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ABSTRACT

Neural networks can achieve high prediction accuracy on algorithmic reasoning
tasks, yet even effective models fail to faithfully replicate ground-truth mechanisms,
despite the fact that the training data contains adequate information to learn the
underlying algorithms faithfully. We refer to this as the mechanistic gap, which we
analyze by introducing neural compilation for GNNs, which is a novel technique
that analytically encodes source algorithms into network parameters, enabling
exact computation and direct comparison with conventionally trained models.
Specifically, we analyze graph attention networks (GATv2), because of their high
performance on algorithmic reasoning, mathematical similarity to the transformer
architecture, and established use in augmenting transformers for NAR. Our analysis
selects algorithms from the CLRS algorithmic reasoning benchmark: BFS, DFS,
and Bellman-Ford, which span effective and algorithmically aligned algorithms. We
quantify faithfulness in two ways: external trace predictions, and internal attention
mechanism similarity. We demonstrate that there are mechanistic gaps even for
algorithmically-aligned parallel algorithms like BFS, which achieve near-perfect
accuracy but deviate internally from compiled versions.

1 INTRODUCTION

Mechanistic faithfulness guarantees generalization and robustness, and better understanding it is
critical in building artificial intelligence that can reason. We study this in the realm of Neural
Algorithmic Reasoning (NAR), which studies the ability of neural networks to learn algorithmic
reasoning tasks. The main purpose of this paper is in measuring mechanistic faithfulness on these
algorithmic tasks: many models can learn effective approximations to these algorithms, but do they
actually learn the intended behavior? This is mechanistic faithfulness. For example, trained GATv2
predicts the Bellman-Ford shortest paths algorithm with 87% accuracy, but does it actually learn the
dynamic programming mechanism correctly? How can we quantify these mechanistic gaps?

We answer this in two ways: first, we analyze external trace predictions, and second, we use neural
compilation to compare learned algorithms to a ground truth, which allows us to quantify internal
mechanistic similarity. First, the CLRS benchmark [1] includes algorithmic traces (also called hints).
These traces describe the intermediate states and operations of an algorithm, such as the partially
explored graph for breadth-first search (BFS).In principle, supervised training on traces enables
learning a mechanistically correct solution, at least in the sense that the model is given adequate
information to reproduce the target algorithm. In practice, presenting this data does not explicitly
induce reasoning, and in some cases models perform better without it [1, 2]. Trace predictions can
measure faithfulness, but only externally. Accordingly, we quantify internal faithfulness through
similarity of the GATv2 attention mechanism to a neurally-compiled ground truth.

Neural Compilation The upper-bound expressivity of many neural network architectures is estab-
lished, but expressivity does not guarantee that gradient-based optimization will find either effective
or faithful algorithms [3]. The focus of this paper is in understanding this gap by using neural
compilation as an analysis tool. Neural compilation is a technique for converting programs into
neural network parameters that compute the original program [4, 5, 6, 7, 8, 9]. Neurally compiled
programs are implicit expressivity proofs, ground-truth references, and optima of the underlying
optimization problem [9]. We use neural compilation to better understand the mechanistic gap by
analyzing intermediate behaviors, primarily the attention mechanism in GATv2.
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Defining Mechanistic Faithfulness: Unique Solutions in Algorithmic Phase Space Neural
compilation allows us to be more precise in defining mechanistic faithfulness, because it gives us
ground truth to compare against. We draw upon the idea of algorithmic phase space ([10]): neural
network parameters describe a low-level program space that admits a vast diversity of solutions.
Neural compilation allows specifying abstract program behaviors, and the set of low-level parameters
which produce them. In particular, our analysis focuses on the attention mechanism in GATv2, which
is effectively a (semi) interpretable symbolic layer. Having a neurally compiled ground truth enables
quantifying the mechanistic gap directly by comparing attention activations (Equation 25).

Does Algorithmic Alignment Confer Faithfulness? A major factor explaining expressivity-
trainability gaps is algorithmic alignment, the idea that certain neural networks are more efficient
at learning particular algorithms [11]. For example, graph neural networks, especially GATv2, are
particularly suited for graph-based dynamic programming tasks [12, 13]. Furthermore, in general it is
easier to learn parallel algorithms than it is to learn inherently sequential ones, especially for GNNs.
We refer to this as NC-Learnability [14]. However, algorithmic alignment is formulated in terms
of a sample-complexity bound for accuracy, not faithfulness explicitly. Even though architectural
similarity seems like it might confer mechanistic faithfulness [3], our analysis finds that there are still
mechanistic gaps even under algorithmic alignment and parallelism.

1.1 CONTRIBUTIONS

1. A neural compilation technique for GATv2, demonstrated on BFS and Bellman-Ford.

2. Metrics for quantifying mechanistic gaps: external trace prediction accuracy and internal
attention mechanism similarity.

3. Empirical evidence showing no correlation between prediction accuracy and faithfulness,
even for aligned parallel algorithms like BFS.

2 RELATED WORK

Differentiable Computing Previous work has considered differentiable models of computation,
such as LSTMS or other RNNs [15]. This was expanded by Neural Turing Machines and Hybrid Dif-
ferentiable Computers [16, 17]. However, sequential models of computation are often exceptionally
difficult to train, which was a big factor in the invention of transformers [18, 19, 20, 3].

Neural Algorithmic Reasoning Neural algorithmic reasoning (NAR) has evolved through bench-
marks and techniques that enhance model alignment with algorithmic tasks, particularly on graph
structures. While early GNNs were focused on modeling structured data, later variants were inspired
by differentiable computing, but in practice can be far more effective than their original counterparts.
Originally, GNNs were proposed in [21]. However, they have seen a rich variety of extensions
[22]. Notably, Deep Sets introduced permutation invariance [23], Message-Passing Neural Networks
(MPNN) introduced a framework for various models of graph computation [24], which Triplet MPNN
extended with several architecture modifications, such as gating, triplet reasoning, and problem spe-
cific decoders [25]. Separately, GAT introduced a self-attention mechanism [12]. GATv2 generalized
this to dynamic attention [13]. Finally, Pointer Graph networks enabled processing graphs with
dynamic topology [26]. Together, the CLRS benchmark captures many of these improvements, and
provides these models as baselines.

These models have high generalization on neural algorithmic reasoning tasks [1, 13]. This is
critical, as it makes our comparisons meaningful. We select GATv2 because of it has relatively high
performance, and the attention mechanism is mathematically similar to the attention mechanism in a
transformer, the primary difference being that graph adjacency is used to mask attention coefficients
for GATv2, while standard transformers assume a fully connected topology.

CLRS gives us several interesting cases to study: BFS, where trained performance is nearly perfect;
Bellman-Ford, where trained performance is high, but not perfect, and DFS, where trained perfor-
mance struggles significantly. BFS in particular is the most interesting, because the near-perfect
learned algorithm does not faithfully learn the underlying algorithmic mechanism, even though BFS
is relatively simple, algorithmically aligned with GATv2, and proven to be in NC [27, 11].
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Neural Compilation Neural Compilation is a technique for transforming conventional computer
programs into neural network parameters that compute the input algorithm. Fundamentally, neural
compilation constructs an injective function (compiler) that maps program space to parameter space:
C : Γ 7→ Θ so that the behaviors of a program γ ∈ Γ and f(θ), θ ∈ Θ are consistent on all inputs
(where f is a neural network architecture, θ its parameters, and Θ the parameter space, e.g. Rp). The
earliest results in neural compilation stem from [4] and [5]. Decades later, [6] developed adaptive
neural compilation, for initializing networks with compiled solutions and then further training them.
After the invention of the transformer architecture, there became significant interest in characterizing
its internal mechanisms through programs, e.g. mechanistic interpretability. From this came RASP,
TRACR, and ALTA [7, 8, 9], which compile a domain-specific language into transformer parameters.
Notably, ALTA ([9]) includes comparisons between learned and compiled algorithms, and [28]
includes theoretical graph-algorithm results.

Expressivity and Trainability Many papers establish theoretical upper bounds of neural network
expressivity [29, 30, 31, 28], dating back to the origins of the field [32, 4]. However, it is more
difficult to make substantive statements about trainability. In practice, theoretical expressivity bounds
are not reached for a wide variety of models [3]. For example, [30] establishes that transformers can
express TC0, but [9] shows that they struggle to learn length-general parity from data. Within neural
algorithmic reasoning, [14] and [11] support GNNs potentially expressing algorithms in PRAM (NC),
but this has not been formally proven. Beyond learning effective solutions that saturate expressivity
bounds, we also wish to learn mechanistically faithful algorithms. Mechanistic faithfulness implies
generalization and saturation of expressivity.

Critical Work on Neural Network Reasoning Given the high-profile nature of neural networks,
especially language models, several papers criticize their reasoning ability in the hope of under-
standing how to improve them [33, 34, 35, 36]. This motivates mechanistic interpretability studies
and future work, but also grounds expectations about the capabilities of these systems. Similarly,
the quantitative measures of mechanistic faithfulness we introduce are intended to play a role in
improving algorithmic reasoning.

Mechanistic Interpretability While neural compilation techniques have their roots in differen-
tiable computing, their application to mechanistic interpretability is a more recent phenomenon,
inspired several other approaches for interpreting neural network behavior, especially that of large
language models. Fundamentally, mechanistic interpretability aims to reverse-engineer learned
behavior into an interpretable form. In the most general case, this behavior would be described as
abstract computer programs (e.g. neural decompilation). However, this is fundamentally difficult,
given that neural network computation tends to be dense, parallel, and polysemantic. Some work
characterizes“circuits”, e.g. sub-paths of a neural network that correspond to a particular behavior [37,
38, 39]. Other techniques try to extract categorical variables from dense, polysemantic representations
[40]. Notably [10] attempts to categorize the algorithmic phase space (solution space) of addition
algorithms, similar to ALTA’s analysis of learned parity functions [9]. Work on “grokking” attempts
to capture phase-shifts in neural network generalization, e.g. where a faithful version of an algorithm
gradually replaces memorized data [41, 39, 10, 42].

For neural algorithmic reasoning specifically, [43] introduces the concept of the scalar bottleneck, a
potential explanation for why faithful algorithms are difficult to learn, which is later refined by [44],
which proposes learning algorithm ensembles. The scalar bottleneck hypothesis, as well as the idea
of algorithmic phase space, help explain why learned models favor dense representations over sparse,
faithful ones, complementing our empirical evidence from compiled comparisons.

3 METHODS

Our methods section uses Einstein notation with dimension annotations. For example:
m×n

Aik
name

=
m×l

Bij
name

l×n

Cjk
name

(1)

Depicts a matrix multiplication by implying summation of the dimension j (size l). While this is
quite verbose, it ensures clarity when describing higher-dimensional tensor contractions or complex
operations. See [45] for an accessible reference.
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3.1 BACKGROUND: GRAPH ATTENTION NETWORKS (GATV2)

For a graph G = (V, E) with n vertices, graph attention networks work by iteratively refining
vector representations h at each vertex (collectively, H) by exchanging information between vertices
according to the graph topology and a learned attention mechanism [12, 13]. The model receives
input V of dimension n× fV , representing a vector of size fV for each vertex, and edge information
E , which is an n× n× fE tensor, which similarly has a feature vector for each edge. We define the
graph topology with an adjacency matrix A, which is an n× n matrix with binary entries. Also, the
graph contains metadata in a vector g, with dimension fg . While feature dimensions can vary, we use
f where they can be implied by context. Consider a graph attention network with hidden size s and d
attention heads. For convenience, let m = s

d (the number of attention heads, d, must divide s). For
this network, the parameters θ are:

θ =

(
s×(f+s)

W
val

s×(f+s)

W
in

s×(f+s)

W
out

s×f

W
edge

s×f

W
meta

s×(f+s)

W
skip

d×m
ω

attn

)
(2)

GATv2 relies on an attention mechanism which selects information to pass between adjacent vertices.
This is calculated as a function of parameters, features, the adjacency matrix, and hidden state:

n×n×d
α

attn
= F(θ,V, E , g, A,H) (3)

First, the model computes intermediate values ν, which are candidates for new hidden representations.
n×f

V
input

n×s

H
hidden

n×(f+s)

C
concat

= [V|H]
n×s
νil = Wlk

val
Cik (4)

Second, the model computes two intermediate representations from the concatenated node features.
These represent incoming and outgoing information to and from each node. Then, the model computes
separate intermediate representations for edges and graph metadata:

n×s
zip
in

= Wpk
in

Cik
n×s
zip
out

= Wpk
out

Cik
n×n×s
zijp
edge

= Wph
edge

Eijh
s
zq

meta
= Wqr

meta
gr (5)

These intermediate representations are combined into a single tensor, ζ, using broadcasting.
n×n×s

ζ
pre attn

=
1×n×s

z
in

+
n×1×s

z
out

+
n×n×s

z
edge

+
1×1×s
z

meta
(6)

Then, ζ is used to compute unnormalized attention scores, a, using the attention heads ω. First ζ is
split into the tensor n× n× d×m, to provide a vector of size m to each head:

n×n×d
aijh = ωhoσ(ζ)ijho (7)

Where σ is a leaky ReLU activation [46]. To enforce graph topology, we create a bias tensor from the
adjacency matrix:

n×n

β
bias

= c ∗ (A− 1) (8)

where c is a large constant, e.x. 1e9. This is used to nullify attention scores between unconnected
nodes. Then, the final scores are normalized with softmax (β is broadcast in the final dimension as a
n× n× 1, e.g. for each attention head):

n×n×d
α

attn
= softmax(a+ β) (9)

Finally, these attention scores are used to select values from the candidates computes earlier. Selected
values from different heads are summed together, and a skip connection propagates other information
into the next hidden representation. Note that ν

val is reshaped into a n × d × m tensor for the d
attention heads, and then ν

select is reshaped back into a (n× s) tensor to match ν
skip .

n×d×m
νjho
select

= αijh
n×d×m
νiho

val

n×s
νil
skip

= Wlk
skip

Cik H
next

=
n×s
ν

select
+ σ

(
ν

skip

)
(10)

Finally, the new H is normalized with layer norm, completing a single iteration of graph attention.
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3.2 ARCHITECTURE MODIFICATIONS

Neural compilation revealed certain aspects of the GATv2 architecture which can affect the ability to
express particular algorithms naturally. These modifications reflect previous findings in NAR [47, 25].
Most notably, it was clear that candidate values ν for graph attention (Equation 4) are not a function
of the edge features, E , meaning there is not a natural way to store or process edge information in the
hidden states of the model, outside of the attention mechanism. However, using edge information
makes it significantly easier to compute cumulative edge distances when running algorithms like
Bellman-Ford. Specifically we introduce a linear layer W

info which operates on edge features:

n×n×m

Eijk
mid

=
m×f

Wlk
info

n×n×f

Eijl
input

(11)

n×d×m
νihk
edge

=

n×n×d×m(
α⊙ E

mid

)
ijhk

(12)

H
final

= H
next

+
n×s
ν

edge
(13)

In these equations, W
info encodes edge information to include in each node representation, the attention

coefficients α select it (the hadamard product, ⊙ broadcasts in the head dimension, d), and then the
incoming edge dimension is summed to match the dimensions of the hidden states.

We also experiment with adding a pre-attention bias B (dimension n×n), which has similar behavior
to the bias matrix β calculated from the adjacency matrix in Equation 8, except that it is learned:

ζ
post

= ζ
pre

+ B (14)

Introducing B allows algorithms to have more consistent default behavior, for instance nodes that
are not currently being explored are expected to remain unchanged, and adding a bias layer before
the attention weights makes it significantly easier to implement this behavior in a compiled model.
Similar behavior has been explored in [25], which focused on gating rather than a change to the
attention mechanism.

3.3 GRAPH PROGRAMS

Graph attention networks naturally resemble algorithmic structure, especially for highly parallel
graph algorithms such as Bellman-Ford and Breadth-First-Search (BFS). Importantly, this means
that for many algorithms in CLRS, there is an intended ground-truth mechanism, especially the ones
we have chosen for our analysis. Our neural compilation method introduces on a domain-specific
programming language for specifying programs, which we call graph programs. A graph program
consists of multiple components: a variable encoding in the hidden states of the model, an update
function for the hidden state, an initialization function, and encoders/decoders. Appendix B contains
visualizations of compiled parameters for minimal models.

Variable Encoding Variable encoding structures the hidden vectors, h at each node in terms of
named variables. For example, in the Bellman-Ford algorithm, a minimal program needs to track four
variables: visited, a binary flag indicating if a node has been reached, distance, the cumulative
distance to reach a node, id, the node id, and π, the predecessor in the shortest path. Note that these
are also the variables captured in CLRS traces. They are represented in a vector:

h = [ dist visited π id ] = [d v π x] (15)

Then, computing an algorithm is a matter of updating these variables at each timestep according to an
update rule. For example, for Bellman-Ford, the update rule for node i with neighbors j is:

v = max(vi, vj) (16)
d = min(dj + Eij) (17)
π = argmax

d
(xj) (18)
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Update Function GATv2 relies on using the attention mechanism to perform computation, in
particular using softmax to select among incoming information. We will explain the update function
in terms of the graph program for Bellman-Ford (Listing 1). BFS is similar. Note that this is
demonstrated for a minimal model with hidden size 4, but our actual model uses the default hidden
size of 128. First, the graph attention network must make candidate values ν, which is done by W

val .
For example, a compiled W

val is a sparse matrix that propagates distance (line 9), the visited state (line
10), and permutes an incoming node id x into a potential predecessor variable, π (line 11).

C0: = [d0 v0 0 x] [dh vh πh x] = [X0:|H0:] (19)

W
value

=

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0

 W
value

C0: = ν0: =

 x
πh

vh
dh

 =

 0
x

v0 + vh
dh

 (20)

The goal is for softmax to select from these values for the next hidden state. Attention weights are
calculated from ζ, which in turn is created by W

in , W
out , and W

edge . Essentially, W
in propagates the

cumulative distance from incoming nodes using a large negative value −c, but also masks non-visited
nodes by using a large positive value k. Then, W

edge uses large negative values for edge distances.
This results in the softmax function receiving values that select for the incoming neighbor with the
smallest cumulative distance as a distribution, e.g. α = [0.01, 0.01, 0.97, 0.01] (line 16).

W
in

=

0 k 0 0 −c k 0 0
0 k 0 0 −c k 0 0
0 k 0 0 −c k 0 0
0 k 0 0 −c k 0 0

 W
edge

=

 0 0 0 −c
0 0 −c 0
0 −c 0 0
−c 0 0 0

 (21)

The updated hidden state is a weighted combination of candidate values created with α. Finally, W
skip

maintains the node’s id (line 12), and W
info adds the edge distance to the cumulative distance (line 9):

W
skip

=

0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 W
info

=

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 (22)

When present, the pre-attention bias is an identity matrix multiplied by a large positive constant, k,
indicating that node values should remain the same by default. The attention head itself is a vector of
ones, since the important computations have already been done by W

in , W
out , and W

edge . W
meta is not used.

B = k ∗ I ω = 1 W
meta

= 0 (23)

Appendix B contains visualizations of these parameters. Beyond those presented here, it is also
necessary to create encoder/decoder parameters. These have a similar structure to W

val , in that they
are often sparse selection matrices or identity matrices (e.g. since H is already a trace).

1 bellman_ford = GraphProgram(
2 hidden = HiddenState(
3 visit: Component[Bool, 1],
4 dist: Component[Float, 1],
5 pi: Component[Float, 1],
6 idx: Component[Float, 1]
7 ),
8 update = UpdateFunction( # Function of self, other, init, edge
9 dist = self.dist + edge.dist

10 visit = other.visit | self.visit | init.start
11 pi = other.idx
12 idx = self.idx
13 ),
14 select = SelectionFunction(
15 type = minimum
16 expr = other.dist + edge
17 )
18 mask = other.visit
19 default = self.idx
20 )

Listing 1: Graph Program for Bellman-Ford
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4 EXPERIMENTS

4.1 TRAINING DETAILS

For training, we use the unaltered CLRS dataset
and default hyperparameter settings (which have
been well-established by previous literature).
For optimization, we use the humble adam
optimizer [48]. We use the hyperparameters
reported in Table 4. For additional experiments,
we use the following settings, derived from the
defaults on the right:

Table 1: Settings for Regularization Experiments
regularization True
regularization_weight {1.0000e−3, 1.0000e−4}

Table 2: Settings for Grokking Experiment
train_steps 50000
learning_rate 5.0000e−5

Table 3: Settings for Architecture Ablations
train_lengths 16
simplify_decoders True
use_edge_info {True,False}
use_pre_att_bias {True,False}
length_generalize False

algorithms bellman_ford, bfs, dfs
train_lengths 4, 7, 11, 13, 16
random_pos True
enforce_permutations True
enforce_pred_as_input True
batch_size 32
train_steps 10000
hidden_size 128
nb_heads 1
nb_msg_passing_steps 1
learning_rate 1.0000e−4
grad_clip_max_norm 1.0000
dropout_prob 0.0000
hint_teacher_forcing 0.0000
hint_mode encoded_decoded
hint_repred_mode soft
use_ln True
encoder_init xavier_on_scalars
processor_type gatv2
length_generalize True
regularization False
git hash 445caf85

Table 4: Settings for Trained Bellman-Ford

4.2 BASELINES

We replicate baseline results with a sampling budget of 128 initializations. This provides a variety of
solutions to compare against, ensuring that initializations do not confound our analysis [49].

Table 5: Replicated GATv2 Baseline CLRS Results (Mean ± Stddev (Max))

BFS DFS Bellman-Ford
98.30%± 0.97% (100.00%) 12.74%± 3.44% (18.21%) 90.63%± 1.27% (92.77%)

4.3 MEASURING MECHANISTIC FAITHFULNESS

We propose two quantitative measures of faithfulness, ϕ: trace prediction accuracy and attention
mechanism similarity. Trace prediction accuracy takes the average accuracy over a timeseries of
predicted traces. This acts as an external measure of algorithmic faithfulness. Specifically, traces
contain different types of predictions, y: numerical (e.g. cumulative distance), binary predictions (e.g.
if a node has been reached), and class predictions (e.g. a parent node id). These are evaluated within a
margin, (ϵ = {0.5, 0.1, 1e−6}, respectively) to convert them to binary matching scores, and then the
timeseries of matches is averaged. 1 represents the indicator function, and t the length of the trace.

ϕ
external

=
1(ŷ − y⋆ < ϵ)

t
(24)

Attention mechanism similarity considers the timeseries of attention states, α, and compares learned
mechanisms α̂ to a ground truth α⋆. This allows measuring internal faithfulness. For simplicity, we
consider a model with only one attention head, the default setting for GATv2 in the CLRS benchmark.
For the algorithms we consider, a single attention head is sufficient to implement a general algorithm.

ϕ
internal

=
|α̂− α⋆|

t
(25)
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Figure 1: External and Internal Faithfulness of BFS
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Figure 2: External and Internal Faithfulness of Bellman-Ford

4.4 FAITHFULNESS

We measure both internal and external faithfulness, and find that there is no significant correlation
between faithfulness and accuracy (Figures 1 and 2, 95% confidence interval). Because BFS is
parallel, algorithmically aligned, and has high empirical performance, we report it primarily. Further
results for Bellman-Ford are available in Appendix C.

Table 6: Regularization, Grokking, and Minimal experiments

Algorithm Regularization Extended Training Minimal
BFS 97.76%± 1.05% 97.55%± 1.52% 81.60%± 11.32%

Bellman-Ford 87.35%± 1.68% - 87.35%± 1.68%

4.5 EXTERNAL FAITHFULNESS

When models are trained on traces, we find that they are only good at predicting traces early on
(Figure 3). We normalize the timescales for traces to plot predictions on a uniform scale, and show
they are only partially consistent at the beginning of a trace. Notably, this behavior occurs even on
the training and validation sets, indicating underconvergence.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

Normalized Time Normalized Time

Perfect Perfect

Figure 3: Learned BFS Trace Predictions Over Time

4.6 INTERNAL FAITHFULNESS

Internally, conventionally trained models do not
tend to match expected behavior. Here, we report
results on BFS, with results on Bellman-Ford in
the Appendix. Figure 5 visualizes the closest
matching attention trace from the sampled
initializations. The attention mechanism is slightly
closer at the beginning of computation (in this
case, the first two steps), but deviates otherwise
(Figure 4, note that the ideal value is 0).

Notably, mechanistic gaps persist under regulariza-
tion, extended training, and initializations.

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

Normalized Time

Perfect

Figure 4: BFS Attn. Timeseries

Figure 5: BFS Attention Mechanism Comparison (Best Match)

5 CONCLUSION

In this paper, we propose measures of mechanistic faithfulness, with the aim of building neural
algorithmic reasoning systems that produce more general and robust solutions. Specifically, we
introduce a neural compilation method for compiling algorithms into graph attention networks, and
then use the intermediate attention states of the compiled model as a reference for ideal behavior. In
doing so, we establish mechanistic gaps, even for BFS, which GATv2 is algorithmically aligned to.
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A EXTENDED METHODS

A.1 ENCODERS AND DECODERS

Beyond the parameters and equations presented above, a graph attention network has additional layers
for encoding and decoding. Often, they are simply linear layers that produce vector representations
of input data or traces. Effectively, the input vector vl is a function of multiple encoders, e.g. for raw
inputs v̂ (representing different graph features or input traces), the encoded input is:

vl = Wlk
enc

v̂k (26)

Furthermore, a graph attention network may have multiple outputs, for instance different trace
predictions for various algorithms. Each of these has a separate problem-specific decoder. In more
complex cases, answers are decoded using multiple layers, involving the edge features E :

p1 = W1 h p2 = W2 h pe = We E (27)
pm = max(p1, p2 + pe) (28)
y = W3pm (29)

We note this level of detail because it is critical for understanding the behavior of the learned models:
A surprising amount of computation is happening in the decoding layers. Also, compiling algorithms
into graph attention networks is not only a matter of setting the weights of the main graph attention
parameters, but also the parameters of the encoders and decoders.

B GRAPH PROGRAMS

A graph program consists of two components: a variable encoding in the hidden states of the model,
and a compiled update function that updates the hidden state. Since hidden states begin uninitialized,
the update function is also responsible for setting them in the initial timestep. The core of the update
function relies on using the attention mechanism to perform computation. Fundamentally, this is
a matter of using the GNN’s aggregation function, in this case softmax. Specifically, the inputs to
softmax allow computing a max or min, or masking based on boolean states.

Both Bellman-Ford and BFS use softmax to compute a minimum, but Bellman-Ford does so over
cumulative distance, while BFS does so over node id order. In both algorithms, the visitation status
of each node is used to mask attention coefficients, defaulting to self-selection.

1 bfs = GraphProgram(
2 hidden = HiddenState(
3 s: Component[Bool, 1],
4 pi: Component[Float, 1],
5 idx: Component[Float, 1]
6 ),
7 update = UpdateFunction( # Function of self, other, init, edge
8 visit = other.visit | self.visit | init.start
9 pi = other.idx

10 idx = self.idx
11 ),
12 select = SelectionFunction(
13 type = minimum
14 expr = other.idx
15 )
16 mask = other.visit
17 default = self.idx
18 )

Listing 2: Graph Program for BFS
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B.1 COMPILED BELLMAN-FORD
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Figure 6: Main Parameters for Bellman-Ford

For example, in Bellman-Ford, the
attention mechanism selects edges
based on cumulative distance. In
Figure 6, Wedge contains large neg-
ative values on the diagonal, which
forces attention to select strongly
based on edge distance. However, be-
cause node-expansions are only valid
along the frontier, large positive val-
ues in Win and Wout control the atten-
tion mechanism to default to retain-
ing hidden states when nodes aren’t
valid for expansion (using B, labelled
Wpre_attn_bias). Similarly, the negative
values in Win add cumulative distance
for the attention mechanism. Weight
settings in Wskip and Wvalue create
and maintain structured hidden vec-
tors. Specifically, the hidden vector
representation is:

h = [ dist visited π id ] (30)

In this case, the first component of h
contains cumulative distance (main-
tained also by Wedge 2). The second
component of h indicates if a node
has been reached, the third component
corresponds to the predecessor node
in the path, and the fourth component
of h encodes the node’s id.

Finally, the attention head Wa_0 sim-
ply accumulates attention values us-
ing a vector of all ones. Note that
these parameters are for the minimal
version of Bellman-Ford, using a tiny
500-parameter network with a size 4
hidden state. We have generalized this
to larger networks, e.g. the size 128
hidden state model that matches the dimensions of GNNs trained in the CLRS benchmark, which has
about 5e6 parameters. This is a matter of extending the patterns shown in Figure 6.

These parameter values are the output of a compiled graph program. Since Bellman-Ford was the
first algorithm we compiled, before we developed the graph program language, the values were set
by hand. However, each parameter value corresponds to a part of a graph program. The first part of
the graph program establishes Equation 30, setting these based on inputs. Then, the graph program
update function describes state-maintenance and the attention update, which compiles into Wedge Win
Wout Wpre_attn_bias Win Wskip Wvalue Wedge 2 and Wa_0.

To fully implement Bellman-Ford, it is also necessary to modify the parameters of encoders and
decoders, with relevant parameter settings shown in Figure 7. For encoders, like Wenc_s, they are
sparse vectors that place relevant information (in this case, which node is the starting location) Since
node ids are stored as linear positional encodings, they must be decoded into one-hot classifications,
which is the role of πdec. These simply use the equation:

y
pred

= softmax(c ·max(p− v, v − p)) (31)
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Figure 7: Auxilliary Parameters for Bellman-Ford
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Figure 8: Main Parameters for BFS

Where v is the positional encoding,
p is a vector of all positional encod-
ings, and c is a large negative con-
stant, e.g. −1e3. For instance if
v = [0.25], p = [0.0 0.25 0.5 0.75],
then y = [0 1 0 0]. Using positional
encodings throughout the model pre-
vents the need for having unwieldy
one-hot encodings as a core part of the
architecture, reducing the overall pa-
rameter count and improving numer-
ical stability. However, it also intro-
duces a scalar bottleneck, since the
individual components of h each con-
tain critical information.

B.2 COMPILED BFS

Compiling BFS is largely similar to
compiling Bellman-Ford, with the
only notable difference being that cu-
mulative distances are never tracked,
and the pre-attention bias B plays two roles: First, it biases towards self-selection, e.g. when a
node is not being expanded, its state remains the same. Second, it biases towards expanding nodes
with lower ids, for instance if a is adjacent to both b and c, then the edge a-b is added, but a-c
is not. Otherwise, the main parameters and encoder parameters are largely identical to those for
Bellman-Ford.
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Figure 9: Auxilliary Parameters for BFS

C EXTENDED RESULTS

C.1 ARCHITECTURE ABLATIONS

In Section 3.2, we introduce two modifications to the graph attention network architecture, namely
introducing edge information (specifically for Bellman-Ford), and introducing a pre-attention bias
matrix (for both Bellman-Ford and BFS). Of these two changes, the introduction of edge information
is potentially more interesting, as it reveals a potential architecture-level reasoning that the learned
version of Bellman-Ford may not be faithful. However, the change is not strictly necessary to be able
to compile Bellman-Ford, but it certainly makes compiling the algorithm significantly easier, and
closer to the intended faithful behavior. Adding the pre-attention bias is also not strictly necessary,
but makes it more natural to control each algorithm’s default behavior.

Edge Information We hypothesize that the learned version of Bellman-Ford may be struggling
partially because it cannot track cumulative path distances in a faithful way. If this were the case,
then we would expect the unmodified architecture to perform worse than the modified one, assuming
that learning is capable of exploiting this architecture change in the way that we expect. However,
it may be the case the without the architecture change, the model is able to track cumulative edge
distances by leaking information through the attention mechanism, or by delaying cumulative path
length calculation to the decoding step.

Table 7: Ablation: Bellman-Ford Edge Information (Mean ± Stddev (Max))

Experiment Performance

Default (No Edge Info) 86.59%± 5.97%(92.24%)
Modified (Edge Info) 90.67%± 1.40%(92.72%)

In Table 7, we find that, while maximum performance is unaffected, the learning algorithm is more
commonly able to find high-quality solutions, bringing up the average performance, and reducing the
standard deviation between solutions.
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Pre-Attention Bias Unlike introducing edge information, adding a pre-attention bias is less nec-
essary for the model to learn correct behavior. However, within the learned parameters, each bias
matrix can only the pre-attention values, ζ on either the row or column axis, but cannot bias unaligned
components, such as having an identity matrix as a bias (which is needed for compiled BFS). A
major downside of introducing a pre-attention bias is that its size is tied to problem size, preventing
length-generalization, which outweighs the benefits of introducing it.

Table 8: Ablation: BFS Pre-Attention Bias (Mean ± Stddev (Max))

Experiment Performance

Default (Without Bias) 99.92%± 0.28%(100.00%)
Modified (With Bias) 99.72%± 0.95%(100.00%)

Since the baseline performance of BFS is so high, Table 8 does not show significant differences,
possibly because the results are within distribution (tested on length 16). Next, we try introducing both
modifications to a length-limited version of Bellman-Ford. However, the lack of length generalization
makes the results difficult to interpret, but at the very least the model is still as-capable as the
unmodified version within distribution.

Table 9: Ablation: Bellman-Ford Both (Mean ± Stddev (Max))

Experiment Performance

Default (Neither) 97.31%± 0.92%(98.93%)
Modified (Both) 97.81%± 0.88%(99.41%)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

Normalized Time Normalized Time

Perfect Perfect

Figure 10: Learned Bellman-Ford Trace Predictions Over Time

C.2 ADDITIONAL RESULTS ON TRACES

Trace faithfulness also affects BFS, which, even though it is highly effective, quickly deviates in
predicting traces (Figure 10). This behavior is curious, as BFS is high-performing, so conceivably
it has learned to track whether each node has been reached. It’s possible the issue is less about
internal representation, and more about the ability to decode internal representations back into trace
predictions.

C.3 TRAINING WITHOUT TRACES

While it may seem that intermediate traces are critical in learning algorithms faithfully, there are
many cases where they are not necessary or even hurt performance [1, 50].

Table 10: Training Without Traces (Mean ± Stddev (Max))

Experiment Performance

DFS 16.49%± 2.45%(20.61%)
BFS 98.74%± 0.98%(100.00%)
BF 90.14%± 1.15%(91.80%)

C.4 MINIMAL EXPERIMENTS

Our neural compilation results establish that a 500-parameter GAT can express BFS or Bellman-Ford.
While we do not strongly expect gradient descent to find the perfect solutions, we experiment with
training minimal models over a large number of random seeds (1024), to see if we draw lucky “lottery
tickets” [49]. The results in Table 11 establish that finding high-quality solutions in this regime is
possible, but furthermore show that the architecture modifications have a stronger effect on minimal
models, which are very constrained by scalar bottlenecks.

Table 11: Minimal Networks (Mean ± Stddev (Max))

Experiment Performance

Bellman-Ford (Default) 38.97%± 8.35%(59.13%)
Bellman-Ford (Arch Modify) 74.38%± 10.29%(88.77%)
BFS (Default) 81.60%± 11.32%(99.56%)
BFS (Pre-Attention Bias) 93.32%± 6.89%(99.32%)
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(a) Bellman-Ford (b) BFS (c) DFS

Figure 11: Loss Landscapes

C.5 STABILITY

(a) BFS Learned

(b) BFS Compiled

Figure 12: Landscape

Beyond comparing learned and compiled solutions, we want to
characterize the loss landscapes surrounding compiled minima, and
also understand how they are affected by further optimization. We
plot this using the technique introduced in [51], which plots gaus-
sian perturbations in terms of two random vectors which have been
normalized to be scale invariant.

For example [36] compiled a logic algorithm into the transformer
architecture which was both difficult to find and diverged when
trained further. We find similar behavior, but it is dependent on
random data sampling order, see Appendix C.5. The compilation
strategy reported in this paper uses sparse weights, which are af-
fected by the scalar bottleneck and do not resemble learned solutions.
Because of the artificial nature of compiled solutions, we expect
the minima to be unstable, but hope to use the results of these
experiments to inform more sophisticated methods for compiling
algorithms into neural networks. We find that compiled solutions,
when further trained, can deviate from optimal parameters (Table 12).
However, this is highly dependent on data sampling order, result-
ing in high variance in performance. This indicates that compiled
minima are unstable. However, this training is done with mini-
batch gradient descent, which is inherently noisy (intentionally).
We also attribute these results to the scalar bottleneck hypothesis.
Table 12: Stability (Mean ± Stddev
(Max))

Experiment Performance

Compiled → Trained Bellman-Ford 80.77%± 14.83%(97.66%)
Compiled → Trained BFS 82.04%± 15.55%(100.00%)
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C.6 ATTENTION MECHANISM

Figure 13: Bellman-Ford Attention (Full) Figure 14: BFS Attention (Full)
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C.7 DISPARITY BETWEEN BFS AND DFS

To establish that BFS is algorithmically aligned, we explicitly test variants of BFS and DFS so that
we can eliminate the confounding variables of trace length and trace complexity.

Trace Length First, because DFS is sequential, the traces used in learning DFS are naturally longer
than those for learning BFS. To mitigate this, we create a version of BFS with sequential traces,
where rather than expanding all neighbors at once, one neighbor is expanded at a time. The semantics
and underlying parallel nature of the algorithm are unchanged, but the traces used for training are
artificially made sequential to mimic the long traces used in learning DFS. We find that, even with
significantly longer traces, BFS is still significantly more trainable than DFS.

Trace Complexity Second, because DFS requires more sophisticated state tracking, we explicitly
test versions of DFS that provide only the most critical information in each trace. By default, DFS
traces include predecessor paths, node visitation state, node visitation times, the current node stack,
and the current edge being expanded. In the simplified version, we train on only predecessor paths and
node visitation state, ignoring times, the node stack, and edge. This more closely resembles the data
that BFS is trained on, which also includes only predecessor paths and node visitation state. Later,
we experiment with training all algorithms without traces entirely, and also evaluate the effectiveness
of learned algorithms at predicting intermediate traces.

Table 13: BFS-DFS Disparity (Mean ± Stddev (Max))

Experiment Performance

Sequential BFS 92.90%± 2.85%(95.61%)
Simplified DFS 11.66%± 4.16%(20.75%)
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C.8 LOSS LANDSCAPES

To better understand the nature of compiled solutions, we plot both the loss landscapes around
compiled minima, learned minima, and initialized parameters. We hope to gain insight into the
stability of compiled solutions, in particular if they resemble learned ones.
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Figure 15: Bellman-Ford Learned vs Compiled Loss Landscapes (General on Top, Local on Bottom)

Bellman-Ford Learned vs Compiled Loss Landscapes For Bellman-Ford, we find that the loss
landscape for the learned solution is flatter and more forgiving than the compiled solution.
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BFS Learned vs Compiled Loss Landscapes For BFS specifically, we find that learned solutions
have found an extremely flat minima (Figure 16), indicating a high-quality solution (even though it is
not faithful). This is not the case for the compiled solution!
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Figure 16: BFS Learned vs Compiled Loss Landscapes (General on Top, Local on Bottom)
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DFS Loss Landscapes We cannot draw strong conclusions from the loss landscapes for DFS, but
we report them for completeness:
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Figure 17: DFS: Local vs General Landscape
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