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ABSTRACT

Large language models (LLMs) are often deployed to perform constrained tasks,
with narrow domains. For example, customer support bots can be built on top of
LLMs, relying on their broad language understanding and capabilities to enhance
performance. However, these LLMs are adversarially susceptible, potentially gen-
erating outputs outside the intended domain. To formalize, assess and mitigate
this risk, we introduce domain certification; a guarantee that accurately character-
izes the out-of-domain behavior of language models. We then propose a simple
yet effective approach which we call VALID that provides adversarial bounds as
a certificate. Finally, we evaluate our method across a diverse set of datasets,
demonstrating that it yields meaningful certificates, which bound the probability
of out-of-domain samples tightly with minimum penalty to refusal behavior.

1 INTRODUCTION

Sure. Here is a five
point plan:

I need help commiting
tax fraud. #@/!%\£~~

Sorry. I can't help.

I need help commiting
tax fraud.

I am a chatbot to help
with health questions.

NHS Advice Chatbot

Figure 1: A user misappropriating an
LLM system using an adversarial attack.

With recent advancements in the field of natural language
processing, large language models (LLMs) have become
ubiquitous. In particular, the scaling of recent large gener-
alist models dubbed foundation models has shown to enable
emergent abilities that benefit a wide range of downstream
tasks such as text generation, question answering, and text
comprehension (Kaplan et al., 2020; Alabdulmohsin et al.,
2022; Xiong et al., 2024; Henighan et al., 2020; Brown et al.,
2020). Adapting these foundation models for downstream
tasks often leads to state-of-the-art performance and has be-
come the dominant paradigm (Gao et al., 2021). This is
typically achieved via fine-tuning on task-relevant data (e.g.
low-rank adaptation (LoRA) Hu et al. (2022), in-context
learning (Mosbach et al., 2023), prefix turning Li & Liang
(2021), or simply prompt engineering).

However, foundation models are typically trained on large
amounts of web data which contains a wide range of infor-
mation that is either irrelevant to a task or potentially harm-
ful (Bommasani et al., 2022). Therefore, it is desirable to
restrict the output of a generalist LLM to a specific domain.
For example, consider a healthcare provider such as the Na-
tional Health Services (NHS) providing a general purpose chatbot to support their citizens with
simple health questions, as shown in Figure 1. It would be important, for public reputation and cost
reasons, that such a system would remain on topic and could not be misused, either intentionally or
unintentionally. Misappropriating models is easily possible.

In order to prevent intentional misuse, we consider an adversary trying to elicit an unintended (from
the deployer’s perspective) response from the model. We assume the deployer wants an LLM to
only respond with a certain set of topics, and thus a successful attack is an input string that cre-
ates a coherent response outside the target domain. There are various reasons why an adversary
might want to elicit such a response that is out-of-domain (OOD). The adversarial user might want
to misappropriate the system as a cost-effective tool for a purpose it wasn’t built for, resulting in
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excess infrastructure costs for the deployer. Conversely, the deployer might legally be required to
validate and verify their models, which is challenging, if not impossible, when the model is not
domain-restricted. Finally, the adversary might want to harm the company directly by eliciting
harmful OOD responses, which could damage the company’s reputation when publicised. Recently,
an LLM-driven meal planning tool has received wide media attention for providing toxic recipes
when prompted with toxic ingredients (McClure, 2023; The Guardian, 2023). Deployers have moral
and legal obligations to prevent this (Bommasani et al., 2022). In all examples, restricting the do-
main in which the model responds under adversarial prompts can help mitigate risks. Thus, in the
era of foundation models, “domain” specialization is critical.

Existing work has implemented guardrails that address these risks (Jain et al., 2023), most notably
via alignment, resulting in the models to reject user requests (Bai et al., 2022; Ouyang et al., 2022;
Christiano et al., 2017). However, a wide body of research has shown that common guardrails have
“jailbreaks”, i.e., they can easily be circumvented by an adversary (Wang et al., 2024; Qi et al., 2024;
Eiras et al., 2024; Carlini et al., 2023; Dong et al., 2024). Common jailbreak methods are prompt
injection (Perez & Ribeiro, 2022; Jiang et al., 2023; Liu et al., 2024), numerical optimization (Jia
& Liang, 2017; Wallace et al., 2021a; Ebrahimi et al., 2018; Jones et al., 2023; Zou et al., 2023;
Jia et al., 2024), red teaming (Perez et al., 2022; Samvelyan et al., 2024), automated black-box
attacks (Chao et al., 2023; Mehrotra et al., 2024), or data poisoning attacks (Biggio et al., 2012;
Wallace et al., 2021b; Carlini et al., 2024). Using these tools, it is possible for adversaries to retrieve
information from a fine-tuned model that was suppressed by the alignment and generate responses
that are outside the target domain (see Figure 1 for an example). Adversarial prefixes or suffixes that
augment any prompt are especially powerful as they have been shown to universally attack models
in combination with a wide range of prompts and can thus be shared between adversarial users
(Wallace et al., 2021a; Zou et al., 2023). This presents a significant risk. Hence, researchers have
proposed methods to defend against these adversarial attacks, such as unlearning (Nguyen et al.,
2022; Xu et al., 2023), robust fine-tuning (O’Neill et al., 2023; Dong et al., 2021), or request and
response filtering (Inan et al., 2023).

Deployers would ideally want guardrails that come with a provable, mathematical guarantee against
the model responding off topic, or a guarantee that it does this with very low probability. The process
of constructing guarantees against certain model behaviours under adversarial attack is commonly
referred to as certification and has been successfully applied to vision applications in recent years
(Akhtar et al., 2021) and proposed for NLP applications (La Malfa, 2023; Casadio et al., 2024;
Kumar et al., 2024). However, no existing LLM guardrails provide guaranteed protection against
existing or future jailbreaking techniques, leaving deployed models at risk of being compromised
shortly after release. As a result, developing certifiable methods to guarantee that specialized LLMs
consistently produce on topic content is a critical. Hence, our contributions are as follows:

• We introduce a novel framework, domain certification, to bound the probability of models pro-
ducing out-of-domain content under adversarial attack.

• We introduce an easy-to-use algorithm VALID that bounds the probability of an LLM based sys-
tem responding off topic under adversarial attack. We show the efficiency of VALID which we
test empirically on a number of representative data sets.

2 DOMAIN CERTIFICATION

We now introduce our domain-certification framework for offering mathematical guarantees that a
LLM system stays on topic. In Section 2.1, we formally introduce this framework. In Section 2.2,
we present Verified Adversarial LLM Output via Iterative Dismissal (VALID). VALID is an easy-to-
use method to create a system that adheres to these guarantees. In plain language, we are proposing
a certifiable guardrail for LLM-driven systems as follows:

A model is domain-certified, when an adversarial upper bound can be placed on the
probability that the model provides an output outside its designated target domain.

Before formalizing this statement, we introduce some mathematical notation. We represent tokens
(i.e. individual text units), as x and y, which belong to the token space x, y ∈ V where V =
{1, . . . , V } is the vocabulary of size V . We define the space of sequences of arbitrary length as
S ≜ V∗, the Kleene closure of V. Sequences of tokens are denoted by bold letters, x,y ∈ S, with
x and y representing the input and output sequences of an LLM respectively. We use lowercase
letters to denote models that predict the next token, such as l : S → V. Applying this model
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repeatedly, until the end-of-sequence token creates a sequence-to-sequence model L : S → S. We
denote the likelihood of sample y under L given x as L(y|x), which is obtained by L(y|x) =∏Ny

n=1 l(yn|y<n,x) for a sentence y of length Ny . We further denote the distribution from which
the model samples its output as y ∼ L(·|x).

2.1 DEFINING DOMAIN CERTIFICATION

We now formally introduce domain certification. We define the target domain (set of desired topics)
as a subset of the sentence space S. We partition S into the target domain T and its complement T′.
For instance, T might be all sentences meaningfully occurring for “question answering for health
problems”. In addition, we define the set of unwanted responses as F ⊂ T′ (F as “forbidden”) and
will certify with respect to this set F rather than T. Sequences posing risk should be included in F,
while F′ ∩ T′ should contain benign out-of-domain samples, such as unintelligible or meaningless
sequences of tokens (see Appendix G.1 for a discussion). Hence, we wish to establish a guarantee
that L is unlikely to produce an output in F. As a step towards such a guarantee, we first define a
bound for any given element y in S:

Definition 1 Atomic Certificate. We say a model L : S→ S is ϵy-atomic-certified (ϵy-AC) for some
sample y (i.e. an atom) in the output set S, iff

∀x ∈ S : L(y|x) ≤ ϵy. (1)

In words, a model that is ϵy-AC for a sample y, will generate sample y with probability smaller
than ϵy for any x ∈ S, and hence for adversarially chosen x. If this is the case, we say model L
is certifiable for sample y with ϵy , i.e. ϵy is the smallest value that provably bounds L. Ideally,
such an upper bound ϵy would be large for samples in the target domain T, meaning the certificate
is permissive, and small for samples drawn from F meaning the certificate is restrictive, i.e. tight.

The atomic certificate implies an upper bound ϵF for Py∼L(·|x)(y ∈ F|x), which would be con-
structed by summing (1) over all y ∈ F for a given x. Concretely, Py∼L(·|x)(y ∈ F|x) =∑

y∈F L(y|x) ≤
∑

y∈F ϵy = ϵF. However, practically this sort of bound is intractable due to
F’s exponential size in Ny , and the difficulty in constructing a precise description of the set F. In-
stead of giving a bound over returning y ∈ F, we look at the worst-case across F which can more
precisely be estimated from a finite sample of F:

Definition 2 Domain Certificate. We say model L is ϵ-domain-certified (ϵ-DC) with respect to F,
when it is ϵy-AC for all y ∈ F with ϵy ≤ ϵ:

∀x ∈ S,y ∈ F : L(y|x) ≤ ϵ. (2)

This imposes a global bound on L across all undesired responses in F. In practice, we cannot
establish the ϵ-DC certificate w.r.t. F as we cannot enumerate F. Hence, following standard practice
in ML evaluation, we propose to use DF, a finite dataset of out-of-domain responses to establish a
ϵ-DC certificate w.r.t. DF approximating the certificate for F.

Recent discussions have raised the need for bounds on undesirable behavior. For instance, Bengio
(2024) advocates for upper bounds on harmful behavior (Bengio et al., 2024). In addition, an in-
creasing body of legislation mandates thorough auditing of ML systems (EU, 2024). The atomic and
domain certificates can play a vital role in assessing the risk of worst-case behavior. For example,
consider the deployer of a LLM-based system that processes 10 requests per second. The deployer
might perform an apriori risk assessment and determine that they can tolerate the consequences of
one out-of-domain response from a set DF per year. The deployer should certify the LLM system as
ϵ-DC with ϵ ≈ 10−9 in order to achieve this level of risk.

Certification through Divergences. We provide an alternative view to this problem, generalising
it to bounding divergences between the model and the distribution of of sentences in the domain T.
We then use this view to operationalize the ϵy − AC and ϵ−DC (Definitions 1 and 2) inspired by
Vyas et al. (2023)’s work on preventing copy-right violations. To this end, we define an oracle Ω
that is a generator for domain T: Ω assigns high likelihood to sentences in T and zero likelihood to
elements in F. Hence, sampling from Ω will yield in-domain responses. We establish and bound the
divergence between L and Ω to restrict the model domain. In particular, we use the Renyi divergence
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of order infinity, ∆∞(P ∥ Q) ≜ log supx
P (x)
Q(x) (Rényi, 1961). Hence, our objective is:

∀x ∈ S : ∆∞(L(y|x) ∥ Ω(y)) ≤ k. (3)

Bounding this divergence is at the core of what we are aiming to achieve: The divergence is large
when L assigns high likelihood to a sample y while Ω does not. That means L is likely to produce
samples that are out-of-domain. When Ω assigns high likelihood to y, the sample is in the target
domain, and hence the divergence in (3) is not restrictive. When L assigns low likelihood, y is
unlikely to be sampled. Interestingly, this divergence implies (1) and (2), see Lemma 1.

As the oracle is not available in practice we approximate Ω with a “guide” language model that is
exclusively trained on in-domain data dubbed G (i.e. the guide model). We use G(y) to replace Ω(y)
to assess the marginal likelihood of y. While this means that G(y) loses some context contained
in x, this has a major advantage: G(y) does not depend on x, which is a potential adversary and
hence, by design is robust to adversarial prompts.

2.2 ACHIEVING DOMAIN CERTIFICATION

Algorithm 1 VALID

Require: LLM L, Guide model G, hy-
perparameters k and T , prompt x
for t ∈ {1, . . . , T} do

Sample y ∼ L(·|x)
Ny ← length(y)
if log L(y|x)

G(y) ≤ kNy then
Return: y

Return: “Abstained”.

In this section, we introduce Verified Adversarial LLM
Output via Iterative Dismissal (VALID) to obtain atomic
certification as described in Definition 1. We utilise a
general model L and a domain generator G as described
above and obtain a meta-model M for which the guar-
antee holds with respect to the domain generator G. In
particular, we perform rejection sampling as described in
Algorithm 1 (inspired by Vyas et al. (2023)): The capa-
ble, general model L proposes a sample y and we ac-
cept, if the length normalized log-ratio between L and G
is bounded by hyperparameter k. We repeat up to T times
until a sample is accepted. If all samples are rejected, the model dismisses the request. This defines
a new model M , for which the following theorem establishes the certificate:

Theorem 1 (VALID Certificate) Let L be an LLM and G a guide model as described above. Rejec-
tion sampling as described in Algorithm 1 with rejection threshold k and up to T iterations defines
model ML,G,k,T with ML,G,k,T (y|x) denoting the likelihood of y given x. Let Ny be the length of
y. We state the adversarial bound:

∀x ∈ S : ML,G,k,T (y|x) ≤ 2kNy · T ·G(y). (4)

Hence, ML,G,k,T is [2kNyTG(y)]-AC and, further, it is [maxy∈F 2
kNyTG(y)]-DC w.r.t. F.

When context allows, we may abbreviate ML,G,k,T to M , omitting subscripts for brevity. Such a
certificate with respect to G can be useful: As G is only trained on samples in DT ⊂ T, a dataset of
domain T, it assigns exponentially decreasing likelihood to samples that are in F.1 In particular, this
is useful iff the log upper bound kNy + log T + logG(y) (log RHS of (4)) is small in comparison
to maxx∈S logL(y|x): Our certificate can provide an upper bound to the adversarial behaviour of
M that is favourable over L.

As mentioned, this problem is closely related to OOD detection, for which the the likelihood ratio
test is commonly used as a powerful statistic (Neyman & Pearson, 1933; Bishop, 1994; Ren et al.,
2019; Li et al., 2023; Zhang et al., 2024; Rafailov et al., 2024). Commonly in OOD detection,
rejection threshold k is chosen to balance false negative rates and false positive rates. Here, k
also influences the upper bound on the certificate, indicating that there can be a trade-off between
correctly classifying samples as ID or OOD, and achieving a desired level of certification.

Length Normalization. Algorithm 1 performs length normalized rejection-sampling as unnor-
malized log likelihood ratios scale unfavourably in Ny , the length of sequence y which we now
demonstrate. Consider the next-token models l and g underlying the sequence-to-sequence mod-
els L and G. As y is sampled from L, we expect each token y1, . . . , yNy to have high like-
lihood under l. If we assume that l places c times more probability mass per token than g,
then we can show that the log likelihood ratio grows linearly in Ny , the length of sequence y:

1We give an empirical example of this behaviour in Figure 10 in Appendix D.4.
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logL(y|x)/G(y) = log
∏Ny

n=1 cg(yn|y<n)/g(yn|y<n) = Ny log c. We illustrate an example in
Figure 2a: Assume that an in-domain sample y for which model L and generator G assign constant
likelihood per token of 0.1 and 0.05, respectively, i.e. ∀n = 1, .., Ny : l(yn|y<n,x) = 0.1 and
g(yn|y<n,x) = 0.05. Further assume out-of-domain y′ for which l assigns a mass of 0.1 per to-
ken, and g assigns 0.01. The log likelihood ratio for y can be expressed as Ny log 2 and for y′ as
Ny′ log 10. As in- and out-of-domain ratios grow with length, so does the optimal decision bound.
We plot sequences of varying lengths with these parameters in Figure 2a. By arithmetic manipu-
lation, rejection sampling with threshold kNy is equivalent to bounding the ratio of geometrically
normalized likelihoods logL(y|x)1/Ny/G(y)1/Ny using a constant threshold k. Hence, we propose
to use normalized log ratios in Algorithm 1 over unnormalized likelihood ratios. Similar approaches
have been discussed in the NLP literature (Geng et al., 2023).

In the Appendices, we provide further insights into VALID. In particular, in Appendix A we provide
Lemma 2 showing how to estimate the likelihood of M . In Lemma 3, we provide an analysis on
the expected number of iterations of VALID. In Appendix B.1, we further discuss the dependence
of the certificate on the sequence length and in Appendix B.2, we provide further intuition on how
rejection sampling can achieve an adversarial bound. Finally, in Lemma 4 we show an adversary for
M and discuss how rejection sampling encumbers adversarial attacks on M .

3 EXPERIMENTS

We aim to empirically test our method proposed in Section 2.2 across 3 domains: Shakespeare,
Computer Science News and MedicalQA. After describing the experimental setup in Section 3.1,
we examine the rejection behaviour of our method by examining the logL(y|x)/G(y) ratio and
associated certificates under a finite set of ground-truth test samples from T and F in Section 3.2.
Finally, in Section 3.3, we repeat this analysis by applying our Algorithm 1.

3.1 EXPERIMENTAL SETUP

In this section, we provide a brief description of our experimental setup for three applications. Each
experimental setup consists of a target domain T, a finite dataset DT ⊂ T of in-domain samples,
models L and G, and an out-of-domain dataset DF ⊂ F, against which we test our methods (see
Appendix C for more details on data and models).

Shakespeare. Our target domain T is Shakespeare’s plays. We fine-tune a Gemma-2-2b (Team
et al., 2024) as model L and train a GPT-2 architecture (33.7M parameters, Radford et al. (2019))
from scratch for G on TinyShakespeare (TS) (Karpathy, 2015). We use TS’s test split as in-domain
dataset, DT, and following previous literature (Zhang et al., 2024) compose DF of IMDB (Maas
et al., 2011), RTE (Wang et al., 2019) and SST2 (Minaee et al., 2024), adding an old Bible dataset
(Reis, 2019) as it is linguistically close to TinyShakespeare. At testing, we consider 256-token long
sequences and use the first 128 tokens as prompt.

Computer Science News. Our target domain T is news about computer science. We fine-tune
a Gemma-2-2b as model L and train a GPT-2 architecture (109.3M parameters) from scratch for
G on articles from the computer science categories in the 20NG dataset (Lang, 1995). We use
computer science articles from 20NG’s test split as target domain DT and the remaining categories
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Figure 2: Figure 2a and Figure 2b demonstrate the effect of the sequence length on the log likelihood. Figure 2a
shows this relationship through artificial examples with sentences of length 1 to 10 for both ID and OOD
datasets, illustrating why the decision boundary should scale accordingly. Figure 2b confirms this relationship
on real data (MedicalQA), showing that length normalization makes the problem linearly separable. Figure 2c
shows the false rejection rate (FRR) for different ϵ-DC values using VALID with T = 1 on MedicalQA.
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as DF together with the OOD dataset used for Shakespeare. At testing, we consider 256-token long
sentences and use the first 128 tokens as prompt.

Medical QA. We apply our method to medical question answering as target domain T. This could,
for example, be extended to a chatbot for clinicians to look up patient symptoms. We use a LLama-
3-8B model (AI@Meta, 2024) as L and for guide model G we pre-train a GPT-2 architecture model
from scratch (184M parameters) on PubMedQA (Jin et al., 2019), which contains approximately
200K QA pairs for training and 1000 test pairs. We further fine-tune G on responses from L to
questions in PubMedQA. We use the PuMedQA test set as in-domain datasetDT and regard question
answering on other topics, such as geography, as F. To model this, we use the Stanford Question
and Answering Dataset (SQuAD; excluding medical categories; Rajpurkar et al. (2016)) as DF.

3.2 LIKELIHOOD RATIOS ON GROUND TRUTH SAMPLES

In this section, we evaluate the capability of our method to attribute samples to the target domain and
investigate whether it yields useful adversarial bounds. In particular, we study the length-normalized
likelihood ratio L(y|x)/G(y) on in- and out-of-domain samples. In Figure 3a, we show that the log
likelihood ratios for MedicalQA are disentangled and hence a threshold k exists separating target
domain and out-of-domain samples well. However, such k — while yielding strong OOD detection
performance — might not be associated with tight certificates. Hence, we will first study the ϵy-AC
certificates under M for individual samples, y, before moving on to the domain certificate, ϵ-DC.

Atomic Certificates. We obtain ϵy-ACs using VALID (Section 2.2), setting k to achieve a 10%
false rejection rate (FRR) for in-domain samples. Figures 4 (a)-(c) show the distribution of ϵy-ACs
for the target domain dataset DT and the out-of-domain dataset DF. We make similar observations
for all three setups: First, the certificates in the OOD datasetsDF are meaningfully tight. We observe
that 95% of OOD samples have an ϵy-AC of less than 1× 10−10 across all setups. Hence, the sam-
pling probability for these OOD instances is provably smaller than 10−10 for any arbitrary prompt
x. Second, we note that the certificates in DF are significantly tighter than those in DT as shown by
the gap between the eCDFs. This is a significant finding as certificates should be constrictive (i.e.
small) on samples in F preventing these from being sampled, while certificates should be permissive
(i.e large) in T, not preventing in-domain responses from being sampled. Finally, we observe that the
disentanglement of ACs is weaker for MedicalQA compared to the other setups (see Figure 4c). As
shown in Appendix D.6, this is attributable to the short sequences in the OOD dataset and adjusting
for this confounder significantly improves disentanglement.

To further study the atomic certificates on M , we compare them to a certificate on L as a baseline.
To this end, we define the constriction ratio for each y, given by the ratio of the certifiable ϵy for L,
ϵy(L), over the certifiable ϵy for M , ϵy(M):

CRk =
ϵy(L)

ϵy(M)
(5)

A CRk of 1 for sample y indicates that the bounds on generating y are equal for M and L (i.e.
they are equally constricted) while a CRk > 1 indicates that M is more constricting than L, and
vice-versa. Smaller ACs for samples in F are better and hence a large CRk indicates that model
M is favourable over L. To our knowledge, only vacuous certificates for a general model L exist
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Figure 3: All Figures display MedicalQA. Figure 3a shows that log likelihood ratios are well disentangled.
Figure 3b shows the trade-off between OOD and certification: The best OOD detection performance occurs
with a constriction ratio of 20. Figure 3c shows the false rejection rate (FRR) required to certify at a given ϵ.
All Figures display MedicalQA.
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Figure 4: (a)-(c) show the estimated cumulative distribution function (eCDF) of ϵy-ACs for each experimental
setup. (d)-(f) show the histograms for the log10 constriction ratios. All results are obtained with hyperparameter
k chosen to ensure a 10% false rejection rate (FRR) on in-domain samples.

(e.g. L is 1-DC). Hence, we approximate it from below using the likelihood L(y|x) under non-
adversarial x taken from the datasets. Concretely, we use L(y|x) as a crude approximation of
maxx∈S L(y|x). This overestimates the robustness of L and underestimates the constriction ratio,
i.e. it underestimates the improvement of VALID certificates over L in bounding the probability
of OOD responses. In Figures 4 (d) - (f), we show the log10 constriction ratios for out-of-domain
samples while setting k to achieve a FRR of 10% (see Appendix D.5 for other FRRs). Across
setups, the majority of samples have positive constriction ratios, which means that M issues ACs
tighter than L(y|x). For MedicalQA, we observe a 99% of log10 CRs are greater than 5.13 and
observe a median CR of 23.90. In other words, 99% of samples are at least 5 orders of magnitude
less likely under M and in the median ≈ 24 orders of magnitude less likely (i.e. 1 × 10−24).
We believe these are very strong restrictions and observe even stronger median constriction for
20NG and TinyShakespeare. Further, we observe the strongest constriction among samples with
high likelihood under L (see Appendix D). Tight bounds are the most relevant on these samples as
they are most likely to be sampled from L. Finally, we illustrate a trade-off between certification
and OOD detection in Figure 3b. We plot the median constriction ratio for out-of-domain samples
for MedicalQA across a range of parameters k together with false rejection rates (FRR) and true
rejection rates (TRR). The optimal classification performance (as measured by Youden’J (Youden,
1950)) is achieved at k = 5.31 with a strong true rejection rate (0.99) and a low false rejection rate
(0.01), while producing a median constriction ratio 18.8. Smaller k values yield tighter certificates
(see the bound in (4)) and larger constriction ratios at the expense of increasing the FRR.

Domain Certificates. To study certification across a range of samples, we turn to the domain
certificate, ϵ-DC. Above, we studied the effect of various parameters (e.g. fixing FRR) on the cer-
tificates. However, practitioners likely work the other way around: They first set an acceptable
threshold according to a threat and safety model. Then, they examine model performance under
conditions satisfying such certificate. Hence, we study model performance at a given ϵ-DC. As pro-
posed in Section 2.1, we establish an ϵ-DC certificate w.r.t. DF approximating the certificate for F.
To obtain ϵy-ACs smaller than the domain certificate ϵ, we need to choose rejection threshold, k,
and the number of iterations, T , accordingly. We

solve for k, T given ϵ: max
y∈DF

{kNy + log T + logG(y)} = log ϵ. (6)

For simplicity, here we keep T = 1 and study model performance on DT, our in-domain data, while
maintaining an ϵ-DC on DF. In particular, we look at the FRR of M : The performance of model
M is determined by the performance of L (from which VALID samples response candidates) and
the false rejections leading to a degradation of M compared to L. Hence, we study the FRR as a
function of the certification threshold ϵ. The result is shown in Figure 3c for MedicalQA: The FRR
increases as the certificates get tighter (small ϵ). Remarkably, we achieve a domain certificate with
ϵ = 10−5 at a FRR of only 15% at a single rejection step. We replicate all figures for the other
setups in Appendix D.
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A natural question is why we don’t simply use a model comparable to G that is trained exclusively
on a subset of T directly. While such a model would be highly robust against providing useful out-of-
domain responses, its performance would significantly lag behind both L and M . Our ablation study
in Appendix F confirms this performance gap between G and M . These findings demonstrate that
our system, which combines the high performance of L with the safety guarantees of G, achieves
advantages that neither L nor G can provide independently. Further, the effectiveness of VALID
utilising a G of such limited performance demonstrates that the burden on training G is relatively
low: A model that performs poorly at the target task, but distinguishes well between samples in T
and F, can be sufficient to achieve meaningful certificates for M .

3.3 GENERATING RESPONSES

In the section above, we evaluate M obtained through VALID on prompts and responses, taken
from datasets DT and DF representing our target domain T and F. The experiments provide us with
a detailed analysis of ACs and DCs on a large variety of samples for which their membership to T or
F is given by high-quality labels. Nonetheless, in practice, the candidate responses that are judged
by VALID are generated by L. Hence, we prompt M using x ∈ DT and x ∈ DF and use responses
generated by L as VALID proposes. We focus on VALID with T = 1 and the MedicalQA setup.

Our findings are inline with Section 3.2 showing a strong ability to distinguish between in- and out-
of-domain samples while providing meaningful adversarial bounds. In Figure 2b, we demonstrate
the separation of samples from DT and DF, as well as the dependence of the log ratios on the length
of the sequence y extending the theoretical analysis from Section 2.2. In Appendix D.4, we replicate
Figure 3 for this setting. We further present in Figure 2c the constriction ratios on out-of-distribution
samples generated by L. We see a clear indication that the constriction is strong out-of-domain with
an optimal classification performance at a ratio of 1040. To reiterate, median ratio between L(y|x)
and the ϵy-AC for M is 1040 showing just how strict VALID is on the out-of-domain dataset.

Building on these results, we test VALID with T > 1. Increasing T can naturally increase the accep-
tance rate on in-domain samples (through repeatedly proposing candidates) at the cost of increasing
the ϵy linearly (see (4)). We find great improvements in the acceptance rate on in-domain samples
with minimal losses on the ϵ-DC tightness. We explore this in Appendix E.

4 RELATED WORK

LLM Guardrails. A large body of work has been published on establishing effective guardrails
for LLMs. These approaches are designed to restrict the model to responses that align with the de-
ployer’s values. One of the earliest approach was Reinforcement Learning with Human Feedback
(RLHF) (Askell et al., 2021), which employs human preferences to guide LLM training. Extensions
such as Safe-RLHF add cost models to penalize harmful behaviour, ensuring a balance between
helpfulness and harmlessness during optimization (Dai et al., 2024). RLHF’s foundation in the-
ory from reinforcement learning has given rise to techniques such as Proximal Policy Optimization
(PPO) (Bai et al., 2022), the more recent Direct Preference Optimization (DPO) (Rafailov et al.,
2024), and Generalized Policy Optimization (GPO) (Tang et al., 2024), which extends to use incor-
porating diverse optimization objectives, useful for safety-critical scenarios. For an in-depth survey
of this area we direct the reader to Kaufmann et al. (2024). Unlike the preceding approaches that
fine-tune guardrails into the parameters of an LLM, a number of works have proposed to use LLMs
to classify content as either safe or unsafe. Llama Guard categorizes the inputs and outputs of an
LLM into different unsafe content categories (Inan et al., 2023). Conversely, Chua et al. (2024)
classify if an output is safe with respect to a system prompt. Other works such as Safe LoRA (Low-
Rank Adaptation) aim to balance between task-specific performance and safety alignment during
model fine-tuning by projecting adaptation weights through alignment matrices (Hsu et al., 2024).
For a complete overview on LLM guardrails we direct the interested reader to a recent survey of this
area Dong et al. (2024). Existing LLM guardrail techniques have been proven effective to different
levels. However, these guardrails only come with empirical evidence of their proficiency against
existing attacks, and hence, many have been circumvented shortly after deployment. Conversely,
VALID offers a provable high-probability guarantee against undesirable behaviour, reflecting recent
advocacy for such provable assurances (Bengio, 2024).

Out-of-Distribution Detection. Out-of-distribution (OOD) detection has received a lot of atten-
tion in recent years in NLP. Commonly, the problem is treated as text classification and softmax

8



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

probabilities of class predictions Hendrycks & Gimpel (2017) or energy scores Liu et al. (2020) are
deployed as discriminant scores. Another group of methods employs distance-based methods, rely-
ing on OOD responses being distant from ID responses in latent space, often utilizing Mahalanobis
distance and sometimes incorporating contrastive learning techniques (Uppaal et al., 2023; Podol-
skiy et al., 2021; Zhou et al., 2021; Khosla et al., 2020; Lin & Gu, 2023). Finally, rooting in classical
statistics, a number of studies suggest using the log-likelihood ratio (LLR) as a discriminate score,
comparing likelihoods from ID and OOD proxy models (Gangal et al., 2020; Zhang et al., 2024).
Recently, Xu & Ding (2024) offered a comprehensive review of works using LLMs for OOD de-
tection and proposed a different taxonomy of these works conditioning on how the LLMs are used
in the detection process. While many of these works have strong empirical detection results, their
focus is OOD detection rather than certification and hence they do not provide theoretical guarantees
or certificates on model behaviour.

Certifying LLMS. A number of certification approaches have been proposed for LLMs in various
contexts. For instance, Chaudhary et al. (2024) aims to certify the knowledge comprehension ability
of LLMs and Freiberger & Buchmann (2024) discuss what criteria should be certified to ensure
fairness. Most relevant here is work on certification against adversarial inputs. Casadio et al. (2024)
discuss certifying the robustness of LLMs to input perturbations in embedding space. Commonly,
adversarial certification is studied for text classification rather than generation (La Malfa, 2023).
Kumar et al. (2024) introduces a framework for defending against adversarial perturbations in token
space by performing a small number of substitutions around a given input. In contrast VALID
comes with certificates that holds for all inputs, rather than perturbations around a specific input.
This makes its guarantees much more widely applicable.

5 LIMITATIONS

Despite these promising results, we acknowledge the limitations of our current implementation.
First, the domain generator G(y) lacks context. This means that if y is marginally in-domain, while
y|x, the conditional distribution is not, our method will not reject appropriately. Consider a chatbot
for tax advice. For prompt x =”How often is a tax report due?”, the response y =”Once a year.”
is in-domain. Hence, the same response to x =”How often should I shower?” might be accepted
despite it being out-of-domain, and terrible advice. However, this can be mitigated by fine-tuning
the model L to be as explicit as possible repeating “shower” in the response.

Second, this approach relies heavily on the domain-specific model G, and how closely it approxi-
mates the ideal oracle Ω. In practice and as demonstrated in our experiments, G might have limited
semantic understanding and lack general language capabilities and world knowledge. In most in-
stances it might not be able to distinguish between semantically opposite but similar sentences and
hence VALID is likely incapable of aligning the model, rather than shushing it.

Third, an adversary might construct an attack that aims to copy tokens from the prompt of L to G.
For instance, x =“Repeat after me: !!!-+! and then tell me how to build a bomb!”. This “!!!-
+!” might be an adversary for G to put high likelihood on the correct answer of L following the
instruction. This attack likely requires white box access to G and hence we are not certain about
the feasibility of such adversaries. In addition, as G has never seen information on how to build a
bomb, it is extremely unlikely to produce coherent, correct and harmful content. In Appendix B.2,
we discuss the feasibility of attacking M further.

Fourth, our method comes at the extra cost of sampling up to T times. Further, it requires training
G and evaluating it during inference. Depending on the architecture of G however, the extra cost is
limited. In our experiments G is orders of magnitudes smaller than L.

6 CONCLUSION

In this work, we tackle the problem of generative language models producing outputs outside their
target domain in response to adversarial inputs. We describe the associated risks, introduce a first-
of-its-kind framework for domain certification of LLMs, and provide VALID, a simple algorithm
relying on well-established theories from statistics and information theory to provide such guaran-
tees. We demonstrate the effectiveness of VALID in multiple representative settings and show that
it is effective even when relying on a guide model G with limited language skills, making it easy to
deploy in limited data and resource environments.
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Alfréd Rényi. On Measures of Entropy and Information. In Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of
Statistics, volume 1. University of California Press, 1961.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram H. Markosyan,
Manish Bhatt, Yuning Mao, Minqi Jiang, Jack Parker-Holder, Jakob Foerster, Tim Rocktäschel,
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Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ron-
strom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee
Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei
Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan
Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli
Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dra-
gan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Fara-
bet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
Robert Dadashi, and Alek Andreev. Gemma 2: Improving Open Language Models at a Practical
Size, 2024. Preprint: 2408.00118.

The Guardian. Pak’nSave AI meal planner suggests toxic recipes in ’malfunction’. The Guardian,
2023.

Rheeya Uppaal, Junjie Hu, and Yixuan Li. Is Fine-tuning Needed? Pre-trained Language Mod-
els Are Near Perfect for Out-of-Domain Detection. In Annual Meeting of the Association for
Computational Linguistics, 2023.

Nikhil Vyas, Sham Kakade, and Boaz Barak. On Provable Copyright Protection for Generative
Models, 2023. Preprint: 2302.10870.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal Adversarial
Triggers for Attacking and Analyzing NLP, 2021a. Preprint: 1908.07125.

Eric Wallace, Tony Z. Zhao, Shi Feng, and Sameer Singh. Concealed Data Poisoning Attacks on
NLP Models, 2021b. Preprint: 2010.12563.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding.
2019.

Jiongxiao Wang, Jiazhao Li, Yiquan Li, Xiangyu Qi, Junjie Hu, Yixuan Li, Patrick McDaniel,
Muhao Chen, Bo Li, and Chaowei Xiao. BackdoorAlign: Mitigating Fine-tuning based Jailbreak
Attack with Backdoor Enhanced Safety Alignment. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Yizhe Xiong, Xiansheng Chen, Xin Ye, Hui Chen, Zijia Lin, Haoran Lian, Zhenpeng Su, Jianwei
Niu, and Guiguang Ding. Temporal Scaling Law for Large Language Models, 2024. Preprint:
2404.17785.

Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. Machine Unlearning: A
Survey, 2023. Preprint: 2306.03558.

17



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Ruiyao Xu and Kaize Ding. Large Language Models for Anomaly and Out-of-Distribution Detec-
tion: A Survey, 2024. Preprint: 2409.01980.

W. J. Youden. Index for rating diagnostic tests. Cancer, 3(1):32–35, 1950.

Andi Zhang, Tim Z. Xiao, Weiyang Liu, Robert Bamler, and Damon Wischik. Your Finetuned Large
Language Model is Already a Powerful Out-of-distribution Detector, 2024. Preprint: 2404.08679.

Wenxuan Zhou, Fangyu Liu, and Muhao Chen. Contrastive Out-of-Distribution Detection for Pre-
trained Transformers. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 1100–1111, Online and Punta Cana, Dominican Republic, November 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.84.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. Universal and Transferable Adversarial
Attacks on Aligned Language Models, 2023. Preprint: 2307.15043.

18



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

A PROOFS

Theorem 1 (VALID Certificate) Let L be an LLM and G a guide model as described above. Rejec-
tion sampling as described in Algorithm 1 with rejection threshold k and up to T iterations defines
model ML,G,k,T with ML,G,k,T (y|x) denoting the likelihood of y given x. Let Ny be the length of
y. We state the adversarial bound:

∀x ∈ S : ML,G,k,T (y|x) ≤ 2kNy · T ·G(y). (4)

Hence, ML,G,k,T is [2kNyTG(y)]-AC and, further, it is [maxy∈F 2
kNyTG(y)]-DC w.r.t. F.

Proof: We abbreviate ML,G,k,T as M . Let At and A′
t be the events of accepting and rejecting in

iteration t, respectively. Let St be the event of sampling y ∼ L(·|x) in iteration t and let A′
<t be the

event of rejecting all samples before t, A′
<t =

⋂t−1
i=1 A

′
i. Then,

M(y|x) =
T∑

t=1

P(St ∩At ∩A′
<t|x) =

T∑
t=1

P(At|St, A
′
<t,x)P(St|A′

<t,x)
∏
i<t

P(A′
i|A′

<i,x). (7)

We upper bound the probability of rejecting in any previous iteration by 1, ∀t : P(A′
t|A′

<t,x) ≤ 1.
P(At|St, A

′
<t,x) is non-stochastic and is equal to either 0 or 1. In the former case, the M(y|x)

is trivially bounded by any non-negative number. The latter case (i.e. y is accepted in iteration t)
implies that log L(y|x)

G(y) ≤ kNy . Rearranging terms and noting that by definition P(St|A′
<t,x) =

L(y|x), we get P(St|A′
<t,x) ≤ 2kNyG(y) and hence by substitution and summing over t,

M(y|x) ≤
T∑

t=1

2kNyG(y) = 2kNy · T ·G(y). (8)

This is the desired upper bound on M(y|x) for all x ∈ S.

□

Lemma 1 (Equivalence of Divergence) Let ∆∞(P ∥ Q) be the Renyi divergence of order infinity
(Rényi, 1961), ∆∞(P ∥ Q) ≜ log supx

P (x)
Q(x) . Further, let L : S → S be an LLM returning y given

x as discussed above and let Ω be a distribution over domain T, i.e. generator for T. Then, if
∀x ∈ X : ∆∞(L(y|x) ∥ Ω(y)) ≤ k, (9)

we can state that L is ϵy-AC with ϵy = 2kΩ(y) (see Definition 1) and ϵ-DC with ϵ = 2k maxF Ω(y)
(see Definition 2). If Ω is an oracle, that assigns no likelihood to elements in F, it implies L is 0-AC
and 0-DC.

Proof: We start from the definition of the Renyi divergence, which is an upper bound to any element
in the supremum, giving that

∀x ∈ X : log
L(y|x)
Ω(y)

≤ log sup
y

L(y|x)
Ω(y)

= ∆∞(L(y|x) ∥ Ω(y)) ≤ k. (10)

Exponentiating and multiplying through by Ω(y) gives the following upper bound:

∀x ∈ X : L(y|x) ≤ 2kΩ(y), (11)

showing the 2kΩ(y)-AC equivalence. Taking the max over F shows the [2k maxF Ω(y)]-DC equiv-
alence. Further, assuming Ω to be a perfect oracle, by definition, we can state that ∀y ∈ F the upper
bound on the right hand side of (11) is zero. Thus, we get the desired result:

∀x ∈ X,∀x ∈ F : L(y|x) = 0, (12)
and hence L is 0-AC and 0-DC. □

Lemma 2 (Likelihood of M ) Let M be a model obtained by performing rejection sampling from
model L as proposed in VALID using guide model G and rejection threshold k (see Algorithm 1).
We denote the likelihood of response y given input x under the model M as M(y|x). For all y ∈ S,

M(y|x) =
{
L(y|x) 1−ϕT

1−ϕ if L(y|x) ≤ kG(y)

0 otherwise.
(13)
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where A′
t is the event of rejecting y in iteration t given input x, A′

<t is the event of rejecting in all
iterations before t, A′

<t = ∩t−1
i=1A

′
i, and finally let ϕ = P(A′

t|A′
<t,x), the conditional probability of

rejecting y in a given iteration t for input x. Finally, let R be the event that M abstains, for which

M(R|x) = ϕT . (14)

Proof: Let St be the event of sampling y ∼ L(·|x) in iteration t, let A ⊂ S be the acceptance set
of y, i.e., A = {y : L(y|x) ≤ 2kNyG(y)} and let its complement in S, A′, be the rejection set.
Finally, let S be the event of sampling y. We now derive M(y|x) per case as stated in (13).

Starting with case y ∈ A, we note that M(y|x) = P(S|x) and we can rewrite P(S|x) as follows,

P(S|x) =
T∑

t=1

P(St ∩At ∩A′
≤t−1|x) (15)

=

T∑
t=1

P(At|St, A
′
<t,x)P(St|A′

<t,x)
∏
i<t

P(A′
i|A′

<i,x) (16)

= L(y|x)
T∑

t=1

ϕt−1 (17)

= L(y|x)1− ϕT

1− ϕ
(18)

where we use the fact that ∀y ∈ A : P(At|St, A
′
<t,x) = 1 and notice that

∑T
t=1 ϕ

t−1 is the sum of
the first T elements of a geometric series and substitute L(y|x) for P(St|A′

<t,x).

For the case y ∈ A′: We rewrite the likelihood as shown above in (16). Notice that ∀y ∈ A′ :
P(At|St, A

′
<t,x) = 0 and therefore P (S|x) is zero.

Finally, we turn to the rejection event R. Note that R =
⋂T

t=1 A
′
t, rejection at each step t = 1, . . . , T .

We can state that

M(R|x) =
T∏

t=1

P(A′
t|A′

<t,x) = ϕT , (19)

which concludes the proof. □

Remark 1 (Estimating likelihood) While Lemma 4 provides an expression of the likelihood of
model M computing this might be infeasible. If the sample space S is large, we cannot compute
M(y|x) as we cannot compute ϕ, the rejection probability in any given iteration in VALID for a
given input x. However, we can estimate M(y|x) by computing L(y|x) and performing Monte
Carlo sampling from L to obtain an estimator ϕ̂. We can then use the Binomial confidence interval
for confidence level α:

ϕ̂± Zα/2 ×

√√√√ ϕ̂
(
1− ϕ̂

)
N

. (20)

We then plug in the bounds on L to obtain the bound on M because of the monotonicity of M in ϕ̂.

Lemma 3 (Expected number of iterations in VALID) Let τ be the number of iterations executed
in VALID (see Algorithm 1), let At be the event of accepting a response y for input x in iteration
t, t = 1, . . . , T , and let its complement, A′

t, be the event of rejection in iteration t. Denote the
event that all samples up to t (inclusive) are rejected as A′

≤t =
⋂t

i=1 A
′
i. Finally, we denote

ϕ = P(A′
t|A′

≤t−1,x), the probability of rejection in iteration t. The expected number of iterations
for ϕ ∈ [0, 1) is given by:

Ey∼M(·|x)[τ ] =
1− ϕT

1− ϕ
, (21)
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and for ϕ = 1, the expected number of iterations is given by Ey∼M(·|x)[τ ] = T .

Proof: In the following, we will denote Ey∼M(·|x)[τ ] as E[τ ] for readability. Note that P(τ = t)
is the probability of reaching and accepting in iteration t for t = 1, . . . , T − 1. Once iteration T is
reached, both acceptance and rejection yield τ = T . Hence,

E[τ ] =
T∑

t=1

tP(τ = t) = TP(A′
T ∩A′

≤T−1|x) +
T∑

t=1

tP(At ∩A′
≤t−1|x). (22)

Combining events and splitting events,

E[τ ] = TP(A′
≤T |x) +

T∑
t=1

tP(At|A′
≤t−1,x)

∏
i<t

P(A′
i|A′

≤i−1,x), (23)

for which we substitute rejection and acceptance probabilities by ϕ and 1− ϕ, respectively,

E[τ ] = TϕT + (1− ϕ)

T∑
t=1

tϕt−1. (24)

Multiplying by ϕ:

ϕE[τ ] = TϕT+1 + (1− ϕ)

T∑
t=1

tϕt. (25)

Subtracting (25) from 24:

E[τ ]− ϕE[τ ] = (1− ϕ)TϕT + (1− ϕ)

T∑
t=1

tϕt−1 − tϕt. (26)

Telescoping sum:

(1− ϕ)E[τ ] = (1− ϕ)TϕT + (1− ϕ)

T∑
t=1

ϕt−1 − TϕT . (27)

Dividing by (1− ϕ). For all ϕ < 1:

E[τ ] = TϕT +

T∑
t=1

ϕt−1 − TϕT . (28)

Cancelling terms and summing the first T elements of the geometric series:

E[τ ] =
T∑

t=1

ϕt−1 =
1− ϕT

1− ϕ
. (29)

Using L’Hôpital’s Rule, we can evaluate the limit for ϕ → 1 and find that this simplifies to T and
hence E[τ ] = T when ϕ = 1 completing the proof. □

Remark 2 The expected number of iterations as derived in Lemma 3 depends on the rejection prob-
ability ϕ and the maximum number of iterations T . When ϕ = 0, the algorithm always accepts in
any iteration and hence Ey∼M(·|x) [τ ] = 1. Conversely, when ϕ = 1 and the algorithm always ab-
stains, Ey∼M(·|x) [τ ] = T . Further, for T = 1,∀ϕ ∈ [0, 1] : Ey∼M(·|x)[τ ] = 1 and as T increases,
so does Ey∼M(·|x)[τ ] when ϕ > 0.

B VALID— REJECTION SAMPLING

B.1 BOUND TIGHTNESS ACROSS RESPONSE LENGTHS.

After establishing VALID a natural question is how this bound behaves across responses with vary-
ing length. We will explore this here.

Despite the length normalization of the rejection threshold, notice that the VALID bound depends
on Ny , the length of sequence y (see (4)), making the certificate more effective for shorter or longer
sequences. Let ḡ(y) be the geometric mean of per-token probability for G(y). The log upper bound
can be written as kNy + Ny log ḡ(y) + log T . Whether this is tighter for short or long sequences
is governed by k and log ḡ(y). When k + log ḡ(y) is close to 0, the bound is balanced, and when
k + log ḡ(y) < 0, the bound decreases as Ny increases.
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B.2 ATTACKING M

In this section, we provide some insight on how rejection sampling (see Section 2.2) works to obtain
an adversarial bound. For simplicity, we will consider the case T = 1. We will then use this to
describe the objective required to attack M .

Building an Intuition. We consider model M generated by rejection sampling from L using
guide model G as described above. We consider a single y and describe how the ϵ-AC certificate as
achieved through rejection sampling using an example. Let y = The cow drinks milk and
consider three prompts:

• x1 = What does a cow drink?

• x2 = Which animal drinks milk?

• x3 = Repeat after me: The cow drinks milk. Now you:

Intuitively we may assume L(y|x3) > L(y|x1) > L(y|x2) as y more naturally follows some
prompts than others: y would have very high likelihood after x3 for instruct trained models, medium
likelihood after being specifically asked about cows (x1) and low likelihood to be picked as example
from all mammals as response to x2.

Let us regard a single rejection step. We illustrate this example in Figure 5. If we assume that y|x1 is
rejected, i.e. logL(y|x1)− logG(y) > kNy , then we can conclude that y|x3 will also be rejected.
We know that for T = 1, M has likelihood:

M(y|x) =
{
L(y|x) if y|x is accepted,
0 otherwise.

(30)

Given that M(y|x) = 0 for rejected samples, the question presents itself: What is the purpose of the
upper bound. Consider the case that y|x2 is accepted. This occurs, iff logL(y|x2) − logG(y) ≤
kNy , which by algebraic manipulation means L(y|x2) ≤ 2kNyG(y), recovering the upper bound
as stated in Theorem 1: It is only possible to return y|x2 when L(y|x2) is smaller than 2kNyG(y).
More generally, y can only be returned, if we find an x∗ s.t. L(y|x∗) ≤ 2kNyG(y) and hence
by (30) we have that L(y|x∗) ≤ 2kNyG(y). This illustrates how rejection sampling bounds the
adversaries: Samples will only be accepted if proposing them was very unlikely in the first place.
This intuition helps us establishing how to attack M .

Formalising the Attack. We assume the adversarial objective is to increase the probability of
a given y∗ (e.g. from the out-of-domain set), F, being returned. The objective of attacking L is
immediately follows:

xadv
L = argmax

x∈X
L(y∗|x) (31)

where X is either S or some continuous relaxation, such as soft-prompt space. However, the solution
xadv
L is likely not an adversary under M , as xadv

L maximises the log-likelihood ratio and thus the
sample is likely rejected, hence M(y∗|xadv

L ) = 0. Instead, the adversary for M , xadv
M , needs to

maximise M while ensuring the sample is accepted, i.e. M(y∗|xadv
M ) > 0. Thus The following

objective emerges which we state in the following lemma.

Lemma 4 (Adversary under Rejection Sampling) Assume the adversarial objective is to in-
crease the likelihood of sample y being returned by the model M . Assume the model M is obtained
by rejection sampling as described in Algorithm 1 with T = 1. The adversary is given by:

xadv
M = argmax

x∈X
L(y|x) s.t. L(y|x) ≤ 2NkyG(y). (32)

Proof: Note that M(y|xadv
M ) > 0 as the sample is accepted. Assume there exists x′, s.t.

L(y|x′) > L(y|xadv
M ) and hence maximises M further then xadv

M . Then, it must be true that
L(y|x′) > 2kNyG(y), which implies M(y|x′) = 0 yielding a contradiction. Hence, xadv

M is the
required solution. □

Implementing such Attack. Applying VALID to obtain M has implications on the suitable
procedures to attack M . In particular, it requires solving the constrained optimisation problem in
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Figure 5: The likelihood of model M obtained through VALID with T = 1. The blue line is the likelihood of
M for the given y. Three example prompts x1, x2 and x3 are shown.

(32), which already adds a layer of complexity to the unconstrained problem for L. In general
constrained optimisation problems are more challenging, this is compounded by the upper bound
on L(y|x) not decomposing across tokens. Further, while large models s.t. LLama-3-8B are often
publicly available, G will likely be a custom model for which the attacker does not have white box
access. For a successful attack, the adversarial user must estimate the likelihood ratio between L and
G, which might prove challenging. This indicates that attacking M defined through VALID might
be a harder problem than attacking L. To reiterate, while it is possible to attack M , our certificate
holds and it cannot be attacked past the upper bound provided in Theorem 1.

C EXPERIMENTAL SETUP

C.1 CHARTASK DATASET

Here we provide more information on the CharTask dataset. The goal of the CharTask dataset is it,
to have a well-controlled toy dataset with clear definitions of target domain T and other domains F.

Table 1: Examples of the CharTask dataset

Task Pool Sequence

Prompt Task Completed Combined

Sorting Int 5 3 6 S R A E 3 5 6 Q 5 3 6 S R A E 3 5 6
Adding Int 5 3 6 A E R S 6 4 7 Q 5 3 6 A E R S 6 4 7
Reverse Sorting Int 5 3 6 R E A S 6 5 3 Q 5 3 6 R E A S 6 5 3
Even-Odd Int 5 3 6 E R A S 6 3 5 Q 5 3 6 E R A S 6 3 5
Sorting Int + Char 13 5 c a S E R A 13 5 a c Q 13 5 c a S E R A
Adding Int + Char 13 5 c a A S R E 14 6 d b Q 13 5 c a A S R E
Reverse Sorting Int + Char 13 5 c a R E A S c a 5 13 Q 13 5 c a R E A S c a 5 13
Even-Odd Int + Char 13 5 c a E S A R a c 13 5 Q 13 5 c a E S A R 13 5 c a

23



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

As shown in Table 1, each sequence consists of three parts: A sequence of random characters, a
task definition in the middle and another sequence of characters in the end. We refer to the random
sequence as Sin. In the middle there are four task tokens, the first of which defines the task T . “S”
sets the task to sorting, “R” to reverse sorting, “A“ to adding +1 and “E” to even-odd sorting. The
instructing token is followed by the remaining three task tokens in random order to ensure that all
are seen by a model trained on a subset of these. Finally, the completed sequence is the original
sequence of characters with the task performed on them, i.e. Sout = T (Sin). The pool of characters
for each sequence is either the integers or integers and strings of lower case letters. Importantly, all
tasks interpret characters and integers as characters alike. For instance, sorting integers “11”, “5”
results in “11”, “5”. To be precise, all tasks are based on the integer unicode representations of the
characters.

Each sequence has variable length of up to 49 elements in Sin (elements can be double digits).
For integers we use a pool of 49 unique distinct integers and for characters we use a pool of 249
elements (e.g. defining “at” as one element in the sequence). Under these conditions there exist a
combinatorially large set of unique sequences far exeeding our training dataset size.

Given the tasks and pools of characters, 8 possible domains, emerge as shown in Table 1, which
we denote as CharTask (Task, Pool). We define sorting integers as the target domain: DT =
CharTask (Sorting, Int) and all other combinations as out-of-domain. We create two distinct datasets
with non-overlapping splits for training, validation and testing. The in-domain dataset consists of
1M training samples. The “generalist” dataset DT+F = CharTask (All, Int + Char) contains of all
possible tasks with sequences consisting of integers and characters. We use 1M training sequences
per task, hence 4M sequences in total. Validation and test sets are 64 sequences and 4096 sequences,
respectively.

C.2 CHARTASK SETUP

Dataset and Domain. We use the CharTask dataset as described in Appendix C.1. We train a
custom BPE tokenizer of length 360 (Sennrich et al., 2016). In practice, the pretrained tokenizer of
any foundation model is trained on a general dataset. Hence, we train the tokenizer using DT and
DF, the target and out-of-domain datasets. While the dataset is inherently suitable for a sequence-
to-sequence task, we treat it as next-token prediction problem just as used in language modelling.

Training. We train our domain model G on a set of integer sorting examples, CharTask (Sorting,
Int). We train a GPT-2 (Radford et al., 2019) architecture with 3 layers, 3 heads and 48 embedding
dimension. We train the model on partial sequences, as we are embedding marginal sequences y.
Hence, we cut each sequence in two parts using a splitting point that is sampled under a uniform
distribution. Hence, the model learns the transition from “[BOS] ..” to any character that might be
the first response token.

For the generalist model L, we train using all available tasks on integers and characters, CharTask
(All,Int+Char). We train a GPT-2 architecture with 6 layers, 6 heads and 192 embedding dimensions.

We train L and G with AdamW (weight decay 0.1) for 2048 steps with a cosine learning rate sched-
ule with 500 steps warmup, a maximum learning rate of 0.005, scheduled for 40 epochs. We train
with 120 context window using next-token prediction.

Inference. We use common parameters to tweak the predictive distribution of our models. For
G we use a temperature of 0.7 and for L of 0.2. We find this greatly helps the model performance
of both. We do not perform TopK selection of tokens. We prompt with a prompt length of 10. The
task-completed sequence is almost deterministic given the prompt and task for models that have very
high accuracy. Hence, we remove sequences where the prompt of 10 tokens is larger than 25% of
the entire sequence.

C.3 20NG SETUP

Dataset Cleaning. The 20NG dataset is very dirty, containing a wide array of random special
character sequences and formatting. We found these sequences to complicate model training and
large pre-trained models struggled with it. In addition, as formatting strongly varies between the
20NG dataset and others, this is a confounding factor for OOD detection. Classifying sentences
as ID or OOD should focus on semantics, but the formatting provides a spurious correlation that
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is easily exploited by models. Hence, we decided to clean the dataset. To do so we utilise the
scikit-learn (v1.5.1) (Pedregosa et al., 2011) options to remove headers, footers and quotes.
Further, we cleaned it using Llama-3.1-8B-Instruct (Dubey et al., 2024) using the following query:

Your task is to clean and format a string.
Instructions:
- Do not change the order of the words.
- Remove cryptic character sequences, spacings out of order,
and line breaks within sentences.
- Remove out-of-order punctuation, but leave correct
punctuation in place.
- The result should be semantically and lexically the same as
the original but well formatted.
- Remove IP addresses and email addresses.
- Remove sequences of (special) characters, that are not
human language.
- Only return the cleaned string without messages or quotes
around it. Do not return any other information. Do not
repeat the instructions. Do not repeat the example.

Sentence:

We check the output for various keywords and phrases from prompt and find 0% violation rate.
While there still exist random sequences, the data quality is greatly improved. We notice that several
sequences exist in 20NG and OOD testing datasets that are seemingly random character sequences
and multiple trigram repetitions such as “Nanaimo British Columbia Nanaimo British Columbia
Nanaimo British Columbia ...”. These sequences have the highest likelihood under model G and
L while not having any semantic meaning nor constituting a valid sequence that could indicate
model misappropriation. Hence, when reporting max likelihoods for 20NG over a finite dataset
(e.g. maxx,y∈DF L(y|x)) we instead use the 99.99th quantile and report it as max.

Training. We use a pre-trained Gemma 2 tokenizer for both models which has a vocabulary size
of 256k tokens.

For the fine-tuned model L, we use a pre-trained decoder-only Gemma 2 2B (hosted on Hugging
Face) as the starting point then fine-tune it to our ID dataset using LoRA adaptors which involved
training an additional 10.4M parameters (0.4% of the total parameters).We train L with AdamW
(weight decay 0.01) for 1536 steps with a cosine learning rate schedule with 64 steps warmup, a
maximum learning rate of 5e-5, scheduled for 32 epochs. We train with 256 context window using
next-token prediction.

For the model G, we use a decoder-only GPT-small model architecture, 6 layers, 6 heads and 384
embedding dimensions and a total of param- eters 109.3M, which we train from scratch using the ID
data exclusively. We train G with AdamW (weight decay 0.01) for 320 steps with a cosine learning
rate schedule with 100 steps warmup, a maximum learning rate of 3e-4, scheduled for 100 epochs.
We train with 256 context window using next-token prediction.

Inference. For both L and G we use a default temperature of 1. We do not perform TopK selection
of tokens. When evaluating performance, we use 128-token long prompt and a 128-token long
ground truth response.

C.4 TINYSHAKESPEARE SETUP

Dataset Cleaning. The formatting in TinyShakespeare dataset was distinctly different to other
texts with long sequences of line breaks and usage of all-caps for character names. We removed
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these excessive line breaks and changed the character names from all caps to title case to make it
similar to other datasets and make OOD detection less trivial challenging.

Training. We use a pre-trained Gemma 2 tokenizer for both models which has a vocabulary size
of 256k tokens.

For the fine-tuned model L, we use a pre-trained decoder-only Gemma 2 2B (hosted on Hugging
Face) as the starting point then fine-tune it to our ID dataset using LoRA adaptors which involved
training an additional 10.4M parameters (0.4% of the total parameters). We train L with AdamW
(weight decay 0.01) for 128 steps with a cosine learning rate schedule with 64 steps warmup, a
maximum learning rate of 5e-5, scheduled for 32 epochs. We train with 256 context window using
next-token prediction.

For the model G, we use a decoder-only GPT-micro model architecture, 4 layers, 4 heads and 128
embedding dimensions and a total of param- eters 33.7M, which we train from scratch using the ID
data exclusively. We train G with AdamW (weight decay 0.01) for 2400 steps with a cosine learning
rate schedule with 300 steps warmup, a maximum learning rate of 3e-4, scheduled for 300 epochs.
We train with 256 context window using next-token prediction.

Inference. For both L and G we use a default temperature of 1. We do not perform TopK selection
of tokens. When evaluating performance, we use 128-token long prompt and a 128-token long
ground truth response.

C.5 MEDICALQA

We apply our method to medical question answering as target domain, T. This could for example
be extended to a chatbot for clinicians to research patient symptoms. To model potential questions
and answers, we use the PubMedQA dataset (Jin et al., 2019) as DT, which contains approximately
200K QA pairs for training and 1000 test pairs. We regard question answering on other topics, such
as geography or computer science as F. To model this, we use the Stanford Question and Answering
Dataset (excluding medical categories) (Rajpurkar et al., 2016) as DF.

Training. As a generalist LLM, L, we use a LLama-3-8B model (AI@Meta, 2024) and train
a custom GPT-2 model (184M parameters) for G (Radford et al., 2019). We pre-train G on Pub-
MedQA (Jin et al., 2019) with 200K sequences. We then use 100K prompts from PubMedQA to
generate sequences using L and then fine-tune on them using responses from L to half the prompts
in PubMedQA. As G is embeds the responses, G(y), we fine-tune using “BOS[Response]” rather
than entire sequences. We pretrain with learning rate of 0.0001 for 50 epochs and then fine-tune
with learning rate 0.00001 for another 50 epochs. On 8 × H100, the total training takes about 2
hours.

Inference. We perform inference without topk or topp parameters and with temperatures of 1.0 for
model L and G. We prompt using the natural questions as defined by the datasets. For the analysis,
we remove responses that are not clearly out of domain. For instance the response “10 million people
every year” is not only a valid response to a geographical question, but can also be an information
about the prevalence of the disease. When applying our method, we focus on responses with at least
10 tokens to further remove ambiguous questions. Modern LLMs tend to be very verbose in their
responses, so responses should naturally be longer than 10 tokens.
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C.6 DATASET CATEGORIES

We list here the categories excluded from SQuAD and included in MMLU for reproducibility.

Excluded From SQuAD Included in MMLU-Med
Antibiotics Anatomy
Symbiosis Clinical knowledge
Gene College medicine
Brain College biology
Immunology College chemistry
Biodiversity High school biology
Digestion High school chemistry
Pharmaceutical industry High school psychology
Mammal Human aging
Nutrition Human sexuality
Tuberculosis Medical genetics
On the Origin of Species Nutrition
Asthma Professional medicine
Pain Virology
Bacteria
Infection
Black Death
Pharmacy
Immune system
Chloroplast

Table 2: Categories of items in used Datasets.

D EXPERIMENTAL RESULTS

D.1 CHARTASK RESULTS
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Figure 6: This Figure replicates Figure 3 for the CharTask dataset.
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D.2 TINYSHAKESPEARE RESULTS
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Figure 7: This Figure replicates Figure 3 for the TinyShakespeare dataset.

D.3 20NG
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Figure 8: Figure 8a shows that log likelihood ratios are well disentangled. Figure 8b shows the trade-off
between OOD and certification: The best OOD detection performance occurs with a constriction ratio of 60.
Figure 8c shows the false rejection rate (FRR) required to certify at a given ϵ.

D.4 MEDICAL QA
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Figure 9: Figure 9a shows that log likelihood ratios are well disentangled. Figure 9b shows the trade-off
between OOD and certification. Figure 9c shows the false rejection rate (FRR) required to certify at a given ϵ.
All results are for VALID with T = 1 for Medical QA.
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Figure 10: This figure demonstrates the gap in log likelihood between in-domain and out-of-domain samples
for the guide models G in Figure 10a and the LLM L in Figure 10b. As the length of the response, Ny ,
increases, the gap between ID (DT) and OOD data (DF) widens, with the log-likelihood decreasing roughly
linearly. Thus the guide model G on the left side assigns exponential decreasing probabilities to OOD samples.
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D.5 CONSTRICTION RATIOS FOR DIFFERENT FALSE REJECTION RATES
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Figure 11: This figure shows the log10 constriction ratios (CR) on OOD samples as a function of the false
rejection rate (FRR) on the in-domain samples. The rejection threshold k is systematically decreased from top
to bottom to achieve a given FRR. We can observe the gradually improvement constriction while increasing the
FRR. (a) shows Tiny Shakespeare, (b) shows 20NG, and (c) Medical QA.

30



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

D.6 ATOMIC CERTIFICATES - LENGTH CONTROLLED

The experimental setup for MedicalQA uses PubMedQA as in-domain dataset and SQuAD as out-
of-domain dataset as described in Section 3.1 and Appendix C. The different lengths of responses
in these datasets confounds our findings on the disentanglement of the atomic certificates, ϵy-ACs
between in-domain data, DT, and out-of-domain data, DF. In Figure 12, we show that sequences
tend to be a lot shorter in DF than in DT. The likelihood of a response decays exponentially in the
length of the responses. Hence, the responses in the OOD set DF have relatively high likelihood
that is not attributable to the domain restriction but rather the length of the response. This yields the
eCDFs in Figure 4b to overlap significantly. To show that this is a confounding factor that is indeed
worsening disentanglement, we resample the data to account for length and present results here.

Setup. To study the effect, we resample the in-domain data, DT, and out-of-domain data, DF to
have matching distribution of response lengths. We find the target distribution using the following
steps: First, we find the common support between the distribution of response length ny between
DT and DF, ny ∈ [15, 38]. This interval covers 67% of samples in the target domain dataset and
58% of the OOD dataset. Second, we obtain the empirical distribution of ny in the in-domain
dataset, perform Laplace smoothing (Manning et al., 2008) with α = 1 and then further smooth
the distribution using a moving average with a window length of 5. Third, we perform weighting
sampling with replacement from DT and DF with a size of 100 times the original. The weights are
computed s.t. the distribution of ny matches the target distribution. We denote these resampled sets
as DRS

T and DRS
F .

Results. We find that the disentanglement of atomic certificates, ϵy-ACs, greatly improves after
eliminating the confounding factor, response lengths. Figure 13 shows the empirical cumulative dis-
tribution functions (eCDFs) for “original” datasets, DT and DF in grey tones, as well as the results
for DRS

T and DRS
F . You may observe the distribution of ACs shifted left for datasets representing

F and shifted right for datasets representing T, effectively increasing the disentanglement. This
indicates, when comparing similar in-domain and out-of-domain samples, the difference in the per-
missiveness of the ACs on in-domain samples and the restrictiveness of the ACs on out-of-domain
samples is much greater.

Dataset
Target Domain T

Other F

50 100 150
Number of Tokens in Response

Figure 12: MedQA setup: The in-domain dataset
(PubMedQA) has longer responses than the OOD
dataset (SQuAD).
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Figure 13: The eCDFs of ϵy-ACs are shown for the
original in- and out-of-domain data for the MedQA
setup in comparison to a resampled dataset control-
ling the response length as confounder. The gap be-
tween the permissveness of in-domain samples and
restrictiveness on out-of-domain samples is greatly
improved.
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D.7 ATOMIC CERTIFICATE BY LIKELIHOOD

Obtaining a tight atomic certificate for sample y is most important when the sample is likely pro-
posed by L. Hence, in this section we study the log constriction ratio, the tightening of our adver-
sarial certificate over model L, as a function of the sample’s likelihood under L.

We bin out-of-domain samples into 10 bins based on their log likelihood under model L, i.e.
logL(y|x), and compute median, 25th and 75th percentile log constriction ratio, as well as the
median log likelihood. We present results in Figure 14 for both 20NG and TinyShakespeare. We
observe that the constriction strengthens when samples get more likely under L. That means, those
samples most likely to be sampled under L benefit most from our atomic certificate. We consider
this a favourable result.
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Figure 14: These figures show the constriction ratio as a function of log likelihood of samples under L. Figure
14a shows data for 20NG and Figure 14b for TinyShakespeare. On the x-axis is median log-likelihood under
L, logL(y|x) and on the y-axis is the log constriction ratio.

E REPEATED SAMPLING (T > 1)

In Section 3.3 we study the performance of VALID by sampling from L with a single step, i.e.
T = 1. Here, we extend the analysis to T > 1.

Setup. We adopt the MedicalQA setup as described in Appendix C.5. However, instead of employ-
ing VALID with T = 1, we use T ∈ {1, 2, 3, 4, 5} and study for combinations of k (the rejection
threshold of VALID) the resulting ϵ − DC. As above, for ease of presentation we use a fixed
temperature of 1.0 for L.

Results. We find that increasing T significantly reduces false rejection rates (FRR) while only
marginally increasing the ϵ-DC (domain certificate). We present findings for the FRR in Figure 15a
and for ϵ-DC in Figure 15b. The minor increase in ϵ due to increasing T should not come as a
surprise as we recall the formula for the upper bound: 2kNyTG(y) (see (4)). Even T = 10 increases
the upper bound ϵy by only one order of magnitude. On the other hand, the gains in in-domain
performance are marked. In Figure 15a we can observe that for T = 5, the FRR is roughly halved
for (K > 2), greatly improving the refusal behaviour of the model on in-domain samples.

Finally, we would like to note, that temperature of L is a confounding factor. For tL → 0, we will
observe deterministic sampling of y given x and hence, T > 1 will not have any benefit.
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Figure 15: False Rejection Rate (FRR) (Left) and ϵ−DC of the Domain certificate of VALID (Right) plotted
for a range of different values of T and k.

F ABLATION

F.1 COMPARING M TO G

Our method provides a guarantee on a generalist model assuming that such a model outperforms
custom, small solutions that are inherently safer due to their domain specific training. We test
this empirically by examining the gap in performance between the generalist model L, a small in-
domain model. As G is trained marginally on y, it is not able to perform any task. Hence, we
exactly replicate the training procedure of G and train a model on the entire sequence, G′(x,y). We
utilize the CharTask dataset as described above and study the accuracy of each model in generating
valid sequences: A valid sequence is one that starts with Q, is followed by a random sequence of
characters (e.g. 5 3), followed by four unique task tokens (e.g. S A E R) defining a task, which
is then performed (e.g. 3 5). The sequence is expected to terminate there. If any of these are
violated, the generated sequence is scored as invalid. We perform inference on 1000 prompts from
the target domain test dataset prompting the model with various lengths of prompts. In Table 3, we
present the results: The accuracy of generating such sequences of L lies significantly above that
of G (difference of approx 30%). This shows that G is effective in restricting the domain while
performing considerably worse than L. Hence, our method combines the best of both models: The
safety of G with the performance of L.

Prompt Length G L
1 60.45 91.21
5 60.25 92.68
10 66.89 91.11

Table 3: Accuracy scores for CharTask generation dataset.

F.2 BENEFIT OF LARGER GUIDE MODELS

In this Appendix, we study the influence of the size of G on the VALID results. In particular, we
ask whether VALID benefits from smaller or larger models.

Setup. We turn to our MedicalQA setup as described in Section 3.1 and Appendix C.5. With the
same methodology, we fit two more models for G. GXS follows a GPT-2 architecture with 6 lay-
ers, 6 heads and 192 embedding dimension resulting in 27.49M parameters. GS follows a GPT-2
architecture with 6 layers, 6 heads and 384 embedding dimensions resulting in 60.29M parameters.
To recap, the G model as used above uses 12 layers, 12 heads and 768 embedding dimension result-
ing in 184M parameters. We then compare the three models on samples generated by L following
Section 3.3.
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Results. We find that larger models tend to perform better, however evidence is not strong. First, we
study the rejection threshold k per model. As described in (4) in Theorem 1, VALIDs upper bounds
gets tighter with smaller k. Hence, in Figure 16a we plot k values achieving a given false rejection
rate (FRR) for each model. We observe that larger the model enable smaller k at the same FRR. This
indicates that the trade-off in k between certification and OOD detection is more favourable under
larger models. This should not come as a surprise, however, as larger models tend to achieve better
perplexity (i.e. lower loss) on in-domain data.

Next, we study the constriction ratios of the Atomic Certificates (AC) as done in Table ?? in Sec-
tion 3.2. Here, we replicate this table for different sizes of G as shown in Table 4 . For each model,
we provide the the 10th percentile, median and 90th percentile. You may observe that GXS(y)
consistently provides constriction ratios that are are often around 10 orders of magnitudes worse
than GS(y) and G(y). Interestingly, GS(y) yields better ratios than G(y). However, the difference
is smaller. We speculate that the limited amount of ID training data means we do not see benefits
for increasing the size of G beyond a point, as it begins to over-fit without the addition of extra
regularization techniques.

Finally, we study the Domain Certificates (DC) for each model. For this we replicate Figure 9c and
present Figure 16b showing the false rejection rate (FRR) given an ϵ-DC for the three models. We
may observe that the lower bound to the FRR significantly increases as the models get smaller. The
evidence here suggests that larger guide models yield better domain certificates.

In conclusion, the evidence points to larger models working better for an application like Medi-
calQA. The evidence uniformly shows that a model as small as GXS(y) does perform significantly
worse than larger models.
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Figure 16: These Figures demonstrate differences in the behaviour of VALID for different sizes of guide models
G. Figure 16a shows that larger models allow for lower k and hence lower bounds at the same False Rejection
Rate (FRR). Figure 16b shows the FRR for a given ϵ-DC for guide models of different sizes.

FRR Log10 Constriction Ratio (10% / Median / 90%)
GXS(y) GS(y) G(y)

0% -427 / -45 / 12 -408 / -41 / 12 -449 / -54 / 6
1% -246 / -14 / 42 -176 / -3 / 79 -198 / -10 / 43
5% -74 / 12 / 141 -42 / 21 / 195 -42 / 18 / 162

10% -29 / 24 / 202 -11 / 35 / 257 -8 / 33 / 229
20% -3 / 43 / 281 1 / 57 / 337 3 / 50 / 302
25% 0 / 50 / 308 5 / 63 / 364 7 / 60 / 345
50% 11 / 81 / 430 13 / 96 / 497 15 / 89 / 477

Table 4: Constriction Ratios for MedQA for three models of different sizes. The smallest model is yields
significantly worse (lower) constriction ratios.
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G MOTIVATION

G.1 DEFINING DOMAINS - PRACTICAL CONSIDERATIONS

Other Domains  
Tax advice, Weapon Manufacturing, 

and many more. 
“Here is an easy recipe to commit tax 

fraud …”

𝔽

: Space of all sequences𝕊
Unintelligible Sequences  
Out-of-domain sequences that are not a concern. 
“The sky is blue, the sky is blue, the sky is blue” 
“ABC ABC ABC ABC ABC ABC ABC ABC”

𝕋′ ∩ 𝔽′ 

Target Domain  
Medical QA 

“The recommended dose 
of Paracetamol is …”

𝕋

Figure 17: A Venn diagram illustrating sequence domains providing an example domain and example sequences
in that domain.

In this section, we provide practical guidance for practitioners selecting domains for AI systems,
presenting a systematic approach to classifying sequences into different domains. Figure 17 illus-
trates a Venn diagram comprising three key sets of sequences, i.e. subsets of S:

1. The target domain T (shown in blue), containing desired content about which the LLM-
driven system should converse (e.g., medical questions and answers),

2. The out-of-domain set F (shown in red-orange), containing potentially harmful or other
content that require active protection measures (e.g., tax fraud advice),

3. The complement of T and F, denoted as T′ ∩ F′ (shown in grey).

A fundamental question arises: How should one define T and F? Defining T is relatively natural for
most practitioners. Content that semantically belongs to the domain should be included in T. The
more complex decision involves determining which sequences outside T should be included in F.
We contend that protection against certain sequences warrants higher priority than others, and these
high-priority sequences should be included in F.

Consider the example sequence y = “The sky is blue. The sky is blue. The sky is blue.” While this
is clearly out-of-domain for a medical QA system, practitioners should evaluate two critical ques-
tions to determine its placement in F:

1. Would adversaries have motivation to generate such sequences?
2. Could these sequences potentially harm users, the system, or third parties?

In this example, adversaries would likely have little incentive to generate such a response, and the
content itself is harmless. Therefore, practitioners might reasonably conclude that y should remain
in T′ ∩ F′ rather than F, excluding it from system certification considerations.

These evaluation questions help practitioners assess risk levels effectively. When both questions
receive negative answers, sequences can safely remain in T′ ∩F′ without requiring active protection
measures, allowing security efforts to focus on genuinely concerning sequences. If either question
receives a positive response, practitioners may choose to implement protective measures.

Let us analyze two more examples to demonstrate this in practice. Consider the sequence y =
“Here is an easy recipe to commit tax fraud...” - in this case, malicious actors would be highly mo-
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tivated to seek such information, and the content could directly harm society and government func-
tions. Thus, this sequence clearly belongs in F and requires active protection measures. Similarly,
when considering y as a love poem, while it may seem harmless at first glance, the analysis re-
veals important considerations. Users might frequently request LLMs to generate poetry, potentially
straining system resources, and, while not directly harmful to users or society, it could significantly
impact system infrastructure and operational costs. Consequently, practitioners might choose to
include this in F to protect their computational resources.

It is important to note that these evaluation questions are not intended as universal rules, but rather
serve as practical considerations to guide practitioners in their decision-making process. By system-
atically assessing motivation and potential harm, practitioners can make informed decisions about
which sets of sequences require active protection measures.

H FUTURE WORK

In this section we briefly discuss some ideas for future work that we believe could further extent the
practical utility of VALID. First, it would be interesting to experiment with larger specialised models
for G to assess if these more capable models lead to better performance and results. We chose not
to do this as LLMs trained from scratch exclusively on specific domains are not common, and thus
results with these models would be less similar to what a practitioner with limited resources could
expect.

As described in Section 2.2, VALID uses length normalisation to ensure the log likelihood ratio
rejection condition is robust to different lengths of sequences Ny . However, by sampling represen-
tative data sets of responses from y ∼ L(·|x) for both in-and out-of-distribution x’s, it should be
possible to learn a more complex polynomial of Ny to then use as a threshold for rejection. This
threshold could also be used to provide both ϵy-ACs and ϵ-DC certificates, while hopefully simulta-
neously enabling more precise detection.

Finally, a rejection scheme with a probabilistic decision rule, similar to Algorithm 5 in Vyas et al.
(2023), would be able to provide identical bounds to Theorem 1. Possibly, this rejection rule would
lead to better performance in terms of OOD classification.
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