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ABSTRACT

Recent years have seen impressive progress in theoretical and algorithmic devel-
opments of causal inference across various disciplines in science and engineer-
ing. However, there are still some unresolved theoretical problems, especially
for cyclic causal relationships. In this article, we propose a meta structure causal
model(meta-SCM) framework inspired by understanding causality as information
transfer. A key feature of our framework is the introduction of the concept of
active mechanisms to connect data and the collection of underlying causal mech-
anisms. We show that the meta-SCM provides a novel approach to address the
theoretical complications for modeling cyclic causal relations. In addition, we
propose a sufficient activated mechanisms assumption, and explain its relationship
with existing hypotheses in causal inference and learning. Finally, we conclude
the main idea of the meta-SCM framework with an emphasis on its theoretical and
conceptual novelty.

1 INTRODUCTION

Although there have been significant advances in causal research in recent years, there are still
some important theoretical problems that have not been resolved. One of the most notoriously hard
problems is about cyclic causal relations, and there is no causal modeling frameworks can properly
handle it. In modern theory of causality, the mathematical framework called a structural causal
model (SCM) is used to represent the causal mechanisms from which a causal hierarchy to describe
the generated phenomena organically emerges(Pearl, 1995; Pearl et al., 2009; Bongers et al., 2016;
Bareinboim et al., 2020). Acyclic SCMs, also known as recursive SEMs, form a special well-
studied subclass of SCMs that generalize causal Bayesian networks. They have many convenient
properties and are widely used in practical causal modeling, see e.g. (Evans, 2016; Lauritzen, 1996;
Richardson, 2003; Maathuis et al., 2018). But there is a strong need to go beyond acyclic SCMs.

In fact, there are feedback loops between observed variables in many systems occurring in real
world. Causal cycles may arise when one approximates such systems over time (Fisher, 1970; Mo-
gensen et al., 2018; 2020), or when one describes the equilibrium states of these systems (Iwasaki
& Simon, 1994; Lacerda et al., 2012; Hyttinen et al., 2012; Mooij et al., 2013; Bongers & Mooij,
2018; Blom et al., 2020; Pfister et al., 2019), though the underlying dynamic processes describing
such systems have an acyclic causal structure over time. In particular, it was shown that the equi-
librium states of a system governed by (random) differential equations can be described by an SCM
that represents their causal semantics in (Bongers & Mooij, 2018), which gives rise to a plethora of
SCMs that include cycles. In contrast to their acyclic counterparts, many of the convenient proper-
ties do not hold for SCMs with cycles, and they are not as well understood. Some progress has been
made in the case of discrete (Neal, 2000) and linear models (Spirtes, 1993; 1994; 2013; Richardson
et al., 1996; Koster et al., 1996; Hyttinen et al., 2012), and more recently the Markov properties
(Forré & Mooij, 2020; 2017) and theoretical foundation (Bongers et al., 2016). Researchers are
mostly making additional assumption of the underlying causal mechanisms to circumvent compli-
cations of cyclic SCMs in causal semantics, solvability, marginaliztions etc.. However, they are
still not well understood. Even, a pressing concern is whether SCMs are able to completely model
dynamical systems at equilibrium and the causal constraints model(CCM) is proposed but without
graphical interpretations yet(Blom et al., 2020).
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After introducing the formal definition of SCMs and relevant preliminaries in Section 2, we trace
back into the philosophy accounts of causality and propose the meta structural causal model (meta-
SCM) based on understanding causality as information transfer in Section 3. The meta-SCM frame-
work is constructed by an SCM and an extra dimension which describes how to connect data to
mechanisms through the concept of active mechanisms. In particular, a meta-SCM induces a sub-
model for each sample in the dataset coarsely related to the active set. The new framework is proved
to be more expressive by Theorem 7, and its potential ability to address cyclic casual relationships
is illustrated by an example of cyclic SCM with multiple solution and an unsolvable cyclic SCM.
Comparing to the joint causal inference for meta-system (Mooij et al., 2016) which can also deal
with cyclic SCMs, the meta-SCM framework avoids to add extra context variables and can even gain
insights on unsolvable SCMs.

The Section 4 addresses the challenging case where no additional variables, besides the samples
from the data to generate, are observed. The sufficient activated mechanism (SAM) hypothesis is
proposed as an central assumption in the meta-SCM framework, which is consistent with the role
of independent causal mechanisms (ICM) principle or sparse mechanisms shift (SMS) assumption
for the SCM framework. Moreover, the SAM and SMS hypotheses are also compared with the
lens of informational decomposition of SCM, and it reveals that the SMS assumption might be not
appropriate in certain case with an example. Section 5, we conclude the main idea of the meta-SCM
framework with an emphasis on its theoretical and conceptual novelty.

The main contributions of this paper are:
1) We propose a totally novel dimension that describes how to link data to mechanisms to the

existing causal modeling framework, particularly, a meta structural causal model frame-
work which can be used to circumvent technique complications in cyclic SCMs.

2) We propose a SAM hypothesis as an inductive bias for performing causal inferences and
learning consistent with the role of SMS assumption.

2 PRELIMINARIES

At the centre of modern causal modeling theory lies the structural causal model (SCM) (also known
as structural equation model) which makes graphical assumptions of the underlying data generating
process. There are many somewhat different formulations of SCM in literatures, e.g., Schölkopf
(2019); Pearl (2019); Bongers et al. (2016); Pearl et al. (2009); Forré & Mooij (2020), among which
the definition in Blom et al. (2020) is used in this paper.

Definition 1 (SCM) Let I and J be index sets. A Structural Causal Model (SCM)M is a triple
(X , F,E), with:

• a product of standard measurable spaces X = Πi∈IXi (domains of endogenous),

• a tuple of exogenous random variables E = (Ej)j∈J taking value in a product of standard
measurable space E =

∏
j∈J Ej .

• a family of F of measurable functions:

fi : Xpa(i)∩I × Epa(i)∩J → Xi, ∀i ∈ I.

The dataset are ususally assumed to be a set of samples for the solution of SCMs.

Definition 2 (Solution of SCM) We say that a random variable X = (Xi)i∈I is a solution to an
SCMM = (X , F,E) if

Xi = fi(Xpa(i)∩I ,Epa(i)∩J ) a.s., ∀i ∈ I
An SCM may have a unique(up to zero sets) solution, multiple solutions, or there may not exist any
solution at all.

Definition 3 An SCMM is called simple if it is uniquely solvable with respect to any subsetO ⊆ I.

All acyclic SCMs are simple.
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Definition 4 A do intervention do(x̃I) with target I ⊆ I and value x̃I ∈ XI on an SCM M =

(X , F,E) maps it to the intervened SCM Mdo(x̃I) = (X , F̃ ,E) with F̃ the family of measurable
functions:

f̃i(xpa(i)∩I , epa(i)∩J ) =

{
x̃i i ∈ I,

fi(xpa(i)∩I , epa(i)∩J ) i ∈ I \ I

The intervened SCM is referred as a submodel of the original SCM, in fact, the variants derived from
many different types of interventions (e.g., perfect, imperfect, stochastic, etc.) are also referred as
submodel.

3 META STRUCTURAL CAUSAL MODELS

One critical insight in philosophy is that the causal mechanisms behind a system under investigation
are not generally observable, but they do produce observable traces (“data,” in modern terminology).
This insight naturally leads to two practical desiderata for any proper framework for causal inference,
namely:

1. The causal mechanisms underlying the phenomenon under investigation should be ac-
counted for – indeed, formalized – in the analysis.

2. This collection of mechanisms (even if mostly unobservable) should be formally tied to its
output: the generated phenomena and corresponding datasets.

The mathematical object called a structural causal model (SCM) is used to represent the causal
mechanisms from which a causal hierarchy to describe the generated phenomena organically
emerges. It is often assumed that every instantiation E = e of the exogenous variables uniquely
determines the values of all variables in X (Pearl, 2019), which leads a unique solution of the corre-
sponding SCM . Then the dataset D = {x(k)}k=1,...,N is a set of N samples of the unique solution.
But in many cases, SCM with cycles might be not solvable or have multiple solutions (Halpern,
1998).

Example 1 (Multiple Solutions) Consider an SCMM1 = (X , F = {f1, f2},E = {E1}), where

F =

{
x1 ← (x2

2 + x2 + 1)/3− e21/3

x2 ← x1

Obviously, (1 − E1, 1 − E1) and (1 + E1, 1 + E1) are two different solutions toM1, then which
solution of the SCM should be used to link the dataset to the model?

The previous causal inference literature rarely deals with theoretical aspects of cyclic causality. In
recent years, it has been formally discussed in Bongers et al. (2016) However, it is also acknowl-
edged by this paper that there are many complications in dealing with cyclic causal models. The
vast majority of methods to deal with cyclic SCM in the literature are by adding additional assump-
tions, such as linear constraints(Spirtes, 1993; 1994; Hyttinen et al., 2012) and certain solvability
constraints(Forré & Mooij, 2018; Bongers et al., 2016). These methods basically exclude the study
of SCMs with multiple solutions such as Example 1.

The view of understanding causation as information transfer was first formally proposed by (Collier,
1999) in philosophy recently. Inspired by this view, we realize that the causal links among variables
can be cut off suggested by unsuccessful information transfer, which suggests that different samples
might have different causal graphs and causal mechanisms. For example, samples of M1 might
only satisfy only a subset of the structural equations due to absence of information , hence variables
for two different samples x(i) and x(j) could have two different causal graphs. However, we usually
do not know when and where the information transmission was interrupted for a given sample. In
fact, it might be infeasible to specify the information transmission details of all samples of an SCM.
To address the above problem, we introduce the concept of active set of an SCM, which is inspired
by the active set method in the field of non-linear optimization theory.

Definition 5 (Active mechanisms) For a given sample x(k) and the corresponding collection of
mechanisms represented by an SCMM = (X , F,E), if x(k)

i = fi(x
(k)
pa(i)∩I , e

(k)
pa(i)∩J ), then we call

fi an active mechanism, and denote the index set for all active mechanisms as the active set Ak.
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The collection of active sets {Ak}k=1,2,... gives us the opportunity to avoid considering the details
of the information transfer between variables, and to describe the relationship between the data and
the model relatively concisely. Formally, we define the meta structural causal model (meta-SCM) as
follows:

Definition 6 (meta-SCM) A collection of mechanisms described by an SCMM = (X , F,E) with
a dataset D = {x(k)}k=1,...,N , in which each sample x(k) satisfies that:

• the prior distribution of E(k) is P (E);

• Ak ⊆ I is referred as the active set of the sample k satisfies that

x
(k)
i ← fi(x

(k)
pa(i)∩I , e

(k)
pa(i)∩J ), ∀i ∈ Ak. (1)

Then the tuple 〈M,D〉(or in shortM) is called a meta structural causal model (meta-SCM).

The difference between SCM and meta-SCM. On one hand, an SCM can be interpreted as a special
case of meta-SCM satisfies that the active set Ak is equal to I for any sample x(k). On the other
hand, a meta-SCM share the causal mechanisms with its corresponding SCM only differs on the
method for linking data to model. Thus, it improves the expressiveness of the canonical SCM.
Actually, a meta-SCM suggests a method for connecting any dataset to an SCM with the active sets.
Formally,

Theorem 7 (Connecting Data to Mechanisms) For an SCM M = (X , F,E) with any dataset
D = {x(k)}k=1,...,N in the domain of X . Then each datapoint x(k) is a sample from some submodel
SCM M̃ related to the active set Ak.

Proof For any k = 1, ..., N , let M̃(k) = (X , F̃ ,E) be an SCM with modified causal mechanisms:

f̃i(xpa(i)∩I , epa(i)∩J ) =

{
fi(xpa(i)∩I , epa(i)∩J ) i ∈ Ak,

x
(k)
i i ∈ I \Ak

Then the active set of datapoint x(k) for the submodel M̃(k) is I by definition1, which directly leads
to our theorem.

The above proof directly assigns a submodel for each sample in the dataset, which only part of
mechanisms in the original SCM holds. In fact, the submodel in our meta-SCM framework does not
have to be constructed as a do-intervened model M̃(k), it can be any subclass of SCMs with desired
properties(such as acyclic) in literatures.

When there are cyclic causal relationships between variables, one encounters various technical com-
plications, which even arise in the linear setting(Bongers et al., 2016). The main idea for solving
related difficulties is to add additional restrictions on structural equations, and the dataset are as-
sumed to be consisted of samples from a distribution obtained by solving the SCM. In contrast, our
meta-SCM does not add additional assumptions on SCM, and each datapoint is treated as a sam-
ple of the distribution obtained by solving a certain submodel. For the SCM M1 with muptiple
solutions in Example 1 with dataset D = {x(k)}k=1,...,N in the domain of X , the meta-SCM can
circumvent theoretical complications through providing each datapoint a distribution of any solution
of a certain submodel. Usually, the details of submodel and its corresponding distribution for each
sample might be unknown, and meta-SCM only provides a coarse description by the active sets.

In fact, we can also circumvent the technique complications caused by solvability through meta-
SCM. Specifically, the structural equations of an acyclic SCM trivially have a unique solution, which
ensures that the SCM gives rise to a unique, well-defined probability distribution on the variables.
However, an SCM can be unsolvable in the case of cycles, e.g.,

Example 2 (Unsolvable) Consider an SCMM2 = (X , F = {f1, f2},E = {E1}), where

F =

{
x1 ← x2

2 + x2 + e21 + 1

x2 ← x1

1In fact, M̃(k) is the do-intervened SCM M
do(x

(k)
I\Ak

)
.
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Then the SCM M2 is obvious not solvable, thus it cannot be used to model underlying causal
mechanisms of any dataset D = {x(k)}k=1,...,N in the domain of X . But with our novel approach,
we might still connect data to the underlying mechanisms, e.g. by letting |Ak| = 1 for all k =
1, ..., N . In other words, each datapoint x(k) is a sample of a distribution derived from the submodel
M̃(k) by Theorem 7.

The difference between meta-system and meta-SCM. The joint causal inference (JCI) framework
reduces modeling a system in its environment to modeling the meta-system consisting of the system
and its environment, which considers auxiliary context variables that describe the context of each
data set (Mooij et al., 2016). In contrast, our meta-SCM address the challenging case where no
additional variables, besides the samples from the data to generate, are observed. For example in
Fig. 1, the meta-system consists of two variables X1, X2 and a context variable C. More concretely,
the engine X1 drives the wheels of a car X2 when going uphill C = 0, but when going downhill,
the rotation of the wheels drives the engine. In a meta-SCM, we instead introduce the concept of
active mechanisms to describe each sample in a dataset. Moreover, the meta-SCM framework even
gain insights on unsolvable SCMs such as Example 2 while the previous meta-system study restricts
themselves to simple SCMs. In philosophy viewpoint, the JCI framework uses context changes to
model interventions, which is a difference-making account for causality. Instead, the active set in
meta-SCM are inspired by information transferring which is a production account of causality, see
e.g. Illari & Russo (2014).

(a)

X1 X2

C = 0:

Ak = {2} :
(b)

X1 X2

C = 1:

Ak = {1} :
(c)

X1 X2

C

Ak = {1, 2} :

Figure 1: The meta-system and meta-SCM when in the presence of cycles. a) X1 causes X2 in
context C = 0, f2 is activated; (b) X2 causes X1 in context C = 1, f1 is activated; (c) X1 and X2

cause each other in the joint model, f1, f2 are activated.

From the above discussions, the meta-SCM framework can be considered as generalization of SCM
that novelly links data to causal mechanisms through active sets at individual level modeling2, and it
might be used to circumvent technical complications when cycles present. Then, a natural question is
how to perform inferences with a meta-SCM when in the presence of cycles？A first difficult might
be the lack of knowledge on the specific form of active sets, i.e. Ak, for each sample. In the following
section, we propose a principle for learning and reasoning within the meta-SCM framework.

4 SUFFICIENT ACTIVATED MECHANISMS

The meta-SCM viewpoint considers a set of variables indexed by I and a set of samples D with
causal (or disentangled) factorization,

P (x
(k)
Ak

) =
∏
i∈Ak

P (x
(k)
i |x

(k)
pa(i)∩I), ∀x(k) ∈ D. (2)

The independent causal mechanisms (ICM) principle tells us that the factors should be independent
in the sense that

a) changing (or performing an intervention upon) one mechanism P (xi|xpa(i)∩I) does not
change any of the other mechanisms P (xj |xpa(j)∩I)) (i 6= j) (Schölkopf et al., 2012), and

2The individual level models is not new but widely used, e.g., in variational inference of machine learning
(Bingham et al., 2019).
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b) knowing some other mechanisms P (xi|xpa(i)∩I) (i 6= j) does not give us information
about a mechanism P (xj |xpa(j)∩I)) (Janzing & Schölkopf, 2010).

Consistent with the implication a) of the ICM Principle, the sparse mechanism shift (SMS) hypoth-
esis (See e.g. Parascandolo et al. (2018); Schölkopf (2019)) was stated in the following:

Sparse Mechanism Shift (SMS). Small distribution changes tend to manifest themselves
in a sparse or local way in the causal/disentangled factorization, i.e., they should usually
not affect all factors simultaneously.

It is the fundamental assumption for causal representation learning(Schölkopf et al., 2021) and has
recently been used for learning causal models (Ke et al., 2019), modular architectures (Goyal et al.,
2019; Besserve et al., 2020) and disentangled representations (Locatello et al., 2020). However,
the SMS hypothesis usually only assumes mechanisms shift from a given context to the original
uniquely solvable SCM, especially acyclic SCM. We propose a hypothesis in the viewpoint of a
given individual mechanism across samples in the following:

Sufficient Activated Mechanism (SAM). All factors in the causal/disentangled factor-
ization should be activated sufficiently, i.e., every causal mechanism is sufficiently often
activated across samples in the dataset.

The “sufficient” in the SAM roughly understood as sufficient for identifying factors in the causal
factorization of interest. In Example 2, the unsolvable cyclic SCM M2 cannot be used as the
underlying generative process for any dataset. On the contrary, in the meta-SCM framework under
SAM assumption, we are able to learn a causal factorization Eq. (2), even when only knowing how
many factors have activated, but not which ones. In mathematics, start with solving the unsolvable
equation x2 = −1 with imaginary unit i, it has been an important branch of mathematics which is
complex analysis with holomorphic function as a central research object. Similarly, the meta-SCM,
which introduced a novel dimension on linking data to SCM, can help in causal modeling with
unsolvable SCM, and we feel meta-SCM with SAM assumption might be a central research object
for our framework as holomorphic function for complex analysis.

Overall, in the lens of two practical desirata for any proper framework mentioned in the begining of
Section 3, our meta-SCM is different from all literatures on variants of SCMs by adding a fully novel
dimension on considering how each sample is tied to underlying mechanisms. This extra dimension
though, on one hand, complicate the SCM framework, however, on the other hand, improve its
expressiveness and power for causal modeling. Then, the SAM hypothesis defines a subclass of
meta-SCMs of interest for performing causal inferences and reasoning, consistent with the role of
the ICM Principle/ SMS hypothesis in the SCM framework.

The causality behind interventions in the SCM framework is a difference-making account, while the
production accounts, especially informational interpretation of causality relatively neglected. One
core idea of informational causality — C causes E if there is information transmission from C to
E(Illari & Russo, 2014), suggests that the causal mechanism fi of an SCM can be separated into
two part — information process and information transfer (Gong & Zhu, 2021). Formally,

Definition 8 (Informational Decomposition of SCM) Consider an SCM M = (X , F,E). The
informational decomposition ofM is defined as, for any i ∈ I,{

xi ← fi(epa(i)∩I,i, epa(i)∩J ),

ej,i ← xj ,
(3)

where ej,i represents the information on edge (j, i) received from its input node j.

This dichotomy of causal mechanisms can help illuminate on the relationship between SMS and
SAM assumption. We tend to assume the information processing mechanisms are sparse inacti-
vated, while the information transfer mechanisms are instead only sufficient activated. Henceforth,
if we consider the inactivated mechanisms as shifted mechanisms, then the information process and
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transfer mechanisms are satisfying the SMS hypothesis and the SAM assumption respectively. Small
distribution changes caused by interventions on information process tend to manifest themselves in
a sparse or local way, but might be manifest themselves in a non-local way caused by changes on
transferred information. For example in a starfish shaped causal diagram, changing the output in-
formation of the centre node (instead itself) can lead to shift on all functional relationships with its
child nodes, which can affect almost all factors simultaneously. Thus, the SMS assumption might
be appropriate to describe the intervened model for such system.

5 CONCLUSIONS

This work is mostly theoretical and conceptual to address the notoriously hard problem of cyclic
causal models. We proposed a novel active set approach for connecting data to SCMs (even not
solvable), instead of making additional assumptions to restrict the class of SCMs of interest. Note
that the meta-SCM is more of an conceptional modeling framework on how to relate data to the
underlying causal mechanisms rather than a specific model, and the SAM assumption has been
introduced as an inductive bias for performing causal inferences and learning within the framework
of meta-SCM. To best of our knowledge, this is the first causal modeling framework to explore
the dimension formally on how to link each sample in the dataset to the collection of mechanisms.
In the future, we might anticipate more causal modeling exploration on exacting information from
activated mechanisms directly instead of the solution of SCMs.
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Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael
Tschannen. Weakly-supervised disentanglement without compromises. In International Confer-
ence on Machine Learning, pp. 6348–6359. PMLR, 2020.

Marloes Maathuis, Mathias Drton, Steffen Lauritzen, and Martin Wainwright. Handbook of graph-
ical models. CRC Press, 2018.

Søren Wengel Mogensen, Daniel Malinsky, and Niels Richard Hansen. Causal learning for partially
observed stochastic dynamical systems. In UAI, pp. 350–360, 2018.

Søren Wengel Mogensen, Niels Richard Hansen, et al. Markov equivalence of marginalized local
independence graphs. The Annals of Statistics, 48(1):539–559, 2020.

Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. From ordinary differential equations to
structural causal models: the deterministic case. arXiv preprint arXiv:1304.7920, 2013.

Joris M Mooij, Sara Magliacane, and Tom Claassen. Joint causal inference from multiple contexts.
arXiv preprint arXiv:1611.10351, 2016.

Radford M Neal. On deducing conditional independence from d-separation in causal graphs with
feedback (research note). Journal of Artificial Intelligence Research, 12:87–91, 2000.

Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla, and Bernhard Schölkopf. Learning
independent causal mechanisms. In International Conference on Machine Learning, pp. 4036–
4044. PMLR, 2018.

Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

Judea Pearl. Causal and counterfactual inference. The Handbook of Rationality, pp. 1–41, 2019.

Judea Pearl et al. Causal inference in statistics: An overview. Statistics surveys, 3:96–146, 2009.

Niklas Pfister, Stefan Bauer, and Jonas Peters. Learning stable and predictive structures in kinetic
systems. Proceedings of the National Academy of Sciences, 116(51):25405–25411, 2019.

8



Under review as a conference paper at ICLR 2022

Thomas Richardson. Markov properties for acyclic directed mixed graphs. Scandinavian Journal
of Statistics, 30(1):145–157, 2003.

Thomas S Richardson, Peter Spirtes, et al. Automated discovery of linear feedback models. Carnegie
Mellon [Department of Philosophy], 1996.

Bernhard Schölkopf. Causality for machine learning. arXiv preprint arXiv:1911.10500, 2019.

Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij.
On causal and anticausal learning. arXiv preprint arXiv:1206.6471, 2012.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Towards causal representation learning. arXiv preprint
arXiv:2102.11107, 2021.

Peter Spirtes. Directed cyclic graphs, conditional independence, and non-recursive linear structural
equation models. 1993.

Peter Spirtes. Conditional independence in directed cyclic graphical models for feedback. Carnegie
Mellon [Department of Philosophy], 1994.

Peter L Spirtes. Directed cyclic graphical representations of feedback models. arXiv preprint
arXiv:1302.4982, 2013.

9


	Introduction
	Preliminaries
	Meta Structural Causal Models
	Sufficient Activated Mechanisms
	Conclusions

