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Abstract

While the quality of synthetic text data has greatly improved in recent years, thanks
to specialized architectures such as large language models (LLMs), tabular data
has received relatively less attention. To address this disparity, we present Tabby:
a modification to the LLM architecture that enables its use for tabular dataset
synthesis. Tabby consists of a novel adaptation of Gated Mixture-of-Expert layers,
allowing each data column to be modeled by dedicated parameters within the
Transformer multi-layer perceptrons or language modeling head. Applying Tabby
to Distilled GPT-2 improves synthetic data quality (measured by machine learning
efficacy) by up to 2.7% compared to previous tabular dataset synthesis methods,
achieving performance near or equal to that of real data.

1 Introduction

Tabular data is ubiquitous within many domains. Airplane black boxes, website visitor logs and
hospital patient records are just a few examples of this versatile modality, which contains rows
representing datapoints and columns representing data features. Despite the wide utility of tabular
data, this modality has received less attention in modern machine learning than images and text.

The need for improved tabular machine learning techniques has been highlighted by many [9? , 27, 5].
Furthermore, it has been speculated that effective tabular data models may have an equal, if not larger
value and impact, than text and image models [27]. Humans are capable of interpreting complex
images and skimming complicated texts on-the-fly. Meanwhile, humans are reliant on tools such
as Pandas [18] or Excel [6] to achieve the same ability of capturing the patterns, ideas and general
“big-picture" understanding of tabular data. For this reason, machine learning models may have an
easier time exceeding human performance in the tabular modality than in images and text.

Despite the large performance gains that are likely possible in further tabular machine learning
research, this modality’s progress is slowed by several key challenges. First, tabular data columns
may exhibit complex interdependencies, with complexity increasing proportionately to the number of
columns in the dataset. Second, many tabular datasets are in fact a combination of various modalities,
with text, numerical, and nested datatypes (such as a JSON, dictionary, or other structured object)
possible among the columns of one dataset. Third, although the order of items within one column of
one row is important, the order of columns with respect to each other is not usually meaningful. The
best way to design and train models that are capable of learning arbitrary column modalities without
learning spurious correlations caused by the order of dataset columns remains an open question.

There have been notable efforts to extend several preexisting model architectures to this modality.
The first works in this direction focused primarily on GANs [? 29], while more recent works include
diffusion models and large language models (LLMs). These deep-learning-based works achieve
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higher generation quality, but require significantly more data and compute resources to train than
GAN-based methods, a drawback particularly notable for diffusion models. For these reasons, works
such as van Breugel and van der Schaar [27] have called for the development of specialized pretrained
Large Tabular Models (LTMs), to fill a similar role as Large Language Models (LLMs) or Image
Foundation Models including GPT [? ] and DALL-E [? ]. However, the creation of LTMs would
require large and diverse tabular pretraining sets which do not currently exist, a specialized tabular
model architecture which has yet to be designed, along with a staggering amount of compute resorces
for pretraining.

In this work, we take an initial step towards the development of a LTM by proposing Tabby, a
modification to the LLM architecture for enabling tabular data synthesis. Tabby’s core innovation is
the application of Mixture-of-Expert (MoE) layers [24] to tabular synthesis. To our knowledge, Tabby
is the first architecture modification to make LLMs better-suited to table generation. Using a pretrained
LLM as a starting point allows Tabby to take advantage of its diverse text pretraining, avoiding the
logistical challenges of training a LTM entirely from scratch. According to our evaluations using
machine learning efficacy with a Decision Tree downstream classifier, Tabby’s synthetic data is the
first to reach parity with non-synthetic data in two out of three datasets (and achieves the best results
out of all works in the third dataset). We summarize our contributions as follows:

• We introduce Tabby, the first architecture modification that allows LLMs to be better-suited to
generating tabular data.

• We explore multiple tabular training techniques for LLMs, including our Plain method: a simple,
lightweight training technique that may serve as an effective baseline for training future tabular
LLM works.

• We demonstrate that Tabby produces higher-quality synthetic data across three datasets, and also
allows greater insights into the model’s performance and training progress than other tabular
synthesis approaches.

After a discussion of this area’s preexisting work in Section 2, we provide more details on Tabby in
Section 3. Next, we conduct extensive experiments in Section 4.

2 Related Work

Tabular data has played a central role in machine learning since the field’s early days. In particular,
Decision Trees [26] and their relatives such as Random Forests [4] are well-adapted to classification
or regression tasks on tabular datasets.

Classical synthesis: Classical machine learning methods may be used to synthesize tabular data,
by modeling each column as a random variable and sampling from the multivariate distribution
representing all columns in the dataset. This technique has been successfully applied to decision trees
[22] and Bayesian networks [1, 30] . Copulas [10, 13, 3] are another traditional approach, which rely
on first modeling each column as a univariate random distribution, then fitting a probabilistic model
to the multivariate distribution formed by all columns. However, these approaches are limited in the
data types that may be represented among the columns and the varieties of relationships that may be
modeled across columns.

Deep learning approaches: For these reasons, several tabular synthesis methods rely on deep
learning techniques– in particular, Generative Adversarial Networks (GANs) [? ]. CTGAN [29], a
top-performing approach, is designed to address the inherent limitations of GANs for tabular data
generation. In particular, the distributions of ordinal columns are frequently rather imbalanced,
leading less-sophisticated models to undesirable phenomena such as mode collapse. Continuous
columns may possess multiple modes and complex interactions with the other columns which GANs
struggle to capture. CTGAN employs conditional generation to address these shortcomings. However,
the fidelity of CTGAN’s synthetic data leaves further improvements to be desired, as demonstrated in
Section 4.

LLMs: A small body of work has sought to apply LLMs’ demonstrated abilities of modeling
complex relationships to tabular data [9]. The landmark work in this area, GReaT [5], details methods
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Figure 1: An overview of the Tabby MMLP (left) and MH (right) modifications.

by which to convert tabular data into a sentence format which may be input to LLMs, then proposes a
training technique of “shuffling" the order in which columns occur for each row. This randomized
ordering allows the LLM to better learn inter-column dependencies.

Two notable works have built off of GReaT to achieve further improved tabular data fidelity: TapTap
[31] pretrains full or Distilled GPT-2 [21] on a variety of tabular datasets before fine-tuning on a
downstream tabular synthesis task, while Tabula [33] explores methods of preprocessing the training
data to be more easily modeled by LLMs. Other LLM-based works have adapted these recent
advances to relational tables [25], or used the emergent abilities of very large models such as GPT-4
to generate synthetic data using In-Context Learning in place of fine-tuning [23].

Because many of these prior LLM-based works are training techniques, they may be applied in
concert with the Tabby architecture modification. We demonstrate this using GReaT, TapTap and
Tabula in Section 4.

MoE Architectures: The key innovation of Tabby is the application of Gated Mixture of Expert
(MoE) layers [24, 17] for LLM synthesis of tabular data. MoE layers have enjoyed utility in multitask
[16, 11, 12] and multimodal learning [32, 7, 20], by creating sets of model parameters that are
dedicated to a specific task or set of similar tasks. We describe our use of MoE layers in Section 3.

3 Method

Tabby is an architecture modification that may be applied to any Transformer-based [28] language
model (LM). In Section 3.1, we describe the variations of Tabby. In Section 3.2 , we describe the
process for training an arbitrary LM on tabular data, then compare the training process’s forward
pass and loss calculation of a Tabby model to a non-Tabby model in Section 3.3. Tabby increases the
expressivity of LMs, allowing for better modeling of individual columns’ distributions and resulting
in higher generative fidelity.

3.1 Architecture of Tabby Models

Suppose that a tabular dataset contains V columns and let the order of blocks within an arbitrary
Transformer-based LM be represented as [L1, L2, . . . , LH ]. We apply the MoE technique by replacing
an LM block La with a vector Λa = [La,1, La,2, . . . La,V ] of V blocks. As such, a Tabby model with
one MoE block Λa is represented as [L1, L2, . . . , La−1, [La,1, La,2, . . . La,v], La+1, . . . , LH ]. The
i-th dataset column will be modeled by La,i within Λa.
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While this technique may be applied to any set of layers within the model, we focus on the transformer
blocks’ multi-layer perceptrons (MLPs) and the language modeling (LM) Head. We refer to Tabby
models with MoE MLPs as MMLP models, while models with MoE LM Heads are referred to as
MH models. Those with both MoE MLPs and MoE LM Heads are MMLP-MH models.

For a visual comparison of Tabby’s architecture with that of a general LM, refer to Figure 1.

3.2 Fine-Tuning LLMs on Tabular Data

We now describe the general conventions applied when training or fine-tuning an LM on a tabular
dataset. Suppose our training dataset contains N rows and the dataset’s column names are denoted
by v1, v2, . . . , vV , where the value of the j-th row in the i-th column is denoted as vji . For a given
row, the model will train on the columns in order ℓ1, ℓ2, . . . , ℓV (for general training we consider this
order to be simply [V ], while GReaT training allows this order to be arbitrary).

To provide the LM with its expected text modality input, we convert the j-th row as follows, where
<EOS> is the end-of-sequence token and <EOC> is a specialized end-of-column token which we
introduce to divide the text between columns:

“<BOS> vℓ1 is vjℓ1 <EOC> vℓ2 is vjℓ2 <EOC> · · · vℓV is vjℓV <EOS>"

After converting the tabular dataset in this fashion, an LM is capable of fine-tuning on the dataset in a
normal sequence-to-sequence style. The prompt for each row during training is the beginning-of-
sequence token <BOS>. During generation, the LM will output text in a similar format to the training
data, which can then be parsed into tabular data as desired.

3.3 Tabby Training

At the beginning of fine-tuning a new Tabby model, the weights for each layer in an MoE set Λa are
initialized to equal the weights of La, the corresponding layer in the original LM.

The Tabby training process requires only slight modifications as compared to the training of other
LLs on tabular data. Instead of representing each training row as one string, we convert each row into
a length-V list of strings as follows:

[“vℓ1 is vjℓ1 <EOC>", “vℓ2 is vjℓ2 <EOC>", · · ·, “vℓV is vjℓV <EOS>"]

Internally, the Tabby model begins by training on column ℓ1 with prompt <BOS>, attending to tokens
0 through k−1 when predicting the k-th token. After computing the loss on column ℓ1, this column’s
tokens are appended to the prompt used to train column ℓ2. As such, the prompt when training on
column ℓi is

“<BOS>vℓ1 is vjℓ1 <EOC> vℓ2 is vjℓ2 <EOC> · · · vℓi−1
is vjℓi−1

<EOS>"

A favorable side-effect of this training style is that we calculate the losses for each column separately,
allowing the performances of each column to be monitored separately and compared, as demonstrated
in Section 4.3.

4 Evaluation

We conduct a thorough evaluation of Tabby using several standard tabular datasets and metrics as
detailed in Section 4.1. In Section 4.2, we compare Tabby to a broad array of prior works, while in
Section 4.3, we delve further into the behavior of Tabby and how it adapts to a tabular dataset during
training.

4.1 Setup

Calculation of results Throughout the experiments, the reported results for each model and training
setup is the average across three training runs. For each of the three trained models, we sample
10, 000 datapoints, compute all evaluation metrics separately for the three resulting synthetic datasets,
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Table 1: Summary statistics of datasets. The first three columns list the number of rows in each
data split, while the next two columns display the number of categorical versus numerical features,
respectively. The rightmost column details whether the dataset is considered a classification or
regression task in downstream evaluations.

N Train N Validation N Test # Cat. # Num. Task
Adult [2] 36631 3663 8548 8 6 Classification

Diabetes [14] 576 57 135 0 8 Classification
House [19] 15480 1548 3612 0 8 Regression

then calculate the average metric value across all runs. For LLM approaches, each model is trained
for up to 50 epochs, using early stopping when the validation loss (assessed every 5000 steps) fails
to improve twice in a row. We perform grid search to select the learning rate with lowest validation
loss for each model and training setup. For non-LLM works, we reuse the training setups and
hyperparameters selected in their respective publications.

Metrics Multiple standard metrics exist for evaluating the quality of synthetic data, its fidelity to
the training data, as well as its ability to preserve the privacy of the examples in the trainset. We
focus on machine learning efficacy and detection accuracy.

Machine learning efficacy (MLE) quantifies whether a synthetic dataset would be capable of replacing
the original, real data used to train a generative model. Given a real tabular dataset, we form disjoint
training and test sets, denoted by R and D respectively. A generative model is trained on R, then
generates a synthetic dataset S.

To calculate MLE, a downstream classifier or regressor KR is trained using R to predict a predeter-
mined label column, using all other columns as features. An additional classifier or regressor KS is
similarly trained on S. Then, the performance of KS and KR on the real test dataset D is evaluated:
a high-fidelity synthetic dataset S will allow KS to exhibit similar performance to KR despite never
encountering real datapoints before test-time.

We compare MLE using three downstream models: random forest, decision tree and logistic or linear
regression. We compare the accuracy of KR and KS on D for classification tasks and the mean
squared error on D for regression tasks.

Detection Accuracy: While MLE is useful in assessing whether synthetic data captures patterns in the
real dataset, we additionally aim to determine whether the generative model also introduces spurious
correlations or other identifying patterns that differentiate the synthetic from the real data. Given the
real training dataset R and a synthetic dataset S, we sample the same number of rows from each.
Next, we train a random forest classifier C to discriminate between real and synthetic examples.
Highest-quality synthetic data will result in 50% discrimination accuracy, indicating that C is unable
to distinguish between R and S.

Datasets We evaluate Tabby on three standard tabular datasets, summarized in Table 1.

Adult [2] is a dataset commonly used to benchmark tabular classification algorithms. Each row
contains basic information on one American adult, such as their age, years of education and marital
status. For each adult, the downstream task is to predict whether their annual income is above or
below $50, 000. The features are a mix of categorical and numerical columns, with each numerical
column taking only integer values.

Another common binary classification dataset, Diabetes [14] contains medical information on female
hospital patients, including age, number of pregnancies and skin thickness. Downstream models learn
to predict whether a given patient suffers from diabetes. Apart from the label, all dataset columns are
numerical, with some columns taking only integer values, while others are floats.

House [19] is a standard regression dataset, where each row represents a block of houses in California
during the 1990 census. The dataset records the number of households residing in the block, the
block’s median building age, average number of bedrooms, and other basic information. The dataset’s
target column is the block’s median house value, which is numerical and allows us to assess Tabby’s
synthetic data in a regression task.
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Training techniques As introduced in Sections 2 and 3.3, there are multiple approaches to training
LLMs on tabular data which are compatible regardless of whether Tabby is applied.

As a baseline training technique, we implement Plain training. While this method has not been
described in prior LLM works, it represents a basic method of training the LLM on the columns in
the same order as they are found in the training dataset. At sample time, we simply prompt with
<BOS> and parse the resulting model output.

Next, we explore the GReaT technique [5] as introduced in Section 2. At each step, the order in
which the columns are presented to the model are selected at random, independently of all other
steps. During generation, GReaT enforces that the distribution of the label column matches that of
the training distribution. Suppose that the label column is vt and let St be the set of all unique values
taken by vt in the trainset (regardless of whether vt is a categorical or numerical column). GReaT
prompts the LLM with <BOS>vt is st, where st is sampled from St with probability proportionate
to the frequency of st in column vt.

We additionally explore the use of two more training techniques in conjunction with GReaT. TAPTAP
[31] is a checkpoint of Distilled GPT-2 pretrained using GReaT on a large collection of tabular
datasets. Meanwhile, Tabula [33] aims to address the challenges encountered by LLMs on categorical
columns: Tabula converts each categorical column into an ordinal format by replacing each unique
value of the column with a unique integer. In many cases, this technique reduces sequence length,
decreasing training and generation time, and helps the LLM during sampling to only generate values
that occur within the categorical column’s training distribution.

4.2 Experiment 1: Comparison to Related Works

Comparisons We begin our evaluations by comparing Tabby to prior LLM tabular techniques, as
well as non-LLM approaches. All LLM approaches use Distilled GPT-2 or the TAPTAP Distilled
GPT-2 that is pretrained on tabular data as a base model. In addition to Tabby MMLP, MH and
MMLP-MH models, we finetune Non-Tabby (NT) Distilled GPT-2 as a baseline.

To represent non-LLM tabular synthesis techniques, we include Tab-DDPM [15], a diffusion model,
as well as CTGAN [29] and TVAE [29], the leading GAN and VAE approaches, respectively.

Results Table 2 summarizes the MLE results for the classification datasets, Adult and Diabetes, by
reporting the average accuracy for each model and training technique. Similarly, Table 3 presents
the MLE results for the regression dataset, House, using mean squared error (MSE) as the primary
metric. The top row of results in both tables corresponds to the “Real" MLE achieved by training the
downstream classifier KR on the original training data R instead of synthetic data. We consider this
row as an upper ceiling for synthetic approaches, so any model and training technique that achieves
MLE equal to or better than the “Original" row is considered to be a top-performing approach.

We find that Tabby consistently achieves higher MLE than Non-Tabby and non-LLM models. In
particular, Plain-trained Tabby models demonstrate the highest MLE across the majority of metrics.
While the lower-performing Tabby models experience a boost in performance when trained using
GReaT alone or with TapTap and Tabula, the highest LLM performance overall is generally exhibited
by Plain-trained Tabby MH models. While Tab-DDPM also achieves high performance on the
classification datasets, its scores are often within the margin of error for these datasets. Meanwhile,
Plain-trained Non-Tabby and Tabby MH models outperform Tab-DDPM for House’s regression task
in all three downstream classifiers.

We view similarly-desirable performance in Tabby through the discrimination accuracy metric
in Table 4. Where 50% accuracy is the ideal score, implying that the classifier is incapable of
distinguishing synthetic from real datapoints, we find that most methods are unreliable: they achieve
good metrics on some datasets and struggle for others. Meanwhile, Plain-trained Tabby MH models
achieve good scores across all datasets.

4.3 Experiment 2: Tabby behavior

Our final experiment analyzes Tabby’s progress of fitting to a tabular dataset during training. For
three runs, we train a Tabby MH model on a subset of the House dataset containing 5160 datapoints
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Table 2: Machine Learning Efficacy (MLE) for the classification datasets. Reported metric is the
accuracy of the downstream classifier, which is a Random Forest Classifier (RF), Decision Tree
Classifier (DT) or Logistic Regression model (LR). The row “Original" corresponds to upper-bound
performance. In each row, the top result (or any result higher than upper-bound) is presented in bold.

Adult Diabetes
RF DT LR RF DT LR

Original 84.5 81.4 83.7 73.3 71.1 75.6
CTGAN 76.2± 3.9 68.1± 6.4 76.2± 3.7 52.1± 14.7 50.1± 11.2 56.0± 14.7

TVAE 80.4± 2.5 77.2± 2.9 78.1± 3.1 62.2± 5.5 61.2± 5.1 64.4± 6.1
Tab-DDPM 83.9± 0.3 79.8± 0.0 83.5± 0.1 71.9± 4.5 69.4± 4.7 70.4± 7.7

Pl
ai

n

NT 84.5± 0.4 79.5± 1.2 82.6± 0.8 75.3± 1.5 71.4± 5.9 76.5± 1.1
MMLP 77.4± 1.4 71.0± 2.2 76.8± 2.1 74.8± 3.4 67.4± 2.0 71.1± 3.4

MH 84.5± 0.2 79.7± 0.8 83.1± 0.3 74.3± 0.4 70.6± 3.0 77.0± 0.7
MMLP-MH 76.6± 0.6 71.3± 5.1 74.8± 3.1 68.1± 0.7 66.2± 1.9 70.9± 4.8

G
R

ea
T

NT 82.9± 1.1 77.3± 1.9 82.1± 0.2 62.2± 0.7 54.3± 3.4 62.0± 0.4
MMLP 83.2± 0.6 76.0± 3.5 82.4± 0.3 73.8± 0.9 70.1± 4.5 74.8± 0.7

MH 83.2± 0.1 76.9± 0.7 81.5± 0.8 63.7± 1.3 58.8± 2.6 62.5± 0.4
MMLP-MH 83.0± 0.2 76.6± 1.4 82.0± 0.2 69.4± 3.7 63.7± 7.4 72.6± 2.7

T
T

NT 82.9± 0.8 75.8± 0.7 82.2± 0.8 71.9± 5.9 57.8± 5.1 72.3± 2.4
MMLP 83.4± 0.3 77.1± 1.5 82.1± 0.5 69.4± 4.3 62.2± 6.6 70.6± 3.7

MH 77.1± 5.3 73.6± 3.4 73.9± 7.6 62.5± 0.4 49.9± 3.8 62.2± 0.0
MMLP-MH 83.0± 0.5 77.5± 1.3 82.1± 0.7 75.3± 1.5 66.7± 0.0 74.8± 0.0

Table 3: MLE for the regression dataset. Reported metric is the mean squared error (MSE) of the
downstream regressor, which is a Random Forest Regressor (RF), Decision Tree Regressor (DT)
or Linear Regression model (LR). Unlike the results in Table 2, lower MSE scores are better. As
such, the lowest result (or any result lower than the lower-bound presented in the row “Original" is
presented in bold.

House

RF DT LR

Original 25.9 39.1 54.6
CTGAN 143.2± 58.7 171.5± 66.2 156.7± 52.0

TVAE 133.4± 58.8 146.7± 55.2 221.9± 85.9
Tab-DDPM 54.8± 0.4 73.1± 3.2 81.1± 0.5

Pl
ai

n

NT 40.9± 14.4 63.0± 27.8 567.9± 519.8
MMLP 835414.9± 1421184.9 33676.0± 29753.3 6908.3± 9919.7

MH 33.3± 0.2 45.2± 4.7 64.0± 5.2
MMLP-MH 2222.6± 1483.1 2594.8± 3633.2 230.4± 176.9

G
R

ea
T

NT 45.1± 2.4 52.6± 4.1 862.0± 362.7
MMLP 43.0± 1.2 51.8± 0.8 1032.6± 21.1

MH 43.9± 1.0 52.6± 1.6 665.6± 84.8
MMLP-MH 42.7± 1.9 51.4± 0.6 897.8± 87.5

T
T

NT 43.7± 3.0 54.8± 6.8 782.5± 255.3
MMLP 44.0± 1.1 54.8± 1.3 794.9± 62.6

MH 45.5± 0.4 55.3± 1.1 681.9± 86.3
MMLP-MH 43.2± 1.5 52.6± 0.1 931.8± 120.1
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Table 4: Discriminator accuracy for synthetic data generated by each model and training technique.
Scores closest to 50% are better, signifying that the discriminator is unable to distinguish between
real and synthetic examples.

Adult Diabetes House
CTGAN 97.8± 25.1 88.9± 27.3 81.8± 18.1

TVAE 96.4± 24.1 95.2± 30.8 89.0± 21.3
Tab-DDPM 50.6± 1.0 61.5± 0.5 83.2± 3.8

Pl
ai

n

NT 58.2± 1.0 56.7± 5.7 56.7± 5.7
MMLP 83.6± 8.9 68.0± 3.1 70.2± 4.4

MH 59.8± 0.8 44.0± 2.1 53.8± 0.6
MMLP-MH 81.4± 11.6 68.6± 2.0 73.8± 1.8

G
R

ea
T

NT 70.4± 1.0 68.4± 4.2 68.4± 4.2
MMLP 68.4± 0.9 66.1± 0.2 66.1± 0.2

MH 70.1± 1.7 79.5± 2.1 69.1± 0.8
MMLP-MH 69.6± 0.8 77.1± 1.6 66.3± 0.8

T
T

NT 70.5± 1.7 68.6± 2.0 68.6± 2.0
MMLP 67.8± 0.8 68.6± 0.7 69.0± 0.9

MH 76.2± 6.6 78.1± 1.6 69.2± 0.7
MMLP-MH 68.3± 0.3 74.2± 1.4 65.7± 1.0

Figure 2: Per-column validation loss across 10 epochs of training Tabby MH Distilled GPT-2 on a
subset of House, with average validation loss (black line). While the Occupancy column initially
displays the highest loss, Median Income improves little throughout training and becomes the
highest-loss column by step 32000.

and six columns. We log the individual columns’ losses on the evaluation dataset every 2500 steps
while training for 10 epochs, then display the results in Figure 2.

We observe that the Occupancy column is the largest contributor to the model’s loss until step 32000.
While the Median Income column’s loss is initially the second-lowest of all columns, it improves
little throughout the training process and exhibits the highest loss of all columns at the end of training.
Additionally, we view that convergence occurs around step 40000.

These insights are useful in cases where the model struggles to learn some columns more than
others. A machine learning practitioner could use this information to consider implementing better
preprocessing for a difficult column, or gathering more datapoints that demonstrate a difficult column’s
distribution. Additionally, the ability to track each column’s loss individually and to determine that
the losses are roughly balanced across columns, rather than very low in some columns and very high
in others, may improve trust in the model– we can understand that there is a low, aleatoric error in
each column as opposed to a sizeable epistemic error in a few columns.
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5 Conclusion

We introduce Tabby, a Mixture-of-Experts-based architecture modification that allows LLMs to
be better suited to tabular datasets. Tabby reaches parity with non-synthetic data in two out of
three evaluated datasets, according to machine learning efficacy with a Decision Tree Classifier.
Due to the promising performance of Tabby, we hope to spur future work in this area and further
experimentation with architecture modifications that allow LLMs to better fit to tabular data. The
concepts behind Tabby may find utility in similar modalities as well, such as geospatial, nested-list,
or other highly-structured data.
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