
000 QUANTIFYING MECHANISTIC GAPS IN ALGORITHMIC 001 REASONING VIA NEURAL COMPIRATION 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 Neural networks can achieve high prediction accuracy on algorithmic reasoning
012 tasks, yet even effective models fail to faithfully replicate ground-truth mechanisms,
013 despite the fact that the training data contains adequate information to learn the
014 underlying algorithms faithfully. We refer to this as the *mechanistic gap*, which we
015 analyze by introducing neural compilation for GNNs, which is a novel technique
016 that analytically encodes source algorithms into network parameters, enabling
017 exact computation and direct comparison with conventionally trained models.
018 Specifically, we analyze graph attention networks (GATv2), because of their high
019 performance on algorithmic reasoning, mathematical similarity to the transformer
020 architecture, and established use in augmenting transformers for NAR. Our analysis
021 selects algorithms from the CLRS algorithmic reasoning benchmark: BFS, DFS,
022 and Bellman-Ford, which span effective and algorithmically aligned algorithms. We
023 quantify faithfulness in two ways: external trace predictions, and internal attention
024 mechanism similarity. We demonstrate that there are mechanistic gaps even for
025 algorithmically-aligned parallel algorithms like BFS, which achieve near-perfect
026 accuracy but deviate internally from compiled versions.

027 1 INTRODUCTION 028

029 Mechanistic faithfulness guarantees generalization and robustness, and better understanding it is
030 critical in building artificial intelligence that can reason. We study this in the realm of Neural
031 Algorithmic Reasoning (NAR), which studies the ability of neural networks to learn algorithmic
032 reasoning tasks. The main purpose of this paper is in measuring mechanistic faithfulness on these
033 algorithmic tasks: many models can learn effective approximations to these algorithms, but do they
034 actually learn the intended behavior? This is mechanistic faithfulness. For example, trained GATv2
035 predicts the Bellman-Ford shortest paths algorithm with 87% accuracy, but does it actually learn the
036 dynamic programming mechanism correctly? How can we quantify these mechanistic gaps?

037 We answer this in two ways: first, we analyze external trace predictions, and second, we use neural
038 compilation to compare learned algorithms to a ground truth, which allows us to quantify internal
039 mechanistic similarity. First, the CLRS benchmark [1] includes algorithmic traces (also called hints).
040 These traces describe the intermediate states and operations of an algorithm, such as the partially
041 explored graph for breadth-first search (BFS). In principle, supervised training on traces enables
042 learning a mechanistically correct solution, at least in the sense that the model is given adequate
043 information to reproduce the target algorithm. In practice, presenting this data does not explicitly
044 induce reasoning, and in some cases models perform better without it [1, 2]. Trace predictions can
045 measure faithfulness, but only externally. Accordingly, we quantify internal faithfulness through
046 similarity of the GATv2 attention mechanism to a neurally-compiled ground truth.

047 **Neural Compilation** The upper-bound expressivity of many neural network architectures is estab-
048 lished, but expressivity does not guarantee that gradient-based optimization will find either effective
049 or faithful algorithms [3]. The focus of this paper is in understanding this gap by using neural
050 compilation as an analysis tool. Neural compilation is a technique for converting programs into
051 neural network parameters that compute the original program [4, 5, 6, 7, 8, 9]. Neurally compiled
052 programs are implicit expressivity proofs, ground-truth references, and optima of the underlying
053 optimization problem [9]. We use neural compilation to better understand the mechanistic gap by
analyzing intermediate behaviors, primarily the attention mechanism in GATv2.

054 **Defining Mechanistic Faithfulness: Unique Solutions in Algorithmic Phase Space** Neural
055 compilation allows us to be more precise in defining mechanistic faithfulness, because it gives us
056 ground truth to compare against. We draw upon the idea of *algorithmic phase space* ([10]): neural
057 network parameters describe a low-level program space that admits a vast diversity of solutions.
058 Neural compilation allows specifying abstract program behaviors, and the set of low-level parameters
059 which produce them. In particular, our analysis focuses on the attention mechanism in GATv2, which
060 is effectively a (semi) interpretable symbolic layer. Having a neurally compiled ground truth enables
061 quantifying the mechanistic gap directly by comparing attention activations (Equation 24).

062 **Does Algorithmic Alignment Confer Faithfulness?** A major factor explaining expressivity-
063 trainability gaps is *algorithmic alignment*, the idea that certain neural networks are more efficient
064 at learning particular algorithms [11]. For example, graph neural networks, especially GATv2, are
065 particularly suited for graph-based dynamic programming tasks [12, 13]. Furthermore, in general it is
066 easier to learn parallel algorithms than it is to learn inherently sequential ones, especially for GNNs.
067 We refer to this as NC-Learnability [14]. However, algorithmic alignment is formulated in terms
068 of a sample-complexity bound for *accuracy*, not faithfulness explicitly. Even though architectural
069 similarity seems like it might confer mechanistic faithfulness [3], our analysis finds that there are still
070 mechanistic gaps even under algorithmic alignment and parallelism.

071 **1.1 CONTRIBUTIONS**

072 1. A neural compilation technique for GATv2, demonstrated on BFS and Bellman-Ford.
073 2. Metrics for quantifying mechanistic gaps: external trace prediction accuracy and internal
074 attention mechanism similarity.
075 3. Empirical evidence showing no correlation between prediction accuracy and faithfulness,
076 even for aligned parallel algorithms like BFS.

077 **2 RELATED WORK**

078 **Differentiable Computing** Previous work has considered differentiable models of computation,
079 such as LSTMS or other RNNs [15]. This was expanded by Neural Turing Machines and Hybrid Dif-
080 ferentiable Computers [16, 17]. However, sequential models of computation are often exceptionally
081 difficult to train, which was a big factor in the invention of transformers [18, 19, 20, 3].

082 **Neural Algorithmic Reasoning** Neural algorithmic reasoning (NAR) has evolved through bench-
083 marks and techniques that enhance model alignment with algorithmic tasks, particularly on graph
084 structures. While early GNNs were focused on modeling structured data, later variants were inspired
085 by differentiable computing, but in practice can be far more effective than their original counterparts.
086 Originally, GNNs were proposed in [21]. However, they have seen a rich variety of extensions
087 [22]. Notably, Deep Sets introduced permutation invariance [23], Message-Passing Neural Networks
088 (MPNN) introduced a framework for various models of graph computation [24], which Triplet MPNN
089 extended with several architecture modifications, such as gating, triplet reasoning, and problem spe-
090 cific decoders [25]. Separately, GAT introduced a self-attention mechanism [12]. GATv2 generalized
091 this to dynamic attention [13]. Finally, Pointer Graph networks enabled processing graphs with
092 dynamic topology [26]. Together, the CLRS benchmark captures many of these improvements, and
093 provides these models as baselines.

094 These models have high generalization on neural algorithmic reasoning tasks [1, 13]. This is
095 critical, as it makes our comparisons meaningful. We select GATv2 because of it has relatively high
096 performance, and the attention mechanism is mathematically similar to the attention mechanism in a
097 transformer, the primary difference being that graph adjacency is used to mask attention coefficients
098 for GATv2, while standard transformers assume a fully connected topology.

099 CLRS gives us several interesting cases to study: BFS, where trained performance is nearly perfect;
100 Bellman-Ford, where trained performance is high, but not perfect, and DFS, where trained perfor-
101 mance struggles significantly. BFS in particular is the most interesting, because the near-perfect
102 learned algorithm does not faithfully learn the underlying algorithmic mechanism, even though BFS
103 is relatively simple, algorithmically aligned with GATv2, and proven to be in NC [27, 11].

108 **Neural Compilation** Neural Compilation is a technique for transforming conventional computer
109 programs into neural network parameters that compute the input algorithm. Fundamentally, neural
110 compilation constructs an injective function (compiler) that maps program space to parameter space:
111 $\mathcal{C} : \Gamma \mapsto \Theta$ so that the behaviors of a program $\gamma \in \Gamma$ and $f(\theta), \theta \in \Theta$ are consistent on all inputs
112 (where f is a neural network architecture, θ its parameters, and Θ the parameter space, e.g. \mathbb{R}^p). The
113 earliest results in neural compilation stem from [4] and [5]. Decades later, [6] developed *adaptive*
114 neural compilation, for initializing networks with compiled solutions and then further training them.
115 After the invention of the transformer architecture, there became significant interest in characterizing
116 its internal mechanisms through programs, e.g. *mechanistic interpretability*. From this came RASP,
117 TRACR, and ALTA [7, 8, 9], which compile a domain-specific language into transformer parameters.
118 Notably, ALTA ([9]) includes comparisons between learned and compiled algorithms, and [28]
119 includes theoretical graph-algorithm results.

120 **Expressivity and Trainability** Many papers establish theoretical upper bounds of neural network
121 expressivity [29, 30, 31, 28], dating back to the origins of the field [32, 4]. However, it is more
122 difficult to make substantive statements about trainability. In practice, theoretical expressivity bounds
123 are not reached for a wide variety of models [3]. For example, [30] establishes that transformers can
124 express TC^0 , but [9] shows that they struggle to learn length-general parity from data. Within neural
125 algorithmic reasoning, [14] and [11] support GNNs potentially expressing algorithms in PRAM (NC),
126 but this has not been formally proven. Beyond learning effective solutions that saturate expressivity
127 bounds, we also wish to learn mechanistically faithful algorithms. Mechanistic faithfulness implies
128 generalization and saturation of expressivity.

129 **Critical Work on Neural Network Reasoning** Given the high-profile nature of neural networks,
130 especially language models, several papers criticize their reasoning ability in the hope of under-
131 standing how to improve them [33, 34, 35, 36]. This motivates mechanistic interpretability studies
132 and future work, but also grounds expectations about the capabilities of these systems. Similarly,
133 the quantitative measures of mechanistic faithfulness we introduce are intended to play a role in
134 improving algorithmic reasoning.

135 **Mechanistic Interpretability** While neural compilation techniques have their roots in differentiable
136 computing, their application to mechanistic interpretability is a more recent phenomenon,
137 inspired several other approaches for interpreting neural network behavior, especially that of large
138 language models. Fundamentally, mechanistic interpretability aims to reverse-engineer learned
139 behavior into an interpretable form. In the most general case, this behavior would be described as
140 abstract computer programs (e.g. neural *decompilation*). However, this is fundamentally difficult,
141 given that neural network computation tends to be dense, parallel, and polysemantic. Some work
142 characterizes “circuits”, e.g. sub-paths of a neural network that correspond to a particular behavior [37,
143 38, 39]. Other techniques try to extract categorical variables from dense, polysemantic representations
144 [40]. Notably [10] attempts to categorize the algorithmic phase space (solution space) of addition
145 algorithms, similar to ALTA’s analysis of learned parity functions [9]. Work on “grokking” attempts
146 to capture phase-shifts in neural network generalization, e.g. where a faithful version of an algorithm
147 gradually replaces memorized data [41, 39, 10, 42].

148 For neural algorithmic reasoning specifically, [43] introduces the concept of the *scalar bottleneck*, a
149 potential explanation for why faithful algorithms are difficult to learn, which is later refined by [44],
150 which proposes learning algorithm ensembles. The scalar bottleneck hypothesis, as well as the idea
151 of algorithmic phase space, help explain why learned models favor dense representations over sparse,
152 faithful ones, complementing our empirical evidence from compiled comparisons.

154 3 METHODS

155 Our methods section uses Einstein notation with dimension annotations. For example:

$$A_{ik}^{m \times n} = B_{ij}^{m \times l} C_{jk}^{l \times n} \quad (1)$$

156 Depicts a matrix multiplication by implying summation of the dimension j (size l). While this is
157 quite verbose, it ensures clarity when describing higher-dimensional tensor contractions or complex
158 operations. See [45] for an accessible reference.

162 3.1 BACKGROUND: GRAPH ATTENTION NETWORKS (GATv2)
 163

164 For a graph $G = (\mathcal{V}, \mathcal{E})$ with n vertices, graph attention networks work by iteratively refining
 165 vector representations h at each vertex (collectively, H) by exchanging information between vertices
 166 according to the graph topology and a learned attention mechanism [12, 13]. The model receives
 167 input \mathcal{V} of dimension $n \times f_{\mathcal{V}}$, representing a vector of size $f_{\mathcal{V}}$ for each vertex, and edge information
 168 \mathcal{E} , which is an $n \times n \times f_{\mathcal{E}}$ tensor, which similarly has a feature vector for each edge. We define the
 169 graph topology with an adjacency matrix A , which is an $n \times n$ matrix with binary entries. Also, the
 170 graph contains metadata in a vector g , with dimension f_g . While feature dimensions can vary, we use
 171 f where they can be implied by context. Consider a graph attention network with hidden size s and d
 172 attention heads. For convenience, let $m = \frac{s}{d}$ (the number of attention heads, d , must divide s). For
 173 this network, the parameters θ are:

174
$$\theta = \begin{pmatrix} s \times (f+s) & s \times (f+s) & s \times (f+s) & s \times f & s \times f & s \times (f+s) & d \times m \\ W_{\text{val}} & W_{\text{in}} & W_{\text{out}} & W_{\text{edge}} & W_{\text{meta}} & W_{\text{skip}} & \omega_{\text{attn}} \end{pmatrix} \quad (2)$$

177 GATv2 relies on an attention mechanism which selects information to pass between adjacent vertices.
 178 This is calculated as a function of parameters, features, the adjacency matrix, and hidden state:

179
$$\alpha_{\text{attn}}^{n \times n \times d} = \mathcal{F}(\theta, \mathcal{V}, \mathcal{E}, g, A, H) \quad (3)$$

181 First, the model computes intermediate values ν , which are candidates for new hidden representations.

183
$$\begin{matrix} n \times f & n \times s & n \times (f+s) \\ \mathcal{V}_{\text{input}} & H_{\text{hidden}} & C_{\text{concat}} \end{matrix} = [\mathcal{V} | H] \quad \nu_{il}^{n \times s} = W_{lk} C_{ik} \quad (4)$$

186 Second, the model computes two intermediate representations from the concatenated node features.
 187 These represent incoming and outgoing information to and from each node. Then, the model computes
 188 separate intermediate representations for edges and graph metadata:

189
$$\begin{matrix} n \times s & n \times s & n \times n \times s & s \\ z_{ip}^{\text{in}} & z_{ip}^{\text{out}} & z_{ijp}^{\text{edge}} & z_q^{\text{meta}} \end{matrix} = W_{pk} C_{ik} \quad W_{pk} C_{ik} \quad W_{ph} \mathcal{E}_{ijh} \quad W_{qr} g_r \quad (5)$$

191 These intermediate representations are combined into a single tensor, ζ , using broadcasting.

193
$$\zeta^{n \times n \times s} = \begin{matrix} 1 \times n \times s \\ \text{pre attn} \end{matrix} + \begin{matrix} n \times 1 \times s \\ \text{in} \end{matrix} + \begin{matrix} n \times n \times s \\ \text{out} \end{matrix} + \begin{matrix} 1 \times 1 \times s \\ \text{edge} \end{matrix} + \begin{matrix} n \times n \times s \\ \text{meta} \end{matrix} \quad (6)$$

195 Then, ζ is used to compute unnormalized attention scores, a , using the attention heads ω . First ζ is
 196 split into the tensor $n \times n \times d \times m$, to provide a vector of size m to each head:
 197

198
$$a_{ijh}^{n \times n \times d} = \omega_{ho} \sigma(\zeta)_{ijh} \quad (7)$$

199 Where σ is a leaky ReLU activation [46]. To enforce graph topology, we create a bias tensor from the
 200 adjacency matrix:

202
$$\beta^{n \times n} = c * (A - 1) \quad (8)$$

204 where c is a large constant, e.g. 1e9. This is used to nullify attention scores between unconnected
 205 nodes. Then, the final scores are normalized with softmax (β is broadcast in the final dimension as a
 206 $n \times n \times 1$, e.g. for each attention head):

207
$$\alpha_{ijh}^{n \times n \times d} = \text{softmax}(a + \beta) \quad (9)$$

209 Finally, these attention scores are used to select values from the candidates computed earlier. Selected
 210 values from different heads are summed together, and a skip connection propagates other information
 211 into the next hidden representation. Note that ν_{val} is reshaped into a $n \times d \times m$ tensor for the d
 212 attention heads, and then ν_{select} is reshaped back into a $(n \times s)$ tensor to match ν_{skip} .

213
$$\nu_{jho}^{n \times d \times m} = \alpha_{ijh} \nu_{iho}^{n \times d \times m} \quad \nu_{il}^{n \times s} = W_{lk} C_{ik} \quad H_{\text{next}} = \nu_{\text{select}}^{n \times s} + \sigma \left(\nu_{\text{skip}} \right) \quad (10)$$

215 Finally, the new H is normalized with layer norm, completing a single iteration of graph attention.

216 3.2 ARCHITECTURE MODIFICATIONS
217

218 Neural compilation revealed certain aspects of the GATv2 architecture which can affect the ability to
219 express particular algorithms naturally. These modifications reflect previous findings in NAR [47, 25].
220 Most notably, it was clear that candidate values ν for graph attention (Equation 4) are not a function
221 of the edge features, \mathcal{E} , meaning there is not a natural way to store or process edge information in the
222 hidden states of the model, outside of the attention mechanism. However, using edge information
223 makes it significantly easier to compute cumulative edge distances when running algorithms like
224 Bellman-Ford. Specifically we introduce a linear layer \mathbb{W}_{info} which operates on edge features:
225

226
$$\mathcal{E}_{ijk}^{\text{mid}} = \mathbb{W}_{\text{info}}^{\text{mid}} \mathcal{E}_{ijl}^{\text{input}} \quad (11)$$
227

228
$$\nu_{ihk}^{\text{edge}} = (\alpha \odot \mathcal{E}_{ijk}^{\text{mid}})_{ijk} \quad (12)$$
229

230
$$H_{\text{final}} = H_{\text{next}} + \nu_{\text{edge}}^{\text{edge}} \quad (13)$$
231

232 In these equations, \mathbb{W}_{info} encodes edge information to include in each node representation, the attention
233 coefficients α select it (the hadamard product, \odot broadcasts in the head dimension, d), and then the
234 incoming edge dimension is summed to match the dimensions of the hidden states.
235

236 We also experiment with adding a pre-attention bias \mathcal{B} (dimension $n \times n$), which has similar behavior
237 to the bias matrix β calculated from the adjacency matrix in Equation 8, except that it is learned:
238

239
$$\zeta_{\text{post}} = \zeta_{\text{pre}} + \mathcal{B} \quad (14)$$
240

241 Introducing \mathcal{B} allows algorithms to have more consistent default behavior, for instance nodes that
242 are not currently being explored are expected to remain unchanged, and adding a bias layer before
243 the attention weights makes it significantly easier to implement this behavior in a compiled model.
244 Similar behavior has been explored in [25], which focused on gating rather than a change to the
245 attention mechanism.
246

247 3.3 GRAPH PROGRAMS
248

249 Graph attention networks naturally resemble algorithmic structure, especially for highly parallel
250 graph algorithms such as Bellman-Ford and Breadth-First-Search (BFS). Importantly, this means
251 that for many algorithms in CLRS, there is an intended ground-truth mechanism, especially the ones
252 we have chosen for our analysis. Our neural compilation method introduces on a domain-specific
253 programming language for specifying programs, which we call graph programs. A graph program
254 consists of multiple components: a variable encoding in the hidden states of the model, an update
255 function for the hidden state, an initialization function, and encoders/decoders. Appendix C contains
256 visualizations of compiled parameters for minimal models.
257

258 **Variable Encoding** Variable encoding structures the hidden vectors, h at each node in terms of
259 named variables. For example, in the Bellman-Ford algorithm, a minimal program needs to track four
260 variables: `visited`, a binary flag indicating if a node has been reached, `distance`, the cumulative
261 distance to reach a node, `id`, the node id, and π , the predecessor in the shortest path. Note that these
262 are also the variables captured in CLRS traces. They are represented in a vector:
263

264
$$h = [\text{dist} \text{ visited} \pi \text{ id}] = [d \nu \pi x] \quad (15)$$
265

266 Then, computing an algorithm is a matter of updating these variables at each timestep according to an
267 update rule. For example, for Bellman-Ford, the update rule for node i with neighbors j is:
268

269
$$v = \max(v_i, v_j) \quad (16)$$

270
$$d = \min(d_j + \mathcal{E}_{ij}) \quad (17)$$

271
$$\pi = \arg \max_d (x_j) \quad (18)$$
272

270 **Update Function** GATv2 relies on using the attention mechanism to perform computation, in
 271 particular using softmax to select among incoming information. We will explain the update function
 272 in terms of the graph program for Bellman-Ford (Listing 1). BFS is similar. Note that this is
 273 demonstrated for a minimal model with hidden size 4, but our actual model uses the default hidden
 274 size of 128. First, the graph attention network must make candidate values ν , which is done by W_{val} .
 275 For example, a compiled W is a sparse matrix that propagates distance (line 9), the visited state (line
 276 10), and permutes an incoming node id x into a potential predecessor variable, π (line 11).

277 $C_0 = [d_0 \ v_0 \ 0 \ x] [d_h \ v_h \ \pi_h \ x] = [X_0 : H_0]$ (19)

278 $W_{\text{value}} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \quad W_{\text{value}} C_0 = \nu_{0:} = \begin{bmatrix} x \\ \pi_h \\ v_h \\ d_h \end{bmatrix} = \begin{bmatrix} 0 \\ x \\ v_0 + v_h \\ d_h \end{bmatrix}$ (20)

282 The goal is for softmax to select from these values for the next hidden state. Attention weights are
 283 calculated from ζ , which in turn is created by W_{in} , W_{out} , and W_{edge} . Essentially, W_{in} propagates the
 284 cumulative distance from incoming nodes using a large negative value $-c$, but also masks non-visited
 285 nodes by using a large positive value k . Then, W_{edge} uses large negative values for edge distances.
 286 This results in the softmax function receiving values that select for the incoming neighbor with the
 287 smallest cumulative distance as a distribution, e.g. $\alpha = [0.01, 0.01, 0.97, 0.01]$ (line 16).

288 $W_{\text{in}} = \begin{bmatrix} 0 & k & 0 & 0 & -c & k & 0 & 0 \\ 0 & k & 0 & 0 & -c & k & 0 & 0 \\ 0 & k & 0 & 0 & -c & k & 0 & 0 \\ 0 & k & 0 & 0 & -c & k & 0 & 0 \end{bmatrix} \quad W_{\text{edge}} = \begin{bmatrix} 0 & 0 & 0 & -c \\ 0 & 0 & -c & 0 \\ 0 & -c & 0 & 0 \\ -c & 0 & 0 & 0 \end{bmatrix}$ (21)

292 The updated hidden state is a weighted combination of candidate values created with α . Finally, W_{skip}
 293 maintains the node's id (line 12), and W_{info} adds the edge distance to the cumulative distance (line 9):

294 $W_{\text{skip}} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad W_{\text{info}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ (22)

298 When present, the pre-attention bias is an identity matrix multiplied by a large positive constant, k ,
 299 indicating that node values should remain the same by default. The attention head itself is a vector of
 300 ones, since the important computations have already been done by W_{in} , W_{out} , and W_{edge} . W_{meta} is not used.

301 $\mathcal{B} = k * I \quad \omega = \mathbb{1} \quad W_{\text{meta}} = \emptyset$ (23)

302 Appendix C contains visualizations of these parameters. Beyond those presented here, it is also
 303 necessary to create encoder/decoder parameters. These have a similar structure to W_{val} , in that they
 304 are often sparse selection matrices or identity matrices (e.g. since H is already a trace).

```

1 bellman_ford = GraphProgram(
2     hidden = HiddenState(
3         visit: Component[Bool, 1],
4         dist: Component[Float, 1],
5         pi: Component[Float, 1],
6         idx: Component[Float, 1]
7     ),
8     update = UpdateFunction( # Function of self, other, init, edge
9         dist = self.dist + edge.dist
10        visit = other.visit | self.visit | init.start
11        pi = other.idx
12        idx = self.idx
13    ),
14    select = SelectionFunction(
15        type = minimum
16        expr = other.dist + edge
17    )
18    mask = other.visit
19    default = self.idx
20)

```

323 Listing 1: Graph Program for Bellman-Ford

324

4 EXPERIMENTS

325

326

4.1 DEFINING MECHANISTIC FAITHFULNESS

327

328 To quantify mechanistic gaps, we compare to a ground-truth reference of the algorithm’s behavior.
329 Since there are many correct weight settings that can implement correct behavior, we propose instead
330 comparing behavior within the attention mechanism, which captures abstract learned behavior. In
331 the GATv2 architecture, the attention mechanism specifies how information should transfer between
332 nodes. This tightly constrains expected attention mechanism behavior: exploring frontier nodes
333 for BFS, selecting between minimum incoming paths for Bellman-Ford, swapping items in bubble
334 sort, and so on must all use attention carefully. Furthermore, the correct attention patterns can be
335 created by a variety of internal weight settings and hidden-state structures, which is how it captures
336 abstract behavior. Even though comparing in attention space eliminates a lot of issues with comparing
337 in weight space, we also compare across 128 random initializations. This allows us to diagnose
338 mechanistic failures at a systematic level, and eliminate the choice of ground-truth as a factor.

339 Furthermore, we validate attention-based mechanistic faithfulness by measuring trace prediction
340 accuracy, a built-in capability of the CLRS benchmark. We call this external faithfulness, because if
341 the learned algorithm is correct, it should correctly predict the trace regardless of the internal details
342 of how it is implemented. These definitions result in two quantitative faithfulness measures:

343 **Internal Faithfulness** considers the timeseries of attention states, α , and compares learned mecha-
344 nisms $\hat{\alpha}$ to a ground truth α^* , using an L1 norm that sums across the time and two node axes.

345
$$\phi_{\text{internal}} = \frac{|\hat{\alpha} - \alpha^*|}{t * n * n} \quad (24)$$
346

347 **External Faithfulness** measures average accuracy over a timeseries of predicted traces. Traces
348 contain different types of predictions, y : numerical (e.g. cumulative distance), binary predictions (e.g.
349 if a node has been reached), and class predictions (e.g. a parent node id). These are evaluated within a
350 margin, ($\epsilon = \{0.5, 0.1, 1e-6\}$, respectively) to convert them to binary matching scores, and then the
351 timeseries of matches is averaged. $\mathbb{1}$ represents the indicator function, and t the length of the trace.

352
$$\phi_{\text{external}} = \frac{\sum \mathbb{1}(\hat{y} - y^* < \epsilon)}{t} \quad (25)$$
353

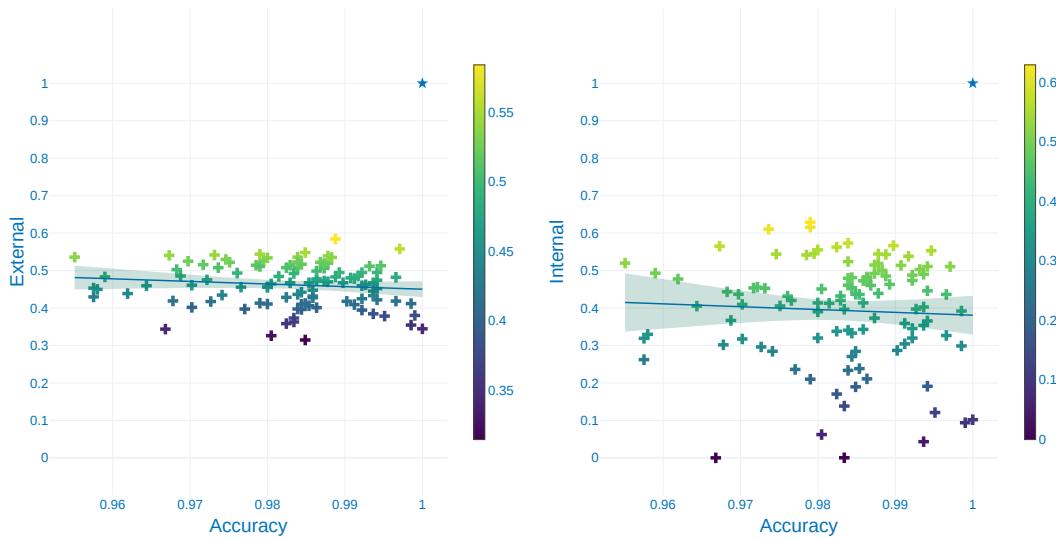

373

Figure 1: External and Internal Faithfulness of BFS

374

375

4.2 FAITHFULNESS

376

377 We measure both internal and external faithfulness, and find that there is no significant correlation
378 between faithfulness and accuracy (Figures 1 and 10, 95% confidence interval, Table 1).

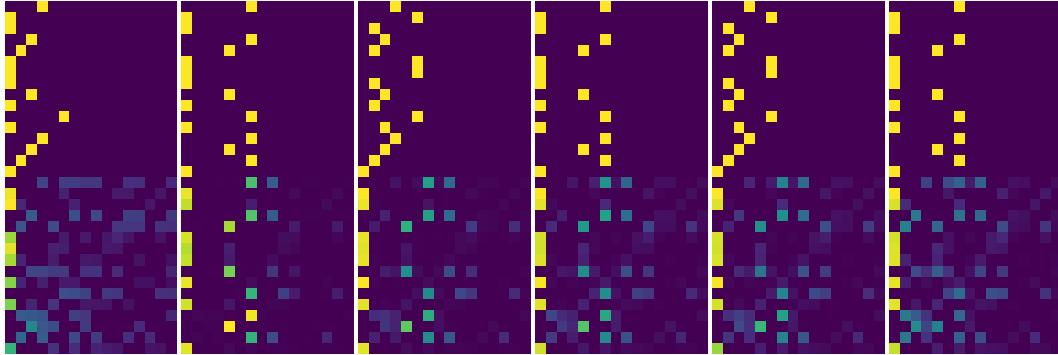
378
379
380
381
382

Measure	Pearson r	p -value	Spearman ρ	p -value
External	-0.124	0.203	-0.130	0.178
Internal	-0.055	0.569	-0.018	0.856

383 Table 1: Correlation Coefficients between effectiveness and faithfulness measures for learned BFS

384
385 4.3 INTERNAL FAITHFULNESS

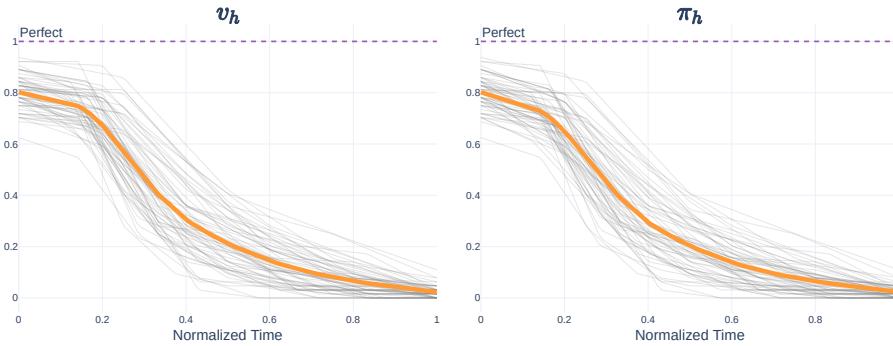
386 Figure 2 shows internal faithfulness (Equation 24)
387 over time for BFS. Figure 3 visualizes the clos-
388 est matching attention trace from the sampled ini-
389 tializations. The attention mechanism is slightly
390 closer at the beginning of computation (in this case,
391 the first two steps), but deviates after this. How-
392 ever, the observed mechanistic gaps, visualized in
393 Figures 2 and 3, are quite large, far beyond the
394 amount that would be explained by factors like
395 tie-breaking or attention sharpness. In combi-
396 nation with the number of initializations tested, this
397 indicates a systematic failure to learn faithful inter-
398 internal mechanisms, even when predictive accuracy is
399 nearly perfect.



400
401
402
403
404
405
406
407
408
409
410
411 Figure 3: BFS Attention Mechanism Comparison (Best Match)

412
413 4.4 EXTERNAL FAITHFULNESS

414 We plot trace predictions on a uniform timescale, showing how they are only partially consistent and
415 degrade over time (Figure 4). Notably, this behavior occurs even on the training and validation sets.
416 Inconsistent trace predictions validate our findings around internal faithfulness.

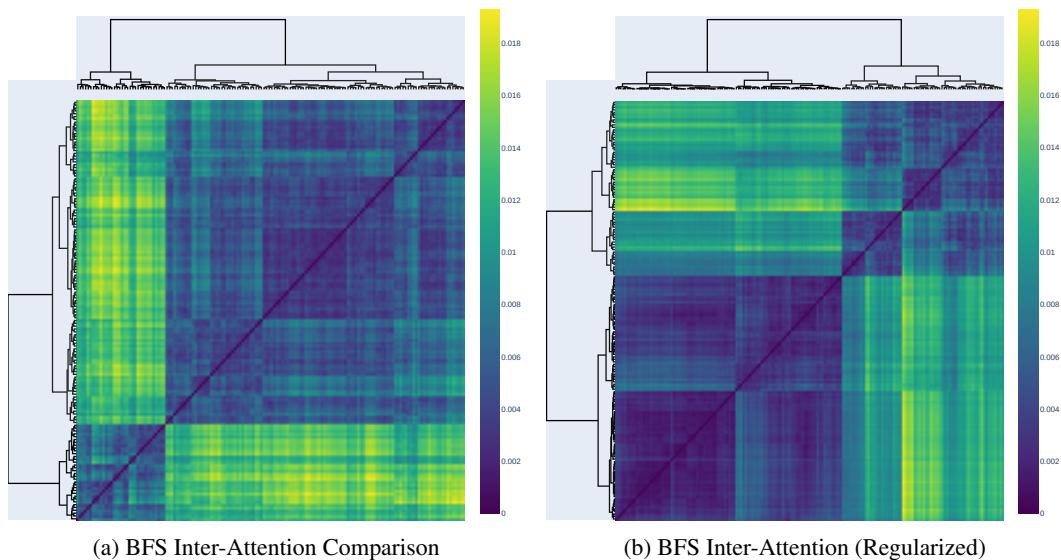


417
418
419
420
421
422
423
424
425
426
427
428
429
430
431 Figure 4: Learned BFS Trace Predictions Over Time

432 **4.5 VALIDATION OF FAITHFULNESS METRICS**
433

434 To ensure our analysis of internal faithfulness is valid, we want to ensure that comparisons to
435 a particular compiled solution are not arbitrary. First of all, attention captures abstract learned
436 algorithmic behavior, and already constraints the set of correct behaviors significantly, since different
437 hidden state structures or exact parameter settings can still produce the same attention patterns. In
438 GATv2, the only way for information to flow between nodes is via the attention mechanism, and
439 under default settings, there is only a single attention head. This implies that for algorithms to be
440 learned faithfully in GATv2, they must use the attention mechanism in the intended way.
441

442 One of the main ways an equally correct algorithm could differ is in tie-breaking, but the CLRS
443 benchmark specifies an arbitrary tie-breaking preference in terms of node position [1]. Another
444 consideration is attention sharpness [48, 49], e.g. where the softmax ranking is correct, but some
445 probability is assigned to incorrect locations. However, a fully correct learned algorithm will have a
446 sharp distribution, and solutions that are nearly-correct but not sharp will not be penalized significantly
447 by Equation 24. There is also the possibility of behavior that occurs outside of the attention
448 mechanism, but we consider these to be mechanistic failures, since in general, it is not possible to
449 implement a correct non-trivial algorithm in GATv2 without using the attention mechanism.
450

451 **Inter-Solution Comparison** Beyond these considerations, we utilize a large number of 128 random
452 initializations, finding that none of them exhibit behavior similar to the compiled reference, indicating
453 that our results are not influenced by the choice of ground-truth mechanism. We also compare
454 attention patterns within the set of learned solutions across different initializations. Figure 5 shows
455 how each of the learned solutions to BFS compares to each other, and visualizes clusters as a
456 dendrogram under ward linkage, demonstrating the diversity of learned solutions, with 18 consistent
457 clusters around suboptimal solutions. On average, inter-solution differences are 0.009, but the closest
458 distance to the compiled solution is 0.37 in terms of Equation 24.
459

464 **Figure 5: Inter-Attention Comparison Between Learned Solutions for BFS**
465

466 **4.6 POTENTIAL CAUSES OF MECHANISTIC GAPS AND THEIR IMPLICATIONS FOR NAR**
467

468 Mechanistic gaps imply the potential for improving NAR models. Specifically, our analysis clarifies
469 that even if predictive accuracy is high, it is possible for internal mechanisms of a model to be
470 underconverged or underutilized. We believe that underconvergence on traces is the main cause of
471 our observations, since the learned models (under default settings) have not converged to accurately
472 predict traces even in the training set. This indicates that the default training settings do not cause
473 hidden states to be properly learned. One potential solution to this is to adopt more structured
474 curriculum learning, e.g. where predicting traces is prioritized before predicting the answer is.
475

486 Within GATv2 specifically, we also outlined specific architectural changes that can prohibit learning
487 proper mechanisms, e.g. the way edge information is utilized. Previous work has also explored this
488 [25], but we also confirm that our modifications partially alleviate this gap (Appendix D.4).
489

490 Table 2: Ablation: Bellman-Ford Edge Information (Mean \pm Stddev (Max))
491

492 Experiment	493 Performance
494 Default (No Edge Info)	495 $86.59\% \pm 5.97\% (92.24\%)$
496 Modified (Edge Info)	497 $90.67\% \pm 1.40\% (92.72\%)$

498 Other explanations for mechanistic failures include the scalar bottleneck hypothesis [43, 44], lottery
499 ticket hypothesis [50], and algorithmic phase space hypothesis [10]. Neural networks do not naturally
500 learn sparse interpretable algorithms that match expected mechanisms. Instead, it's highly likely
501 that they learn multiple partial solutions in parallel and combine them [39, 51, 41]. Under these
502 hypotheses, then learning mechanistically faithful algorithms requires much more sophisticated
503 training procedures.

504

5 CONCLUSION

505 In this paper, we propose measures of mechanistic faithfulness, with the aim of building neural
506 algorithmic reasoning systems that produce more general and robust solutions. Specifically, we
507 introduce a neural compilation method for compiling algorithms into graph attention networks, and
508 then use the intermediate attention states of the compiled model as a reference for ideal behavior. In
509 doing so, we establish mechanistic gaps, even for BFS, which GATv2 is algorithmically aligned to.
510

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES

541

542 [1] Petar Veličković et al. “The clrs algorithmic reasoning benchmark”. In: *International Conference on Machine Learning*. PMLR. 2022, pp. 22084–22102.

543 [2] Kaya Stechly et al. “Beyond semantics: The unreasonable effectiveness of reasonless intermediate tokens”. In: *arXiv preprint arXiv:2505.13775* (2025).

544 [3] Grégoire Delétang et al. “Neural networks and the chomsky hierarchy”. In: *arXiv preprint arXiv:2207.02098* (2022).

545 [4] Hava T Siegelmann and Eduardo D Sontag. “On the computational power of neural nets”. In: *Proceedings of the fifth annual workshop on Computational learning theory*. 1992, pp. 440–449.

546 [5] Frédéric Gruau, Jean-Yves Ratajszczak, and Gilles Wiber. “A neural compiler”. In: *Theoretical Computer Science* 141.1-2 (1995), pp. 1–52.

547 [6] Rudy R Bunel et al. “Adaptive neural compilation”. In: *Advances in Neural Information Processing Systems* 29 (2016).

548 [7] Gail Weiss, Yoav Goldberg, and Eran Yahav. *Thinking Like Transformers*. Tech. rep. 2021. URL: <http://github.com/tech-srl/RASP>, .

549 [8] David Lindner et al. “Tracr: Compiled transformers as a laboratory for interpretability”. In: *Advances in Neural Information Processing Systems* 36 (2024).

550 [9] Peter Shaw et al. “ALTA: Compiler-Based Analysis of Transformers”. In: *arXiv preprint arXiv:2410.18077* (2024).

551 [10] Ziqian Zhong et al. “The clock and the pizza: Two stories in mechanistic explanation of neural networks”. In: *Advances in neural information processing systems* 36 (2023), pp. 27223–27250.

552 [11] Keyulu Xu et al. “What can neural networks reason about?” In: *arXiv preprint arXiv:1905.13211* (2019).

553 [12] Petar Veličković et al. “Graph attention networks”. In: *arXiv preprint arXiv:1710.10903* (2017).

554 [13] Shaked Brody, Uri Alon, and Eran Yahav. “How attentive are graph attention networks?” In: *arXiv preprint arXiv:2105.14491* (2021).

555 [14] Valerie Engelmayr, Dobrik Georgiev, and Google Deepmind. *Parallel Algorithms Align with Neural Execution Petar Veličković*. Tech. rep. 2023.

556 [15] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: *Neural computation* 9.8 (1997), pp. 1735–1780.

557 [16] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural turing machines”. In: *arXiv preprint arXiv:1410.5401* (2014).

558 [17] Alex Graves et al. “Hybrid computing using a neural network with dynamic external memory”. In: *Nature* 538.7626 (2016), pp. 471–476.

559 [18] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training recurrent neural networks”. In: *International conference on machine learning*. PMLR. 2013, pp. 1310–1318.

560 [19] Ashish Vaswani et al. “Attention is all you need”. In: *Advances in neural information processing systems* 30 (2017).

561 [20] Łukasz Kaiser, Ilya Sutskever, and Google Brain. “Neural GPUs learn algorithms”. In: *4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings* (2016), pp. 1–9.

562 [21] Marco Gori, Gabriele Monfardini, and Franco Scarselli. “A new model for learning in graph domains”. In: *Proceedings. 2005 IEEE international joint conference on neural networks, 2005*. Vol. 2. IEEE. 2005, pp. 729–734.

563 [22] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In: *IEEE transactions on neural networks and learning systems* 32.1 (2020), pp. 4–24.

564 [23] Manzil Zaheer et al. “Deep sets”. In: *Advances in neural information processing systems* 30 (2017).

565 [24] Justin Gilmer et al. “Message passing neural networks”. In: *Machine learning meets quantum physics*. Springer, 2020, pp. 199–214.

594 [25] Borja Ibarz et al. “A generalist neural algorithmic learner”. In: *Learning on graphs conference*.
595 PMLR. 2022, pp. 2–1.

596 [26] Petar Veličković et al. “Pointer graph networks”. In: *Advances in Neural Information Processing*
597 *Systems* 33 (2020), pp. 2232–2244.

598 [27] Raymond Greenlaw, H James Hoover, and Walter L Ruzzo. *Limits to parallel computation: P-completeness theory*. Oxford university press, 1995.

600 [28] Artur Back De Luca and Kimon Fountoulakis. “Simulation of graph algorithms with looped
601 transformers”. In: *arXiv preprint arXiv:2402.01107* (2024).

602 [29] Stephen Chung and Hava Siegelmann. “Turing completeness of bounded-precision recurrent
603 neural networks”. In: *Advances in neural information processing systems* 34 (2021), pp. 28431–
604 28441.

605 [30] William Merrill, Ashish Sabharwal, and Noah A Smith. “Saturated transformers are constant-
606 depth threshold circuits”. In: *Transactions of the Association for Computational Linguistics* 10
607 (2022), pp. 843–856.

608 [31] Angeliki Giannou et al. “Looped transformers as programmable computers”. In: *International*
609 *Conference on Machine Learning*. PMLR. 2023, pp. 11398–11442.

610 [32] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In: *Mathematics*
611 *of control, signals and systems* 2.4 (1989), pp. 303–314.

612 [33] Nouha Dziri et al. “Faith and fate: Limits of transformers on compositionality”. In: *Advances*
613 *in Neural Information Processing Systems* 36 (2024).

614 [34] R Thomas McCoy et al. “Embers of autoregression: Understanding large language models
615 through the problem they are trained to solve”. In: *arXiv preprint arXiv:2309.13638* (2023).

616 [35] Karthik Valmeekam et al. “On the planning abilities of large language models-a critical
617 investigation”. In: *Advances in Neural Information Processing Systems* 36 (2024).

618 [36] Honghua Zhang et al. “On the paradox of learning to reason from data”. In: *arXiv preprint*
619 *arXiv:2205.11502* (2022).

620 [37] Catherine Olsson et al. “In-context learning and induction heads”. In: *arXiv preprint*
621 *arXiv:2209.11895* (2022).

622 [38] Nelson Elhage et al. “A mathematical framework for transformer circuits”. In: *Transformer*
623 *Circuits Thread* 1.1 (2021), p. 12.

624 [39] Neel Nanda et al. “Progress measures for grokking via mechanistic interpretability”. In: *arXiv*
625 *preprint arXiv:2301.05217* (2023).

626 [40] Trenton Bricken et al. “Towards monosemanticity: Decomposing language models with dictio-
627 nary learning”. In: *Transformer Circuits Thread* 2 (2023).

628 [41] Alethea Power et al. “Grokking: Generalization beyond overfitting on small algorithmic
629 datasets”. In: *arXiv preprint arXiv:2201.02177* (2022).

630 [42] Boshi Wang et al. “Grokking of implicit reasoning in transformers: A mechanistic journey to
631 the edge of generalization”. In: *Advances in Neural Information Processing Systems* 37 (2024),
632 pp. 95238–95265.

633 [43] Petar Veličković and Charles Blundell. “Neural algorithmic reasoning”. In: *Patterns* 2.7 (2021).

634 [44] Euan Ong et al. “Parallelising Differentiable Algorithms Removes the Scalar Bottleneck: A
635 Case Study”. In: *ICML 2024 Workshop on Differentiable Almost Everything: Differentiable*
636 *Relaxations, Algorithms, Operators, and Simulators*. 2024.

637 [45] Tim Rockt"aschel. *Einsum is all you need - Einstein Summation in Deep Learning*. URL:
638 <https://rockt.ai/2018/04/30/einsum>.

639 [46] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. “Rectifier nonlinearities improve
640 neural network acoustic models”. In: *Proc. icml*. Vol. 30. 1. Atlanta, GA. 2013, p. 3.

641 [47] Cameron Diao and Ricky Loynd. “Relational attention: Generalizing transformers for graph-
642 structured tasks”. In: *arXiv preprint arXiv:2210.05062* (2022).

643 [48] Federico Barbero et al. “Transformers need glasses! information over-squashing in language
644 tasks”. In: *Advances in Neural Information Processing Systems* 37 (2024), pp. 98111–98142.

645 [49] Baran Hashemi et al. “Tropical Attention: Neural Algorithmic Reasoning for Combinatorial
646 Algorithms”. In: *arXiv preprint arXiv:2505.17190* (2025).

647

648 [50] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Finding sparse, trainable
649 neural networks”. In: *7th International Conference on Learning Representations, ICLR 2019*
650 (2019), pp. 1–42.

651 [51] Ahmed Imtiaz Humayun, Randall Balestiero, and Richard Baraniuk. “Grokking and the
652 Geometry of Circuit Formation”. In: *ICML 2024 Workshop on Mechanistic Interpretability*.

653 [52] Diederik P Kingma. “Adam: A method for stochastic optimization”. In: *arXiv preprint*
654 *arXiv:1412.6980* (2014).

655 [53] Beatrice Bevilacqua et al. *Neural Algorithmic Reasoning with Causal Regularisation*. Tech.
656 rep.

657 [54] Hao Li et al. “Visualizing the loss landscape of neural nets”. In: *Advances in Neural Infor-*
658 *mation Processing Systems* 2018-Decem.Nips 2018 (2018), pp. 6389–6399. URL: <https://github.com/tomgoldstein/loss-landscape>.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A TRAINING DETAILS

For training, we use the unaltered CLRS dataset and default hyperparameter settings (which have been well-established by previous literature). For optimization, we use the humble adam optimizer [52]. We use the hyperparameters reported in Table 8. For additional experiments, we use the following settings, derived from the defaults on the right:

Table 3: Settings for Trace Ablation

hint_mode	none
-----------	------

Table 4: Settings for Minimal Experiments

hidden_size	4
-------------	---

Table 5: Settings for Regularization Experiments

regularization	True
regularization_weight	{1.0000e-3, 1.0000e-4}

Table 6: Settings for Grokking Experiment

train_steps	50000
learning_rate	5.0000e-5

Table 7: Settings for Architecture Ablations

train_lengths	16
simplify_decoders	True
use_edge_info	{True, False}
use_pre_att_bias	{True, False}
length_generalize	False

B EXTENDED METHODS

B.1 ENCODERS AND DECODERS

Beyond the parameters and equations presented above, a graph attention network has additional layers for encoding and decoding. Often, they are simply linear layers that produce vector representations of input data or traces. Effectively, the input vector v_l is a function of multiple encoders, e.g. for raw inputs \hat{v} (representing different graph features or input traces), the encoded input is:

$$v_l = W_{lk} \hat{v}_k \quad (26)$$

Furthermore, a graph attention network may have multiple outputs, for instance different trace predictions for various algorithms. Each of these has a separate problem-specific decoder. In more complex cases, answers are decoded using multiple layers, involving the edge features \mathcal{E} :

$$p_1 = W_1 h \quad p_2 = W_2 h \quad p_e = W_e \mathcal{E} \quad (27)$$

$$p_m = \max(p_1, p_2 + p_e) \quad (28)$$

$$y = W_3 p_m \quad (29)$$

We note this level of detail because it is critical for understanding the behavior of the learned models: A surprising amount of computation is happening in the decoding layers. Also, compiling algorithms into graph attention networks is not only a matter of setting the weights of the main graph attention parameters, but also the parameters of the encoders and decoders.

algorithms	bellman_ford
train_lengths	4, 7, 11, 13, 16
random_pos	True
enforce_permutations	True
enforce_pred_as_input	True
batch_size	32
train_steps	10000
eval_every	50
test_every	500
hidden_size	128
nb_heads	1
nb_msg_passing_steps	1
learning_rate	1.0000e-4
grad_clip_max_norm	1.0000
dropout_prob	0.0000
hint_teacher_forcing	0.0000
hint_mode	encoded_decoded
hint_repred_mode	soft
use_ln	True
use_lstm	False
encoder_init	xavier_on_scalars
processor_type	gatv2
freeze_processor	False
simplify_decoders	False
use_edge_info	False
use_pre_att_bias	False
length_generalize	True
regularization	False
regularization_weight	1.0000e-4
git hash	445caf85

Table 8: Settings for Trained Bellman-Ford

756 C GRAPH PROGRAMS

757

758 A graph program consists of two components: a variable encoding in the hidden states of the model,
759 and a compiled update function that updates the hidden state. Since hidden states begin uninitialized,
760 the update function is also responsible for setting them in the initial timestep. The core of the update
761 function relies on using the attention mechanism to perform computation. Fundamentally, this is
762 a matter of using the GNN’s aggregation function, in this case softmax. Specifically, the inputs to
763 softmax allow computing a max or min, or masking based on boolean states.

764 Both Bellman-Ford and BFS use softmax to compute a minimum, but Bellman-Ford does so over
765 cumulative distance, while BFS does so over node id order. In both algorithms, the visitation status
766 of each node is used to mask attention coefficients, defaulting to self-selection.

```
767
768 bfs = GraphProgram(
769     hidden = HiddenState(
770         s: Component[Bool, 1],
771         pi: Component[Float, 1],
772         idx: Component[Float, 1]
773     ),
774     update = UpdateFunction( # Function of self, other, init, edge
775         visit = other.visit | self.visit | init.start
776         pi    = other.idx
777         idx   = self.idx
778     ),
779     select = SelectionFunction(
780         type = minimum
781         expr = other.idx
782     )
783     mask   = other.visit
784     default = self.idx
785 )
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
```

783 Listing 2: Graph Program for BFS

810 **C.1 COMPILED BELLMAN-FORD**
811

812 For example, in Bellman-Ford, the
813 attention mechanism selects edges
814 based on cumulative distance. In
815 Figure 6, W_{edge} contains large neg-
816 ative values on the diagonal, which
817 forces attention to select strongly
818 based on edge distance. However, be-
819 cause node-expansions are only valid
820 along the frontier, large positive val-
821 ues in W_{in} and W_{out} control the
822 attention mechanism to default to retain-
823 ing hidden states when nodes aren't
824 valid for expansion (using \mathcal{B} , labelled
825 $W_{\text{pre_attn_bias}}$). Similarly, the negative
826 values in W_{in} add cumulative distance
827 for the attention mechanism. Weight
828 settings in W_{skip} and W_{value} create
829 and maintain structured hidden vec-
830 tors. Specifically, the hidden vector
831 representation is:

832
$$h = [\text{dist} \ \text{visited} \ \pi \ \text{id}] \quad (30)$$

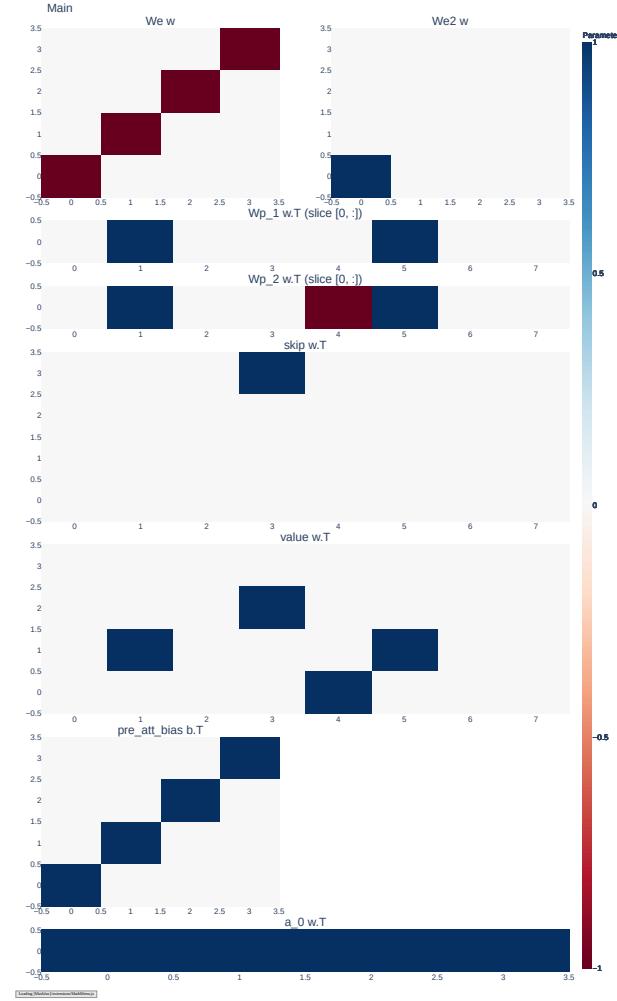
833 In this case, the first component of h
834 contains cumulative distance (main-
835 tained also by W_{edge}_2). The second
836 component of h indicates if a node
837 has been reached, the third component
838 corresponds to the predecessor node
839 in the path, and the fourth component
840 of h encodes the node's id.

841 Finally, the attention head $W_{a,0}$ sim-
842 plies accumulates attention values us-
843 ing a vector of all ones. Note that
844 these parameters are for the *minimal*
845 version of Bellman-Ford, using a tiny
846 500-parameter network with a size 4
847 hidden state. We have generalized this
848 to larger networks, e.g. the size 128
849 hidden state model that matches the dimen-
850 sions of GNNs trained in the CLRS bench-
851 mark, which has about 5e6 parameters. This is a matter of extending the patterns shown in Figure 6.

852 These parameter values are the *output* of a compiled graph program. Since Bellman-Ford was the
853 first algorithm we compiled, before we developed the graph program language, the values were set
854 by hand. However, each parameter value corresponds to a part of a graph program. The first part of
855 the graph program establishes Equation 30, setting these based on inputs. Then, the graph program
856 update function describes state-maintenance and the attention update, which compiles into W_{edge} W_{in}
857 W_{out} $W_{\text{pre_attn_bias}}$ W_{in} W_{skip} W_{value} W_{edge}_2 and $W_{a,0}$.

858 To fully implement Bellman-Ford, it is also necessary to modify the parameters of encoders and
859 decoders, with relevant parameter settings shown in Figure 7. For encoders, like $W_{\text{enc_s}}$, they are
860 sparse vectors that place relevant information (in this case, which node is the starting location) Since
861 node ids are stored as linear positional encodings, they must be decoded into one-hot classifications,
862 which is the role of π_{dec} . These simply use the equation:

863
$$y_{\text{pred}} = \text{softmax}(c \cdot \max(p - v, v - p)) \quad (31)$$



864 Figure 6: Main Parameters for Bellman-Ford

Figure 7: Auxilliary Parameters for Bellman-Ford

Where v is the positional encoding, p is a vector of all positional encodings, and c is a large negative constant, e.g. $-1e3$. For instance if $v = [0.25]$, $p = [0.0 \ 0.25 \ 0.5 \ 0.75]$, then $y = [0 \ 1 \ 0 \ 0]$. Using positional encodings throughout the model prevents the need for having unwieldy one-hot encodings as a core part of the architecture, reducing the overall parameter count and improving numerical stability. However, it also introduces a scalar bottleneck, since the individual components of h each contain critical information.

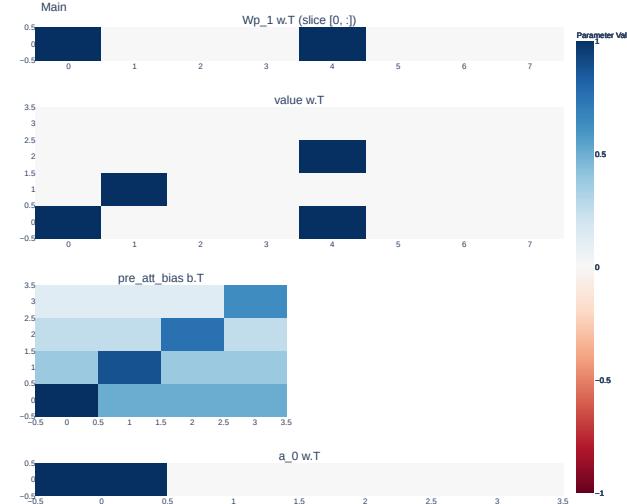


Figure 8: Main Parameters for BFS

C.2 COMPILED BFS

Compiling BFS is largely similar to compiling Bellman-Ford, with the only notable difference being that cumulative distances are never tracked, and the pre-attention bias \mathcal{B} plays two roles: First, it biases towards self-selection, e.g. when a node is not being expanded, its state remains the same. Second, it biases towards expanding nodes with lower ids, for instance if a is adjacent to both b and c , then the edge $a-b$ is added, but $a-c$ is not. Otherwise, the main parameters and encoder parameters are largely identical to those for Bellman-Ford.

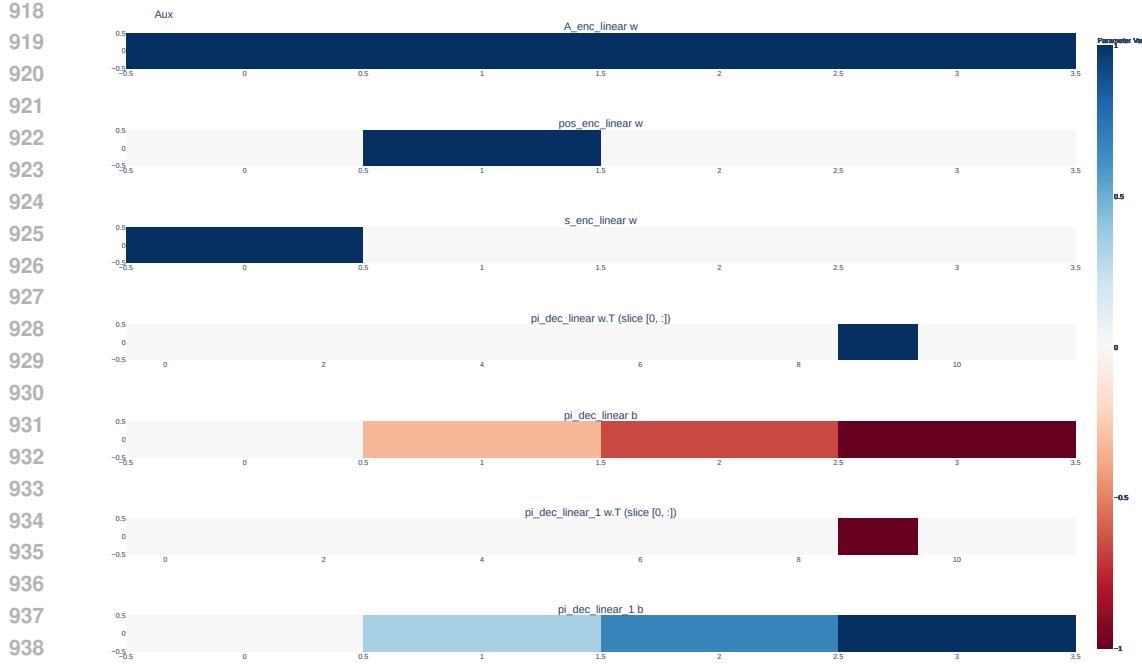


Figure 9: Auxilliary Parameters for BFS

Table 9: Regularization, Grokking, and Minimal experiments

Algorithm	Regularization	Extended Training	Minimal
BFS	$97.76\% \pm 1.05\%$	$97.55\% \pm 1.52\%$	$81.60\% \pm 11.32\%$
Bellman-Ford	$87.35\% \pm 1.68\%$	-	$87.35\% \pm 1.68\%$

D EXTENDED RESULTS

D.1 GROKKING, REGULARIZATION, AND MINIMAL MODELS

D.2 BELLMAN-FORD EXTERNAL AND INTERNAL FAITHFULNESS

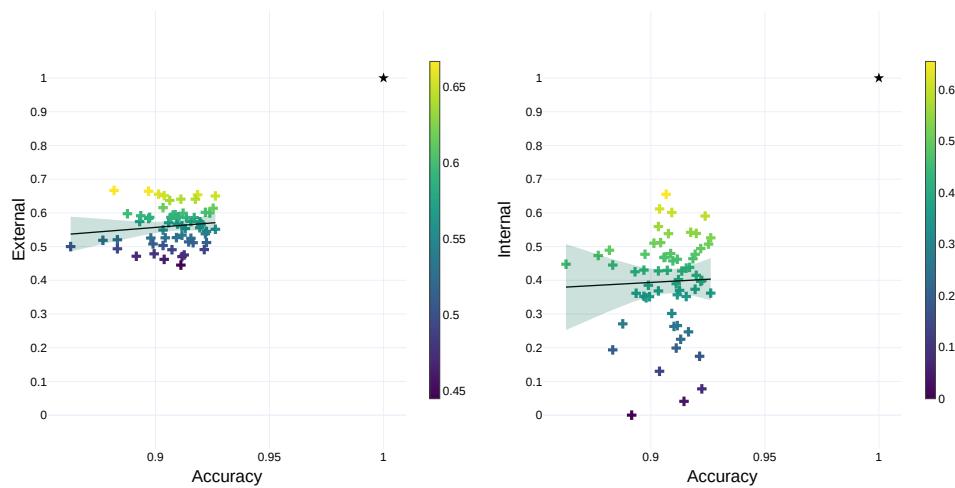


Figure 10: External and Internal Faithfulness of Bellman-Ford

972 D.3 BASELINES
973

974 We replicate baseline results with a sampling budget of 128 initializations. This provides a variety of
975 solutions to compare against, ensuring that initializations do not confound our analysis [50]. We use
976 CLRS benchmark default hyperparameters. See our dedicated Appendix A for full settings.

977
978 Table 10: Replicated GATv2 Baseline CLRS Results (Mean \pm Stddev (Max))

979
980

BFS	DFS	Bellman-Ford
98.30% \pm 0.97% (100.00%)	12.74% \pm 3.44% (18.21%)	90.63% \pm 1.27% (92.77%)

981

982
983 D.4 ARCHITECTURE ABLATIONS
984

985 In Section 3.2, we introduce two modifications to the graph attention network architecture, namely
986 introducing edge information (specifically for Bellman-Ford), and introducing a pre-attention bias
987 matrix (for both Bellman-Ford and BFS). Of these two changes, the introduction of edge information
988 is potentially more interesting, as it reveals a potential architecture-level reasoning that the learned
989 version of Bellman-Ford may not be faithful. However, the change is not strictly necessary to be able
990 to compile Bellman-Ford, but it certainly makes compiling the algorithm significantly easier, and
991 closer to the intended faithful behavior. Adding the pre-attention bias is also not strictly necessary,
992 but makes it more natural to control each algorithm’s default behavior.

993
994 **Edge Information** We hypothesize that the learned version of Bellman-Ford may be struggling
995 partially because it cannot track cumulative path distances in a faithful way. If this were the case,
996 then we would expect the unmodified architecture to perform worse than the modified one, assuming
997 that learning is capable of exploiting this architecture change in the way that we expect. However,
998 it may be the case that without the architecture change, the model is able to track cumulative edge
999 distances by leaking information through the attention mechanism, or by delaying cumulative path
1000 length calculation to the decoding step.

1001
1002 Table 11: Ablation: Bellman-Ford Edge Information (Mean \pm Stddev (Max))

1003
1004

Experiment	Performance
Default (No Edge Info)	86.59% \pm 5.97% (92.24%)
Modified (Edge Info)	90.67% \pm 1.40% (92.72%)

1005

1006 In Table 11, we find that, while maximum performance is unaffected, the learning algorithm is more
1007 commonly able to find high-quality solutions, bringing up the average performance, and reducing the
1008 standard deviation between solutions.

1009
1010 **Pre-Attention Bias** Unlike introducing edge information, adding a pre-attention bias is less nec-
1011 essary for the model to learn correct behavior. However, within the learned parameters, each bias
1012 matrix can only have pre-attention values, ζ on either the row or column axis, but cannot bias unaligned
1013 components, such as having an identity matrix as a bias (which is needed for compiled BFS). A
1014 major downside of introducing a pre-attention bias is that its size is tied to problem size, preventing
1015 length-generalization, which outweighs the benefits of introducing it.

1016
1017 Table 12: Ablation: BFS Pre-Attention Bias (Mean \pm Stddev (Max))

1018
1019

Experiment	Performance
Default (Without Bias)	99.92% \pm 0.28% (100.00%)
Modified (With Bias)	99.72% \pm 0.95% (100.00%)

1020

1021 Since the baseline performance of BFS is so high, Table 12 does not show significant differences,
1022 possibly because the results are within distribution (tested on length 16). Next, we try introducing both

1026 modifications to a length-limited version of Bellman-Ford. However, the lack of length generalization
1027 makes the results difficult to interpret, but at the very least the model is still as-capable as the
1028 unmodified version within distribution.

1029

1030 Table 13: Ablation: Bellman-Ford Both (Mean \pm Stddev (Max))

1031

1032	Experiment	Performance
1033	Default (Neither)	97.31% \pm 0.92% (98.93%)
1034	Modified (Both)	97.81% \pm 0.88% (99.41%)

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

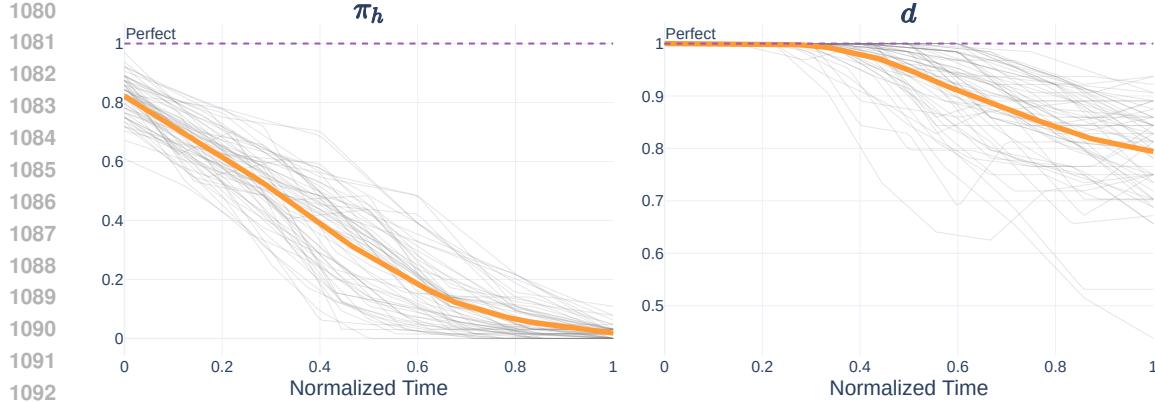
1075

1076

1077

1078

1079



1093 Figure 11: Learned Bellman-Ford Trace Predictions Over Time
1094
1095

1096 D.5 ADDITIONAL RESULTS ON TRACES 1097

1098 Trace faithfulness also affects BFS, which, even though it is highly effective, quickly deviates in
1099 predicting traces (Figure 11). This behavior is curious, as BFS is high-performing, so conceivably
1100 it has learned to track whether each node has been reached. It’s possible the issue is less about
1101 internal representation, and more about the ability to decode internal representations back into trace
1102 predictions.

1103 D.6 TRAINING WITHOUT TRACES 1104

1105 While it may seem that intermediate traces are critical in learning algorithms faithfully, there are
1106 many cases where they are not necessary or even hurt performance [1, 53].
1107

1108 Table 14: Training Without Traces (Mean \pm Stddev (Max))
1109
1110

1111	Experiment	Performance
1112	DFS	16.49% \pm 2.45% (20.61%)
1113	BFS	98.74% \pm 0.98% (100.00%)
1114	BF	90.14% \pm 1.15% (91.80%)

1116 D.7 MINIMAL EXPERIMENTS 1117

1119 Our neural compilation results establish that a 500-parameter GAT can express BFS or Bellman-Ford.
1120 While we do not strongly expect gradient descent to find the perfect solutions, we experiment with
1121 training minimal models over a large number of random seeds (1024), to see if we draw lucky “lottery
1122 tickets” [50]. The results in Table 15 establish that finding high-quality solutions in this regime is
1123 possible, but furthermore show that the architecture modifications have a stronger effect on minimal
1124 models, which are very constrained by scalar bottlenecks.

1125 Table 15: Minimal Networks (Mean \pm Stddev (Max))
1126

1127	Experiment	Performance
1128	Bellman-Ford (Default)	38.97% \pm 8.35% (59.13%)
1129	Bellman-Ford (Arch Modify)	74.38% \pm 10.29% (88.77%)
1130	BFS (Default)	81.60% \pm 11.32% (99.56%)
1131	BFS (Pre-Attention Bias)	93.32% \pm 6.89% (99.32%)

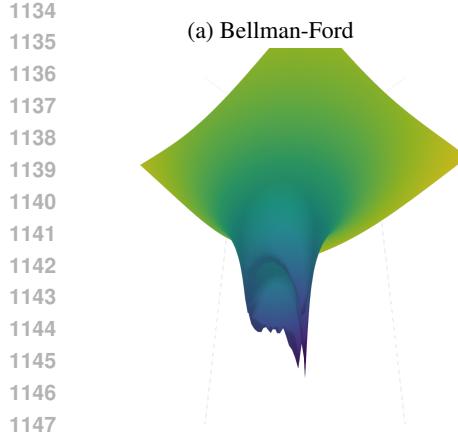
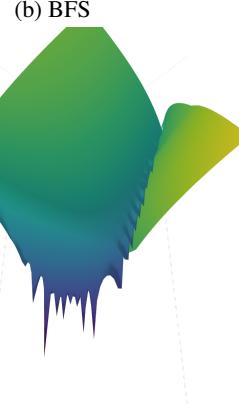
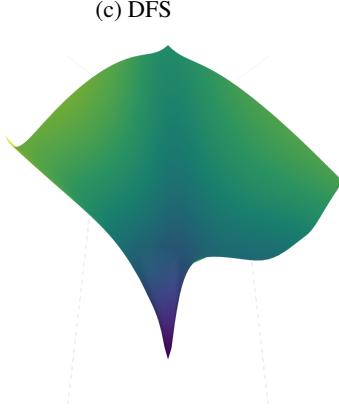


Figure 12: Loss Landscapes

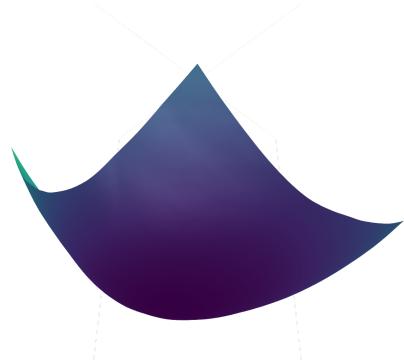
D.8 STABILITY

Beyond comparing learned and compiled solutions, we want to characterize the loss landscapes surrounding compiled minima, and also understand how they are affected by further optimization. We plot this using the technique introduced in [54], which plots gaussian perturbations in terms of two random vectors which have been normalized to be scale invariant.

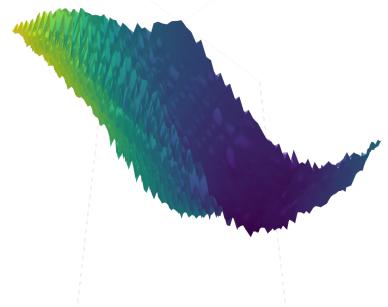
For example [36] compiled a logic algorithm into the transformer architecture which was both difficult to find and diverged when trained further. We find similar behavior, but it is dependent on random data sampling order, see Appendix D.8. The compilation strategy reported in this paper uses sparse weights, which are affected by the scalar bottleneck and do not resemble learned solutions. Because of the artificial nature of compiled solutions, we expect the minima to be unstable, but hope to use the results of these experiments to inform more sophisticated methods for compiling algorithms into neural networks. We find that compiled solutions, when further trained, can deviate from optimal parameters (Table 16). However, this is highly dependent on data sampling order, resulting in high variance in performance. This indicates that compiled minima are unstable. However, this training is done with mini-batch gradient descent, which is inherently noisy (intentionally). We also attribute these results to the scalar bottleneck hypothesis.

Table 16: Stability (Mean \pm Stddev (Max))

Experiment	Performance
Compiled \rightarrow Trained Bellman-Ford	80.77% \pm 14.83% (97.66%)
Compiled \rightarrow Trained BFS	82.04% \pm 15.55% (100.00%)



(a) BFS Learned



(b) BFS Compiled

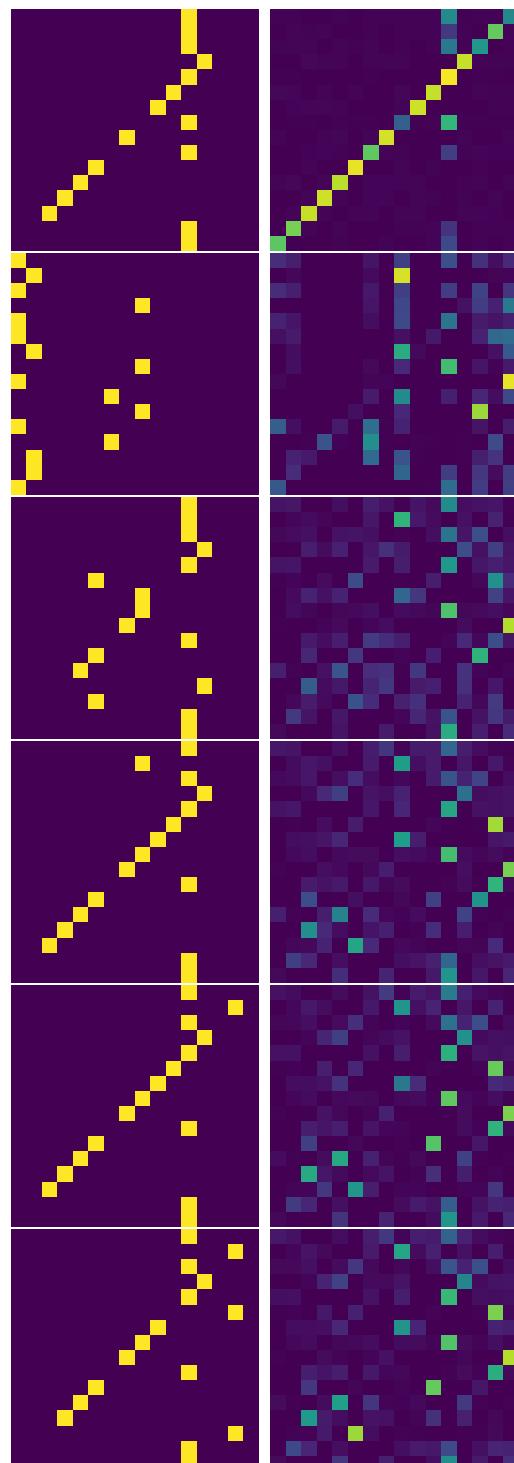
Figure 13: Landscape

1188
1189

D.9 ATTENTION MECHANISM

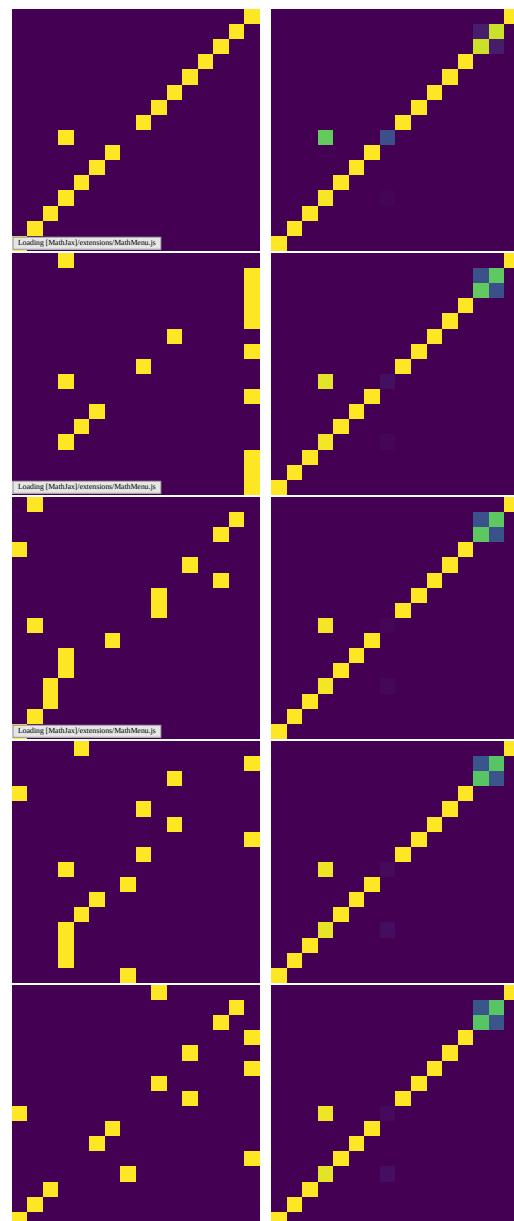
1190
1191

Figure 14: Bellman-Ford Attention (Full)



1239
1240
1241

Figure 15: BFS Attention (Full)



1242 D.10 DISPARITY BETWEEN BFS AND DFS
1243

1244 To establish that BFS is algorithmically aligned, we explicitly test variants of BFS and DFS so that
1245 we can eliminate the confounding variables of trace length and trace complexity.
1246

1247 **Trace Length** First, because DFS is sequential, the traces used in learning DFS are naturally longer
1248 than those for learning BFS. To mitigate this, we create a version of BFS with sequential traces,
1249 where rather than expanding all neighbors at once, one neighbor is expanded at a time. The semantics
1250 and underlying parallel nature of the algorithm are unchanged, but the traces used for training are
1251 artificially made sequential to mimic the long traces used in learning DFS. We find that, even with
1252 significantly longer traces, BFS is still significantly more trainable than DFS.
1253

1254 **Trace Complexity** Second, because DFS requires more sophisticated state tracking, we explicitly
1255 test versions of DFS that provide only the most critical information in each trace. By default, DFS
1256 traces include predecessor paths, node visitation state, node visitation times, the current node stack,
1257 and the current edge being expanded. In the simplified version, we train on only predecessor paths and
1258 node visitation state, ignoring times, the node stack, and edge. This more closely resembles the data
1259 that BFS is trained on, which also includes only predecessor paths and node visitation state. Later,
1260 we experiment with training all algorithms without traces entirely, and also evaluate the effectiveness
1261 of learned algorithms at predicting intermediate traces.
1262

1263 Table 17: BFS-DFS Disparity (Mean \pm Stddev (Max))
1264

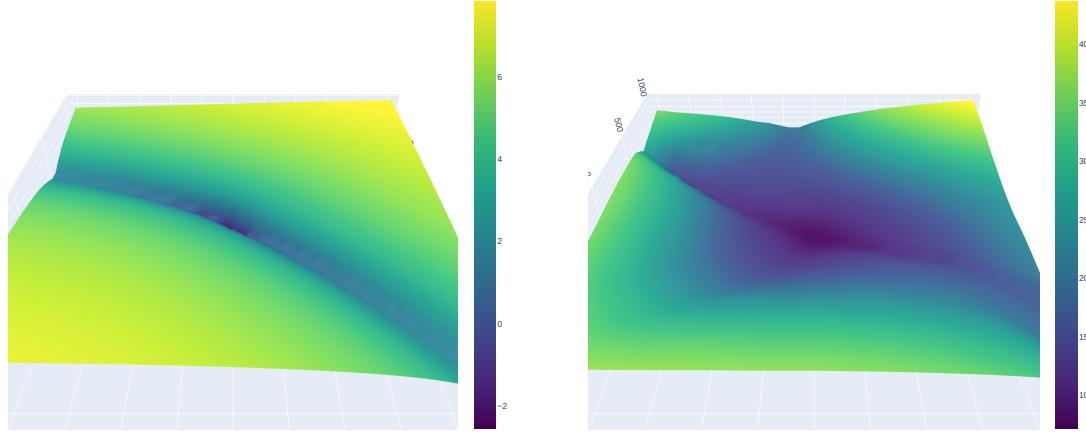
Experiment	Performance
Sequential BFS	92.90% \pm 2.85% (95.61%)
Simplified DFS	11.66% \pm 4.16% (20.75%)

1296
1297

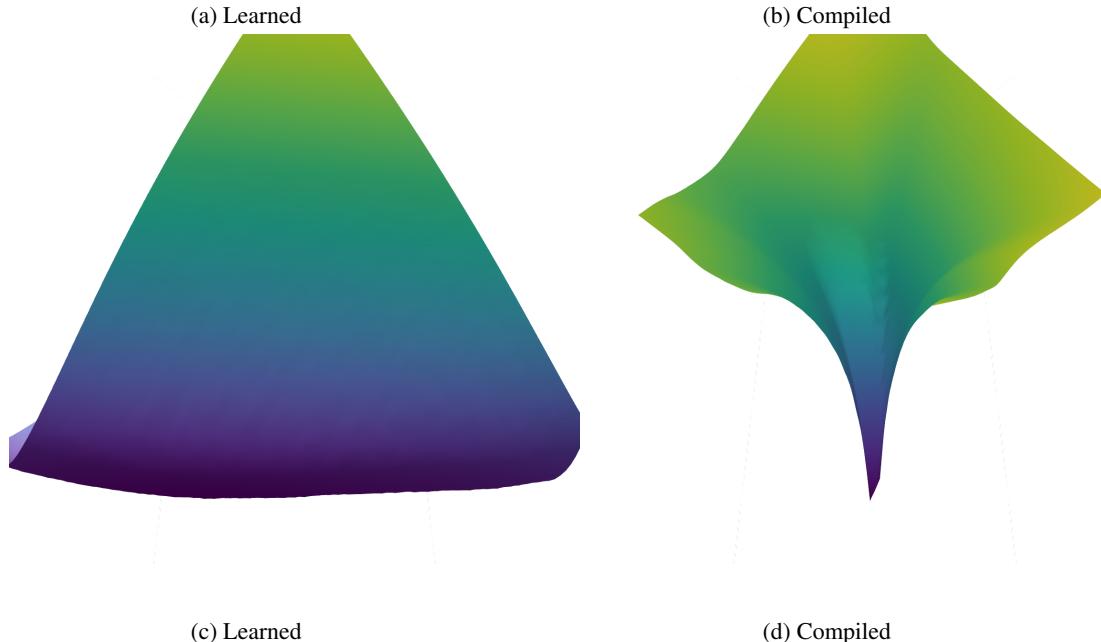
D.11 LOSS LANDSCAPES

1298 To better understand the nature of compiled solutions, we plot both the loss landscapes around
1299 compiled minima, learned minima, and initialized parameters. We hope to gain insight into the
1300 stability of compiled solutions, in particular if they resemble learned ones.

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317



1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340



1341 Figure 16: Bellman-Ford Learned vs Compiled Loss Landscapes (General on Top, Local on Bottom)
1342

1343
1344
1345
1346
1347
1348
1349

Bellman-Ford Learned vs Compiled Loss Landscapes For Bellman-Ford, we find that the loss
landscape for the learned solution is flatter and more forgiving than the compiled solution.

1350

BFS Learned vs Compiled Loss Landscapes For BFS specifically, we find that learned solutions
1351 have found an extremely flat minima (Figure 17), indicating a high-quality solution (even though it is
1352 not faithful). This is not the case for the compiled solution!

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

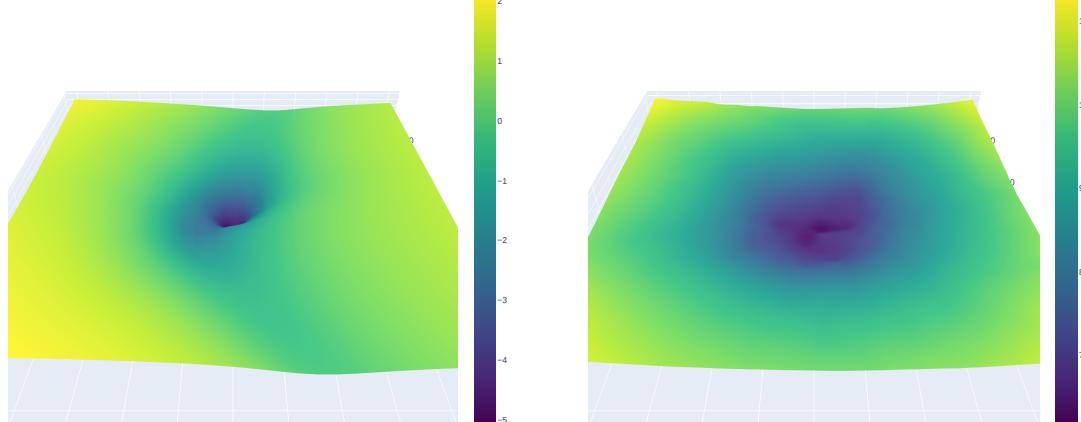
1399

1400

1401

1402

1403



(a) Learned

(b) Compiled

(c) Learned

(d) Compiled

Figure 17: BFS Learned vs Compiled Loss Landscapes (General on Top, Local on Bottom)

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

DFS Loss Landscapes We cannot draw strong conclusions from the loss landscapes for DFS, but we report them for completeness:

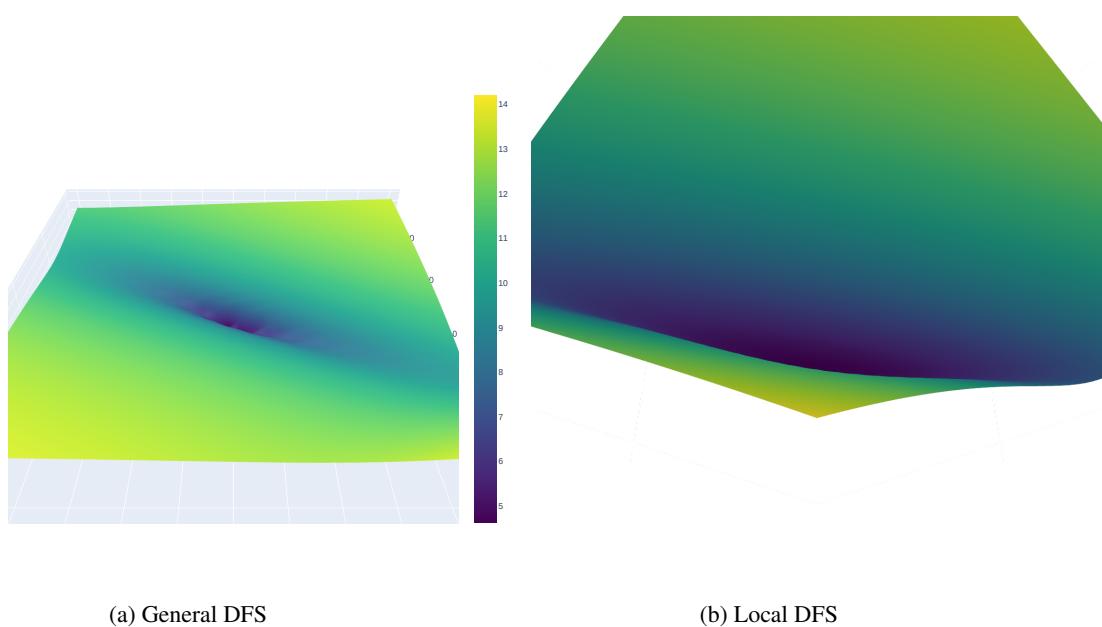


Figure 18: DFS: Local vs General Landscape