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Abstract

Learned Image Compression (LIC) models face critical challenges in real-world
scenarios due to various environmental degradations, such as fog and rain. Due to
the distribution mismatch between degraded inputs and clean training data, well-
trained LIC models suffer from reduced compression efficiency, while retraining
dedicated models for diverse degradation types is costly and impractical. Our
method addresses the above issue by leveraging prompt learning under the infor-
mation bottleneck principle, enabling compact extraction of shared components
between degraded and clean images for improved latent alignment and compression
efficiency. In detail, we propose an Information Bottleneck-constrained Latent Rep-
resentation Unifying (IB-LRU) scheme, in which a Probabilistic Prompt Generator
(PPG) is deployed to simultaneously capture the distribution of different degrada-
tions. Such a design dynamically guides the latent-representation process at the
encoder through a gated modulation process. Moreover, to promote the degradation
distribution capture process, the probabilistic prompt learning is guided by the In-
formation Bottleneck (IB) principle. That is, IB constrains the information encoded
in the prompt to focus solely on degradation characteristics while avoiding the inclu-
sion of redundant image contextual information. We apply our IB-LRU method to a
variety of state-of-the-art LIC backbones, and extensive experiments under various
degradation scenarios demonstrate the effectiveness of our design. Code is available
athttps://github.com/liuquan0521-sys/IB-LRU-compression.

1 Introduction

In the past decade, Learned Image Compression (LIC) has emerged as a competitive alternative
to conventional image coding standards [} 2, 3] by leveraging deep neural networks to optimize
the rate-distortion trade-off in an end-to-end manner. Existing LIC models typically adopt an
autoencoder structure, where the encoder extracts a latent representation and the decoder reconstructs
the image, characterized by an integrated entropy model that captures spatial dependencies in the latent
representation and plays a critical role in compression efficiency. A milestone in entropy modeling is
the introduction of the hyperprior [4]], which adopts the variational autoencoder (VAE) framework
and introduces a Gaussian-based prior to model the distribution of latent representations. This
approach enables the compression model to adaptively learn compact latent representations tailored
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Figure 1: An intuitive illustration of compression performance under degradation scenarios. (a)
Input image with rain degradation; (b) Output from a well-trained LIC network [5]]; (¢) Output from
the restoration-then-compression paradigm (PromptIR [6] + LIC); (d) Output from our proposed
IB-LRU scheme. In addition, we compare the commonly employed factorized prompt [6] (e) and
our proposed probabilistic prompt (f) in terms of their capacity to capture discriminative degradation
characteristics, visualized via t-SNE plots.

to the statistical properties of natural images, significantly improving rate-distortion performance and
forming the foundation for the following LIC models.

Despite their impressive performance under standard conditions, existing LIC models often struggle
in real-world settings, where the imaging process typically suffers from various environmental
degradations, e.g., noise, fog, rain, or low-light conditions. This limitation arises from their data-
driven nature, that are trained on high-quality natural images and relies on learned priors that assume
clean image statistics. However, in degraded scenarios, the obtained latent representations deviate
significantly from these assumptions. Consequently, as the entropy model is tightly coupled with
the prior, it becomes difficult to accurately estimate the distribution of latent features, leading to a
substantial drop in compression performance. In other words, compressing degraded images often
requires significantly more bits than pristine ones, an intuitive demonstration is provided in Fig.[I] (b).
Moreover, the wide range of possible degradation types and intensities in real-world settings makes it
impractical to retrain dedicated LIC models for each case to capture their specific distributions.

In facing this challenge, a potential path is restoration-then-compress paradigm, which involves
deploying cutting-edge multy-in-one image restoration models [7,[8,[9,[10] (denoting their capacity to
handle multiple degradation within a unified process) at encoding end, with the aim of reducing the
degradation in a preprocessing stage so that the restored images can be compressed with an acceptable
rate cost. However, in our coding practice, this paradigm does not yield optimal performance.
Although it may provide satisfactory perceptual quality, the restored images still exhibit distributional
divergence from natural images, leading to suboptimal compression results in the context of LIC,
as shown in Fig. [I] (c). Moreover, adding a separate restoration model may reduce flexibility in
real-world deployments, especially when computational resources at the imaging end are limited.

To tackle the aforementioned challenges, we introduce the Compressor-as-Restoration paradigm,
where prompts are employed to adaptively steer the encoder, thereby achieving a unified framework
for compression and restoration. We propose a novel Information-Bottleneck-Constrained Latent
Representation Unifying (IB-LRU) scheme, a lightweight encoder-side plugin module that con-
strains latent representations by aligning degraded and clean-image distributions, thereby enhancing
compression and reconstruction without modifying the LIC backbone. In particular, to address
diverse input degradations within a unified training framework, we adopt a prompt learning strategy
enhanced by a VAE-based Probabilistic Prompt Generator (PPG), which models each degradation
using distribution parameters. Unlike existing approaches that rely on factorized prompt vectors, our
probabilistic design yields more compact and discriminative representations with fewer parameters,



as shown in Fig.[I](e) and (f). During inference, degradation information is sampled from the PPG’s
posterior and passed to a Degradation-Adaptive Gating Modulation (DAGM) module, which guides
the encoding process. Additionally, we incorporate the Information Bottleneck (IB) principle to
constrain the mutual information between prompts and image content, encouraging the prompt to
focus on essential degradation characteristics. In experiments, we implement our IB-LRU scheme
on multiple LIC backbones, and extensive results demonstrate that the proposed scheme effectively
improves compression performance under various degradation settings.

Our key contributions are as follows,

* To the best of our knowledge, the proposed IB-LRU is the first exploration aimed at improv-
ing the efficacy of LIC models under various degradation settings through a lightweight
plug-and-play design.

* We propose a novel probabilistic prompt learning strategy that characterizes each degradation
type using a set of distribution parameters, rather than factorized vectors, resulting in more
discriminative degradation representations.

* We introduce an Information Bottleneck (IB)-based optimization criterion for the probabilis-
tic prompt learning process, and derive a variational approximation bound in theory that
guides the design of our optimization strategy.

2 Related Work

Learned Image Compression. The past decade has witnessed the rapid advancement of Learned
Image Compression (LIC), driven by the progress of deep learning technologies. The first attempt
was made by Ballé et al. [4], introduced an end-to-end autoencoder pipeline, with a factorized
entropy model responsible for constraining the compactness of the latent representation. Furthermore,
Ball€ et al. [11] made a significant advancement by introducing a hyperprior into the entropy coding
process, enabling the learning of a hierarchical entropy model in which the distribution of latent
features is conditioned on a hyper-latent variable. In the following works, numerous efforts have been
made to further enhance the entropy model by leveraging contextual dependencies, such as local con-
text [12]], global context information [[13], and channel-wise context [[14}[15] resulting in incremental
improvements. In addition, some studies focus on reducing the computational complexity of the
entropy coding process, by leveraging checkerboard context models [[16] or sparse sampling method-
ology [17]. Besides efforts aimed at optimizing the entropy model, other works focus on improving
the backbone networks by incorporating architectures such as residual networks [[18], invertible
neural networks [[19} 20], and Swin-Transformers [21} 22} [23| 24]]. They enable a more expressive
latent representation process, leading to notable improvements in compression performance.

Prompt Learning. The concept of prompt learning originated from the field of natural language
processing, involving in inducing pre-trained language models (e.g., BERT [25] or GPT [26]) to
generate answers given cloze-style prompts, extracting information useful for downstream tasks.
Subsequent research in prompt learning shifted toward automating this process using labeled data,
replacing manually designed prompts with learnable ones. For instance, Jiang et al.[27] employed
text mining and paraphrasing techniques to generate a pool of candidate prompts, from which the
optimal ones were selected based on training accuracy. Meanwhile, other studies[28l [29}[30] proposed
to factorize prompts into a set of continuous vectors that can be end-to-end optimized with respect to
a given objective, a strategy known as continuous prompt learning. In the field of computer vision,
CoOp [31] was one of the earliest works to adopt the continuous prompt learning methodology,
demonstrating notable improvements in transfer learning performance. Building on this, Zhou et
al.[32]] further applied prompt learning techniques to image classification, achieving significant gains
in generalization capability. Similarly, Ju et al.[33] explored the use of prompt learning to reformat
video-related tasks in alignment with pre-training objectives. Among existing prompt learning works
for machine vision, the most relevant to ours is PromptIR [6], which uses a set of factorized vectors
as prompts to capture the characteristics of different degradation types for a multi-in-one image
restoration network. However, the naive prompt representation and learning strategy yield suboptimal
performance in capturing clear and distinct features of various degradation.

Information Bottleneck The Information Bottleneck (IB) principle, originally proposed by Tishby
et al. [34], offers a theoretical framework for extracting the most relevant information from input
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Figure 2: (a) Compression pipeline of the proposed IB-LRU scheme. (b) Details of the proposed
PPG. (c) Details of the proposed DAGM module.

data with respect to the task target by compressing the input representation while preserving task-
relevant features. In the context of deep learning, the IB framework has been adapted to encourage
models to learn compact and generalizable representations by constraining the mutual information
between the input and intermediate features[35]]. In particular, this work introduced the variational
information bottleneck (VIB), which formulates the IB objective in a tractable form using variational
approximations, enabling its integration into neural network training pipelines. More recently, the IB
principle has been employed in computer vision tasks to enhance robustness and generalization [7}
36, 137, 38]]. These works inspire our use of IB to guide prompt learning, aiming to extract clear
degradation-relevant information while suppressing redundancy from irrelevant image context.

3 Methodology

3.1 Motivation and Overview

Existing LIC models typically follow an autoencoder-like pipeline. An encoder G, () maps the input
image x to a latent representation z = G (), which is then fed to a uniform quantizer that converts
z to its discrete form 2. Subsequently, an entropy encoder R(-) losslessly encodes Z into a binary
bitstream, transmits it to the decoder side, and provides its rate estimation. At the decoder side, the
decoder G,(-) reconstructs the image & = G,(2). The entire framework is optimized under the
rate-distortion criterion,

Lrq= R('%) +)\D(£L',.’i'), (D
where R(Z) is the estimated rate measured in bits per pixel (bpp), D(-,-) denotes the distortion
metric (e.g., MSE: ||z — Z||?), and ) is a Lagrange parameter, being responsible for obtaining codecs
at different compression levels. However, while LIC models perform well on clean natural images,
their effectiveness degrades in real-world conditions involving noise, fog, blur, ez al. This is because:

* The latent distributions of degraded images deviate significantly from those of clean images;

* The entropy model relies heavily on prior assumptions, making accurate distribution estima-
tion challenging under degradation.

To address the generalization issues of LIC models, we propose an Information-Bottleneck-
Constrained Latent Representation Unifying (IB-LRU) scheme, whose central idea is to perform
prompt optimization with information bottleneck constraint to guide the encoding of degraded images
so that the distribution of their latent representations aligns with that of pristine images, thereby
improving compactness and ensuring high-quality outputs at the decoder side. In general, the pro-
posed IB-LRU scheme is designed with three key objectives: flexibility through a lightweight plug-in
design; compatibility with existing LIC backbones without requiring parameter modification; and
generalizability to support diverse degradation types within a single training process.

The overall framework is illustrated in Fig. 2] The proposed IB-LRU scheme includes two main com-
ponents: 1) Probabilistic Prompt Generator (PPG): A VAE-based encoder that learns degradation-
specific prompts using a set of distribution parameters drawn from a multivariate Gaussian. At infer-
ence time, degradation representations are sampled and used to guide the encoder; 2) Degradation-
Adaptive Gating Modulation (DAGM): A modulation module that adjusts the encoding process
using the sampled prompt, effectively aligning the latent distribution across degradation types. More-
over, to promote probabilistic prompt learning to capture clear and distinct representations of different



degradations, we investigate: 3) Information Bottleneck (IB) Principle: a variational approximation
of IB in our context is explored to constrain the mutual information between the learned prompt
and the input image while preserving the task-relevant information, thus suppressing redundant
information of the learned prompt from the broader image context. The detailed implementations of
the proposed PPG and DAGM are presented in Subsection[3.2} while the derivation of the variational
approximation of IB is provided in Subsection[3.3]

3.2 Prompt-Guide Latent Representation Alignment

Probabilistic Prompt Generator: As shown in Fig.[2|(b), the PPG involves a a VAE-style encoder,
denoted as p = G(x; 0),where 0 represents the model parameters and p is the probabilistic prompt
characterized by its distribution parameters [up, op]. In particular, during the inference stage, they
are sampled from the approximate posterior ¢(p|z; 8) = N (p; ip, diag(c2), where p1, € R? is the
mean vector, and the diagonal covariance matrix is given by diag(af,), with 012) € R? representing
the per-dimension variances. Herein, d denotes the dimensionality of the prompt.

Degradation-Adaptive Gating Modulation: These posterior statistics, i, and log o2, are then fed
into a gated modulation process, as shown in Fig.[2|(c). Given an intermediate feature f from a frozen
backbone LIC encoder, a modulation network Mp.q(+) tasks as input the up and f to produce basis
modulation maps [y, a]:

['Vba Oéb] = Mmod(ﬂpa f) 2)
Concurrently, an MLP layer computes a gating signal s from log o2, which provide information
related to the spread of the approximate posterior. This signal s derives final modulation maps [v, a]:

s = sigmoid(MLP(log o)),

T=1+s0(m—1), 3)
a =585 Qp.

The restored feature fies is then obtained via an affine transformation:

fres:7®f+a- (4)

3.3 Information Bottleneck-based Prompt Learning Constraint

As for the training process of the proposed PPG, we posit that an effective prompt p should act as
a minimal sufficient statistic of the degradation signal relative to the content already captured in
the intermediate feature f of the frozen backbone LIC encoder. Directly learning p might lead it
to capture redundant information, e.g., image content information, which would inevitably prevent
the learned prompt from capturing clean and distinct characteristics of different degradation types.
Therefore, we investigate the Information Bottleneck (IB) principle [34] to provide reliable and
effective guidance for the prompt learning process. In the context of IB, we aim to find a prompt
p that minimizes the mutual information it retains about the input x while maximizing the mutual
information relevant to the target task y, which denotes the pristine ground truth in this case. We
formulate the IB-based optimization objective for P E] as:

»CIB_prompt :I(PaX) _ﬁI(PaY|F)7 (5)

where the left term represents the information (potentially redundant) about the input X that P
contains, and the right term quantifies the additional information P offers about the target Y beyond
that already captured by the backbone features F', 3 denotes the trade-off parameter.

As directly optimizing Eq. (3)) is intractable, we follow Variational Information Bottleneck (VIB) [33]]
to derive tractable variational upper and lower bounds for the left and right terms, respectively.
Variational Lower Bound for Z(P;Y|F): By definition, Z(P; Y|F) = H(Y|F) — H(Y|P, F).
Since F is a deterministic function of X (frozen), H (Y |F’) can be treated as constant with respect to
P. Thus, maximizing I (P; Y |F') is equivalent to minimizing the conditional entropy H (Y|P, F'):
HY|P, F) = =E, p)~pe, ) Ey~pip.nllog p(ylp, f)]- ©)

3In the following derivations, X, Y, P, F represent random variables, while =, y, p and f are scalar or
single instances of random variables




We apply a variational approximation ¢(y|p, f) for p(y|p, f), corresponding to our decoder. Using
the non-negativity of KL divergence, Dxy. [p(y|p, f) || ¢(y|p, f)] > 0, we have for any given p, f:

Epyip.p) [10g p(ylP, )] = Epyip, ) [log q(ylp, f)]. (7

Substituting this inequality (after taking expectation over p(p, f)) into the entropy expression yields
an upper bound for the conditional entropy:

HY P, F) < =Epyp.plloga(ylp, f)]- ®)
Therefore, a variational lower bound for the mutual information is:
I(P;Y|F) = Eyyp,p) log q(ylp, f)]- ©)

Given the above derivation, we found that maximizing this lower bound is equivalent to maximizing
the expected log-likelihood E,,(, 1, r)[log ¢(y|p, f)]. Thus, in actual implementation, the distortion

term in Eq. (1)) is employed and acting as a proxy for — log ¢(y|p, f).

Variational Upper Bound for Z(P; X ): We aim to derive a tractable upper bound for the mutual
information Z(P; X'). By definition, we obtain:

p(plx)}
I(P: X) = Epy oyonimon |10
( ) (z,p)~p(x,p) [ g »(p)

= E2,p)~p(a,p) 108 P(P[7)] — Eppp)[log p(p)]- (10)

As the true prior p(p) = Egp(2) [p(p|2)] is intractable, we introduce r(p), a standard Gaussian
distribution, as a approximation to the true prior p(p): Using the non-negativity of the KL divergence
between the true prior and our variational approximation, Dk [p(p) || (p)] > 0, we have:

_Epr(p) [IOg p(p)] < _Epwp(p) [IOg T(p)]- (11)
Substituting this inequality back into Eq. (I0):

I(P; X) < E(z p)~p(a.p) 10g p(P|7)] — Eppp [log 7(p)]- (12)

This bound still involves the true posterior p(p|x) inside the expectations. Now, we further ap-
proximate the expectation involving the true posterior by replacing p(p|z) with our PPG ¢(p|z; 0).
This step makes the bound computable using samples from the encoder. Recognizing the struc-
ture resembles the KL divergence, we arrive at the commonly used VIB upper bound for mutual
information:

p(plz
I(P; X) < Eunp(e) Epmp(pla) [bg f,(p))]

Things have to be mentioned that, although replacing the true posterior p(p|z) with the approximate
posterior ¢(p|x; 8) inside the expectation introduces an additional approximation beyond the rigorous
bound derived using Dk (p || 7) > 0, Eq. (I3) provides a practical objective for IB implementations.

With the trackable IB-based optimization creation for prompt learning, the final loss function for our
IB-LRU scheme is formulated as,

Liotal = Lra + BEmwp(x)DKL[q(er) H ’f‘(p)] (14)

4 Experiments

In the experimental stage, we first implement the proposed IB-LRU scheme on multiple backbone
LIC networks and evaluate its effectiveness across a variety of degradation settings. Subsequently, we
compare its performance with the restoration-then-compression paradigm, which is built upon cutting-
edge multy-in-one restoration models. Moreover, comprehensive ablation studies are conducted to
validate the effectiveness of our design.



Table 1: Comparison between the proposed scheme and the restoration-then-compression paradigm
regrading parameters and inference speed.

Model AirNet+TIC Restormer+TIC PromptIR+TIC MOCE-IR+TIC Ours+TIC
Extra_Param. 8.93M 26.12M 35.59M 25.35M 4.6M
Inference Speed (ms) 483.3 363.9 416.5 349.4 109.5
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Figure 3: Performance comparison between the LIC backbone networks with and without the
integration of the proposed IB-LRU scheme.

4.1 Experimental Setting

Benchmark: The performance is assessed across three degradation types, including haze, rain,
and noise, with multiple degradation intensities employed for each type: 1) Rain: The Rain100
dataset [39]] consists of 2,000 degraded-clean pairs for each of the heavy and light rain scenarios. In
our experiments, 1,800 pairs are used for training and 200 pairs for testing in each scenario. 2) Noise:
For the noise scenarios, the training set was constructed using 400 images from BSD400 [40] and
4,744 images from WED [41]], with degraded versions generated by adding Additive White Gaussian
Noise (AWGN) with o € {15,25,50}. The testing set is formed by combining BSD68 [42] and
Urban100 [43], using the same noise settings. 3) Haze: The SOTS dataset [44] is employed, with
72,135 / 500 images for training /testing. The training sets of all above datasets are combined to
support the training of our IB-LRU scheme.

LIC backbone: Three widely adopted LIC networks are employed, including the milestone
Bmshj2018 [[11]], as well as two cutting-edge models: the Swin Transformer-based TIC [5]] and
MLIC++ [45]]. These three LIC backbone networks were pre-trained exclusively on the clean COCO
2017 dataset. For each model, four checkpoints corresponding to different compression levels are
employed, and their parameters are kept frozen during the training of our IB-LRU scheme.

Anchors: Four cutting-edge multy-in-one image restoration networks are employed for the
restoration-then-compression paradigm, including AirNet[8], Restormer[9], and PromptIR[6]], and
MOCE-IR[46]. All models are trained from scratch using the same training set as ours to ensure fair
comparisons. The restored output images are then fed into well-trained LIC backbones for evaluation.

Evaluation Criteria: We introduce rate-perception criterion for this unique task. In this context,
perception refers to the distance between decoded images and corresponding pristine ground truths,
measured in terms of PSNR (dB), while the bit-per-pixel (bpp) value is used to quantify the rate.

Implementation Details: We train our model using the AdamW optimizer with settings 31 = 0.9
and By = 0.999. The initial learning rate is set to 1 x 10~%. This rate is maintained for the first 80
epochs (80% of the total training) and then decayed to 1 x 10~° for the remaining 20 epochs. The
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Figure 4: Performance comparison between the restoration-then-compression paradigm and our
IB-LRU scheme, both of which are based on the TIC backbone.

model is trained for a total of 100 epochs. Training is performed on randomly cropped 256 x 256
patches using a setup of 8 NVIDIA RTX 6000 GPUs.

4.2 Experimental Results

Effectiveness Evaluation: Performance is compared between the LIC backbones with and without
our IB-LRU implementation to examine the effectiveness of the proposed scheme. It is worth noting
that although the LIC backbones are not designed for image restoration, we focus on bitrate savings
in this part, while still reporting their perception indices to ensure consistent and clear representation.

The corresponding results, presented in Fig. [3] show encouraging improvements. In particular, under
the light rain, heavy rain, noise_15, noise_25, and noise_50 scenarios, our proposed method brings
notable improvements in rate performance, resulting in average bpp reductions of 27.1%, 51.6%,
18.2%, 34.6%, and 64.9%, respectively, across the three LIC backbones. Moreover, significant
improvements in perceptual quality can also be observed, demonstrating the contribution of latent
representation unification to the image reconstruction process. It is worth noting that in the haze
scenario, although the IB-LRU scheme remarkably improves perceptual quality, the bpp values are
even increased. According to our analysis and a comprehensive examination of the corresponding
dataset, this is primarily because haze tends to act as a smoothing effect on image content rather than
introducing additional degradation signals. As a result, hazy images may still be well represented by
the prior of the LIC model, as they resemble smooth images.

Comparison with Restoration-then-Compression Paradigm: Comparisons results between our
propose IB-LRU and the restoration-then-compression methods regarding rate-perception perfor-
mances are provided in Fig.[d As shown, our scheme is capable of achieving competitive perceptual
quality compared to these cascaded approaches, while offering overall advantages in bpp reduc-
tion—especially in high bitrate regions. In particular, an interesting observation arises from the fact
that both our IB-LRU and the restoration-then-compression approaches are built upon the same frozen
LIC checkpoint. While both are capable of achieving satisfactory perceptual quality, they tend to
result in a significant increase in bpp. As previously discussed, the underlying reason is that although
the restored images may align well with perceptual preferences, their distributions still diverge
considerably from those of natural images due to the generative nature of the restoration models.
Consequently, during entropy modeling, these distributions cannot be accurately estimated, leading to
increased bitrate costs. Meanwhile, our method focuses on unifying the latent distribution, achieving
a better trade-off between rate and perception. To provide intuitive insight into the performance, a set
of visual examples is presented in Fig. [5]

To further demonstrate the flexibility of our proposed IB-LRU scheme, we compare the number of
additional parameters and inference speed with those of the restoration-then-compression paradigm.
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Figure 5: An intuitive illustration of compression performance under different degradation scenarios.
The first, second, and third rows correspond to rain, noise, and haze settings, respectively.
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Figure 6: Ablation results on the IB constraint by varying its weight parameter 3.

The corresponding results, presented in Table [I] demonstrate our overwhelming advantages and
highlight the strong potential of IB-LRU for real-world implementation.

4.3 Ablation Studies

This part specifically examines the effectiveness of the IB constraint and its influence on the compres-
sion pipeline. In particular, the IB principle is employed to regularize the probabilistic prompt,
guiding it to capture minimal yet sufficient degradation information. In this part, we retrain
the entire scheme with varying values of 3 in Eq. (I4) based on the TIC backbone, specificall
{1 x1072,1x 10741 x 107°,1 x 10~7} to examine the influence of the IB constraint. Fig.
illustrates the corresponding results, where we observe that the optimal rate-perception performance
is generally achieved when S is setto 1 x 10~% or 1 x 10~?, whereas values that are too large or too
small lead to suboptimal results.

To gain deeper insight,

* When (3 is too small (e.g., 1 X 10*7), the IB constraint becomes weak, allowing the prompt
to capture excessive redundant image context rather than distinct and clear degradation
characteristics. This, in turn, compromises latent representation unification, as well as
compression efficiency and restoration quality.

» Increasing 3to 1 x 107° and 1 x 10~* significantly improves rate-perception performance,
as a moderate IB constraint effectively regularizes the prompt, guiding it to discard irrelevant
information while retaining what is essential for adaptive restoration.



» When /3 becomes too large (e.g., 1 x 10~2), the rate-perception performance begins to de-
grade. This suggests that overly strong IB constraints may excessively compress the prompt,
resulting in loss of useful information necessary for capturing degradation characteristics.

5 Conclusion

We propose IB-LRU, a lightweight and modular scheme that enhances the robustness of Learned Im-
age Compression (LIC) models under various real-world degradations. By leveraging a probabilistic
prompt guided by the Information Bottleneck principle, our method constrains latent representations
to retain task-relevant degradation information while suppressing redundancy. IB-LRU operates
without altering the original LIC parameters and is compatible with multiple pre-trained backbones.
Empirical results demonstrate consistent gains in compression and restoration performances across
diverse degradation scenarios, with minimal additional computational cost. Our findings suggest that
latent distribution alignment is a promising direction for improving the generalization of LIC models
in practical settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we delineate the scope of our research, analyze
the current limitations of Learned Image Compression (LIC), and highlight our proposed
methodology and key contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:
Justification: The paper has limitations, but those are not discussed in the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The full set of assumptions and a complete (and correct) proof for each
theoretical result are provided in Section 3]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a comprehensive description of our experimental setup in Section
E], which covers datasets, baselines, evaluation metrics, and pertinent experimental details.
To further support reproducibility, our code will be released as open source.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
We have open-sourced our codes with corresponding training and testing scripts).
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide our experimental settings, such as datasets and optimizers in
Section [ We will subsequently organize and open-source our code, making detailed
specifics/information available.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Owing to constraints on time and page length, the current presentation of our
experimental results does not include an analysis of error or other statistical significance
measures.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In section .1} we specified in our implementation details that 8 NVIDIA RTX
6000 GPUs with 48 GB of memory were used for training.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that the research conducted in the paper conforms, in every respect,
with the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section [5] we discuss the potential positive societal impacts of our work.
Furthermore, we do not anticipate any adverse societal impacts from this work.

Guidelines:

17


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators and original owners of all assets used in the paper, including code,
data, and models, are properly credited.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have released our source code, accompanied by comprehensive documen-
tation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve any crowd sourcing or experiments with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve experiments with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our work does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Experiments and Analyses

A.1 Effectiveness of the Probabilistic Prompt Design

This section provides a straightforward comparison between our probabilistic prompt and the existing
factorized prompt design. Specifically, we replace our probabilistic prompt with the factorized prompt
from PromptIR, keep the feature-modulation module unchanged, and retrain the plug-in on the TIC
backbone. Table 2] reports PSNR (dB) at a single compression level, where our methods deliver
overall performance gains with significantly fewer parameters.

Table 2: Performance and parameter comparison between our proposed probabilistic prompt and the
existing factorized prompt.

Prompt Type Rain_L (bpp=0.23) Haze (bpp=0.19) Noise_50 (bpp=0.26) Para. (M)

Probabilistic 28.01 26.53 25.93 4.6
Factorized 27.95 26.39 25.76 16.0

We also assess generalization on unseen conditions, including a mixed haze-and-rain setting created
by adding synthetic rain streaks to the SOTS haze test images, and the unseen DID de-raining dataset.
Table [3|shows that our method achieves stronger robustness in both cases.

Table 3: Comparison of generalization performance between probabilistic and factorized prompt
designs regarding bpp/ PSNR(dB).

Prompt Type Haze + Rain (Mixed) Unseen Domain (DID)

Probabilistic 0.183/24.09 0.202/25.15
Factorized 0.207/19.24 0.214/722.93

A.2 Effectiveness of the Information Bottleneck (IB) Constraint

We evaluate the impact of the Information Bottleneck by removing it entirely (5 = 0). As reported in
Table[d] the absence of the IB constraint leads to a uniform degradation in performance, supporting
its role in guiding the prompt to capture essential degradation features.

Table 4: Effect of removing the IB constraint (3 = 0) on rate—distortion (bpp / PSNR).
Version Rain_L Haze Noise_25

Ours (Full Model) 0.235/28.01 0.191/26.53 0.289/27.51
Ablated (8 = 0) 0.232/27.61 0.200/26.00 0.289/26.99

A.3 Comparison with Joint Denoising-Compression Methods

We compare against the joint denoising—compression method of Brummer et al. [47] (JDC-CN). For
a fair comparison, we retrain both approaches on the same TIC backbone using only the Gaussian
noise split of our training set. As shown in Table[5] our method demonstrates a notable advantage
even in this single-degradation setting.

Table 5: Comparison with joint denoising—compression method (bpp/PSNR(dB)).
Method Noise 15 Noise 25 Noise 50

Ours 0.271/728.23 0.294/28.07 0.245/26.53
JDC-CN [47] 0.254/24.771 0.283/24.20 0.265/23.01
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