0.18 0.18
100 ¢(hardy 0.02 0.61 0.18 0.18
200 (softy 0.03 1.17 0.33 0.33
200 ¢(hardy 0.03 1.19 0.35 0.35
400 (softy 0.06 2.29 0.64 0.64
400 (hardy 0.06 241 0.68 0.68

single_adapter - 0.00 0.08 0.03 0.03

Table 9: Computation Cost of the SuperGLUE tasks (Training Time, Hours).

14

	Introduction
	eXtremely-PEFT
	Experiments
	Experimental Results
	Ablation Studies and Analysis

	Related Works
	Conclusion
	Algorithms
	Figures
	Hyper-Parameters
	Modification Details for the LaMP dataset
	Training Time
	Trained Parameters
	Detailed GLUE and SuperGLUE Evaluations

