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Abstract
A key challenge in personalized healthcare is iden-
tifying optimal intervention sequences to guide
temporal systems toward target outcomes, a novel
problem we formalize as counterfactual target
achievement. In addressing this problem, directly
adopting counterfactual estimation methods face
compounding errors due to the unobservability of
counterfactuals. To overcome this, we propose
Variational Counterfactual Intervention Planning
(VCIP), which reformulates the problem by mod-
eling the conditional likelihood of achieving tar-
get outcomes, implemented through variational
inference. By leveraging the g-formula to bridge
the gap between interventional and observational
log-likelihoods, VCIP enables reliable training
from observational data. Experiments on both
synthetic and real-world datasets show that VCIP
significantly outperforms existing methods in tar-
get achievement accuracy.

1. Introduction
Causal inference in time series data plays a crucial role
in healthcare and clinical decision support (Wu et al.,
2022; Zheng et al., 2020; Prosperi et al., 2020). With the
widespread adoption of electronic health records (EHRs),
practitioners face the challenge of evaluating long-term treat-
ment effects on patient outcomes, making accurate causal
analysis essential for informed clinical decisions (Lim et al.,
2018; Jensen et al., 2012; Chakraborty et al., 2022).

Existing research in temporal causal inference primarily
focuses on the “forward prediction” problem of predicting
future system trajectories given historical observations and
intervention sequences (Lim et al., 2018; Bica et al., 2020;
Melnychuk et al., 2022; Wang et al., 2024). While this
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paradigm has advanced understanding of intervention ef-
fects, decision-makers often face a critical inverse problem
of identifying optimal intervention sequences that guide
systems toward desired target outcomes.

This paper introduces the counterfactual target achievement
problem, a novel sequential decision-making problem that
aims to find intervention sequences guiding system outputs
toward specific target outcomes based on historical observa-
tions. Although similar to the sequential decision-making
framework in dynamic treatment regimes (DTRs) (Laber
et al., 2014), this problem differs fundamentally in its ob-
jective. While DTRs aim to maximize population-level
outcomes, decision-makers in many contexts may focus on
achieving specific target outcomes for individual patients.
For example, in diabetes management, physicians adjust in-
sulin interventions to maintain each patient’s blood glucose
within a personalized target range, rather than optimizing
glycemic control for the population (Bergenstal, 2018; Pe-
terson et al., 2007).

An intuitive solution is to leverage counterfactual estima-
tion methods (e.g., CRN (Bica et al., 2020)) to estimate
potential outcomes under different intervention sequences
and select interventions by comparing these outcomes to
the target outcome. However, as shown in the left panel
of Figure 1, while sequence 2 is predicted to be closer to
the target (blue dashed line), the true outcome (blue solid
line) deviates significantly. This illustrates a key challenge:
since counterfactuals are unobservable in practice, predic-
tion errors cannot be accurately assessed, leading to biases
in estimated target distances and misleading intervention
selections. Indeed, sequence 1 achieves better true perfor-
mance (red solid line) despite its predicted trajectory (red
dashed line) appearing less favorable.

To address these limitations, we reformulate the counterfac-
tual target achievement problem by directly modeling the
probability of reaching the target outcome, conditioned on
the observed history, as shown in the right panel of Figure 1.
By introducing latent variables to capture temporal system
state evolution, we propose the Variational Counterfactual
Intervention Planning (VCIP) framework, which avoids the
pitfalls of counterfactual estimation methods. VCIP first
constructs an evidence lower bound (ELBO), a tool used for
optimizing likelihoods under interventional distributions,
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Figure 1. Illustration of two prediction methods for counterfactual target achievement. Left: The counterfactual estimation method
directly estimates potential outcomes under different intervention sequences, showing both predicted (dashed lines) and true (solid lines)
trajectories, with distance indicators demonstrating each sequence’s closeness to the target outcome. Right: VCIP evaluates intervention
sequences by modeling the probability of achieving the target outcome, conditioned on the observed history, and optimizing the likelihood
of reaching the target.

and leverages the g-formula (Robins, 1986) to establish
connections between interventional and observational likeli-
hoods. VCIP circumvents error accumulation that typically
arises from relying on explicit predictions and offers a robust
training framework, ensuring reliability with observational
data. Our main contributions are summarized as follows:

• We formulate the novel temporal counterfactual target
achievement problem of identifying intervention se-
quences that guide dynamic systems toward specified
target outcomes.

• We propose Variational Counterfactual Intervention
Planning (VCIP), a framework that directly models
target achievement likelihood through variational in-
ference, with theoretical guarantees for training on
observational data.

• Through extensive experiments on both synthetic and
real-world datasets, we demonstrate that VCIP con-
sistently outperforms existing approaches in terms of
target achievement accuracy.

2. Related Work
2.1. Temporal Counterfactual Estimation

Estimating temporal counterfactual outcomes is closely re-
lated to but fundamentally different from the proposed target
achievement task. Early work in this field focused on statis-
tical methods including g-formula, structural nested mod-
els, and marginal structural models (Robins, 1986; Robins
et al., 2000; Robins & Hernán, 2009). Due to the limi-
tations of linear regression in handling complex temporal
dependencies (Mortimer et al., 2005), research gradually
shifted towards Bayesian nonparametric frameworks (Xu
et al., 2016; Soleimani et al., 2017; Roy et al., 2017). How-

ever, these methods imposed strong prior assumptions on
model structures, limiting their practical applicability.

Recent advances primarily leverage deep neural networks,
including RMSN (Lim et al., 2018), CRN (Bica et al.,
2020), G-Net (Li et al., 2021), CT (Melnychuk et al., 2022),
and ACTIN (Wang et al., 2024). Architecturally, while
RMSN, CRN, and G-Net build upon basic LSTM networks,
CT adopts the more powerful Transformer architecture
(Vaswani et al., 2017) to address limitations in capturing
long-range dependencies among time-varying confounders
in longitudinal data (Hochreiter et al., 2001). ACTIN further
proposes a dual-module architecture to balance effectiveness
and efficiency.

These methods employ time-varying adjustment techniques
to mitigate confounding bias. RMSN builds dual propensity
networks with IPTW scoring. G-Net integrates g-formula
methods. CRN, CT, and ACTIN learn balanced represen-
tations through gradient reversal, reverse KL divergence
minimization, and distribution-based adversarial training re-
spectively. While these approaches advance temporal coun-
terfactual estimation, they have limitations for the target
achievement task.

2.2. Dynamic Treatment Regimes

Dynamic treatment regimes (DTRs) provide a formal frame-
work for personalizing treatments in sequential medical
decision-making while optimizing the population-level out-
comes (Murphy, 2003). Most existing work in DTR opti-
mization focuses on offline learning from observational data
(Zhang & Bareinboim, 2019). Recent works have explored
reinforcement learning (RL) approaches for DTR optimiza-
tion (Luckett et al., 2020; Raghu et al., 2017; Zhang &
Bareinboim, 2019), addressing challenges such as policy
evaluation biases from confounded data (Luo et al., 2024)
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and continuous state spaces (Tsirtsis & Gomez-Rodriguez,
2023). However, these methods primarily focus on find-
ing optimal treatment policies at the population level while
maintaining individual-level adaptivity. In contrast, our
work aims to predict and optimize treatment sequences for
specific individuals based on their historical trajectories,
differing from DTRs in two key aspects: (1) we focus on
individual-level optimization rather than population-level
policy learning, and (2) we directly maximize the probabil-
ity of achieving patient-specific target outcomes instead of
optimizing expected outcomes across the population.

3. Problem Formulation
Let D represent a longitudinal observational dataset com-
prising records from N subjects, structured as D ={
{x(i)

t ,a
(i)
t ,y

(i)
t }T

(i)

t=1 ∪ {v(i)}
}N
i=1

. Each subject’s trajec-
tory, denoted by index i, consists of sequential measure-
ments over T (i) time points, where X

(i)
t ∈ X represents

time-varying covariates, A(i)
t ∈ [0, 1]d or {0, 1}d denotes

continuous-valued or binary treatments, respectively, and
Y

(i)
t ∈ Y indicates the measured outcomes. Time-invariant

characteristics are captured in V(i) ∈ V . For simplicity in
notation, we will drop the subject indicator (i) when the
context is clear.

The temporal progression of a subject can be captured
through their historical trajectory H̄t = (X̄t, Āt−1, Ȳt,V),
where the bar notation represents the sequence up to time
t: X̄t = (X1, · · · ,Xt), Ȳt = (Y1, · · · ,Yt), and Āt−1 =
(A1, · · · ,At−1).

Under the potential outcomes framework (Rubin, 1978), let
āt,τ = (at, · · · ,at+τ−1) denote a sequence of treatments
from time t to t + τ − 1. We denote Y[āt,τ ] as the poten-
tial outcome at time t + τ that would be observed under
treatment sequence āt,τ (Robins et al., 2000). For coun-
terfactual target achievement, given a desired future state
Ytarget at time t+ τ , our research question focuses on deter-
mining the optimal sequence of treatments that maximizes
the likelihood of achieving this target:

ā∗ = argmaxā p(Y[āt,τ ] = Ytarget | H̄t). (1)

For causal identification with observational data, we rely on
standard assumptions including consistency, sequential ig-
norability, and positivity (see Appendix A). For comparison
of counterfactual target achievement with counterfactual
estimation and DTRs, we refer readers to Appendix C.

4. Methodology
In this work, we adopt a causal model as illustrated in Fig-
ure 2. The model incorporates latent factors Zs at each
timestep s (s = t, · · · , t + τ ) to represent the underlying
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Figure 2. Causal model for temporal dynamics. The latent factor
Zs at time s represents the system state, which encapsulates the
historical information H̄s. Specifically, Zt is encoded from his-
torical information H̄t, and the outcome Yt+τ is decoded from
the final latent state Zt+τ . The dashed arrows indicate the omitted
intermediate steps in the temporal sequence.

system state. We assume that Zs encodes all relevant histori-
cal information contained in H̄s, thus serving as a sufficient
representation of the system’s temporal evolution.

4.1. Evidence Lower Bound (ELBO) Derivation

The optimal intervention sequence for Equation 1 is ob-
tained by maximizing:

O := log pθ(Y[āt,τ ] = Yt+τ | H̄t), (2)

where θ denotes the parameters of the generative model.
Following the causal model in Figure 2, we introduce a vari-
ational distribution qφ(Z̄t,τ+1 | H̄t,Yt+τ , āt,τ ) to derive
the ELBO for optimizing O:

ELBO1 = Eqφ [log
pθ(Yt+τ , Z̄t,τ+1|H̄t, do(āt,τ ))

qφ(Z̄t,τ+1 | H̄t,Yt+τ , āt,τ )
], (3)

where the do(·) operator (Pearl, 2009) represents atomic
interventions that set variables to specific values, breaking
the causal link from Zs to as in the original causal model.
As a practical approximation, due to the inaccessibility of
the intervention distribution, we substitute it with the obser-
vational distribution. Therefore, we introduce a variational
distribution qφ(Z̄t,τ+1 | H̄t,Yt+τ , āt,τ ) to approximate
the posterior distribution under intervention, where the ef-
fects of interventions are partially captured in the observed
outcomes Yt+τ .

However, in our causal model, the intervention assignment
depends on latent factors, making it infeasible to directly
obtain the interventional distribution and optimize ELBO1.
Instead, we can optimize the following log-likelihood objec-
tive based on observational data:

O′ := log pθ(Yt+τ | H̄t, āt,τ ) (4)

Similarly, the ELBO for optimizing O′ can be derived as:

ELBO2 = Eqφ [log
pθ(Yt+τ , Z̄t,τ+1|H̄t, āt,τ )

qφ(Z̄t,τ+1 | H̄t,Yt+τ , āt,τ )
]. (5)
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To bridge the gap between interventional and observational
log-likelihoods (O and O′), we establish the following the-
orem:
Theorem 4.1. Given the causal model illustrated in Fig-
ure 2, assume there exists constants ε1, ε2 > 0 such that:

O − ELBO1 ≤ ε1, O′ − ELBO2 ≤ ε2.

Then optimizing O can be approximated by optimizing:

ELBO2 −
t+τ−1∑
s=t

Eqφ [log pθ(as | Zs)] + log pθ(āt,τ | H̄t) (6)

with the error bounded by ε1 + ε2.

The key to proving Theorem 4.1 lies in leveraging the G-
formula (Hedeker & Gibbons, 2006), which states:
Property 1 (g-formula). The expected potential outcome
under intervention sequence āt,τ can be expressed as:

pθ(Y[āt,τ ] = Yt+τ |H̄t) =∫
pθ(Yt+τ |H̄t, Z̄t,τ+1, āt,τ )× pθ(Zt | H̄t)×

Πt+τ
s=t+1 pθ(Zs|Zs−1,as−1)dZ̄t,τ+1. (7)

For the complete proof and detailed decomposition of the
ELBO terms, we refer readers to the Appendix.

4.2. Model Architecture

Generative model. Our causal model in Figure 2 assumes
the following factorization of the generative model:

pθ(Yt+τ , Z̄t,τ+1|H̄t, āt,τ ) = pθ(Yt+τ |Zt+τ )

×Πt+τ−1
s=t pθ(Zs+1|Zs, ās,τs)× pθ(Zt|H̄t), (8)

where τs = τ + t − s and each conditional distribution is
parameterized as a Gaussian with neural network-derived
parameters:

pθ(Yt+τ | ·) = N (µθy(Zt+τ ), σθy
2
(Zt+τ )), (9)

pθ(Zs+1 | ·) = N (µθz1(Zs, ās,τs), σ
θ
z1

2
(Zs, ās,τs)), (10)

pθ(Zt | ·) = N (µθz0(H̄t), σ
θ
z0

2
(H̄t)). (11)

Specifically, we employ a multilayer perceptron (MLP) for
µy and σy to decode the final system state Zt+τ into the
target output Yt+τ . Given the sequential nature of histori-
cal information H̄t, we utilize Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) architectures
for µz0 and σz0 to encode the initial system state Zt. Simi-
larly, the state transition functions µz1 and σz1 , which map
the current state and intervention to the next state, are also
implemented using LSTMs to capture the iterative dynamics
of the system.

For the intervention distributions in Equation 6, we model
them differently based on the type of interventions. When

Algorithm 1 Optimize Intervention Sequence
Require: Historical information H̄t, target Ytarget, trained

VCIP model, learning rate α, maximum epochs M
Ensure: Optimal intervention sequence ā∗t,τ

1: Initialize āt,τ randomly
2: for epoch = 1 to M do
3: Calculate LELBO using Equation 19
4: āt,τ ← āt,τ − α∇āt,τLELBO
5: end for
6: return ā∗t,τ = āt,τ

the interventions are continuous with values bounded in
[0, 1], we use Beta distributions:

pθ(as | ·) = Beta(αθ0(Zs), β
θ
0(Zs)), (12)

pθ(āt,τ | ·) = Πτ−1
i=0 Beta(αθ1(H̄t, āt,i), β

θ
1(H̄t, āt,i)). (13)

When the interventions are binary, we use Bernoulli distri-
butions:

pθ(as | ·) = Bern(πθ0(Zs)), (14)

pθ(āt,τ | ·) = Πτ−1
i=0 Bern(πθ1(H̄t, āt,i)). (15)

where α0, β0, and π0 are implemented using MLPs, while
α1, β1, and π1 are implemented using LSTM networks to
capture the temporal dependencies in interventions.

Inference model. We use an inference model qφ(Z̄t:t+τ |
H̄t,Yt+τ ) to approximate the posterior distribution of the
latent variables, which can be factorized as:

qφ(Z̄t:t+τ | H̄t,Yt+τ , āt,τ ) = qφ(Zt | H̄t)

×Πt+τ−1
s=t qφ(Zs+1 | Yt+τ , ās,τs ,Zs), (16)

where τs = τ + t− s. Each of the corresponding factors is
described as:

qφ(Zt|·)=N (µφz0(H̄t), σ
φ
z0

2(H̄t)), (17)

qφ(Zs+1|·)=N (µφz1(Yt+τ ,ās,τs ,Zs), σ
φ
z1

2(Yt+τ ,ās,τs ,Zs)),
(18)

where µ, σ are implemented by LSTM networks. Note that
Zs depends on the descendant latent factors after time s. To
implement this in practice, we use an LSTM to learn the
representation of intervention sequences ās,τs . Specifically,
at each time step s, we encode the current action as and sub-
sequent interventions through an LSTM network, producing
the latent representation of the intervention sequence.

4.3. Traning and Inference

To solve the optimal sequence in Equation 1, we first train
VCIP to maximize ELBO1 under observational data. Ac-
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cording to the previous section, we define:

LELBO =

t+τ∑
s=t

KL (qφ(Zs|·) ‖ pθ(Zs|·))

− Eqφ [log pθ(Yt+τ | Zt+τ )]

+ λ

(
t+τ−1∑
s=t

Eqφ [log pθ(as | Zs)]− log pθ(āt,τ | H̄t)

)
(19)

The first term on the RHS minimizes the KL divergence
to align the inference model qφ(Zs|·) with the generative
model pθ(Zs|·); the second term maximizes the probability
of achieving the target output Yt+τ . According to Theorem
1, optimizing these two terms is equivalent to maximizing
the observational ELBO2. When λ = 1, the third term
bridges the gap between interventional and observational
log-likelihoods.

During VCIP training, we split observational data into his-
torical and future τ -step information to optimize param-
eters φ and θ by minimizing the evidence lower bound
LELBO. After VCIP training, we fix all model parameters
and optimize the intervention sequence as learnable param-
eters. The specific process is shown in Algorithm 1 1. For
counterfactual-estimation methods, we employ a similar op-
timization algorithm, but the objective is to minimize the
distance between the predicted output and the target.

5. Experiments
In this section, we conduct comprehensive experiments to
evaluate the performance of VCIP against several state-of-
the-art baselines. Specifically, we validate our model on
both simulated tumor and real-world healthcare datasets to
demonstrate its effectiveness in intervention ranking and
counterfactual inference.

Baselines. We compare our method against state-of-the-
art models for counterfactual estimation over time: RMSN
(Lim et al., 2018), CRN (Bica et al., 2020), CT (Melnychuk
et al., 2022), and ACTIN (Wang et al., 2024). To ensure
fair comparison, we perform hyperparameter tuning for all
baselines (see details in Appendix.)

Datasets. The tumor dataset simulates lung can-
cer treatment dynamics through a pharmacokinetic-
pharmacodynamic framework (Geng et al., 2017). This
dataset serves as a benchmark for evaluating causal infer-
ence in sequential decision-making (Lim et al., 2018; Bica
et al., 2020). A key advantage of this bio-mathematical
model is its confounding parameter γ that modulates treat-
ment history’s impact on subsequent intervention decisions.
Higher values of γ correspond to stronger historical con-
founding effects in treatment allocation. To enhance clinical

1Code available at: https://github.com/
wangxin0126/VCIP-ICML

relevance, we extend the binary intervention space to a con-
tinuous domain, capturing the dose-dependent nature of
chemotherapy and radiotherapy treatments. The detailed
data generation protocol is presented in Appendix.

For real-world evaluation, we leverage the Medical Informa-
tion Mart for Intensive Care III (MIMIC-III) database (John-
son et al., 2016), which contains de-identified electronic
health records from intensive care unit patients. The tar-
get outcome variable is diastolic blood pressure under two
concurrent interventions: vasopressor administration and
mechanical ventilation support. The feature set comprises
25 time-varying physiological measurements and 3 static
patient characteristics, following the preprocessing proto-
col established in recent works (Hatt & Feuerriegel, 2021;
Kuzmanovic et al., 2021; Melnychuk et al., 2022).

5.1. Ranking-based Evaluation

To evaluate the model’s ability in ranking intervention se-
quences, we design a ranking-based evaluation framework.
Specifically, for each test sample (H̄t, āt,τ ,Ytarget), where
Ytarget = Y[āt,τ ] represents the output corresponding to the
ground truth sequence, we randomly generate k candidate
sequences {ā(i)

t,τ}ki=1, with some generated by adding ran-
dom perturbations to the ground truth sequence. For details,
please refer to Appendix D. This results in an evaluation
set containing k + 1 intervention sequences including the
ground truth sequence.

Based on this evaluation set, we obtain sequence rankings
through different models. For baseline models capable of
predicting conditional expectations Ŷ[āt,τ ] = E[Y[āt,τ ] |
H̄t], we rank the intervention sequences in ascending order
based on the deviation between predicted and target values
‖Ŷ[ā

(i)
t,τ ] − Ytarget‖, denoted as rpred. A higher ranking

position indicates that the intervention sequence is more
likely to achieve the target output Ytarget. For the VCIP
model, we rank sequences based on the ELBO loss LELBO,
where a lower value indicates a higher conditional likelihood
log pθ(Y[ā

(i)
t,τ ] = Ytarget | H̄t).

Based on the predicted ranking rpred, we propose the Ground
Truth Ranking Position (GRP) metric to evaluate the nor-
malized ranking of the ground truth sequence:

GRP =
k + 1− ξ

k
(20)

where ξ denotes the position of the ground truth sequence
in the predicted ranking (from 1 to k + 1). A higher GRP
value indicates a better ranking position of the ground truth
sequence, reflecting better model performance.

To comprehensively evaluate the model’s ranking ability,
we further propose the Ranking Correlation Score (RCS)
metric. Specifically, we first obtain the true ranking rtrue
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Figure 3. Comparison of GRP across different models on MIMIC-III dataset with varying prediction horizons (τ = 2, 4, 6, 8). Higher
GRP indicates better ranking performance.
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Figure 4. Evaluation results on the tumor simulation dataset with varying prediction horizons (τ = 2, 4, 6, 8) and fixed confounding bias
level (γ = 4). The upper row shows GRP and the lower row presents the RCS that measures the correlation between predicted and ground
truth rankings (ranging from -1 to 1), where higher values indicate better performance in both metrics.

by sorting all sequences in ascending order based on their
actual target distances ‖Y[ā

(i)
t,τ ]−Ytarget‖. RCS is defined as

the Spearman correlation coefficient between the predicted
ranking rpred and the true ranking rtrue (Spearman, 1961):

RCS = ρ(rpred, rtrue) (21)

where ρ(·, ·) denotes the Spearman correlation coefficient.
The RCS value ranges from [−1, 1], with values closer to 1
indicating better alignment between the predicted and true
rankings, reflecting more accurate assessment of interven-
tion sequence quality by the model.

Results. We first evaluate different models’ GRP perfor-
mance on the real-world MIMIC-III dataset, with results
shown in Figure 3. Overall, our proposed VCIP model
significantly outperforms baseline methods across all pre-
diction horizons τ , demonstrating its superiority in ranking
intervention sequences. From the perspective of prediction
horizon, baseline methods based on counterfactual estima-
tion (ACTIN, CT, RMSN, and CRN) tend to suffer from per-
formance degradation with larger τ , due to the accumulation

of prediction errors. In contrast, VCIP, which directly com-
putes ELBO using target outputs and intervention sequences,
not only maintains but improves its ranking accuracy with
larger τ . This improvement may be attributed to the model’s
ability to leverage richer intervention information contained
in longer sequences.

On the simulated tumor dataset with fixed confounding bias
(γ = 4), we compare the GRP and RCS metrics across
different models, with results shown in Figure 4. The eval-
uation demonstrates that VCIP significantly outperforms
baseline models on both GRP and RCS metrics across all
prediction horizons (τ = 2, 4, 6, 8). Notably, the mean RCS
maintains a high level above 0.7, indicating that VCIP’s
predicted intervention sequence rankings strongly corre-
late with ground truth rankings and accurately reflect how
different intervention sequences approach the target state.
Furthermore, as the prediction horizon increases, VCIP ex-
hibits an increasing performance advantage over baseline
models, demonstrating robust predictive stability.
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Table 1. The long-range prediction results on the tumor dataset (γ = 4) under identical intervention strategies for both training and test
sets are reported as target distance (mean ± std over five runs).

τ = 1 τ = 2 τ = 4 τ = 6 τ = 8 τ = 9 τ = 10 τ = 11 τ = 12

ACTIN 0.42± 0.14 0.71± 0.13 1.05± 0.21 1.30± 0.13 1.47± 0.13 1.55± 0.13 1.59± 0.16 1.63± 0.18 1.68± 0.21
CT 0.55± 0.20 0.88± 0.25 1.43± 0.36 1.69± 0.27 1.87± 0.39 2.01± 0.43 2.04± 0.46 2.10± 0.55 2.14± 0.59
CRN 0.38± 0.09 0.60± 0.08 0.92± 0.08 1.19± 0.18 1.33± 0.21 1.40± 0.24 1.49± 0.32 1.59± 0.41 1.62± 0.47
RMSN 0.30± 0.10 0.45± 0.10 0.75± 0.16 0.98± 0.22 1.15± 0.23 1.22± 0.25 1.28± 0.34 1.43± 0.32 1.47± 0.35

VCIP 0.29± 0.08 0.42± 0.13 0.60± 0.15 0.75± 0.20 0.92± 0.24 0.95± 0.24 0.99± 0.27 1.04± 0.27 1.09± 0.29

Table 2. The long-range prediction results on the tumor dataset (γ = 4) with distinct intervention strategies applied to training and test
sets are reported as target distance (mean ± std over five runs).

τ = 1 τ = 2 τ = 4 τ = 6 τ = 8 τ = 9 τ = 10 τ = 11 τ = 12

ACTIN 0.45± 0.13 0.78± 0.09 1.15± 0.08 1.49± 0.07 1.77± 0.23 1.90± 0.25 1.94± 0.29 2.06± 0.27 2.10± 0.30
CT 0.62± 0.19 0.93± 0.21 1.56± 0.25 1.98± 0.28 2.21± 0.37 2.34± 0.43 2.33± 0.45 2.40± 0.40 2.38± 0.40
CRN 0.47± 0.11 0.69± 0.10 1.03± 0.16 1.30± 0.20 1.64± 0.34 1.73± 0.36 1.80± 0.24 1.91± 0.29 2.05± 0.31
RMSN 0.37± 0.11 0.53± 0.07 0.81± 0.14 1.04± 0.24 1.34± 0.30 1.48± 0.31 1.59± 0.22 1.72± 0.28 1.83± 0.22

VCIP 0.29± 0.04 0.44± 0.06 0.71± 0.09 0.87± 0.10 1.08± 0.22 1.24± 0.26 1.28± 0.25 1.30± 0.18 1.36± 0.26
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Figure 5. Individual-level predictions under 100 candidate inter-
ventions on the tumor dataset (τ = 6, γ = 4) for VCIP and
ACTIN. Each point represents a normalized prediction score for a
specific intervention option.

Case study. To investigate why baselines perform poorly in
RCS ranking, we conduct a case study by selecting repre-
sentative samples. As shown in Figure 5, the experimental
results reveal a fundamental limitation of counterfactual
methods based on predicted potential outcomes for rank-
ing. Specifically, there exists a significant discrepancy be-
tween the predicted target distance ‖Ŷ[āit,τ ]−Ytarget‖ and
the true target distance ‖Y[āit,τ ] − Ytarget‖ (grey dashed
line). This discrepancy stems from the prediction error
‖Ŷ[āit,τ ]−Y[āit,τ ]‖, which cannot be evaluated in practice
due to the unobservability of the counterfactual outcome
Y[āit,τ ]. In contrast, VCIP’s ELBO loss better preserves
the monotonic relationship with the true target distance,
resulting in more reliable ranking.

5.2. Intervention Sequence Optimization

When interventions are continuous-valued, the approach
of selecting from a finite set of ranked intervention candi-
dates may prove inadequate for capturing the full spectrum
of possible interventions. To address this limitation, we
propose gradient-based intervention sequence optimization
algorithms for both the baseline methods and VCIP. In this
section, we evaluate the models’ capability to optimize in-
tervention sequences for achieving desired outcomes under
continuous intervention scenarios. Specifically, given a tar-
get trajectory Ytarget for an individual, we first obtain the
optimal intervention sequence ā∗t,τ using Algorithm 1, then
compute the target distance ‖Y[ā∗t,τ ] − Ytarget‖ between
the potential outcome and the target trajectory. A smaller
distance indicates that the obtained optimal sequence leads
to potential outcomes closer to the target output.

Results. Due to the unobservable nature of counterfactu-
als, we conduct evaluations exclusively on the simulated
tumor dataset. We compare the performance of different
models across varying confounding levels (γ = 1, 2, 3)
and prediction horizons (τ = 1 to τ = 6), with results illus-
trated in Figure 6. The experimental results demonstrate that
VCIP achieves comparable performance when confounding
is minimal (γ = 1) and shows superior performance as con-
founding intensities increase. While the prediction errors of
all models increase with both the confounding strength and
prediction horizon, VCIP maintains a clear advantage over
baseline methods under stronger confounding (especially
for τ = 2, 3), exhibiting better stability and lower prediction
errors in long-range predictions.

To further investigate the impact of prediction horizon on
model performance, we present the results for different pre-
diction horizons (τ = 1 to τ = 12) with γ = 4 in Table 1.
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Figure 6. Comparison of target distances across different models on the tumor dataset under varying confounding levels. The x-axis
represents different time steps, and the y-axis shows the mean target distance. Each subplot corresponds to a different confounding levels.

Table 3. Ablation study results comparing model performance with and without confounding adjustment.

GPR RCS Target distance

τ = 2 τ = 4 τ = 2 τ = 4 γ = 1 γ = 2 γ = 3 γ = 4

RMSN 0.863± 0.181 0.796± 0.267 0.400± 0.311 0.251± 0.299 0.078± 0.017 0.301± 0.131 0.599± 0.204 0.985± 0.215
RMSN w/o adjustment 0.797± 0.318 0.747± 0.348 0.461± 0.460 0.213± 0.407 0.087± 0.020 0.280± 0.144 0.694± 0.201 1.132± 0.090

VCIP 0.944± 0.091 0.972± 0.063 0.772± 0.206 0.869± 0.156 0.101± 0.069 0.192± 0.101 0.382± 0.085 0.746± 0.198
VCIP w/o adjustment 0.791± 0.334 0.796± 0.356 0.566± 0.508 0.595± 0.518 0.092± 0.080 0.284± 0.134 0.756± 0.299 0.912± 0.194

As shown in the table, the target distance increases with
longer prediction horizons across all models. VCIP consis-
tently achieves the lowest target distance across all predic-
tion horizons, outperforming all baselines by a substantial
margin. Specifically, for short-term predictions (τ = 1),
VCIP achieves a target distance of 0.29, showing a modest
improvement of 3.3% compared to RMSN (0.30). The per-
formance gap widens significantly for long-term predictions.
When τ = 12, VCIP maintains a target distance of 1.09,
outperforming the best baseline RMSN (1.47) by 25.9%,
demonstrating VCIP’s superior capability in handling long-
range predictions under strong confounding (γ = 4).

When applying identical intervention strategies for both
training and test sets, VCIP demonstrates superior perfor-
mance as shown above. To further evaluate the generaliza-
tion capability of different models under more challenging
scenarios, we conduct experiments where the intervention
strategies differ between training and test sets (see Appendix
for details of strategy generation). The results are presented
in Table 2. Even under this more challenging setting, VCIP
maintains its superior performance across all prediction hori-
zons. For short-term predictions (τ = 1), VCIP achieves
a target distance of 0.29, outperforming the best baseline
RMSN (0.37) by 21.6%. The advantage becomes more pro-
nounced for long-term predictions, where at τ = 12, VCIP
achieves a target distance of 1.36, showing a significant
improvement of 25.7% compared to RMSN (1.83). These
results show VCIP’s strong generalization capability when
facing unseen intervention strategies.

5.3. Abalation Study

Previous research has shown that addressing confounding
bias through proper adjustment is crucial for accurate coun-
terfactual estimation in longitudinal settings. In this work,
we employ g-formula for adjustment, specifically using the
last term in Equation (19) to bridge interventional and ob-
servational log-likelihoods. To evaluate the effectiveness of
adjustment, we conduct ablation studies by setting λ = 0
in Equation (19) and design corresponding ablations for
RMSN. Table 3 presents the results for both ranking tasks
(at γ = 4) and sequence optimization tasks (with τ = 6
evaluated across different γ values).

The ranking results demonstrate that adjustment signifi-
cantly enhances the performance of both models. For VCIP,
incorporating adjustment improves the GPR metric to 0.944
and 0.972 at τ = 2 and τ = 4 respectively (compared to
0.791 and 0.796 without adjustment), while RCS shows
stronger ranking capability (0.772 and 0.869 vs. 0.566 and
0.595). Similarly, RMSN’s GPR improves from 0.797 and
0.747 to 0.863 and 0.796 at respective horizons, accompa-
nied by enhanced RCS scores. These results indicate that
adjustment enables more accurate evaluation and ranking of
intervention sequences.

From the target distance perspective, adjustment helps both
models achieve more stable performance under strong con-
founding. Notably, at high confounding levels (γ = 3, 4),
VCIP with adjustment achieves target distances of 0.382
and 0.746, substantially outperforming its counterpart with-
out adjustment (0.756 and 0.912). RMSN exhibits a simi-
lar trend, with adjustment yielding better results at γ = 4
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(0.985 vs. 1.132). This confirms that adjustment effectively
handles confounding effects, enabling the models to identify
superior intervention sequences. Interestingly, the perfor-
mance gains from adjustment are less pronounced under
low confounding conditions (γ = 1, 2).

6. Conclusion
This paper introduces the novel counterfactual target
achievement problem, which aims to identify intervention
sequences that guide systems toward desired target out-
comes, addressing a critical need in many real-world applica-
tions like personalized healthcare. To address this problem,
we propose the VCIP framework that models the likelihood
of achieving target states through intervention sequences.
Unlike traditional counterfactual estimation methods that
accumulate prediction errors, VCIP provides a more robust
solution by learning target achievement probability. Exten-
sive experiments on both synthetic and real-world datasets
validate VCIP’s effectiveness.
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A. Assumptions
For accurate estimation of treatment effects using observational data, we consider three fundamental assumptions that form
the theoretical foundation of our work. These assumptions align with established frameworks in causal inference literature
(Lim et al., 2018; Bica et al., 2020; Li et al., 2021; Melnychuk et al., 2022; Wang et al., 2024):

Assumption A.1 (Consistency). The observed outcome Yt+1 matches the potential outcome Yt+1[at] when treatment at
is applied at time t, expressed as Yt+1 = Yt+1[at].

Assumption A.2 (Sequential Overlap). For any treatment at at time t, there exists a non-zero probability of assignment
conditioned on the historical trajectory h̄t. Mathematically, 0 < P (At = at | H̄t = h̄t) < 1, ∀at ∈ A when
P (H̄t = h̄t) > 0.

Assumption A.3 (Sequential Ignorability). Treatment assignment at time t exhibits conditional independence from
potential outcomes at t + 1, given the observed history: At ⊥ Yt+1[at] | H̄t, ∀at ∈ A. This ensures no unmeasured
confounding affects the treatment-outcome relationship.

B. Proof
We first derive the Evidence Lower BOund (ELBO) for both the log interventional likelihood and log observational
likelihood.

For the log interventional likelihood:

log pθ(Y[āt,τ ] = Ytarget | H̄t)

= log

∫
pθ(Ytarget | H̄t, āt,τ , Z̄t,τ+1) pθ(Zt | H̄t) Πt+τ

s=t+1 pθ(Zs | Zs−1,as−1)dZ̄t,τ+1

= log

∫
qφ(Z̄t,τ+1 | H̄t,Ytarget, āt,τ )

pθ(Ytarget, Z̄t,τ+1|H̄t, do(āt,τ ))

qφ(Z̄t,τ+1 | H̄t,Ytarget, āt,τ )
dZ̄t,τ+1

≥ Eqφ [log
pθ(Ytarget, Z̄t,τ+1|H̄t, do(āt,τ ))

qφ(Z̄t,τ+1 | H̄t,Ytarget, āt,τ )
] := ELBO1 (22)

For the log observational likelihood, we derive two different formulations. The first formulation is:

log pθ(Yt+τ = Ytarget|H̄t, āt,τ )

= log

∫
pθ(Ytarget, Z̄t,τ+1|H̄t, āt,τ ) dZ̄t,τ+1

= log

∫
qφ(Z̄t,τ+1|H̄t,Ytarget, āt,τ )

pθ(Ytarget, Z̄t,τ+1|H̄t, āt,τ )

qφ(Z̄t,τ+1|H̄t,Ytarget, āt,τ )
dZ̄t,τ+1

≥ Eqφ
[
log

pθ(Ytarget, Z̄t,τ+1|H̄t, āt,τ )

qφ(Z̄t,τ+1|H̄t,Ytarget, āt,τ )

]
:= ELBO2 (23)
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The alternative formulation of the log observational likelihood is:

log pθ(Yt+τ = Ytarget|H̄t, āt,τ )

= log pθ(Ytarget, H̄t, āt,τ )− log pθ(H̄t, āt,τ )

= log

∫
pθ(Ytarget, H̄t, āt,τ , Z̄t,τ+1)dZ̄t,τ+1 − log pθ(H̄t, āt,τ )

= log

∫
pθ(Ytarget | H̄t, āt,τ , Z̄t,τ+1)pθ(H̄t, āt,τ , Z̄t,τ+1)dZ̄t,τ+1 − log pθ(H̄t, āt,τ )

= log

∫
pθ(Ytarget | H̄t, āt,τ , Z̄t,τ+1) pθ(H̄t)pθ(Zt | H̄t) Πt+τ

s=t+1 pθ(Zs | Zs−1,as−1) Πt+τ
s=t pθ(as | Zs)dZ̄t,τ+1

− log pθ(H̄t, āt,τ )

= log

∫
pθ(Ytarget, Z̄t,τ+1|H̄t, do(āt,τ )) pθ(H̄t) Πt+τ

s=t pθ(as | Zs)dZ̄t,τ+1 − log pθ(H̄t, āt,τ )

= log

∫
qφ(Z̄t,τ+1 | H̄t,Ytarget, āt,τ )

pθ(Ytarget, Z̄t,τ+1|H̄t, do(āt,τ ))

qφ(Z̄t,τ+1 | H̄t,Ytarget, āt,τ )
pθ(H̄t) Πt+τ

s=t pθ(as | Zs)dZ̄t,τ+1 − log pθ(H̄t, āt,τ )

≥ Eqφ [log
pθ(Ytarget, Z̄t,τ+1|H̄t, do(āt,τ ))

qφ(Z̄t,τ+1 | H̄t,Ytarget, āt,τ )
+ log pθ(H̄t) +

t+τ∑
s=t

log pθ(as | Zs)]− log pθ(H̄t, āt,τ )

= Eqφ [log
pθ(Ytarget, Z̄t,τ+1|H̄t, do(āt,τ ))

qφ(Z̄t,τ+1 | H̄t,Ytarget, āt,τ )
+

t+τ∑
s=t

log pθ(as | Zs)]− log pθ(āt,τ | H̄t)

= ELBO1 +

t+τ∑
s=t

Eqφ [log pθ(as | Zs)]− log pθ(āt,τ | H̄t) (24)

The fifth equation follows from Property 1.
Theorem B.1. Given the causal model illustrated in Figure 2, assume there exists constants ε1, ε2 > 0 such that:

O − ELBO1 ≤ ε1, O′ − ELBO2 ≤ ε2.
Then optimizing O can be approximated by optimizing:

ELBO2 −
t+τ−1∑
s=t

Eqφ [log pθ(as | Zs)] + log pθ(āt,τ | H̄t) (25)

with the error bounded by ε1 + ε2.

Proof. From the alternative formulation of the observational distribution, we have:

log pθ(Ytarget | H̄t, āt,τ ) ≥ ELBO1 +

t+τ∑
s=t

Eqφ [log pθ(as | Zs)]− log pθ(āt,τ | H̄t)

log pθ(Ytarget | H̄t, āt,τ ) ≥ ELBO2

By the theorem assumptions:
O − ELBO1 ≤ ε1, O′ − ELBO2 ≤ ε2.

Substituting the first inequality into the first line of the observational distribution expression:

O ≤ ELBO1 + ε1

≤ log pθ(Ytarget | H̄t, āt,τ )−
t+τ∑
s=t

Eqφ [log pθ(as | Zs)] + log pθ(āt,τ | H̄t) + ε1

≤ (ELBO2 + ε2)−
t+τ∑
s=t

Eqφ [log pθ(as | Zs)] + log pθ(āt,τ | H̄t) + ε1
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Therefore:

O − (ELBO2 −
t+τ−1∑
s=t

Eqφ [log pθ(as | Zs)] + log pθ(āt,τ | H̄t)) ≤ ε1 + ε2

This establishes that optimizing the expression on the right-hand side approximates optimizing O, with an error bounded by
ε1 + ε2.

C. Problem Comparisons
To highlight the distinct characteristics of our proposed counterfactual target achievement problem, we compare it with
two widely-adopted problems in sequential decision-making: counterfactual estimation and dynamic treatment regimes
(DTRs). While all three approaches address temporal treatment planning, they differ fundamentally in their objectives,
methodologies, and levels of analysis, as summarized in Table 4.

C.1. Counterfactual Estimation

The counterfactual estimation framework focuses on predicting potential outcomes under specific treatment sequences.
Given a patient’s history H̄t = (X̄t, Āt−1, Ȳt,V), the goal is to estimate the expected outcome:

E[Yt+τ [āt,τ ]|H̄t] (26)

This framework enables individual-level outcome prediction but does not directly optimize treatment sequences.

C.2. Dynamic Treatment Regimes

DTRs provide a formal framework for personalizing treatments in sequential decision-making while optimizing the
population-level outcomes. Unlike traditional fixed treatment protocols, DTRs adapt treatment decisions based on each
patient’s evolving characteristics and treatment history, yet aim to maximize the expected outcome across the entire patient
population.

A DTR is defined as a structural causal modelM = 〈U,V,F, P (u)〉, where U represents unobserved exogenous variables,
and V = {XK ,SK , Y } comprises treatment variables XK = {X1, . . . , XK} over K stages, time-varying covariates
SK = {S1, . . . , SK}, and a primary outcome Y ∈ [0, 1]. The structural functions F determine how variables evolve: state
transitions follow Sk ← τk(x̄k−1, s̄k−1,u), treatment assignments are given by Xk ← fk(s̄k, x̄k−1,u), and the outcome is
generated as Y ← r(x̄K , s̄K ,u). The distribution P (u) specifies the underlying randomness in the system.

A treatment policy π consists of a sequence of decision rules {πk}Kk=1, where each πk : Sk × Xk−1 → P(Xk) maps the
history of states and treatments to a distribution over the next treatment. When executed, the policy induces an interventional
distribution:

Pπ(x̄K , s̄K , y) = Px̄K (y|s̄K)

K−1∏
k=0

Px̄k(sk+1|s̄k)πk+1(xk+1|s̄k+1, x̄k) (27)

The core objective in DTR optimization is to find a policy π∗ that maximizes the expected outcome across the entire
population:

π∗ = argmaxπ∈ΠVπ(M) = argmaxπ∈ΠEπ[Y ] (28)

While DTRs have been extensively studied in the medical decision-making literature, our work addresses a fundamentally
different problem. There are two key distinctions between DTRs and our proposed problem:

• Optimization Objective: DTRs aim to learn optimal treatment policies that maximize population-level outcomes
(Eπ[Y ]). In contrast, our problem focuses on identifying treatment sequences for specific individuals that maximize the
probability of achieving a target state, formulated as ā∗ = argmaxāp(Y[āt,τ ] = Ytarget | H̄t).
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Table 4. Comparison of key characteristics across different temporal treatment planning problems. Our counterfactual target achievement
problem differs from existing approaches in its objective function, output form, analysis level, and decision timeline.

Aspect Counterfactual Target
Achievement (ours)

Counterfactual
Estimation

Dynamic Treatment
Regimes

Objective
Function maxā p(Y[āt,τ ] = Ytarget | H̄t) E[Yt+τ [āt,τ ] | H̄t]

maxπ∈Π Vπ(M) =
maxπ∈Π Eπ[Y ]

Output
Form

Complete treatment plan
ā∗t,τ

Potential outcomes under
treatment sequence

āt,τ

Decision rules
{πk : Sk ×Xk−1 →
P(Xk)}Kk=1

Analysis
Level

Individual trajectory
optimization

Individual-level outcome
prediction

Population-level
optimization

Decision
Timeline Plan full sequence in advance Estimate future outcomes

given treatment sequence Make decisions sequentially

• Analysis Level: While DTR policies allow for individual-level adaptation, their optimization is fundamentally
conducted at the population level. Our approach operates purely at the individual level, making predictions and
optimizing treatment sequences based on each patient’s unique historical trajectory H̄t.

These fundamental differences in objectives and methodology explain why traditional DTR evaluation metrics and com-
parison frameworks are not directly applicable to our work. Our problem more closely aligns with personalized trajectory
planning, where success is measured by the accuracy of individual-level predictions and the achievement of patient-specific
target states.

D. Datasets description
D.1. Synthetic tumor dataset

Research presented in (Geng et al., 2017) employs a Tumor Growth (TG) simulator to forecast tumor volume progression
over t + 1 days following initial cancer detection, generating single-dimensional outputs. The framework encompasses
two therapeutic interventions: radiation treatment (Ar

t ) and pharmaceutical therapy (Ac
t ). Our adaptation transforms the

intervention variables from discrete to continuous values between 0 and 1. The therapeutic impacts manifest differently:
radiation demonstrates immediate effects d(t) on subsequent measurements, while pharmaceutical intervention exhibits
extended influence C(t) across multiple time points, as expressed by:

Yt+1 =

(
1 + ρ log

(
K

Yt

)
− βCC(t)− (αrd(t) + βrd(t)2) + εt

)
Yt, (29)

The simulation parameters ρ,K, βC , αr, βr are predefined, with εt representing random variation drawn from N(0, 0.012).
Patient-specific responses are characterized through parameters βC , αr, βr, derived from a three-component truncated
normal mixture distribution. The mixture components serve as unchanging patient characteristics. Detailed parameter
specifications are available in the anonymous repository. Time-dependent confounding affects both interventions through
biased assignment protocols. The allocation probabilities for both treatments follow beta distributions:

Ar
t ,A

c
t ∼ Beta(2σt, 2− 2σt), (30)

where

σt = σ

(
γ

Dmax

(
D̄15(Ȳt−1)−Dmax/2

))
, (31)
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Here, σ(·) denotes a sigmoid activation, Dmax represents maximum tumor size, D̄15(Ȳt−1) indicates average tumor
dimensions over a 15-day window, and γ controls confounding intensity. When γ equals zero, treatment assignments
become purely random, while increasing values intensify time-varying confounding effects. In our implementation, dt and
Ct are modeled through cubic spline transformations of Ar

t and Ac
t , respectively:

d(t) = 2ψr(A
r
t ), (32)

C(t) = 5ψc(A
c
t), (33)

where ψr and ψc represent cubic spline transformations for the respective treatments. This nonlinear functional approach
creates more realistic treatment-response relationships.

To ensure different strategies between testing and training phases, during the testing stage, interventions are randomly
selected (with probability η) to follow an independent strategy, where Ar

t ,A
c
t ∼ Beta(α, β), with α and β being constants

independent of historical data.

The dataset comprises 1,000 training trajectories, 100 validation sequences, and 100 test cases across different confounding
levels γ. Individual trajectories extend up to 60 time steps, though early termination may occur due to patient outcomes.

Following established methodologies (Bica et al., 2020; Melnychuk et al., 2022), performance evaluation utilizes normalized
target distance, calculated relative to the maximum tumor volume Vmax = 1150 cubic centimeters.

D.2. MIMIC-III Clinical Dataset

The Medical Information Mart for Intensive Care III (MIMIC-III) database (Johnson et al., 2016) constitutes a rich repository
of de-identified clinical records from intensive care units. This comprehensive database encompasses diverse healthcare data
elements including physiological measurements, medication administrations, laboratory results, clinical documentation,
diagnostic classifications, and patient outcomes. To ensure systematic data processing and reproducibility, we employ the
MIMIC-Extract framework (Wang et al., 2020), which implements standardized preprocessing procedures for the MIMIC-III
database.

In alignment with recent methodological developments (Hatt & Feuerriegel, 2021; Kuzmanovic et al., 2021; Melnychuk
et al., 2022), our analysis incorporates 25 longitudinal physiological indicators and 3 time-invariant patient characteristics.
These features, particularly the categorical variables, undergo one-hot encoding transformation to facilitate numerical
analysis. The intervention space comprises two binary treatment decisions commonly encountered in critical care settings:
the administration of vasopressors and the implementation of mechanical ventilation support. We designate diastolic blood
pressure as our primary outcome measure, given its clinical significance and sensitivity to both therapeutic interventions,
thereby providing meaningful insights into patient trajectory management.

The experimental cohort consists of 5,000 patients with intensive care episodes spanning between 30 and 60 hours. This
dataset undergoes a strategic partition into training (70%), validation (15%), and testing (15%) subsets. For temporal
predictions extending τ steps ahead (τ ≥ 2), we establish τmax as an upper bound on the prediction horizon. We extract
sub-trajectories of minimum length τmax + 1 using rolling windows, with temporal alignment achieved by removing initial
observations up to τ (i) − τmax + 1, thus maintaining temporal causality. For immediate-horizon predictions (τ = 1), we
utilize complete trajectory sequences from the test cohort.

D.3. Candidate Generation

We employ a hybrid approach to generate candidate sequences. Our framework creates random sequences (50%–80% of
candidates) and perturbed ground truth sequences (20%–50% of candidates). The perturbation strategy is treatment-mode
specific:

• For discrete interventions: We randomly flip bits in the ground truth sequence with probability 0.2.

• For continuous interventions: We apply context-aware shifts where values are modified based on their magnitude
(low values shifted up, high values shifted down, middle values shifted randomly).
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Table 5. Model comparison results across different interference levels (γ) and prediction horizons (τ ), with same intervention strategies
applied during training and testing phases. Results are reported as target distance values (mean ± std over five runs).

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

γ = 1 ACTIN 0.05±0.03 0.04±0.02 0.08±0.05 0.10±0.07 0.12±0.11 0.08±0.04
CT 0.04±0.03 0.05±0.01 0.09±0.05 0.09±0.06 0.11±0.09 0.11±0.06
CRN 0.04±0.03 0.04±0.02 0.06±0.03 0.08±0.06 0.09±0.06 0.08±0.03
RMSN 0.04±0.02 0.05±0.02 0.08±0.06 0.08±0.04 0.11±0.07 0.08±0.02
VCIP 0.02±0.01 0.04±0.03 0.07±0.05 0.07±0.05 0.10±0.08 0.10±0.07

γ = 2 ACTIN 0.10±0.02 0.15±0.07 0.22±0.08 0.27±0.12 0.32±0.16 0.36±0.16
CT 0.13±0.05 0.21±0.19 0.27±0.18 0.38±0.30 0.42±0.29 0.50±0.38
CRN 0.10±0.04 0.16±0.08 0.23±0.10 0.28±0.17 0.32±0.17 0.37±0.23
RMSN 0.07±0.02 0.11±0.05 0.17±0.07 0.20±0.09 0.31±0.23 0.30±0.13
VCIP 0.06±0.02 0.09±0.06 0.13±0.07 0.16±0.09 0.18±0.13 0.19±0.10

γ = 3 ACTIN 0.24±0.07 0.40±0.11 0.51±0.13 0.60±0.11 0.66±0.10 0.74±0.08
CT 0.36±0.12 0.54±0.16 0.70±0.15 0.84±0.17 0.97±0.18 1.04±0.17
CRN 0.23±0.07 0.36±0.08 0.47±0.10 0.57±0.10 0.65±0.13 0.71±0.12
RMSN 0.16±0.05 0.25±0.09 0.32±0.10 0.41±0.14 0.51±0.15 0.60±0.20
VCIP 0.15±0.04 0.18±0.06 0.29±0.10 0.34±0.10 0.38±0.09 0.38±0.08

γ = 4 ACTIN 0.42±0.14 0.71±0.13 0.91±0.17 1.05±0.21 1.19±0.10 1.30±0.13
CT 0.55±0.20 0.88±0.25 1.18±0.23 1.43±0.36 1.58±0.22 1.69±0.27
CRN 0.38±0.09 0.60±0.08 0.79±0.13 0.92±0.08 1.11±0.23 1.19±0.18
RMSN 0.30±0.10 0.45±0.10 0.61±0.16 0.75±0.16 0.89±0.28 0.98±0.22
VCIP 0.29±0.08 0.42±0.13 0.53±0.15 0.60±0.15 0.68±0.19 0.75±0.20

E. Appended Results
This section presents additional experimental results of different models on the tumor simulation dataset. The evaluation
was conducted from two main aspects focusing on model performance under identical and different intervention strategies.

Under identical intervention strategies (Table 5), the results demonstrate that as the interference level γ increases (from
1 to 4), prediction errors of all models show an upward trend, indicating that stronger interference reduces prediction
accuracy. The VCIP model achieved optimal performance in most cases, particularly showing significant advantages at
higher interference levels (γ=3,4). As the prediction horizon τ extends, prediction errors increase across all models, which
aligns with the intuition that longer-term predictions are more challenging.

Under different intervention strategies (Table 6), prediction errors increased compared to identical intervention scenarios,
reflecting the generalization challenges models face when encountering unseen intervention strategies. VCIP and RMSN
models demonstrated better adaptability, especially in short-term predictions (τ=1,2). At high interference levels (γ=3,4),
performance differences between models became more pronounced, with VCIP maintaining relatively stable predictive
capabilities.

Figures 7 through 10 show that the subtle consistency between GPR and RCS metrics under both identical and distinct
intervention strategies suggests that the ranking process itself may introduce variations in intervention patterns, potentially
affecting the comparative assessment of model performance across different evaluation metrics.

F. Hyperparameter Tuning
The hyperparameter settings used in our experiments are detailed in Table 7. For all baseline models including RMSN, CRN,
CT, and ACTIN, we followed the hyperparameter optimization strategy and ranges consistent with those reported in (Wang
et al., 2024). Specifically, hyperparameter optimization was conducted through random grid search. Readers can refer to
(Wang et al., 2024) for detailed hyperparameter configurations of these baseline models.
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Table 6. Model comparison results across different interference levels (γ) and prediction horizons (τ ), with distinct intervention strategies
applied during training and testing phases. Results are reported as target distance values (mean ± std over five runs).

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

γ = 1 ACTIN 0.15±0.09 0.18±0.10 0.27±0.20 0.33±0.22 0.40±0.28 0.45±0.33
CT 0.17±0.07 0.23±0.10 0.38±0.12 0.45±0.18 0.50±0.17 0.59±0.23
CRN 0.12±0.04 0.15±0.04 0.19±0.07 0.27±0.08 0.30±0.07 0.36±0.09
RMSN 0.10±0.03 0.14±0.02 0.20±0.05 0.28±0.10 0.33±0.12 0.36±0.09
VCIP 0.10±0.05 0.14±0.07 0.19±0.10 0.27±0.15 0.24±0.11 0.22±0.08

γ = 2 ACTIN 0.17±0.05 0.28±0.07 0.41±0.08 0.47±0.09 0.60±0.18 0.60±0.16
CT 0.21±0.08 0.32±0.11 0.49±0.15 0.58±0.17 0.70±0.26 0.74±0.28
CRN 0.19±0.05 0.30±0.11 0.41±0.16 0.49±0.19 0.62±0.28 0.60±0.21
RMSN 0.13±0.06 0.20±0.08 0.29±0.07 0.39±0.12 0.53±0.23 0.50±0.17
VCIP 0.11±0.06 0.25±0.15 0.25±0.12 0.38±0.30 0.55±0.36 0.35±0.10

γ = 3 ACTIN 0.44±0.35 0.67±0.45 0.90±0.64 0.96±0.58 0.98±0.56 1.10±0.58
CT 0.52±0.13 0.81±0.21 1.11±0.38 1.27±0.47 1.32±0.36 1.41±0.39
CRN 0.31±0.09 0.53±0.14 0.71±0.22 0.82±0.22 0.91±0.28 1.04±0.33
RMSN 0.22±0.06 0.35±0.10 0.50±0.18 0.55±0.10 0.59±0.06 0.69±0.09
VCIP 0.17±0.04 0.39±0.24 0.42±0.25 0.49±0.27 0.49±0.16 0.62±0.25

γ = 4 ACTIN 0.45±0.13 0.78±0.09 1.00±0.11 1.15±0.08 1.38±0.10 1.49±0.07
CT 0.62±0.19 0.93±0.21 1.30±0.27 1.56±0.25 1.81±0.30 1.98±0.28
CRN 0.47±0.11 0.69±0.10 0.90±0.13 1.03±0.16 1.25±0.13 1.30±0.20
RMSN 0.37±0.11 0.53±0.07 0.68±0.11 0.81±0.14 0.96±0.22 1.04±0.24
VCIP 0.29±0.04 0.44±0.06 0.61±0.11 0.71±0.09 0.77±0.11 0.87±0.10

Table 7. Specified ranges for hyperparameter tuning of VCIP across various datasets.

Hyperparameter Range (tumor) Range (MIMIC-III)

Learning rate l 0.01, 0.001 0.01, 0.001
Minibatch size 128, 256, 512, 1024 128, 256, 512, 1024
Representation size 8, 12, 16 8, 16, 32
hidden size (Generative model) 8, 12, 16 8, 16, 32
FC hidden units (Generative model) 8, 12, 16 8, 16, 32
hidden size (Inference model) 8, 12, 16 8, 16, 32
FC hidden units (Inference model) 8, 12, 16 8, 16, 32
Dropout rate 0, 0.1, 0.2, 0.3 0, 0.1, 0.2, 0.3
Random search iterations 30 30
Number of epochs 100 100

G. Limitations
Our approach hinges on the standard causal identification assumptions of consistency, positivity and sequential ignorability.
In particular, positivity requires that each candidate intervention has sufficient support in the observational data, and
violations of this assumption can lead to severe degradation in optimization performance. Sequential ignorability assumes
that all confounders affecting both treatment assignment and outcomes are observed and correctly modeled; unobserved
confounding remains an open challenge and may introduce bias into both estimation and downstream planning.

Beyond these identification requirements, practical deployment poses additional challenges. The variational inference and
sequential planning stages are computationally intensive, making real-time decision support and scaling to large cohorts
or long horizons difficult without further algorithmic improvements. Clinical time-series data are often sparse, irregularly
sampled and plagued by missing values; while imputation and generative augmentation can help, they introduce extra
hyperparameters and potential sources of bias. Finally, personalized intervention policies must be accompanied by rigorous
fairness, transparency and privacy safeguards—ethical and governance issues that our current framework does not explicitly
address but which are critical for real-world applications.
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Figure 7. Evaluation results (Part 1) on the tumor simulation dataset with varying prediction horizons (τ = 2, 4, 6, 8) under different
confounding bias levels (γ = 1, 2). The real intervention sequence in test set follows the identical intervention strategy as in training set.
The figures show GRP metrics that measure model performance, where higher values indicate better predictive capability.
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Figure 8. Evaluation results (Part 2) on the tumor simulation dataset with varying prediction horizons (τ = 2, 4, 6, 8) under different
confounding bias levels (γ = 3, 4).
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Figure 9. Evaluation results (Part 1) on the tumor simulation dataset with varying prediction horizons (τ = 2, 4, 6, 8) under different
confounding bias levels (γ = 1, 2). The real intervention sequence in test set follows a different intervention strategy from training set.
The figures show GRP metrics that measure model performance, where higher values indicate better predictive capability.
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Figure 10. Evaluation results (Part 2) on the tumor simulation dataset with varying prediction horizons (τ = 2, 4, 6, 8) under different
confounding bias levels (γ = 3, 4).
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