
X-PEFT: eXtremely Parameter-Efficient Fine-Tuning
for Extreme Multi-Profile Scenarios

Anonymous ACL submission

Abstract

Parameter-efficient fine-tuning (PEFT) tech-001
niques, such as adapter tuning, aim to fine-002
tune a pre-trained language model (PLM) us-003
ing a minimal number of parameters for a spe-004
cific task or profile. Although adapter tuning005
provides increased parameter efficiency com-006
pared to full-model fine-tuning, it introduces007
a small set of additional parameters attached008
to a PLM for each profile. This can become009
problematic in practical applications with mul-010
tiple profiles, particularly when a significant in-011
crease in the number of profiles linearly boosts012
the total number of additional parameters. To013
mitigate this issue, we introduce X-PEFT, a014
novel PEFT method that leverages a multitude015
of given adapters by fine-tuning an extremely016
small set of compact tensors for a new profile,017
which serve as binary masks to adaptively se-018
lect the given adapters. To efficiently validate019
our proposed method, we implement it using020
a large number of random adapters instead of021
learned ones. Remarkably, this can be under-022
stood as an adapter-based version of the super-023
mask concept, aligning with the principles of024
the Lottery Ticket Hypothesis. We evaluate025
the performance of X-PEFT through GLUE026
tasks and demonstrate that it either matches027
or surpasses the effectiveness of conventional028
adapter tuning, despite reducing the memory029
requirements per profile by a factor of 10,000030
compared to it.031

1 Introduction032

Transfer learning, utilizing various pre-trained lan-033

guage models (PLMs) based on transformers (De-034

vlin et al., 2018; Liu et al., 2020; Lan et al., 2020;035

Radford et al., 2018), has demonstrated effective-036

ness across a wide range of NLP tasks. Conse-037

quently, it has become common practice to fine-038

tune a PLM for a specific task rather than training039

a model from scratch. However, as PLMs scale040

up, encompassing more than billions of parame-041

ters, a fine-tuning approach that updates all model042

Figure 1: Demonstrating the remarkable parameter
efficiency in terms of memory requirements of X-
PEFT in extreme multi-profile scenarios. Additional
details can be found in Section 3.1.

parameters (i.e. full fine-tuning) becomes problem- 043

atic. For instance, fully fine-tuning a large PLM 044

for a specific task not only requires more com- 045

putational resources for training but also necessi- 046

tates additional management of the fine-tuned large 047

PLM. Moreover, when this approach is repetitively 048

applied for multiple tasks, the issues exacerbate. 049

To mitigate these issues, parameter-efficient fine- 050

tuning (PEFT) approaches, such as adapter tuning 051

(Houlsby et al., 2019; He et al., 2022) and prompt 052

tuning (Li and Liang, 2021; Lester et al., 2021), 053

have been proposed as alternatives to fine-tuning 054

the entire model. These approaches are structured 055

similarly, introducing a small number of additional 056

parameters for each task and only fine-tuning those, 057

and Mao et al. (2022) demonstrated that various 058

PEFT approaches can be summarized within a uni- 059

fied view. 060

Although PEFT approaches have achieved pa- 061

rameter efficiency with PLMs compared to full- 062

1



model fine-tuning, practical scenarios, such as063

multi-profile applications that require management064

of a large number of profiles, demand even higher065

parameter efficiency. Consider, for instance, a sce-066

nario depicted in the LaMP (Salemi et al., 2023)067

dataset, where a news organization utilizes an ar-068

ticle category classifier to assign articles to their069

respective categories, such as politics, economics,070

entertainment, and more. There may be numerous071

authors or profiles to manage, each with distinct072

criteria and preferences for categorizing articles,073

necessitating the management of a large number of074

sets of author-specific parameters (i.e. adapters).075

Another example is a personalized chatbot service,076

where the number of users may continually in-077

crease and user-specific parameters must be man-078

aged to effectively improve user experiences.079

To further improve parameter efficiency in080

extreme multiple-profile scenarios, we propose081

X-PEFT (eXtremely Parameter-Efficient Fine-082

Tuning), a novel PEFT method that leverages a083

multitude of given adapters by fine-tuning an ex-084

tremely small set of compact tensors for a new085

profile, serving as binary masks to adaptively se-086

lect the given adapters. As depicted in Figure 1, our087

X-PEFT drastically reduces the memory require-088

ments of additional parameters for each profile, by089

a factor of 10,000 compared to existing PEFT meth-090

ods such as adapter tuning. More specifically, after091

a certain number of profiles have been trained with092

adapter tuning and their adapter parameters have ac-093

cumulated (e.g. 150 profiles in Figure 1), each new094

incoming profile is designed to reuse and adaptively095

select them, rather than training a new adapter from096

scratch. Therefore, our proposed method only ne-097

cessitates learning and storing binary mask tensors098

at the byte level, which are substantially more com-099

pact than adapters.100

We conduct extensive experiments to validate101

our proposed method efficiently, using a large num-102

ber of random adapters instead of learned ones.103

Even with the use of random adapters, we demon-104

strate the proper applicability of X-PEFT. Interest-105

ingly, this can be viewed as an adapter-based ver-106

sion of the supermask concept (Zhou et al., 2019),107

aligning with the principles of the Lottery Ticket108

Hypothesis (Frankle and Carbin, 2019).109

Overall, our contributions can be summarized as110

follows:111

• We introduce a novel PEFT method, X-PEFT,112

which achieves higher parameter efficiency by113

a factor of 10,000 compared to adapter tuning 114

without sacrificing performance. 115

• We experimentally implement X-PEFT using 116

a large number of random adapters, based on 117

the principles of the Lottery Ticket Hypothe- 118

sis, and validate its effectiveness in extreme 119

multi-profile scenarios. 120

• We additionally apply X-PEFT in a practical 121

scenario using the LaMP Dataset, employing a 122

large number of learned adapters, and demon- 123

strate the efficiency of X-PEFT in terms of 124

both performance and memory requirements. 125

2 eXtremely-PEFT 126

The goal of X-PEFT is to achieve parameter ef- 127

ficiency with PLMs, especially in extreme multi- 128

profile scenarios where an increasing number of 129

profiles continuously necessitates additional mem- 130

ory. For this reason, we propose to simply reuse 131

a large number of given adapter, often in the hun- 132

dreds, for each new profile rather than training ad- 133

ditional new adapters from scratch for it. More 134

specifically, we introduce some learnable mask ten- 135

sors for each new profile, which are utilized to se- 136

lect and aggregate existing adapters into new ones 137

during inference. 138

In terms of combining multiple adapters, X- 139

PEFT is similar to AdapterFusion (Pfeiffer et al., 140

2021), but it combines existing adapters, which are 141

fixed and shared across profiles, with lightweight 142

mask tensors, thereby avoiding additional fusion 143

layers. Moreover, as our primary focus is on ex- 144

treme multi-profile scenarios, X-PEFT aims to ef- 145

fectively leverage knowledges from a substantial 146

number of existing adapters, as opposed to Adapter- 147

Fusion, which utilizes a limited few. 148

In this work, we implement X-PEFT by defining 149

adapters with LoRA (Hu et al., 2022). However, 150

it is worth noting that X-PEFT can accommodate 151

any other type of adapters. As a LoRA adapter 152

consists of submodule A and B corresponds to the 153

down-projection and up-projection feed-forward 154

networks respectively, we define a model for each 155

profile by adding a pair of A(l) and B(l) in each 156

PLM block l. Based on this setting, we assume that 157

N adapters {(A(l)
i , B

(l)
i )}NI=1 for each PLM block 158

l are collected in advance by using regular adapter 159

tuning with N profiles. After that, each new in- 160

coming profile is designed to adaptively select and 161

reuse them instead of training new ones. 162

2



Figure 2: Illustration of our proposed method, X-PEFT. Additional details can be found in Section 2.

X-PEFT with soft masks To implement this in163

a lightweight manner, we introduce two types of164

mask tensors for each new profile, namely MA165

and MB . The former combines the submodule166

A’s of the adapters, while the latter combines the167

submodule B’s. Each mask tensor is a matrix168

RL×N in which each row corresponds to a mask169

for each PLM block, assigning different weights170

to N adapters, subsequently utilized to construct171

new adapters Â(l) and B̂(l) for each PLM block l172

as follows:173

Â(l) =
N∑
i=1

MA[l, i]A
(l)
i , B̂(l) =

N∑
i=1

MB[l, i]B
(l)
i ,174

where both adapters are applied to the input X(l)
in175

as X
(l)
out = B̂(l)Â(l)X

(l)
in

1 to compute the output176

X
(l)
out. Here, the weight vectors MA[l] and MB[l]177

can be viewed as soft masks. In this approach, we178

treat each mask tensor as a regular trainable weight,179

similar to adapters but more compact, and apply180

the softmax activation before aggregating adapters181

to ensure that the weights sum to 1. This method182

is quite straightforward and does not require any183

special tricks to learn the mask tensors. There-184

fore, during fine-tuning for each new profile, we185

simultaneously and only optimize mask tensors and186

task header and freeze all other parameters related187

to PLM and N adapters. In terms of memory re-188

quirements, it is more efficient than regular adapter189

1We insert layer normalization (LN, Ba et al. (2016)) after
multiplying Â(l) that experimentally improved the overall
performance

tuning (see Table 1), but can be further improved 190

by using hard masks instead of soft ones. 191

X-PEFT with hard masks By defining the mask 192

tensors with hard masks, our method achieves sig- 193

nificant parameter efficiency, particularly in terms 194

of memory requirements, in extreme multi-profile 195

scenarios. Hard masks require only binary masking 196

information during inference. This means that for 197

each new profile, we need to maintain only two 198

bit arrays: one for MA and the other for MB . We 199

implement this by ensuring that the weight vectors 200

MA[l] and MB[l] are k-hot vectors for all PLM 201

layers, where k is the number of selected adapters 202

within the given N ones. As k-hot vectors are non- 203

differentiable, we employ the straight-through gra- 204

dient estimation technique (Bengio et al., 2013) for 205

optimizing it through gumbel softmax (Jang et al., 206

2017; Maddison et al., 2017) with top-k compo- 207

nents (see Algorithm 1 in Appendix A). Therefore, 208

the mask tensors with hard masks are similarly op- 209

timized and utilized as the soft ones, except they 210

are binarized into k-hot vectors after the training 211

and stored in a more compact way. 212

Parameter efficiency The number of trainable 213

parameters for each new profile with X-PEFT is cal- 214

culated as 2(N + b)×L. This calculation includes 215

two mask weight vectors and LN affine parame- 216

ters across all PLM blocks, and it entirely depends 217

on the given number of adapters, denoted by N . 218

Conversely, a conventional adapter tuning method 219

necessitates the complete training of submodules 220

A and B for each profile, which is quantified as 221

3



Mode Trainable Parameters Memory Requirements
Formula Count Formula Byte

x_peft (hard)

2(N + b)× L

(N = 100) 3.5K
2⌈N/8⌉ × L

(N = 100) 0.3K
(N = 200) 0.6K

(N = 200) 5.9K
(N = 400) 1.2K

x_peft (soft) 2N × L× 4
(N = 100) 10K

(N = 400) 10.7K
(N = 200) 20K
(N = 400) 40K

single_adapter 2(d× b)× L 884.7K 2(d× b)× L× 4 3.5M

Table 1: Trainable parameters and memory requirements per profile. In this comparison, we use a bottleneck
dimension b = 64, an adapter layer input dimension d = 768, the number of PLM blocks L = 12, and the number
of given adapters N = {100, 200, 400}.

2(d× b)×L. As demonstrated in Table 1, the num-222

ber of trainable parameters with X-PEFT remains223

constant regardless of the mask type and can be224

substantially reduced, by a factor of around 100,225

even when the number of adapters N is increased226

up to 400.227

More interestingly, if we focus on the memory228

requirements to store these trainable parameters229

for each profile, X-PEFT with hard masks can fur-230

ther improve the parameter efficiency by a factor of231

around 10,000 compared to adapter tuning. This ul-232

timately shows how X-PEFT can be used efficiently233

in extreme multi-profile scenarios.234

Connection to Lottery Ticket Hypothesis The235

Lottery Ticket Hypothesis (Frankle and Carbin,236

2019) asserts that a randomly-initialized dense neu-237

ral network contains a subnetwork, initialized in a238

manner that enables it to achieve test accuracy com-239

parable to that of the original network after training,240

for at most the same number of iterations. Further-241

more, Zhou et al. (2019) introduced the concept of242

a supermask, represented as a weight-level mask,243

which can deliver better-than-chance test accuracy244

without any training. Similarly, yet distinctively,245

X-PEFT involves searching for a supermask within246

a set of given adapters. This search aims to dis-247

cover adapter-level masks instead of weight-level248

ones. In other words, our masking granularity cor-249

responds to an entire adapter, whereas Zhou et al.250

(2019)’s supermask operates at the level of individ-251

ual weights.252

Based on this interpretation, we validate our253

method with a large number of random adapters254

rather than learned ones. This allows us to effi-255

ciently simulate X-PEFT in extreme multi-profile256

scenarios by effortlessly increasing the number of257

adapters N with random adapters. Even with ran-258

dom adapters, our experimental results indicate 259

that X-PEFT can function effectively without any 260

severe performance degradation (see details in Sec- 261

tion 3.1). Moreover, it is noteworthy that, even 262

when employing entirely different sets of random 263

adapters, performance is consistently guaranteed, 264

as shown in Figure 7 in Appendix B. 265

3 Experiments 266

We evaluate the effectiveness of our proposed 267

method, X-PEFT, by conducting experiments 268

across a wide variety of settings and comparing 269

it against baselines: 270

• x_peft (xp): Our proposed method, X-PEFT, 271

with mask tensors. 272

• single_adapter (sa): Standard adapter tun- 273

ing with a single adapter. 274

• head_only (ho): Fine-tuning only the down- 275

stream without any adapter. 276

Experimental settings In all experiments, we 277

employ bert-base-uncased (Devlin et al., 2018) 278

as the PLM and LoRA (Hu et al., 2022) with a 279

reduction factor r = 16 (bottleneck dimension 280

b = 48) for adapters. We set a random seed 281

of 42 for all experiments and conduct a separate 282

experiment to verify reproducibility by varying 283

the random seed (see Figure 7 in Appendix B). 284

The AdamW optimizer is used with a learning 285

rate of 1.0 × 10−05, which underwent linear de- 286

cay, and the training duration for all experiments 287

is set to 10 epochs. We use 4 GPUs (GeForce 288

RTX 3090) and exploit data parallelism for all ex- 289

periments. Moreover, we apply gradient check- 290

pointing (Chen et al., 2016) to improve compu- 291

tational efficiency of x_peft. All experimental 292

4



Mode Adapters cola sst2 mrpc qqp stsb mnli qnli rte wnli
(MCC) (Acc) (Comb) (Comb) (Comb) (Comb) (Acc) (Acc) (Acc)

x_peft 100 (soft) 0.40 0.90 0.78 0.79 0.79 0.68 0.82 0.58 0.34
100 (hard) 0.39 0.87 0.76 0.76 0.74 0.63 0.76 0.61 0.32
200 (soft) 0.44 0.91 0.78 0.80 0.80 0.69 0.83 0.60 0.37
200 (hard) 0.44 0.89 0.81 0.77 0.76 0.65 0.79 0.58 0.34
400 (soft) 0.47 0.90 0.78 0.81 0.81 0.72 0.83 0.58 0.30
400 (hard) 0.46 0.89 0.82 0.78 0.81 0.67 0.81 0.55 0.27

head_only - 0.31 0.85 0.76 0.72 0.46 0.53 0.68 0.59 0.38
single_adapter - 0.43 0.91 0.76 0.85 0.80 0.80 0.88 0.60 0.42

Table 2: Evaluation of the GLUE tasks. In the case of hard masking, we employ k = 50. The scores in the table
are reported based on the official metrics provided by the GLUE dataset. When multiple official metrics exist for a
task (indicated as ‘Comb’), we present the combined score (i.e., mean). ‘Acc’ and ‘MCC’ denote accuracy and
Matthew’s Correlation, respectively. The full individual metric data can be found in the Appendix G. Underlined
values represent the best among x_peft cases, and bold-faced values represent the best among all three modes.

cases are given an equal number of training sam-293

ples to maintain fairness. We use a consistent batch294

size across all experiments to ensure that parame-295

ters received an equal number of updates. Unless296

otherwise specified, the majority of experiments297

employ a batch size of 64 and a token sequence298

length of 128. For implementation, we used the299

Hugging Face’s transformers (Wolf et al., 2020)300

and AdapterHub’s adapter-transformers (Pfeif-301

fer et al., 2020) packages.302

Datasets To properly simulate multi-profile sce-303

narios, we incorporate 9 tasks from the GLUE304

benchmark (Wang et al., 2019b) and 4 tasks305

from the more challenging SuperGLUE benchmark306

(Wang et al., 2019a). Our choice of SuperGLUE307

tasks (cb, boolq, axb, and axg) aligns with our308

use of the bert-base-uncased model, which sup-309

ports single-sentence and sentence-pair input for-310

mats. We conduct evaluation for GLUE and Super-311

GLUE on the development (dev) sub-dataset using312

the evaluation metrics officially suggested by the313

benchmark. For the axg task in SuperGLUE, we314

also utilize the Winogender (Rudinger et al., 2018)315

test dataset recast by Poliak et al. (2018).316

We additionally conduct experiments using the317

LaMP (Salemi et al., 2023) benchmark. However,318

since LaMP is originally designed for prompt tun-319

ing, modifications were necessary for our purposes.320

Further details regarding these modifications can321

be found in the Appendix D. In particular, we uti-322

lize the ‘Personalized News Categorization’ dataset323

from LaMP.324

3.1 Experimental Results 325

GLUE with random adapters We conduct ex- 326

periments on 9 tasks using their respective datasets. 327

For the x_peft case, we utilize 100, 200, and 400 328

random adapters, to efficiently validate its effec- 329

tiveness, each for both soft and hard masking. As 330

baselines, we experiment the single_adapter and 331

head_only cases. The overall results are presented 332

in Table 2. 333

Our expectation was that the best evaluation 334

score achieved by any x_peft experiment for each 335

task would fall between the evaluation scores of 336

head_only and single_adapter. head_only rep- 337

resents the lower bound, as x_peft involves train- 338

ing a downstream head in addition to mask ten- 339

sors. On the other hand, single_adapter rep- 340

resents the upper bound, as our objective was to 341

demonstrate that x_peft could achieve comparable 342

or superior performance to single_adapter with 343

significantly fewer trainable parameters. 344

As expected, for all tasks except wnli, x_peft’s 345

best evaluation scores exceed those of head_only. 346

Unexpectedly, in about half of the tasks, x_peft 347

even outperforms single_adapter in terms of 348

evaluation score. For tasks where x_peft falls 349

between head_only and single_adapter, it is 350

much closer to single_adapter in performance 351

with a negligible gap. It is noteworthy given the 352

significantly lower number of trainable parameters 353

in x_peft in comparison to single_adapter. 354

SuperGLUE with random adapters We con- 355

duct experiments on tasks cb and boolq using their 356

respective datasets. Additionally, we perform ex- 357

periments on diagnostic tasks axb and axg using 358

5



M. Adt. cb boolq axb axg axg
(Acc) (Acc) (MCC) (Acc) (GPS)

xp 100 (s) .64 .67 .11 .53 92.7
100 (h) .68 .66 .09 .48 86.6
200 (s) .68 .66 .07 .52 96.1
200 (h) .68 .66 .02 .50 88.4
400 (s) .68 .66 .09 .51 93.5
400 (h) .70 .68 .12 .50 94.8

ho - .71 .64 .09 .50 82.3
sa - .68 .65 .10 .51 93.5

Table 3: Evaluation of the SuperGLUE tasks. For
hard masking, we employ k = 50. ‘GPS’ denotes
Gender Parity Score, and all other symbols and text
decorations can be understood in the same context as in
Table 2.

GLUE’s rte dataset for training. For the x_peft359

case, we apply the same setting of using random360

adapters as the evaluation of GLUE tasks. The361

overall results are presented in Table 3.362

Similarly to the evaluation results of the363

GLUE experiments, in all cases, x_peft’s high-364

est evaluation scores match or even surpass365

those of single_adapter. Unexpectedly, for cb,366

head_only performs the best. This performance367

from x_peft is noteworthy considering the signifi-368

cantly lower number of trainable parameters.369

LaMP with learned adapters Our modified370

LaMP dataset follows the schema (news_text,371

news_category, author_profile), structuring372

each data point for text classification while incor-373

porating the author’s identity. It contains 17,005374

news texts authored by 323 individuals / profiles.375

On average, each author contributed 52.65 news376

texts, with a standard deviation of 87.28 (ranging377

from a minimum of 6 to a maximum of 640).378

In our experiment for x_peft, we first randomly379

select 150 authors and train adapters for each au-380

thor with single_adapter(sa) to get N = 150381

learned (not random) adapters (denoted by x_peft382

with sa). Subsequently, we conduct individual383

(per-profile) training by optimizing mask tensors384

with those 150 learned adapters. As a result, we385

obtain a collection of mask tensors for 173 new au-386

thors. These mask tensors serve as a highly efficient387

means of personalizing the model for multi-profile388

scenarios. The memory requirements for this set-389

ting are precisely shown in Figure 1. Essentially,390

these mask tensors encapsulate a unique signature391

of each author, specifically revealing how they cat-392

Figure 3: Visualization of mask tensors with t-SNE.
Each point represents an author/profile, and the color
and size of it represent the majority category assigned
by each author and the majority ratio in an article. This
shows how the mask tensors effectively capture the cat-
egorization diversity among authors.

egorize news texts in this context. We visualize 393

the 173 sets of mask tensors using t-SNE (van der 394

Maaten and Hinton, 2008) in Figure 3, along with 395

heatmaps illustrating the mask tensors of the two 396

most distant (Euclidean) profiles as shown in Fig- 397

ure 6. The averaged evaluation accuracy and F1 398

scores for all 323 authors can be found in Figure 4, 399

where x_peft with sa with hard masks shows 400

improvement compared to single_adapter. 401

Moreover, we conduct additional experiments 402

for x_peft. We assume that the first 150 authors 403

can be trained jointly, rather than independently, 404

as part of the warm-start procedure. Therefore, a 405

multi-task learning framework is used to train sep- 406

arate adapters for each author but a shared header. 407

In this approach, x_peft only has to train mask 408

tensors and reuse the shared header without any 409

fine-tuning. This setting (x_peft with mtl) can 410

not only further improve the parameter efficiency 411

than the previous setting (x_peft with sa), but 412

also significantly improve the averaged evaluation 413

accuracy and F1 scores as depicted in Figure 4. 414

3.2 Ablation Studies and Analysis 415

The number of given adapters (N ) When ana- 416

lyzing training curves, X-PEFT with a higher num- 417

ber of adapters outperforms its counterparts. As 418

shown in Figure 5 (a), the training curves for the 419

sst2 task consistently position lower when more 420

adapters are used. This trend is consistent across 421

various tasks in the GLUE benchmark. 422

In terms of evaluation scores, utilizing a higher 423

6



Figure 4: Evaluation of the Modified LaMP ‘Per-
sonalized News Categorization’ Dataset. Averaged
evaluation accuracy and F1 score over 323 authors are
presented (on 30% holdout sets).

number of adapters generally corresponds to bet-424

ter evaluation performance,even though they are425

random adapters, as demonstrated in Table 2. How-426

ever, there are some exceptions, notably in tasks427

such as rte, sst2, and wnli, where an abundance428

of adapters can potentially lead to overfitting.429

Soft masks vs. hard masks We introduce X-430

PEFT with mask tensors, which can be imple-431

mented by either soft or hard masks. Each type432

has its own advantages and disadvantages. To val-433

idate these observations, we compare the two set-434

tings across our experiments. In most experiments,435

X-PEFT with hard masks demonstrated superior436

generalization performance compared to the soft437

ones (refer to Table 2 and Figure 4). However, as438

depicted in Figure 5 (a), soft masks consistently439

display a lower training loss than their hard ones.440

From these results, we infer that soft masks are441

more prone to overfitting, whereas hard masks en-442

hance generalization capabilities.443

Separate mask tensors for submodules How444

can a small number of additional trainable parame-445

ters (e.g., mask tensor) in X-PEFT achieve perfor-446

mance that matches adapter tuning? The key factor447

is the use of two mask tensors instead of just one.448

When we use only one mask tensor for aggregating449

adapters (i.e., including only MB and discarding450

MA from the bottleneck), the expressive capacity451

for a new adapter is limited to N . However, when452

we use MA and MB together in sequence(i.e., sep-453

arate mask tensors for submodules A and B) can454

express N2 cases. We conducted experiments to 455

investigate this aspect on the sst2 task as shown 456

in Figure 5 (b). Through these experiments, the 457

results confirm that the combination of these two 458

tensors can improve the performance of X-PEFT. 459

Top-k selection for hard masks For X-PEFT 460

with hard masks, k = 50 typically yields favorable 461

training performances. For N = 200 and N = 462

400, increasing k improves training performance 463

until reaching k = 50, after which it begins to 464

decline. For N = 100, a training performance 465

peak is observed at k = 30, deviating from the 466

pattern observed with larger N values. Refer to 467

Figure 5 (c) for further insights. As k diverges 468

further from the value of k = 50, the loss curves 469

progressively deviate from the curve of k = 50. 470

In general, regardless of the value of N , k = 50 471

proves to be a highly reasonable choice. 472

4 Related Works 473

AdapterFusion (Pfeiffer et al., 2021) is similar to 474

X-PEFT in using multiple adapters, but it relies 475

on attention tensors (referred to as fusion layers) 476

for combining adapters, making it computationally 477

heavy. This characteristic limits the scalability of 478

AdapterFusion in multi-profile scenarios. 479

Parallel adapters (Rücklé et al., 2021) and its 480

scaled variant (He et al., 2022) are essentially 481

implementations of AdapterFusion, designed to 482

enable parallel computation throughout adapters. 483

Consequently, they inherit the limitations associ- 484

ated with AdapterFusion. AdapterDrop (Rücklé 485

et al., 2021) is built upon the AdapterFusion ar- 486

chitecture but focuses on pruning less significant 487

adapters based on their activation strength. How- 488

ever, the number of adapters to be pruned varies 489

from task to task, and it still employs attention 490

tensors, making it computationally intensive. 491

AdapterSoup (Chronopoulou et al., 2023) trains 492

a set of adapters and selects a subset of them for 493

inference. As this subset selection occurs at test 494

time, the selection changes with different inputs, 495

requiring the retention of all trained adapters at test 496

time, which is not scalable. 497

AdaMix (Wang et al., 2022) employs the 498

Mixture-of-Experts concept in adapter tuning. It 499

trains a route policy among layers of adaptation 500

modules, which comprise a mixture of adapters. 501

It combines the weights of adaptation modules se- 502

lected by an input batch for test time efficiency but 503

requires the retention of all the trained adapters for 504

7



Figure 5: Training curves for sst2 with various settings. (a) Varying the number of adapters and comparing soft /
hard masks: more adapters lead to improved loss, and soft masks generally show lower loss than hard ones. (b)
Effectiveness of separate mask tensors: the impact of having MA and MB is evident. (c) Varying k for hard masks:
k = 50 consistently shows best performance irrespective of the specific value of N .

Figure 6: Heatmaps for mask tensors of most distant
authors. These distinct heatmaps capture the unique
characteristics of news categorization.

inference, making it less scalable.505

Wu et al. (2022) employ the original approach506

proposed by the Lottery Ticket Hypothesis (Fran-507

kle and Carbin, 2019), applied at the adapter level508

within the AdapterFusion configuration. They it-509

eratively prune a portion of the adapters until win-510

ning tickets are discovered. In contrast, X-PEFT511

can be viewed as the process of identifying su-512

permasks (Zhou et al., 2019) among parallelly ar-513

ranged adapter submodules.514

Including the aforementioned works, as far as515

we know, X-PEFT is the first to involve hundreds516

of adapters (up to 800), except for Wu et al. (2022),517

which uses a maximum of 192 adapters (while oth-518

ers use fewer than 100 adapters). Additionally, as519

far as we know, X-PEFT is the first to apply the520

supermask (Zhou et al., 2019) concept in PEFT,521

particularly for multi-profile scenarios.522

5 Conclusion 523

In this paper, we introduce eXtremely-PEFT, X- 524

PEFT, a groundbreaking approach to Parameter- 525

Efficient Fine-Tuning for pre-trained language 526

models (PLMs). Our work achieves an unprece- 527

dented 1/100 reduction in parameters compared to 528

adapter tuning while maintaining task performance. 529

We also optimize the memory requirements, mini- 530

mizing them to the byte level by a factor of 10,000, 531

which is crucial for extreme multi-profile scenarios. 532

Furthermore, we delve deeper into PEFT, signifi- 533

cantly reducing trainable parameters, thus reducing 534

resource and computational costs. By incorporat- 535

ing the principles of the Lottery Ticket Hypothe- 536

sis into adapter-level PEFT, X-PEFT opens new 537

possibilities for resource-efficient natural language 538

processing with PLMs. 539

Our work not only advances PEFT but also sets 540

the stage for future research in NLP, inspiring novel 541

applications and resource-efficient natural language 542

processing breakthroughs. In conclusion, X-PEFT 543

is a transformative development in PEFT, offering 544

remarkable parameter efficiency without perfor- 545

mance compromise. 546

8



Limitations547

Due to the extensive number of adapters involved548

in X-PEFT, training can be time-consuming. For549

hard masking, it is possible to reduce training time550

by disabling gradients for out-of-top-k adapter sub-551

modules. We can also explore concepts from Par-552

allel adapters (Rücklé et al., 2021) about paral-553

lel computation for AdapterFusion (Pfeiffer et al.,554

2021).555

There are almost no datasets available for multi-556

profile benchmarking. LaMP (Salemi et al., 2023)557

is currently the only dataset that exists for such558

purposes, but it is primarily designed for prompt559

tuning. While we did conduct multi-profile exper-560

iments on LaMP, these experiments necessitated561

some modifications. Unfortunately, the scarcity of562

multi-profile benchmark datasets limited our abil-563

ity to carry out more comprehensive multi-profile564

experiments.565

Regarding language, our research is constrained566

to English texts. The PLM utilized in our study567

has been specifically trained in English, and the568

datasets we employed are also in English. Future569

work will need to explore an extended approach570

to enhance parameter efficiency and multi-profile571

scalability, especially for low-resource languages.572

Ethics Statement573

Gender bias in NLP models is a serious problem574

that can have far-reaching consequences, poten-575

tially undermining social integration and peace.576

Researchers in the NLP field have a responsibil-577

ity to consider and address potential gender bias578

in all their efforts. The SuperGLUE benchmark579

includes a diagnostic dataset focusing on gender580

bias, namely axg. This is why we have included581

SuperGLUE in our experimental dataset.582

X-PEFT offers the advantage of enabling multi-583

profile service providers to operate with minimal584

memory or storage requirements, ultimately reduc-585

ing the strain on data centers and contributing to a586

reduction in carbon dioxide emissions. However,587

it’s worth noting that the extended training times588

involving multiple GPUs can be environmentally589

problematic. Therefore, our ongoing research ef-590

forts are dedicated to achieving more efficient train-591

ing methods and conserving computational power592

from an ecological viewpoint.593

References 594

Jimmy Lei Ba, Jamie Ryan Kiros, and Geof- 595
frey E. Hinton. 2016. Layer normalization. In 596
arXiv:1607.06450 [stat.ML]. 597

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 598
2013. Estimating or propagating gradients through 599
stochastic neurons for conditional computation. In 600
arXiv:1308.3432 [cs.LG]. 601

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos 602
Guestrin. 2016. Training deep nets with sublinear 603
memory cost. In arXiv:1604.06174 [cs.LG]. 604

Alexandra Chronopoulou, Matthew Peters, Alexan- 605
der Fraser, and Jesse Dodge. 2023. AdapterSoup: 606
Weight averaging to improve generalization of pre- 607
trained language models. In Findings of the Asso- 608
ciation for Computational Linguistics: EACL 2023, 609
pages 2054–2063, Dubrovnik, Croatia. Association 610
for Computational Linguistics. 611

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 612
Kristina Toutanova. 2018. Bert: Pre-training of deep 613
bidirectional transformers for language understand- 614
ing. In In Proceedings of the 2019 Conference of 615
the North American Chapter of the Association for 616
Computational Linguistics: Human Language Tech- 617
nologies, Volume 1 (Long and Short Papers). 618

Jonathan Frankle and Michael Carbin. 2019. The lottery 619
ticket hypothesis: Finding sparse, trainable neural 620
networks. In ICLR 2019. 621

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg- 622
Kirkpatrick, and Graham Neubig. 2022. Towards a 623
unified view of parameter-efficient transfer learning. 624
In ICLR 2022. 625

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 626
Bruna Morrone, Quentin De Laroussilhe, Andrea 627
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 628
Parameter-efficient transfer learning for nlp. In Pro- 629
ceedings of the 36th International Conference on 630
Machine Learning, PMLR 97:2790-2799, 2019. 631

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 632
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 633
Weizhu Chen. 2022. Lora: Low-rank adaptation of 634
large language models. In ICLR 2022. 635

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate- 636
gorical reparameterization with gumbel-softmax. In 637
International Conference on Learning Representa- 638
tions. 639

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, 640
Kevin Gimpel, Piyush Sharma, and Radu Soricut. 641
2020. Albert: A lite bert for self-supervised learning 642
of language representations. In ICLR 2020. 643

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 644
The power of scale for parameter-efficient prompt 645
tuning. In Proceedings of the 2021 Conference on 646
Empirical Methods in Natural Language Processing, 647

9

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://doi.org/10.18653/v1/2023.findings-eacl.153
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
http://proceedings.mlr.press/v97/houlsby19a.html
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243


pages 3045–3059, Online and Punta Cana, Domini-648
can Republic. Association for Computational Lin-649
guistics.650

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:651
Optimizing continuous prompts for generation. In652
Proceedings of the 59th Annual Meeting of the Asso-653
ciation for Computational Linguistics and the 11th654
International Joint Conference on Natural Language655
Processing (Volume 1: Long Papers), pages 4582–656
4597, Online. Association for Computational Lin-657
guistics.658

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-659
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,660
Luke Zettlemoyer, and Veselin Stoyanov. 2020.661
Roberta: A robustly optimized bert pretraining ap-662
proach. In ICLR 2020.663

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.664
2017. The concrete distribution: A continuous relax-665
ation of discrete random variables. In International666
Conference on Learning Representations.667

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-668
hairi, Hao Ma, Jiawei Han, Scott Yih, and Madian669
Khabsa. 2022. UniPELT: A unified framework for670
parameter-efficient language model tuning. In Pro-671
ceedings of the 60th Annual Meeting of the Associa-672
tion for Computational Linguistics (Volume 1: Long673
Papers), pages 6253–6264, Dublin, Ireland. Associa-674
tion for Computational Linguistics.675

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,676
Kyunghyun Cho, and Iryna Gurevych. 2021.677
AdapterFusion: Non-destructive task composition678
for transfer learning. In Proceedings of the 16th Con-679
ference of the European Chapter of the Association680
for Computational Linguistics: Main Volume, pages681
487–503, Online. Association for Computational Lin-682
guistics.683

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya684
Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun685
Cho, and Iryna Gurevych. 2020. Adapterhub: A686
framework for adapting transformers. In Proceed-687
ings of the 2020 Conference on Empirical Methods688
in Natural Language Processing: System Demonstra-689
tions.690

Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Ed-691
ward Hu, Ellie Pavlick, Aaron Steven White, and692
Benjamin Van Durme. 2018. Collecting diverse nat-693
ural language inference problems for sentence rep-694
resentation evaluation. In Proceedings of the 2018695
Conference on Empirical Methods in Natural Lan-696
guage Processing.697

Alec Radford, Karthik Narasimhan, Tim Salimans, and698
Ilya Sutskever. 2018. Improving language under-699
standing by generative pre-training.700

Rachel Rudinger, Jason Naradowsky, Brian Leonard,701
and Benjamin Van Durme. 2018. Gender bias in702
coreference resolution. In Proceedings of the 2018703
Conference of the North American Chapter of the704

Association for Computational Linguistics: Human 705
Language Technologies, Volume 2 (Short Papers). 706

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman 707
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna 708
Gurevych. 2021. Adapterdrop: On the efficiency 709
of adapters in transformers. In Proceedings of the 710
2021 Conference on Empirical Methods in Natural 711
Language Processing. 712

Alireza Salemi, Sheshera Mysore, Michael Bendersky, 713
and Hamed Zamani. 2023. LaMP: When large lan- 714
guage models meet personalization. 715

Laurens van der Maaten and Geoffrey Hinton. 2008. 716
Visualizing data using t-sne. In Journal of Machine 717
Learning Research 9 (2008). 718

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 719
preet Singh, Julian Michael, Felix Hill, Omer Levy, 720
and Samuel R. Bowman. 2019a. SuperGLUE: A 721
stickier benchmark for general-purpose language un- 722
derstanding systems. arXiv preprint 1905.00537. 723

Alex Wang, Amanpreet Singh, Julian Michael, Felix 724
Hill, Omer Levy, and Samuel R. Bowman. 2019b. 725
GLUE: A multi-task benchmark and analysis plat- 726
form for natural language understanding. In the Pro- 727
ceedings of ICLR. 728

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, 729
Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal- 730
lah, and Jianfeng Gao. 2022. AdaMix: Mixture- 731
of-adaptations for parameter-efficient model tuning. 732
In Proceedings of the 2022 Conference on Empiri- 733
cal Methods in Natural Language Processing, pages 734
5744–5760, Abu Dhabi, United Arab Emirates. As- 735
sociation for Computational Linguistics. 736

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 737
Chaumond, Clement Delangue, Anthony Moi, Pier- 738
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- 739
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 740
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 741
Teven Le Scao, Sylvain Gugger, Mariama Drame, 742
Quentin Lhoest, and Alexander Rush. 2020. Trans- 743
formers: State-of-the-art natural language processing. 744
In Proceedings of the 2020 Conference on Empirical 745
Methods in Natural Language Processing: System 746
Demonstrations. 747

Jiarun Wu, Qingliang Chen, Zeguan Xiao, Yuliang Gu, 748
and Mengsi Sun. 2022. Pruning adatperfusion with 749
lottery ticket hypothesis. In Findings of the Associ- 750
ation for Computational Linguistics: NAACL 2022, 751
pages 1632–1646, Seattle, United States. Association 752
for Computational Linguistics. 753

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosin- 754
ski. 2019. Deconstructing lottery tickets: Zeros, 755
signs, and the supermask. In Advances in Neural 756
Information Processing Systems 32 (NeurIPS 2019). 757

10

https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://aclanthology.org/2020.emnlp-demos.7/
https://aclanthology.org/2020.emnlp-demos.7/
https://aclanthology.org/2020.emnlp-demos.7/
https://aclanthology.org/D18-1007/
https://aclanthology.org/D18-1007/
https://aclanthology.org/D18-1007/
https://aclanthology.org/D18-1007/
https://aclanthology.org/D18-1007/
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://aclanthology.org/N18-2002/?utm_campaign=The+Batch&%3Butm_source=hs_email&%3Butm_medium=email&%3B_hsenc=p2ANqtz-_2gcX0I5wCL5hfUcVc2J6NzgHosJeJ7BQU6R5_rT_JB5MZZN4w9GaBjt_ECBi18wQTpkUK&ref=dl-staging-website.ghost.io
https://aclanthology.org/N18-2002/?utm_campaign=The+Batch&%3Butm_source=hs_email&%3Butm_medium=email&%3B_hsenc=p2ANqtz-_2gcX0I5wCL5hfUcVc2J6NzgHosJeJ7BQU6R5_rT_JB5MZZN4w9GaBjt_ECBi18wQTpkUK&ref=dl-staging-website.ghost.io
https://aclanthology.org/N18-2002/?utm_campaign=The+Batch&%3Butm_source=hs_email&%3Butm_medium=email&%3B_hsenc=p2ANqtz-_2gcX0I5wCL5hfUcVc2J6NzgHosJeJ7BQU6R5_rT_JB5MZZN4w9GaBjt_ECBi18wQTpkUK&ref=dl-staging-website.ghost.io
https://aclanthology.org/2021.emnlp-main.626/
https://aclanthology.org/2021.emnlp-main.626/
https://aclanthology.org/2021.emnlp-main.626/
http://arxiv.org/abs/2304.11406
http://arxiv.org/abs/2304.11406
http://arxiv.org/abs/2304.11406
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.388
https://doi.org/10.18653/v1/2022.emnlp-main.388
https://doi.org/10.18653/v1/2022.emnlp-main.388
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
https://doi.org/10.18653/v1/2022.findings-naacl.123
https://doi.org/10.18653/v1/2022.findings-naacl.123
https://doi.org/10.18653/v1/2022.findings-naacl.123
https://proceedings.neurips.cc/paper_files/paper/2019/hash/1113d7a76ffceca1bb350bfe145467c6-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/1113d7a76ffceca1bb350bfe145467c6-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/1113d7a76ffceca1bb350bfe145467c6-Abstract.html


A Algorithms758

We suggest the hard softmax algorithm employing759

straight-through gradient estimation, as outlined in760

Algorithm 1.761

Algorithm 1 Hard (top-k) Softmax (Straight-
Through Gradient Estimation)

Require: Input logits, noise level nu, tempera-
ture tau and k for top-k selection

Ensure: Vector y representing the top-k elements
logits = logits + nu * Gumbel(0, 1)
y_soft = softmax(logits / tau)
indices = topk(y_soft)
y_hard = khot_encoding(indices)
y_hard = y_hard / k
y = y_hard - y_soft.detach() + y_soft

B Figures762

Figure 7 illustrates our experiments with different763

random seeds, revealing consistent trends in the764

results. It also includes two runs with the same765

random seed, demonstrating the reproducibility of766

our experiments based on the random seed.767

Figure 7: Training Loss Curves for sst2 (N = 100,
soft) with Varying Random Seeds. While local fluctua-
tions in the loss curves differ from each other, they tend
to follow a similar trajectory globally. It’s evident that
our experiments guarantee reproducibility, as two differ-
ent runs with random seed 42 yield identical loss curves.
(The blue solid line and the orange dashed line are com-
pletely overlapped.) In terms of evaluation scores, run 0
and 1 both recorded 0.8956, run 3 recorded 0.8865, and
run 4 recorded 0.8968, with little variation among them.

C Hyper-Parameters768

The major hyper-parameters are as follows:769

• N (The number of adapters attached to an X- 770

PEFT model): Generally, the more adapters, 771

the better the performance. However, con- 772

sidering training budgets, 100, 150, or 200 773

adapters are quite good choices. Our search 774

space for N was {100, 200, 400, 800}. 775

• k (k for top-k selection for hard masking): We 776

found that k = 50 is a reasonably good choice 777

regardless of other settings, as discussed in the 778

ablation studies. Our search space for k was 779

{1, 10, 20, 30, 40, 50, 60, 70, 80, 100}. 780

• b (Bottleneck dimension of adapters used in 781

an X-PEFT model): The bottleneck dimen- 782

sion of adapters used in an X-PEFT model has 783

no significant impact on the model’s perfor- 784

mance. We used a default value (48) provided 785

by AdapterHub. Our search space for b was 786

{12, 24, 48, 96}. 787

• Batch size: The batch size has no significant 788

impact on the model’s performance. A batch 789

size of 64 is suitable for our technical envi- 790

ronment. Our search space for batch size was 791

{8, 16, 32, 64, 128}. 792

We used bert-base-uncased, so the following 793

hyperparameters were consistent across all experi- 794

ments: 795

• L (The number of blocks of the PLM) 796

• d (Input dimension into adapter layers) 797

D Modification Details for the LaMP 798

dataset 799

In our research, we utilized the LaMP-2 dataset, 800

specifically the ’Personalized News Categorization’ 801

dataset, which is part of the LaMP benchmark 802

(Salemi et al., 2023). However, several modifi- 803

cations were necessary to adapt this dataset for our 804

specific purposes. 805

The original LaMP-2 dataset was primarily de- 806

signed for prompt tuning, aiming to understand 807

how specific authors categorize given news arti- 808

cles. Each data point in this dataset consisted of 809

the news article text and the author’s profile. It’s 810

essential to clarify that the author’s profile is not 811

an identifier but rather a collection of news article 812

texts authored by that particular individual, along 813

with the categories assigned by the author to these 814

articles. 815

As our experiments focused on standard super- 816

vised classification, we needed datasets containing 817

11



pairs of news texts and their corresponding labels,818

alongside the author’s identity. In other words,819

our data schema needed to be in the format of820

(news_text, news_category, author_id). Here,821

author_id simply refers to a numerical identifier822

that can also be used as a label.823

To meet these requirements, we exclusively ex-824

tracted the author profile data from the original825

LaMP-2 dataset and proceeded to modify it accord-826

ing to the specified format. Given that the same827

author’s data may appear more than once in the828

original LaMP-2 dataset, we took care to remove829

any duplicates in our modified version.830

Out of the 8,090 data points in the LaMP-2831

dataset, we extracted 17,005 news texts, each cate-832

gorized into one of 15 categories, authored by 323833

unique authors, eliminating any duplicates.834

E Training Time835

Information regarding the training time for our836

GLUE and SuperGLUE experiments can be found837

in Table 8 and Table 9.838

Here are the training times for our LaMP experi-839

ments:840

• x_peft with mtl (hard): 5.06 hours841

• x_peft with mtl (soft): 4.90 hours842

• x_peft with sa (hard): 8.36 hours843

• x_peft with sa (soft): 8.40 hours844

F Trained Parameters845

The parameter count of bert-base-uncased is846

known to be 110M. All the X-PEFT configurations847

that we used in the experiments and their param-848

eter counts including bert-base-uncased is as849

follows (with c representing the label count for a850

downstream head):851

• N = 100 and c = 2, 3, 15: 200M852

• N = 150 and c = 2, 3, 15: 245M853

• N = 200 and c = 2, 3, 15: 290M854

• N = 400 and c = 2, 3, 15: 468M855

• N = 800 and c = 2, 3, 15: 826M856

The counts of trained parameters, both including857

and excluding the downstream head, are provided858

in Table 4.859

G Detailed GLUE and SuperGLUE 860

Evaluations 861

Here are the complete evaluations for the GLUE 862

and SuperGLUE benchmarks. Refer to Table 5 and 863

Table 6. 864

12



Including Header Excluding Header
N c = 2 c = 3 c = 15

100 0.596M 0.596M 0.606M 0.004M
150 0.597M 0.598M 0.607M 0.005M
200 0.598M 0.599M 0.608M 0.006M
400 0.603M 0.604M 0.613M 0.011M
800 0.612M 0.613M 0.622M 0.020M

Table 4: Trained Parameter Count Including and Excluding Header. c denotes the label count for a downstream
head.

Mode Adapters cola sst2 mrpc mrpc qqp qqp
(MCC) (Acc) (Acc) (F1) (Acc) (F1)

x_peft 100 (soft) 0.3977 0.8956 0.7353 0.8291 0.8132 0.7643
100 (hard) 0.3891 0.8716 0.7132 0.8146 0.7824 0.7307
200 (soft) 0.4422 0.9106 0.7328 0.8278 0.8266 0.7793
200 (hard) 0.4446 0.8911 0.7745 0.8521 0.7933 0.7480
400 (soft) 0.4654 0.8991 0.7328 0.8250 0.8345 0.7845
400 (hard) 0.4592 0.8899 0.7843 0.8562 0.8011 0.7515

head_only - 0.3122 0.8521 0.7059 0.8187 0.7575 0.6884
single_adapter - 0.4277 0.9140 0.7034 0.8130 0.8688 0.8263

Table 5: Evaluation of the GLUE tasks (part 1). In the case of hard masking, we employ k = 50 for top-k
selection. The scores in the table are reported based on the official metrics provided by the GLUE dataset. ‘Acc,’
‘MCC,’ and ‘F1’ denote accuracy, Matthew’s Correlation, and F1 score, respectively.

Mode Adapters stsb stsb mnli mnli qnli rte wnli
(PCC) (SRC) (Acc) (AMM) (Acc) (Acc) (Acc)

x_peft 100 (soft) 0.7888 0.7948 0.6663 0.6894 0.8182 0.5776 0.3380
100 (hard) 0.7404 0.7492 0.6186 0.6372 0.7626 0.6101 0.3239
200 (soft) 0.8001 0.8076 0.6863 0.7013 0.8343 0.5957 0.3662
200 (hard) 0.7506 0.7646 0.6320 0.6597 0.7891 0.5776 0.3380
400 (soft) 0.8028 0.8089 0.7074 0.7275 0.8349 0.5848 0.2958
400 (hard) 0.8115 0.8148 0.6569 0.6789 0.8083 0.5487 0.2676

head_only - 0.4687 0.4482 0.5307 0.5335 0.6842 0.5884 0.3803
single_adapter - 0.7995 0.8057 0.7934 0.8034 0.8812 0.5993 0.4225

Table 6: Evaluation of the GLUE tasks (part 2). In the case of hard masking, we employ k = 50 for top-k
selection. The scores in the table are reported based on the official metrics provided by the GLUE dataset. ‘Acc,’
‘PCC,’ and ‘SRC’ denote accuracy, Pearson correlation, and Spearman correlation, respectively. For mnli, ‘Acc’
and ‘AMM’ denote accuracy matched and accuracy mismatched, respectively.

13



Mode Adapters cb boolq axb axg axg
(Acc) (Acc) (MCC) (Acc) (GPS)

x_peft 100 (soft) 0.6429 0.6676 0.1111 0.5253 92.6724
100 (hard) 0.6786 0.6569 0.0943 0.4831 86.6379
200 (soft) 0.6786 0.6599 0.0721 0.5197 96.1207
200 (hard) 0.6786 0.6648 0.0244 0.5028 88.3621
400 (soft) 0.6786 0.6599 0.0916 0.5084 93.5345
400 (hard) 0.6964 0.6792 0.1203 0.5000 94.8276

head_only - 0.7143 0.6358 0.0869 0.4972 82.3276
single_adapter - 0.6786 0.6489 0.1027 0.5084 93.5345

Table 7: Evaluation of the SuperGLUE tasks. In the case of hard masking, we employ k = 50 for top-k selection.
‘GPS’ denotes Gender Parity Score, and all other symbols can be understood in the same context as in Table 5 and 6

Mode Adapters cola sst2 mrpc qqp stsb mnli qnli rte wnli
x_peft 100 (soft) 0.55 4.32 0.25 26.07 0.38 24.20 6.71 0.17 0.05

100 (hard) 0.57 6.12 0.26 26.69 0.38 24.32 7.02 0.17 0.05
200 (soft) 1.11 8.10 0.48 43.67 0.71 47.12 12.61 0.32 0.10
200 (hard) 1.11 8.51 0.50 44.13 0.71 47.33 12.54 0.33 0.09
400 (soft) 2.16 16.93 0.92 90.43 1.40 104.57 29.29 0.62 0.19
400 (hard) 2.07 16.91 0.91 91.45 1.41 108.14 26.15 0.78 0.19

head_only - 0.04 0.47 0.02 1.08 0.04 2.70 0.46 0.01 0.00
single_adapter - 0.09 0.55 0.03 2.97 0.05 4.22 1.61 0.01 0.01

Table 8: Computation Cost of the GLUE tasks (Training Time, Hours).

Mode Adapters cb boolq axb axg
x_peft 100 (soft) 0.02 0.60 0.18 0.18

100 (hard) 0.02 0.61 0.18 0.18
200 (soft) 0.03 1.17 0.33 0.33
200 (hard) 0.03 1.19 0.35 0.35
400 (soft) 0.06 2.29 0.64 0.64
400 (hard) 0.06 2.41 0.68 0.68

head_only - 0.00 0.07 0.02 0.02
single_adapter - 0.00 0.08 0.03 0.03

Table 9: Computation Cost of the SuperGLUE tasks (Training Time, Hours).

14


	Introduction
	eXtremely-PEFT
	Experiments
	Experimental Results
	Ablation Studies and Analysis

	Related Works
	Conclusion
	Algorithms
	Figures
	Hyper-Parameters
	Modification Details for the LaMP dataset
	Training Time
	Trained Parameters
	Detailed GLUE and SuperGLUE Evaluations

