META-CHUNKING: LEARNING EFFICIENT TEXT SEG-MENTATION VIA LOGICAL PERCEPTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG), while serving as a viable complement to large language models (LLMs), often overlooks the crucial aspect of text chunking within its pipeline, which impacts the quality of knowledge-intensive tasks. This paper introduces the concept of Meta-Chunking, which refers to a granularity between sentences and paragraphs, consisting of a collection of sentences within a paragraph that have deep linguistic logical connections. To implement Meta-Chunking, we designed Perplexity (PPL) Chunking, which balances performance and speed, and precisely identifies the boundaries of text chunks by analyzing the characteristics of context perplexity distribution. Additionally, considering the inherent complexity of different texts, we propose a strategy that combines PPL Chunking with dynamic merging to achieve a balance between fine-grained and coarse-grained text chunking. Experiments conducted on eleven datasets demonstrate that Meta-Chunking can more efficiently improve the performance of singlehop and multi-hop question answering based on RAG. For instance, on the 2Wiki-MultihopQA dataset, it outperforms similarity chunking by 1.32 while only consuming 45.8% of the time. Furthermore, through the analysis of models of various scales and types, we observed that PPL Chunking exhibits notable flexibility and adaptability.

027 028 029

030

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

1 INTRODUCTION

031 Retrieval-augmented generation (RAG), as a cutting-edge technological paradigm, aims to address 032 challenges faced by large language models (LLMs), such as data freshness (He et al., 2022), hal-033 lucinations (Bénédict et al., 2023; Chen et al., 2023b; Zuccon et al., 2023; Liang et al., 2024), and 034 the lack of domain-specific knowledge (Li et al., 2023; Shen et al., 2023). This is particularly relevant in knowledge-intensive tasks like open-domain question answering (Lazaridou et al., 2022). By integrating two key components: the retriever and the generator, this technology enables more 036 precise responses to input queries (Singh et al., 2021; Lin et al., 2023). While the feasibility of 037 the retrieval-augmentation strategy has been widely demonstrated through practice, its effectiveness heavily relies on the relevance and accuracy of the retrieved documents (Li et al., 2022; Tan et al., 2022). The introduction of excessive redundant or incomplete information through retrieval not only 040 fails to enhance the performance of the generation model but may also lead to a decline in answer 041 quality (Shi et al., 2023; Yan et al., 2024). 042

In response to the aforementioned challenges, current research efforts mainly focus on two aspects: 043 improving retrieval accuracy (Zhuang et al., 2024; Sidiropoulos & Kanoulas, 2022; Guo et al., 2023) 044 and enhancing the robustness of LLMs against toxic information (Longpre et al.; Kim et al., 2024). However, in RAG systems, a commonly overlooked aspect is the chunked processing of textual 046 content, which directly impacts the quality of dense retrieval (Xu et al., 2023). By delicately splitting 047 long documents into multiple chunks, this module not only significantly improves the processing 048 efficiency and performance of the system, reducing the consumption of computing resources, but also enhances the accuracy of retrieval (Besta et al., 2024). Meanwhile, the chunking strategy allows information to be more concentrated, minimizing the interference of irrelevant information, enabling 051 LLMs to focus more on the specific content of each text chunk and generate more precise responses (Su et al., 2024). Traditional text chunking methods, often based on rules or semantic similarity 052 (Zhang et al., 2021; Langchain, 2023; Lyu et al., 2024), provide some structural segmentation but are inadequate in capturing subtle changes in logical relationships between sentences. As illustrated

056

060

061

062

063

064 065

067

068 069

071

073

074 075 076

Figure 1: Overview of RAG pipeline, as well as examples based on rules, similarity, and PPL segmentation. The same background color represents being located in the same chunk.

in Figure 1, example sentences exhibit a progressive relationship, yet their semantic similarity is
low, which may result in their complete separation. The LumberChunker (Duarte et al., 2024) offers
a novel solution by utilizing LLMs to receive a series of consecutive paragraphs and accurately
identify where content begins to diverge. However, it demands a high level of instruction-following
ability from LLMs, necessitating the use of the Gemini model, which incurs significant resource
and time costs. This raises a practical question: How can we fully utilize the powerful reasoning
capabilities of LLMs while efficiently accomplishing the text chunking task at a lower cost?

084 This paper introduces the concept of **Meta-Chunking**, which operates at a granularity between sen-085 tences and paragraphs, aiming to enhance logical coherence in the process of text segmentation. Meta-Chunking consists of sets of sentences within paragraphs that share deep linguistic and log-087 ical connections. To address the limitations of traditional methods based on semantic similarity, 880 we leverage the powerful comprehension and reasoning capabilities of LLMs to devise the Meta-Chunking strategy: Perplexity (PPL) Chunking. This method calculates the PPL of each sentence 089 based on its context and identifies text chunk boundaries by analyzing the characteristics of PPL dis-090 tribution. It effectively reduces the dependency of text chunking on model scale, enabling smaller 091 language models with relatively weaker reasoning capabilities to adequately perform this task. Fur-092 thermore, PPL Chunking improves the efficiency of LLMs in handling chunking tasks, achieving both resource and time savings. This provides crucial support for LLMs to process text chunking in 094 real-world scenarios. 095

To comprehensively evaluate proposed methods, extensive experiments were conducted on eleven 096 datasets across four benchmarks, involving both Chinese and English texts, ranging from brief to extensive documents, and measured through seven key metrics. In response to the inherent complexity 098 of different datasets, we propose a Meta-Chunking with dynamic combination strategy designed to achieve a valid balance between fine-grained and coarse-grained text segmentation. Traditional 100 chunking methods treat sentences as independent logical units, whereas we adopt meta-chunks as 101 independent logical units. For instance, in the RAG system, if users opt for a small model and 102 set a relatively low top k value for recall, meta-chunks can be directly utilized. However, in cases 103 where users employ LLMs with extended contexts and require larger text chunks, meta-chunks can 104 initially be generated and subsequently merged based on the desired chunk size to achieve the final 105 chunking outcome. Experimental results fully demonstrate that the Meta-Chunking strategy significantly improves performance compared to traditional rule-based and semantic chunking. More 106 importantly, compared to the current LLMs approache, the method proposed in this paper exhibits 107 superior performance in terms of efficiency and cost savings.

108 2 RELATED WORKS

109 110

Text Segmentation It is a fundamental task in NLP, aimed at breaking down text content into its 111 constituent parts to lay the foundation for subsequent advanced tasks such as information retrieval 112 (Li et al., 2020) and text summarization (Lukasik et al., 2020; Cho et al., 2022). By conducting topic 113 modeling on documents, Kherwa & Bansal (2020) and Barde & Bainwad (2017) demonstrate the 114 identification of primary and sub-topics within documents as a significant basis for text segmenta-115 tion. Numerous techniques exist for topic modeling, ranging from algorithms based on probabilistic 116 methods, such as Latent Dirichlet Allocation (Blei et al., 2003) and Probabilistic Latent Semantic 117 Analysis (Hofmann et al., 1999), to models that also consider semantic relationships between words and sentences, like Top2Vec (Angelov, 2020) and BERTopic (Grootendorst, 2022). Additionally, 118 Zhang et al. (2021) frames text segmentation as a sentence-level sequence labeling task, utilizing 119 BERT to encode multiple sentences simultaneously. It calculates sentence vectors after model-120 ing longer contextual dependencies and finally predicts whether to perform text segmentation after 121 each sentence. Langchain (2023) provides flexible and powerful support for various text process-122 ing scenarios by integrating multiple text segmentation methods, including character segmentation, 123 delimiter-based text segmentation, specific document segmentation, and recursive chunk segmen-124 tation. Although these methods better respect the structure of the document, they have limitations 125 in deep contextual understanding. To address this issue, semantic-based segmentation (Kamradt, 126 2024) utilizes embeddings to aggregate semantically similar text chunks and identifies segmentation 127 points by monitoring significant changes in embedding distances.

128 **Text Chunking in RAG** LLMs have demonstrated remarkable capabilities in language-related 129 tasks through their complex internal structures and reasoning mechanisms (Zheng et al., 2024). 130 By expanding the input space of LLMs through introducing retrieved text chunks (Guu et al., 2020; 131 Lewis et al., 2020), RAG significantly improves the performance of knowledge-intensive tasks (Ram 132 et al., 2023). Text chunking plays a crucial role in RAG, as ineffective chunking strategies can lead 133 to incomplete contexts or excessive irrelevant information, thereby hurting the performance of QA 134 systems (Yu et al., 2023). Besides typical granularity levels like sentences or paragraphs (Lyu et al., 2024; Gao et al., 2023), there are other advanced methods available. Chen et al. (2023a) introduced 135 a novel retrieval granularity called Proposition, which is the smallest text unit that conveys a single 136 fact. This method excels in fact-based texts like Wikipedia. However, it may not perform ideally 137 when dealing with content that relies on flow and contextual continuity, such as narrative texts, lead-138 ing to the loss of critical information. Meanwhile, LumberChunker (Duarte et al., 2024) iteratively 139 harnesses LLMs to identify potential segmentation points within a continuous sequence of textual 140 content, showing some potential for LLMs chunking. However, this method demands a profound 141 capability of LLMs to follow instructions and entails substantial consumption when employing the 142 Gemini model.

143 144

3 Methodology

145 146 147

148

3.1 Meta-Chunking

Our main contribution is an innovative text segmentation technique named **Meta-Chunking**, which leverages the capabilities of LLMs to flexibly partition documents into logically coherent, independent chunks. Our approach is grounded in a core principle: allowing variability in chunk size to more effectively capture and maintain the logical integrity of content. This dynamic adjustment of granularity ensures that each segmented chunk contains a complete and independent expression of ideas, thereby avoiding breaks in the logical chain during the segmentation process. This not only enhances the relevance of document retrieval but also improves content clarity.

 As illustrated in Figure 2, our method integrates the advantages of traditional text segmentation strategies, such as adhering to preset chunk length constraints and ensuring sentence structural integrity, while enhancing the ability to guarantee logical coherence during the segmentation process.
 The key lies in introducing a novel concept between sentence-level and paragraph-level text granularity: Meta-Chunking. A meta chunk consists of a collection of sequentially arranged sentences within a paragraph, where the sentences not only share semantic relevance but, more importantly, contain deep linguistic logical connections, including but not limited to causal, transitional, parallel, and progressive relationships. These relationships go beyond mere semantic similarity. In order to achieve this goal, we have designed and implemented the following strategy.

Perplexity Chunking: Given a text, the initial step involves segmenting it into a collection of sentences denoted as $(x_1, x_2, ..., x_n)$, with the ultimate goal being to further partition these sentences into several chunks, forming a new set $(X_1, X_2, ..., X_k)$, where each chunk comprises a coherent grouping of the original sentences. We split the text into sentences and use the model to calculate the PPL of each sentence x_i based on the preceding sentences:

$$\mathsf{PPL}_M(x_i) = \frac{\sum_{k=1}^{K} \mathsf{PPL}_M(t_k^i | t_{< k}^i, t_{< i})}{K} \tag{1}$$

where K represents the total number of tokens in x_i , t_k^i denotes the k-th token in x_i , and $t_{<i}$ signifies all tokens that precede x_i . To locate the key points of text segmentation, the algorithm further analyzes the distribution characteristics of $PPL_{seq} = (PPL_M(x_1), PPL_M(x_2), \dots, PPL_M(x_n))$, particularly focusing on identifying minima:

$$\operatorname{Minima}_{index}(\operatorname{PPL}_{seq}) = \left\{ i \mid \min(\operatorname{PPL}_M(x_{i-1}), \operatorname{PPL}_M(x_{i+1})) - \operatorname{PPL}_M(x_i) > \theta, \\ or \operatorname{PPL}_M(x_{i-1}) - \operatorname{PPL}_M(x_i) > \theta \text{ and } \operatorname{PPL}_M(x_{i+1}) = \operatorname{PPL}_M(x_i) \right\}$$
(2)

182 The meaning of the above formula include: when the PPL on both sides of a point are higher than at 183 that point, and the difference on at least one side exceeds the preset threshold θ ; or when the differ-184 ence between the left point and the point is greater than θ and the right point equals the point value. 185 These minima are regarded as potential chunk boundaries. If the text exceeds the processing range of LLMs or device, we strategically introduce a key-value (KV) caching mechanism. Specifically, 186 the text is first divided into several parts according to tokens, forming multiple subsequences. As 187 the PPL calculation progresses, when the GPU memory is about to exceed the server configuration 188 or the maximum context length of LLMs, the algorithm appropriately removes KV pairs of previous 189 partial text, thus not sacrificing too much contextual coherence. 190

To address diverse chunking needs of users, merely adjusting the threshold to control chunk size 191 sometimes leads to uneven chunking sizes as the threshold increases, as shown in Section 5.2.2 and 192 5.2.3. Therefore, we propose a strategy combining Meta-Chunking with dynamic merging, aiming to 193 flexibly respond to varied chunking requirements. Firstly, we set an initial threshold of 0 or a specific 194 value based on the PPL distribution and perform Meta-Chunking operations, preliminarily dividing 195 the document into a series of basic units $(c_1, c_2, \ldots, c_{\alpha})$. Subsequently, according to the user-196 specified chunk length L, we iteratively merge adjacent meta-chunks until the total length satisfies 197 or approximates the requirement. Specifically, if $len(c_1, c_2, c_3) = L$ or $len(c_1, c_2, c_3) < L$ while $len(c_1, c_2, c_3, c_4) > L$, then c_1, c_2, c_3 are regarded as a complete chunk. 199

206 207 208

211

212

170 171 172

177 178 179

181

3.2 THEORETICAL ANALYSIS OF PPL CHUNKING

LLMs are designed to learn a distribution Q that approximates the empirical distribution P from sample texts. To quantify the closeness between these two distributions, cross-entropy is typically employed as a metric. Under the discrete scenario, cross-entropy of Q relative to P is formally defined as follows:

$$H(P,Q) = E_p[-logQ] = -\sum_{x} P(x) \log Q(x) = H(P) + D_{KL}(P||Q)$$
(3)

where H(P) represents the empirical entropy, and $D_{KL}(P||Q)$ is the Kullback-Leibler (KL) divergence between Q and P. The PPL of LLMs, mathematically speaking, is defined as:

$$PPL(P,Q) = 2^{H(P,Q)}$$
(4)

It is essential to notice that, since H(p) is unoptimizable and bounded as shown in Appendix A.1, what truly impacts the discrepancy in PPL calculations across different LLMs is the KL divergence, which serves as a metric to assess the difference between distributions. The greater the KL divergence is, the larger the disparity between two distributions signifies. Furthermore, high PPL

Figure 2: Overview of the entire process of Meta-Chunking. Each circle represents a complete sentence, and the sentence lengths are not consistent. The vertical lines indicate where to segment. The two sides at the bottom of the figure reveal Margin Sampling Chunking and Perplexity Chunking. Circles with the same background color represent a meta-chunk, which is dynamically combined to make the final chunk length meet user needs.

indicates the cognitive hallucination of LLMs towards the real content, and such portions should not be segmented.

On the other hand, Shannon (1951) approximates the entropy of any language through a function

$$G_{K} = -\sum_{T_{k}} P(T_{k}) \log_{2} P(t_{k}|T_{k-1})$$

= $-\sum_{T_{k}} P(T_{k}) \log_{2} P(T_{k}) + \sum_{T_{k-1}} P(T_{k-1}) \log_{2} P(T_{k-1})$ (5)

where T_k represents k consecutive tokens $(t_1, t_2, ..., t_k)$ in a text sequence, entropy can then be expressed as

$$H(P) = \lim_{K \to \infty} G_K \tag{6}$$

Then, based on the proof in Appendix A.1 that $G_{K+1} \leq G_K$ for all $K \geq 1$, we can derive

$$G_1 \ge G_2 \ge \dots \ge \lim_{K \to \infty} G_K = H(P) \tag{7}$$

By combining formulas (3) and (7), we observe that for large-scale text processing tasks, increasing the context length tends to reduce the cross-entropy or PPL, a phenomenon that reflects the ability of LLMs to make more effective logical inferences and semantic understandings after capturing broader contextual information. Consequently, during PPL Chunking experiments, we maximize the input of longer text sequences to LLMs, anticipating more substantial performance gains.

4 EXPERIMENT

4.1 DATASETS AND METRICS

We conducted a comprehensive evaluation on four benchmarks and comparison between Meta-Chunking and multiple baselines on a series of question answering (QA) datasets, focusing on both Chinese and English languages, and covering multiple metrics such as the correctness of an-swers, factuality, and recall of retrieved texts. The CRUD benchmark (Lyu et al., 2024) is a Chinese dataset containing single-hop, two-hop, and three-hop questions, evaluated using metrics including BLEU series, ROUGE-L, and BERTScore. We utilize the CUAD dataset from RAGBench benchmark (Friel et al., 2024), employing the same evaluation metrics as the CRUD. The MultiHop-RAG

benchmark (Tang & Yang) assesses recall rates, with metrics such as Hits@ series, MAP@10, and
MRR@10. LongBench benchmark (Bai et al., 2023) comprises various datasets, among which we
exploit eight Chinese and English datasets covering single and multi-hop QA, evaluated based on
F1 and ROUGE-L metrics.

4.2 BASELINES

274

276

We primarily compared Meta-Chunking with two types of methods, namely rule-based chunking and 277 dynamic chunking, noting that the latter incorporates both semantic similarity models and LLMs. 278 The original rule-based method simply divides long texts into fixed-length chunks, disregarding 279 sentence boundaries. However, the Llama_index method (Langchain, 2023) offers a more nuanced 280 approach, balancing the maintenance of sentence boundaries while ensuring that token counts in 281 each segment are close to a preset threshold. On the other hand, similarity chunking (Xiao et al., 282 2023) utilizes sentence embedding models to segment text based on semantic similarity, effectively 283 grouping highly related sentences together. Dense X Retrieval (Chen et al., 2023a) introduces a 284 new retrieval granularity called propositions, which condenses and segments text by training an 285 information extraction model. Alternatively, LumberChunker (Duarte et al., 2024) employs LLMs 286 to predict optimal segmentation points within the text. These methods exhibit unique strengths in 287 adapting to the context and structure of texts.

It is noteworthy that LumberChunker encounters difficulties when applied to smaller models, thus impeding the comparison among different methods within the same model. To address this limitation, we introduced a Margin Sampling (MSP) strategy to optimize the method, enhancing its adaptability to smaller models. This optimization enables a more effective comparison of the performance and time consumption of various chunking methods.

Margin Sampling Chunking: We split the text into a collection of sentences denoted as (x_1, x_2, \ldots, x_n) , and the method can be formulated as:

$$\operatorname{Margin}_{M}(x_{i}) = P_{M}\left(y = k_{1} | \operatorname{Prompt}(x_{i}, X')\right) - P_{M}\left(y = k_{2} | \operatorname{Prompt}(x_{i}, X')\right)$$
(8)

where (k_1, k_2) indicates a binary decision between yes or no for a segmentation judgment. 298 299 Prompt (x_i, X') represents forming an instruction between $x_i \in \{x_l\}_{l=1}^n$ and X', regarding whether they should be merged, where X' encompasses either a single sentence or multiple sentences. 300 301 Through the probability P_M obtained by model M, we can derive the probability difference Margin $_{\mathcal{M}}(x_i)$ between the two options. Subsequently, by contrasting Margin $_{\mathcal{M}}(x_i)$ with the thresh-302 old θ , a conclusion can be drawn regarding whether the two sentences should be segmented. For the 303 setting of θ , we initially assign it a value of 0 and then adjust it by recording historical Margin_M(x_i) 304 and calculating their average. 305

306 307

293

295 296 297

4.3 EXPERIMENTAL SETTINGS

308 We primarily use Qwen2-0.5B, Qwen2-1.5B, Qwen2-7B and Baichuan2-7B for Meta-Chunking 309 (Yang et al., 2024; 2023). Without additional annotations, all language models used in this paper 310 adopt chat or instruction versions. When chunking, the default parameter configurations of the mod-311 els are adopted. For evaluation, Qwen2-7B is employed with the following settings: top_p = 0.9, 312 top_k = 5, temperature = 0.1, and max_new_tokens = 1280. When conducting QA, the system ne-313 cessitates dense retrievals from the vector database, with top_k set to 8 for CRUD and RAGBench, 314 10 for MultiHop-RAG, and 5 for LongBench. Text segmentation in the dataset is performed using NVIDIA H800, and evaluation is conducted using NVIDIA GeForce RTX 3090. To control 315 variables, we maintain consistent chunk lengths for various chunking methods across each dataset. 316 Detailed experimental setup information can be found in Appendix A.2. 317

318 319

320

322

5 RESULTS AND ANALYSIS

- 321 5.1 MAIN RESULTS
- **Comparison against Baselines.** We systematically evaluated the performance of five baseline methods, as shown in Table 1 (top) and Table 2 (top). Notably, LumberChunker with Qwen2-7B

341

Table 1: Main experimental results are presented in five QA datasets. The first four datasets are sourced from LongBench. Besides Dense X Retrieval, we maintain a consistent chunk length for various chunking methods in each dataset.

Dataset	2WikiN	AultihopQA	Q	asper	MultiH	FieldQA-en	MultiF	ieldQA-zh		Multi	Hop-RAG	
Chunking Method	F1	Time	F1	Time	F1	Time	F1	Time	Hits@10	Hits@4	MAP@10	MRR@10
			Ba	aselines with	rule-bas	sed or simila	rity-based	l chunking				
Original	11.89	0.21	9.45	0.13	29.89	0.16	22.45	0.06	0.6027	0.4523	0.1512	0.3507
Llama_index	11.74	8.12	10.15	5.81	28.30	6.25	21.85	5.53	0.7366	0.5437	0.1889	0.4068
Similarity Chunking	12.00	416.45	9.93	307.05	29.19	318.41	22.39	134.80	0.7232	0.5362	0.1841	0.3934
Dense X Retrieval	5.49	57633.07	8.23	39762.54	29.72	41789.49	-	-	-	-	-	-
				Ch	unking b	ased on Qwe	n2-0.5B					
MSP Chunking	11.74	788.30	9.67	599.97	31.28	648.76	23.35	480.35	0.7162	0.5246	0.1830	0.3913
PPL Chunking	13.56	140.54	9.62	65.45	31.02	79.72	23.52	64.02	0.7215	0.5583	0.1925	0.4186
				Ch	unking b	ased on Qwe	n2-1.5B					
MSP Chunking	11.30	2189.29	9.49	1487.27	32.81	1614.01	22.08	1881.15	0.7109	0.5517	0.1970	0.4252
PPL Chunking	13.32	190.93	9.82	122.44	31.30	136.96	22.57	107.94	0.7366	0.5570	0.1979	0.4300

achieved a score of 10.65 and a chunking time of 2883.43 seconds on the Qasper dataset but failed
to work effectively on the other four datasets. This indicates significant limitations of this strategy
in adapting to models with 7B parameters and below. Dense X Retrieval condenses and segments
text by training an information extraction model, which does not allow for specifying the chunk
length. Aside from this method, we maintain a consistent chunk length for various other chunking
approaches across each dataset, which are enumerated individually in Appendix A.2.

As shown in Table 1 (bottom), PPL Chunking provides notable improvements in the performance of
 QA systems and information retrieval when utilizing models with 0.5B and 1.5B parameter scales.
 Specifically, both model configurations show measurable improvements in accuracy and recall metrics compared to baseline tasks. Furthermore, they exhibit significant enhancements in processing
 speed when compared to dynamic chunking, thereby facilitating easier implementation of LLMs
 chunking in real-world scenarios.

³⁵⁴ Efficiency and Accuracy Trade-

355 off. Margin Sampling Chunking 356 addresses the current issue where 357 LLMs chunking cannot be applied 358 to models with weak instructionfollowing capabilities, and it demon-359 strates superior performance com-360 pared to LumberChunker, as illus-361 trated in Table 2. However, this 362 method exhibits chunking times sim-363 ilar to the LumberChunker algorithm, 364 both reaching threshold ranges that are challenging for practical appli-366 cations, highlighting inefficiencies of 367 LLMs in handling chunking tasks. 368 In contrast, PPL Chunking demon-

Table 2: Main experimental results of LLMs chunking using Qwen2-7B. Consistent chunk lengths were maintained for various chunking methods in each dataset. *base* represents the basic model, while *inst*. denotes the model fine-tuned with instructions.

Dataset	2WikiN	AultihopQA	Qa	asper	MultiFieldQA-en		
Chunking Method	F1	Time	F1	Time	F1	Time	
Similarity Chunking	12.00	416.45	9.93	307.05	29.19	318.41	
LumberChunker _{inst.}	-	-	10.65	2883.43	-	-	
MSP Chunking _{inst.}	12.94	8781.82	11.37	5755.79	33.56	6287.31	
PPL Chunking $_{base}$	14.15	745.11	10.11	493.43	30.92	530.22	
PPL Chunking _{inst.}	13.41	736.69	9.39	486.48	32.35	523.74	

strates significant advantages, not only excelling in maintaining or approaching the performance
 level provided by Margin Sampling Chunking, but also achieving a substantial leap in processing
 efficiency compared to dynamic chunking strategies. Upon deeper examination between the base
 model and the instruction model, we found that PPL Chunking exhibits a remarkable flexibility and
 adaptability, indicating that it does not have a stringent requirement for the capacity of model to
 follow specific instructions.

How Weak Can the Weaker LLM Be? As a fundamental task, text chunking consumes a large number of tokens when using LLMs like GPT-4 or Gemini, often leading to a significant imbalance between resource utilization and task benefits. Therefore, using a lightweight model is a practical choice. Since our method is applicable to both large and small models, in addition to testing 1.5B

and 7B models, we explored smaller models below 1B parameters. As the model size decreases,
 the execution time of the text chunking task significantly reduces, reflecting the advantage of small
 models in improving processing efficiency. Furthermore, our approaches do not suffer from significant performance degradation as the model size decreases, and it outperforms baselines on most
 datasets, which further demonstrates the superiority of our methods.

384 5.2 ANALYSIS

386 5.2.1 IMPACT OF OVERLAPPING CHUNKING STRATEGIES

As we delve deeper into the influence of text chunking strategies on the performance of complex QA tasks, we further investigated the performance of various chunking strategies when overlapping chunks were employed. The original chunking overlap method uses a fixed number of characters from the end of one chunk to overlap with the start of the next. The Llama_index overlap approach builds upon this by additionally considering sentence integrity. The PPL Chunking overlap strategy, on the other hand, dynamically assigns sentences represented by minimal points of PPL to both the preceding and subsequent chunks, resulting in dynamic overlap. These approaches generally produce overlap lengths averaging around 50 Chinese characters.

Table 3: Performance of different methods on CRUD QA datasets with overlapping chunks. *ppl* represents direct PPL Chunking, with a threshold of 0.5. Precise chunk length and overlap length results are included in Appendix A.3.

Chunking Method	Overlap	BLEU-1	BLEU-2	BLEU-3	BLEU-4	BLEU-Avg	ROUGE-L	BERTScore
Single-hop Query								
Original	Fixed	0.3330	0.2641	0.2214	0.1881	0.2410	0.4060	0.8425
Llama_index	Dynamic	0.3326	0.2645	0.2214	0.1890	0.2413	0.4039	0.8439
Qwen2-1.5B $_{ppl}$	Dynamic	0.3592	0.2888	0.2435	0.2081	0.2644	0.4332	0.8555
Qwen2-7 B_{ppl}	Dynamic	0.3582	0.2898	0.2450	0.2097	0.2657	0.4308	0.8548
Baichuan2-7 B_{ppl}	Dynamic	0.3656	0.2952	0.2497	0.2143	0.2705	0.4393	0.8549
			Tw	o-hop Quer	у			
Original	Fixed	0.2251	0.1300	0.0909	0.0689	0.1114	0.2579	0.8747
Llama_index	Dynamic	0.2223	0.1282	0.0896	0.0677	0.1099	0.2555	0.8732
Qwen2-1.5Bppl	Dynamic	0.2295	0.1331	0.0934	0.0709	0.1143	0.2609	0.8700
Qwen2-7 B_{ppl}	Dynamic	0.2312	0.1353	0.0949	0.0719	0.1162	0.2638	0.8751
Baichuan2-7 B_{ppl}	Dynamic	0.2336	0.1350	0.0940	0.0710	0.1154	0.2650	0.8754
Three-hop Query								
Original	Fixed	0.2384	0.1268	0.0832	0.0602	0.1066	0.2546	0.8823
Llama_index	Dynamic	0.2331	0.1250	0.0825	0.0598	0.1049	0.2517	0.8796
Qwen2-1.5Bppl	Dynamic	0.2453	0.1319	0.0881	0.0643	0.1114	0.2599	0.8808
Qwen2-7B _{ppl}	Dynamic	0.2447	0.1330	0.0891	0.0651	0.1122	0.2618	0.8817
Baichuan2-7B _{ppl}	Dynamic	0.2463	0.1324	0.0887	0.0651	0.1120	0.2596	0.8811

As demonstrated in Table 3, PPL Chunking overlap strategy shows particularly notable performance in multi-hop QA scenarios. Specifically, except for the BERTScore metric, PPL Chunking overlap method achieves a performance gain of 2%–3% on the single-hop task. In the case of two-hop and three-hop tasks, although the rate of improvement slows slightly, a consistent gain of 0.3%–1% is maintained. Additionally, the performance across all three models exhibits an upward trend with the size of model parameters. Although the 1.5B model lags slightly behind the 7B model in terms of overall performance, it still demonstrates notable improvement over traditional chunking methods, further validating the effectiveness of PPL Chunking.

5.2.2 COMPARATIVE ANALYSIS OF TWO PPL CHUNKING STRATEGIES

As shown in Figure 3, we compared two PPL Chunking strategies: direct PPL Chunking and PPL
Chunking with dynamic combination, both of which are effective across the CRUD dataset. Through
experimental analysis, we found that the latter demonstrates superior performance. This is primarily
due to direct PPL Chunking, which may result in overly long chunks, whereas the PPL Chunking
with dynamic combination method effectively maintains chunk length and logical consistency.

In addition, PPL Chunking achieved significant performance improvements compared to traditional segmentation methods on BLEU series metrics and ROUGE-L. This indicates that our methods enhance the accuracy and fluency of the generated text to the reference text. Furthermore, this experiment reveals the delicate balance between model size and performance. Specifically, the per-formance of Qwen2-1.5B and Baichuan2-7B under this evaluation framework is closely matched, often surpassing the Qwen2-7B model across multiple metrics.

Figure 3: Performance of different methods on single-hop query in the CRUD QA dataset. ppl represents direct PPL Chunking, with a threshold of 0.5. comb. indicates PPL Chunking with dynamic combination, with a threshold of 0 when performing PPL Chunking. Precise chunk length results and performance of remaining multi-hop scenarios are included in Appendix A.3.

LONG TEXT CHUNKING AND STRATEGY SELECTION 5.2.3

When dealing with longer texts, we adopt the KV caching to calculate the PPL values of sentences under the premise of maintaining coherence, thereby optimizing the utilization of GPU memory and computational accuracy. Utilizing the CUAD dataset (average length 11k), we tested three models shown in Figure 4, which achieved appreciable improvements in BLEU-series metrics. Furthermore, it is noteworthy that both Qwen2-1.5B and Baichuan2-7B demonstrate comparable performance, which further confirms that the 1.5B model can maintain a impressive balance between performance and efficiency when dealing with text chunking of varying lengths.

Figure 4: Performance of different methods on CUAD QA datasets. ppl indicates direct PPL Chunking, with a threshold of 0.

Figure 5: Performance of different methods in four long-text QA datasets of LongBench is evaluated based on F1, F1, F1, and ROUGE-L. ppl represents direct PPL Chunking, and comb. indicates PPL Chunking with dynamic combination. Multi represents threshold values of the parallel method in four datasets, which are 0.5, 0.5, 1.34, and 0.5 respectively, resulting in chunk lengths of 87, 90, 71, and 262 in sequence.

486 On the other hand, we conducted an in-depth exploration of chunking in four long-text QA datasets 487 of LongBench, and carried out gradient experiments (0 to 0.4, step 0.1) on the threshold of PPL 488 Chunking, aiming to reveal the intrinsic relationship between PPL distribution and chunking ef-489 fectiveness. The analysis of overall PPL distribution of datasets can be found in Appendix A.4. 490 As shown in Figure 5, when chunk length is small, the direct PPL Chunking brings greater benefits, whereas when the chunk length is longer, PPL Chunking with dynamic combination performs better. 491 In addition, experimental results indicate that the optimal configuration of PPL Chunking relies on 492 the PPL distribution of texts: when the PPL distribution is relatively stable, it is more appropriate to 493 select a lower threshold (such as setting the threshold to 0 in HotpotQA, MuSiQue, and DuReader); 494 whereas when the PPL distribution exhibits large fluctuations, choosing a higher threshold (such as 495 setting the threshold to 0.4 in NarrativeQA) can effectively distinguish paragraphs with different in-496 formation densities, improving the chunking effect. Therefore, when employing PPL for chunking, 497 it is crucial to comprehensively consider the dual factors of chunk length and text PPL distribution 498 to determine the relatively optimal configuration that maximizes performance.

499 500 501

502

503

504

505

506

507

508

517

520

521

522

523

524

525

526

5.2.4 EXPLORATION OF CHUNKING APPROACH FOR PERFORMANCE OF RE-RANKING

To explore the impact of chunking strategies on the RAG system, we evaluated the combination of different chunking and re-ranking methods. Initially, a top-10 set of relevant texts was filtered using a dense retriever. We then compared two re-ranking strategies: (1) the BgeRerank method, leveraging the bge-reranker-large model (Xiao et al., 2023), and (2) the PPLRerank method with the Qwen2-1.5B model, utilizing the re-ranking method mentioned in the coarse-grained compression section in Jiang et al. (2023).

516 Figure 6: Performance of re-ranking strategies combined with different chunking methods in the MultiHop-RAG benchmark. *ppl* represents direct PPL Chunking, with a threshold of 0.5. The base 518 reveals not utilizing re-ranking strategy. Precise chunk length results are included in Appendix A.5. 519

Experimental results (see Figure 6) revealed that PPL Chunking and PPLRerank achieved the best overall performance across all metrics. Further analysis demonstrated that, compared to traditional chunking, PPL Chunking not only provided performance gains independently but also significantly enhanced the effectiveness of the subsequent re-ranking. Notably, while traditional chunking and re-ranking strategies already deliver performance improvements, PPL Chunking resulted in even greater re-ranking gains. For instance, in the Hits@8 metric, PPLRerank under the original chunking yielded a 1.42% improvement, whereas PPLRerank under PPL Chunking achieved a 3.59% improvement.

527 528 529

6 CONCLUSION

530 531

532 This paper proposes the concept of Meta-Chunking along with its implementation strategy, namely 533 PPL Chunking, which enable a more precise capture of the inherent logical structure of text, thereby 534 providing a powerful tool for optimizing text segmentation within the RAG pipeline. To balance the effectiveness of fine-grained and coarse-grained text segmentation, we present a dynamic 536 combination approach with Meta-Chunking to address the limitation when dealing with diverse 537 texts. Our comprehensive evaluation using multiple metrics on eleven datasets demonstrates that Meta-Chunking significantly outperforms both rule-based and similarity-based chunking, while also 538 achieving a better balance between performance, time cost, and computational cost compared to current LLMs approaches.

540 REFERENCES

547

542	Dimo Angelov.	Top2vec: Dist	ributed represe	entations of t	topics. ar	Xiv preprint a	rXiv:2008.094	70,
543	2020.							

- Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context understanding. *arXiv preprint arXiv:2308.14508*, 2023.
- Bhagyashree Vyankatrao Barde and Anant Madhavrao Bainwad. An overview of topic modeling methods and tools. In 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 745–750. IEEE, 2017.
- Garbiel Bénédict, Ruqing Zhang, and Donald Metzler. Gen-ir@ sigir 2023: The first workshop on
 generative information retrieval. In *Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 3460–3463, 2023.
- Maciej Besta, Ales Kubicek, Roman Niggli, Robert Gerstenberger, Lucas Weitzendorf, Mingyuan Chi, Patrick Iff, Joanna Gajda, Piotr Nyczyk, Jürgen Müller, et al. Multi-head rag: Solving multi-aspect problems with llms. *arXiv preprint arXiv:2406.05085*, 2024.
- David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. *Journal of machine Learning research*, 3(Jan):993–1022, 2003.
- Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Dong Yu, and
 Hongming Zhang. Dense x retrieval: What retrieval granularity should we use? *arXiv preprint arXiv:2312.06648*, 2023a.
- Yuyan Chen, Qiang Fu, Yichen Yuan, Zhihao Wen, Ge Fan, Dayiheng Liu, Dongmei Zhang, Zhixu
 Li, and Yanghua Xiao. Hallucination detection: Robustly discerning reliable answers in large
 language models. In *Proceedings of the 32nd ACM International Conference on Information and Knowledge Management*, pp. 245–255, 2023b.
- Sangwoo Cho, Kaiqiang Song, Xiaoyang Wang, Fei Liu, and Dong Yu. Toward unifying text seg mentation and long document summarization. *arXiv preprint arXiv:2210.16422*, 2022.
- SS Dragomir and CJ Goh. Some bounds on entropy measures in information theory. *Applied Mathematics Letters*, 10(3):23–28, 1997.
- André V Duarte, João Marques, Miguel Graça, Miguel Freire, Lei Li, and Arlindo L Oliveira.
 Lumberchunker: Long-form narrative document segmentation. *arXiv preprint arXiv:2406.17526*, 2024.
- Robert Friel, Masha Belyi, and Atindriyo Sanyal. Ragbench: Explainable benchmark for retrieval augmented generation systems. *arXiv preprint arXiv:2407.11005*, 2024.
- 578
 579
 579 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen Wang. Retrieval-augmented generation for large language models: A survey. *arXiv* preprint arXiv:2312.10997, 2023.
- Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. *arXiv preprint arXiv:2203.05794*, 2022.
- Zhicheng Guo, Sijie Cheng, Yile Wang, Peng Li, and Yang Liu. Prompt-guided retrieval augmentation for non-knowledge-intensive tasks. *arXiv preprint arXiv:2305.17653*, 2023.
- Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
 language model pre-training. In *International conference on machine learning*, pp. 3929–3938.
 PMLR, 2020.
- Hangfeng He, Hongming Zhang, and Dan Roth. Rethinking with retrieval: Faithful large language
 model inference. *arXiv preprint arXiv:2301.00303*, 2022.
- 593 Thomas Hofmann et al. Probabilistic latent semantic analysis. In *UAI*, volume 99, pp. 289–296, 1999.

594 595	Chip Huyen. Evaluation metrics for language modeling. The Gradient, 40, 2019.
596	Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
597	Qiu. Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt com-
598	pression. arXiv preprint arXiv:2310.06839, 2023.
599	Greg Kamradt Semantic chunking https://github.com/FullStackRetrieval-com/RetrievalTutorials
600	2024.
601	
602 603	P Kherwa and P Bansal. Topic modeling: A comprehensive review. eai endorsed transactions on scalable information systems, 7 (24), 1–16, 2020.
604 605 606	Youna Kim, Hyuhng Joon Kim, Cheonbok Park, Choonghyun Park, Hyunsoo Cho, Junyeob Kim, Kang Min Yoo, Sang-goo Lee, and Taeuk Kim. Adaptive contrastive decoding in retrieval-augmented generation for handling noisy contexts. <i>arXiv preprint arXiv:2408.01084</i> , 2024.
607 608	Langchain. https://github.com/langchain-ai/langchain, 2023.
609 610 611	Angeliki Lazaridou, Elena Gribovskaya, Wojciech Stokowiec, and Nikolai Grigorev. Internet- augmented language models through few-shot prompting for open-domain question answering. <i>arXiv preprint arXiv:2203.05115</i> , 2022.
612 613 614 615 616	Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. <i>Advances in Neural Information Processing Systems</i> , 33: 9459–9474, 2020.
617 618	Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. A survey on retrieval-augmented text generation. <i>arXiv preprint arXiv:2202.01110</i> , 2022.
619 620 621	Jing Li, Billy Chiu, Shuo Shang, and Ling Shao. Neural text segmentation and its application to sentiment analysis. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 34(2):828–842, 2020.
623 624 625	Xianzhi Li, Samuel Chan, Xiaodan Zhu, Yulong Pei, Zhiqiang Ma, Xiaomo Liu, and Sameena Shah. Are chatgpt and gpt-4 general-purpose solvers for financial text analytics? a study on several typical tasks. <i>arXiv preprint arXiv:2305.05862</i> , 2023.
626 627 628	Xun Liang, Shichao Song, Zifan Zheng, Hanyu Wang, Qingchen Yu, Xunkai Li, Rong-Hua Li, Feiyu Xiong, and Zhiyu Li. Internal consistency and self-feedback in large language models: A survey. <i>arXiv preprint arXiv:2407.14507</i> , 2024.
629 630 631 632 633	Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adrià de Gispert, and Gonzalo Iglesias. Li-rage: Late interaction retrieval augmented generation with explicit signals for open-domain table question answering. In <i>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</i> , pp. 1557–1566, 2023.
634 635 636	S Longpre, G Yauney, E Reif, K Lee, A Roberts, B Zoph, D Zhou, J Wei, K Robinson, D Mimno, et al. A pretrainer's guide to training data: Measuring the effects of data age, domain coverage, quality, & toxicity, may 2023. URL http://arxiv.org/abs/2305.13169.
637 638 639	Michal Lukasik, Boris Dadachev, Gonçalo Simoes, and Kishore Papineni. Text segmentation by cross segment attention. <i>arXiv preprint arXiv:2004.14535</i> , 2020.
640 641 642	Yuanjie Lyu, Zhiyu Li, Simin Niu, Feiyu Xiong, Bo Tang, Wenjin Wang, Hao Wu, Huanyong Liu, Tong Xu, and Enhong Chen. Crud-rag: A comprehensive chinese benchmark for retrieval-augmented generation of large language models. <i>arXiv preprint arXiv:2401.17043</i> , 2024.
643 644 645 646	Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. In-context retrieval-augmented language models. <i>Transactions of the Association for Computational Linguistics</i> , 11:1316–1331, 2023.
647	Claude E Shannon. Prediction and entropy of printed english. <i>Bell system technical journal</i> , 30(1): 50–64, 1951.

- 648 Xinyue Shen, Zeyuan Chen, Michael Backes, and Yang Zhang. In chatgpt we trust? measuring and 649 characterizing the reliability of chatgpt. arXiv preprint arXiv:2304.08979, 2023. 650
- Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael 651 Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context. 652 In International Conference on Machine Learning, pp. 31210–31227. PMLR, 2023. 653
- 654 Georgios Sidiropoulos and Evangelos Kanoulas. Analysing the robustness of dual encoders for 655 dense retrieval against misspellings. In Proceedings of the 45th International ACM SIGIR Con-656 ference on Research and Development in Information Retrieval, pp. 2132–2136, 2022. 657
- Devendra Singh, Siva Reddy, Will Hamilton, Chris Dyer, and Dani Yogatama. End-to-end training 658 of multi-document reader and retriever for open-domain question answering. Advances in Neural 659 Information Processing Systems, 34:25968–25981, 2021. 660
- 661 Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, and Yiqun Liu. Dragin: Dynamic retrieval 662 augmented generation based on the real-time information needs of large language models. arXiv 663 preprint arXiv:2403.10081, 2024. 664
- Chao-Hong Tan, Jia-Chen Gu, Chongyang Tao, Zhen-Hua Ling, Can Xu, Huang Hu, Xiubo Geng, 665 and Daxin Jiang. Tegtok: Augmenting text generation via task-specific and open-world knowl-666 edge. arXiv preprint arXiv:2203.08517, 2022. 667
- 668 Y Tang and Y Yang. Multihop-rag: Benchmarking retrieval-augmented generation for multi-hop 669 queries (2024). arXiv preprint arXiv:2401.15391. 670
- Shitao Xiao, Zheng Liu, Peitian Zhang, and N Muennighof. C-pack: packaged resources to advance 671 general chinese embedding. 2023. arXiv preprint arXiv:2309.07597, 2023. 672
- 673 Shicheng Xu, Liang Pang, Huawei Shen, and Xueqi Cheng. Berm: Training the balanced and 674 extractable representation for matching to improve generalization ability of dense retrieval. arXiv 675 preprint arXiv:2305.11052, 2023. 676
- Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. Corrective retrieval augmented generation. 677 arXiv preprint arXiv:2401.15884, 2024. 678
- 679 Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan, 680 Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint arXiv:2309.10305, 2023. 682

686

687

688

- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, 683 Chengyuan Li, Daviheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint 684 arXiv:2407.10671, 2024. 685
 - Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin Ma, Hongwei Wang, and Dong Yu. Chain-of-note: Enhancing robustness in retrieval-augmented language models. arXiv preprint arXiv:2311.09210, 2023.
- Qinglin Zhang, Qian Chen, Yali Li, Jiaqing Liu, and Wen Wang. Sequence model with self-adaptive 690 sliding window for efficient spoken document segmentation. In 2021 IEEE Automatic Speech 691 Recognition and Understanding Workshop (ASRU), pp. 411–418. IEEE, 2021. 692
- 693 Zifan Zheng, Yezhaohui Wang, Yuxin Huang, Shichao Song, Bo Tang, Feiyu Xiong, and Zhiyu Li. 694 Attention heads of large language models: A survey. arXiv preprint arXiv:2409.03752, 2024. 695
- Ziyuan Zhuang, Zhiyang Zhang, Sitao Cheng, Fangkai Yang, Jia Liu, Shujian Huang, Qingwei Lin, 696 Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Efficientrag: Efficient retriever for multi-hop 697 question answering. arXiv preprint arXiv:2408.04259, 2024. 698
- 699 Guido Zuccon, Bevan Koopman, and Razia Shaik. Chatgpt hallucinates when attributing answers. In 700 Proceedings of the Annual International ACM SIGIR Conference on Research and Development 701 in Information Retrieval in the Asia Pacific Region, pp. 46-51, 2023.

APPENDIX А

THEORETICAL PROOF FOR PPL CHUNKING A.1

706 Firstly, we illustrate the relationship between cross-entropy and two distributions P and Q in another 707 way. Based on sequencing inequality

$$\sum_{i=1}^{n} a_i b_i \ge \sum_{i=1}^{n} a_i b_{j(i)} \ge \sum_{i=1}^{n} a_i b_{n+1-i}$$

where $a_1 \ge a_2 \ge \cdots \ge a_n$, $b_1 \ge b_2 \ge \cdots \ge b_n$ and $(j(1), j(2), \ldots, j(n))$ is an arbitrary sorting 712 of (1, 2, ..., n), it can be observed that the sum of products of larger numbers paired together is 713 the maximum, while the sum of products of larger numbers paired with smaller numbers is the 714 minimum. We desire the cross-entropy H(P,Q) to be as small as possible, which means that when 715 P(x) is relatively large, $-\log Q(x)$ should be relatively small, thereby resulting in Q(x) also being 716 relatively large. Therefore, a smaller cross-entropy indicates that the prediction is closer to the actual 717 label. 718

Afterwards, inspired by insights provided in Huyen (2019), a property of formula (7) is proved: 719 $G_{K+1} \leq G_K$ for all $K \geq 1$. 720

721 722

731

Proof.

702

703 704

705

$$\begin{array}{ll} & G_{K} - G_{K+1} \\ & = -\sum_{T_{k}} P(T_{k}) \log_{a} P(t_{k}|T_{k-1}) + \sum_{T_{k+1}} P(T_{k+1}) \log_{a} P(t_{k+1}|T_{k}) \\ & = \sum_{T_{k-1}} \left[\sum_{t_{k}, t_{k+1}} P(T_{k+1}) \log_{a} P(t_{k+1}|T_{k}) - \sum_{t_{k}} P(T_{k}) \log_{a} P(t_{k}|T_{k-1}) \right] \\ & = \sum_{T_{k-1}} \left[\sum_{t_{k}, t_{k+1}} P(T_{k+1}) \log_{a} P(t_{k+1}|T_{k-1}) - \sum_{t_{k}} P(T_{k}) \log_{a} P(t_{k}|T_{k-1}) \right] \\ & = \sum_{T_{k-1}} \left[\sum_{t_{k}, t_{k+1}} P(T_{k-1}, t_{k}, t_{k+1}) \log_{a} P(t_{k+1}|T_{k-1}) - \sum_{t_{k}} P(T_{k-1}, t_{k}) \log_{a} P(t_{k}|T_{k-1}) \right] \\ & = \sum_{T_{k-1}} \left[\sum_{t_{k+1}} P(T_{k-1}, t_{k}, t_{k+1}) \log_{a} P(t_{k+1}|T_{k-1}) - \sum_{t_{k}} P(T_{k-1}, t_{k}) \log_{a} P(t_{k}|T_{k-1}) \right] \\ & = \sum_{T_{k-1}} \left[\sum_{t_{k+1}} \log_{a} P(t_{k+1}|T_{k-1}) \sum_{t_{k}} P(T_{k-1}, t_{k}, t_{k+1}) - \sum_{t_{k}} P(T_{k-1}, t_{k}) \log_{a} P(t_{k}|T_{k-1}) \right] \\ & = \sum_{T_{k-1}} \left[\sum_{t_{k+1}} P(T_{k-1}, t_{k+1}) \log_{a} P(t_{k+1}|T_{k-1}) - \sum_{t_{k}} P(T_{k-1}, t_{k}) \log_{a} P(t_{k}|T_{k-1}) \right] \\ & = \sum_{T_{k-1}} \left[\sum_{t_{k+1}} P(T_{k-1}, t_{k+1}) \log_{a} P(t_{k+1}|T_{k-1}) - \sum_{t_{k}} P(T_{k-1}, t_{k}) \log_{a} P(t_{k}|T_{k-1}) \right] \\ & = \sum_{T_{k-1}} \left[\sum_{t_{k+1}} P(T_{k-1}, t_{k+1}) \log_{a} P(t_{k+1}|T_{k-1}) - \sum_{t_{k}} P(T_{k-1}, t_{k}) \log_{a} P(t_{k}|T_{k-1}) \right] \\ & = 0 \end{array}$$

The reason for the last equality is that t_{k+1} and t_k belong to the same domain. Thus, the proof is complete.

748 Eventually, we illustrate bounds of entropy, so as to demonstrate the positive correlation between 749 H(P,Q) and $D_{KL}(P||Q)$ in formula (3).

750 751

755

741

745

746

747

Proof. Let P be a discrete random variable with a finite range of values denoted by W :=752 $\{w_1, w_2, \dots, w_l\}$. Set $p_i = P\{P = w_i\}$ for $i = 1, 2, \dots, l$, and assume that $p_i > 0$ for all 753 $i \in \{1, 2, \dots, l\}$. According to Lemma 2 in Dragomir & Goh (1997), if 754

$$\gamma := \max_{i,j} \frac{\theta_i}{\theta_j} \le \varphi(\varepsilon) := 1 + \varepsilon \ln c + \sqrt{\varepsilon \ln c(\varepsilon \ln c + 2)}$$

756 then

759 760

763

764

765 766 767

783

784

792

$$0 \le \log_c \left(\sum_{k=1}^l p_k \theta_k \right) - \sum_{k=1}^l p_k \log_c \theta_k \le \varepsilon$$

where $\theta_k \in (0, +\infty)$, $p_k \ge 0$ with $\sum_{k=1}^{l} p_k = 1$ and c > 1. Given that $\theta_k = 1/p_k$, the aforementioned inequality can be transformed into

$$0 \le \log_c l - H_c(P) \le \varepsilon$$

where $\varepsilon > 0$ satisfies the following conditions

$$\max_{i,j} \frac{p_i}{p_j} \le \varphi(\varepsilon)$$

Furthermore, we can derive bounds for entropy as $\log_c l - \varepsilon \leq H_c(P) \leq \log_c l$. The proof is concluded.

771 A.2 MAIN EXPERIMENTAL DETAILS

All language models utilized in this paper employ the chat or instruct versions where multiple versions exist, and are loaded in full precision (Float32). The vector database is constructed using Milvus, where the embedding model for English texts is bge-large-en-v1.5, and bge-base-zh-v1.5 for Chinese texts. When conducting QA, the system necessitates dense retrievals from the vector database, with top_k set to 8 for CRUD and RAGBench, 10 for MultiHop-RAG, and 5 for Long-Bench.

In experiments, we utilized a total of four benchmarks, and their specific configurations are detailed as follows:

(a) Rule-based Chunking Methods

- **Original**: This method divides long texts into segments of a fixed length, such as two hundred Chinese characters or words, without considering sentence boundaries.
- Llama_index (Langchain, 2023): This method considers both sentence completeness and token counts during segmentation. It prioritizes maintaining sentence boundaries while ensuring that the number of tokens in each chunk are close to a preset threshold. We use the SimpleNodeParser function from Llama_index, adjusting the chunk_size parameter to control segment length. Overlaps are handled by dynamically overlapping segments using the chunk_overlap parameter, ensuring sentence completeness during segmentation and overlapping.
 - (b) Dynamic Chunking Methods
- Similarity Chunking (Xiao et al., 2023): Utilizes pre-trained sentence embedding models to calculate the cosine similarity between sentences. By setting a similarity threshold, sentences with lower similarity are selected as segmentation points, ensuring that sentences within each chunk are highly semantically related. This method employs the SemanticSplitterNodeParser from Llama_index. For English texts, we exploit the bge-large-en-v1.5 model, and for Chinese texts, the bge-base-zh-v1.5 model. The size of the text chunks is controlled by adjusting the similarity threshold.
- LumberChunker (Duarte et al., 2024): Leverages the reasoning capabilities of LLMs to predict suitable segmentation points within the text. We utilize Qwen2 models with 1.5B and 7B parameters, set to full precision.
- Dense X Retrieval (Chen et al., 2023a): Introduces a new retrieval granularity called propositions, which condenses and segments text by training an information extraction model.

In order to control variables during the experiment, we ensured that each dataset had approximately the same size when divided into chunks using different methods. The specific chunk lengths and corresponding thresholds for each dataset in the main experiment are shown in Table 4. We first explored direct chunking of Qwen2-72B, using the prompt displayed in Table 5, and found that it took too long. We then exploited this as a comparison to explore other methods.

835

836 837

838

839

840

841

842 843

844

845

846

847

848

849 850 851

852

853

854 855

856

Table 4: Chunk length and corresponding threshold settings for different methods. - indicates no relevant setting is involved. The first four datasets are sourced from LongBench. 0+comb. signifies that an initial chunking is performed using a threshold of 0, followed by a dynamic combination approach to derive the final chunks. In Llama_index and Qwen2-72B, a(b) indicates that the chunk size of a can be achieved by setting the chunking parameter to b. For other instances of a(b), it represents the dynamic combination of chunks where setting the combination length to b results in a final chunk size of a.

Dataset	2WikiMul	ltihopQA	Qas	per	MultiFiel	dQA-en	MultiFieldQA-zh		MultiHop-RAG	
Chunking Method	Length	Threshold	Length	Threshold	Length	Threshold	Length	Threshold	Length	Threshold
			Baselines wi	th rule-based	or similarity-ba	used chunking				
Original	123		121		113		178		78	
Llama_index	122.61(215)	-	120.91(198)	-	112.59(208)	-	178.04(242)	-	79.68	-
Similarity Chunking	125.24	0.82	122.91	0.83	114.18	0.83	180.23	0.73	80.13	0.75
				LLMs Dire	ect Chunking					
Qwen2-72B	122.13(128)		120.17(90)		111.98(88)	-	178.05(190)			
			C	Chunking base	d on Qwen2-0.5	$\overline{b}B$				
Qwen2-0.5B _{sent.}	122.33(148)	0+comb.	120.07(147)	0+comb.	112.46(136)	0+comb.	178.09(180)	0+comb.	78.04(91)	0+comb.
Qwen2-0.5B _{comb.}	122.39(152)	0+comb.	120.04(155)	0+comb.	112.30(139)	0+comb.	178.36(160)	0+comb.	78.17(89)	0+comb.
			C	Chunking base	d on Qwen2-1.5	5B				
Qwen2-1.5B _{chunk}	121.99(148)	0+comb.	120.21(144)	0+comb.	111.52(134)	0+comb.	177.80(200)	0+comb.	78.16(97)	0+comb.
$Qwen2\text{-}1.5B_{comb.}$	122.48(152)	0+comb.	120.56(156)	0+comb.	111.35(138)	0+comb.	178.00(159)	0+comb.	78.19(89)	0+comb.
				Chunking bas	ed on Qwen2-7	В				
Qwen2-7B _{chunk}	121.81(138)	0+comb.	120.01(141)	0+comb.	111.56(129)	0+comb.	178.00(188)	0+comb.	77.49(95)	0+comb.
Qwen2-7B _{comb.}	122.26(152)	0+comb.	120.26(155)	0+comb.	111.47(137)	0+comb.	177.80(156)	0+comb.	78.11(89)	0+comb.
Owen2-7B-base	122.34(152)	0+comb.	120.43(155)	0+comb	112 76(139)	0+comb	_	-	-	-

Table 5: Prompt for direct chunking of Qwen2-72B.

Chunking Prompt

You are an expert in text segmentation, tasked with dividing given text into blocks. You must adhere to the following four conditions:

- 1. Aim to keep each block around 128 English words in length.
- 2. Segment the text based solely on its logical and semantic structures.
- 3. Do not alter the original vocabulary or structure of the text.
- 4. Do not add any new words or symbols.

By solely determining the boundaries for text segmentation, divide the original text into blocks and output them individually, separated by a clear delimiter '- – Block Separator – – '. Do not output any other explanations. If you understand, please proceed to segment the following text into blocks: [Text to be segmented]

In the Margin Sampling Chunking method, we also use prompt, which mainly consists of two parts: instructions for guiding LLMs to perform chunking and two segmentation schemes. The specific form is shown in Table 6.

Table 6: Prompt used in Margin Sampling Chunking.

Chunking Prompt
This is a text chunking task. You are a text analysis expert. Please choose one of the following two options based on the logical structure and semantic content of the provided sentence:
1. Split sentence1+sentence2 into sentence1 and sentence2 two parts;
2. Keep <i>sentence1+sentence2</i> unsplit in its original form;
Please answer 1 or 2.

864 A.3 CHUNKING SITUATIONS OF THE CRUD DATASET 865

866 A.3.1 FILTERING OF CORPORA RELATED TO QA TASKS IN THE CRUD DATASET

867 In this experiment, we selected three QA datasets from the CRUD benchmark. Among them, the 868 single-hop QA dataset consists of questions focused on extracting factual information from a single document. These questions typically require precise retrieval of specific details such as dates, in-870 dividuals, or events from the provided text. The two-hop QA dataset, on the other hand, evaluates 871 integration capabilities and understanding of informational relationships between different docu-872 ments. The more complex three-hop QA dataset often presents more intricate questions, demanding 873 LLMs to process a greater number of information sources to formulate a complete and accurate 874 response.

875 Before the chunking phase, we collected original news articles used in all types of QA tasks in 876 CRUD. Specifically, since CRUD provides evidence context snippets relied on by each QA pair, as 877 well as the original news library where the context snippets are extracted, we can obtain the original 878 news articles containing the context snippets through sentence matching. Taking the two-hop QA as 879 an example, CRUD provides two news snippets, *news1* and *news2*, which are necessary to answer 880 *questions*. We then save the matched original news articles *matched_news1* and *matched_news2* that contain *news1* and *news2*. Finally, from the original news library of 80,000 articles, we recall all 882 10,000 news articles containing context snippets as the initial text for chunking.

A.3.2 EXPERIMENTAL SETUP FOR TWO RESEARCHES BASED ON THE CRUD DATASET 884

885 We conducted two sets of experiments with overlapping and non-overlapping chunking on the 886 CRUD dataset, respectively in Section 5.2.1 and 5.2.2. The chunk length and overlap length are 887 shown in Table 7. Additionally, the specific values for the bar chart presented in Figure 3 are detailed in Table 8.

889 890 891

892

893

883

Table 7: Settings of overlap length and chunk length for different chunking methods in the CRUD dataset. *ppl* represents direct PPL Chunking, with a threshold of 0.5. *comb.* indicates PPL Chunking with dynamic combination, with a threshold of 0 when performing PPL Chunking.

894	Chunking Method	Overlap Length	Chunk Length
895	Chı	unking with Overlap	
896			
897	Original	50	218
898	Llama_index	48.78	217.03
899	Qwen2-1.5B _{ppl}	49.97	212.79
900	Qwen2-7 B_{ppl}	50.41	217.53
901	Baichuan2-7B	48 91	201 35
902	Bulchdun2 / Bppl	10.91	201.35
903	Chun	king without Overla	p
904	Original	0	179
905	Llama index	0	177 53
906		0	177.55
907	Qwen2-1.5B $_{ppl}$	0	173.88
908	Qwen2-7 B_{ppl}	0	178.59
909	Baichuan2-7B _{ppl}	0	162.56
910	Qwen2-1.5B _{comb}	0	177.95
911	Owen2-7B	0	178.09
912	\mathbf{D}_{comb} .	0	178.00
913	Baicnuan ² -/B _{comb} .	0	178.09

914

915 Further analysis demonstrates that in single-hop and double-hop query scenarios presented in Table 8, PPL Chunking achieved significant performance improvements compared to traditional chunking 916 methods on BLEU series metrics and ROUGE-L. This indicates that our methods enhance the accu-917 racy and fluency of the generated text to the reference text. However, the relatively smaller margin

918			
918	\sim	-1	0
V I V	м		~
	\sim		\sim

Table 8: Performance of different methods on the CRUD QA dataset. *ppl* represents direct PPL Chunking, with a threshold of 0.5. *comb*. indicates PPL Chunking with dynamic combination, with a threshold of 0 when performing PPL Chunking.

	Chunking Method	BLEU-1	BLEU-2	BLEU-3	BLEU-4	BLEU-Avg	ROUGE-L	BERTScore
-				Single-ho	p Query			
	Original	0.3515	0.2788	0.2340	0.1997	0.2548	0.4213	0.8489
	Llama_index	0.3620	0.2920	0.2480	0.2134	0.2682	0.4326	0.8521
	Qwen2-1.5B $_{ppl}$	0.3714	0.3013	0.2569	0.2223	0.2778	0.4426	0.8563
	Qwen2-7 B_{ppl}	0.3661	0.2935	0.2481	0.2127	0.2691	0.4379	0.8558
	Baichuan2-7 B_{ppl}	0.3725	0.3011	0.2558	0.2207	0.2772	0.4429	0.8562
	Qwen2-1.5B _{comb.}	0.3760	0.3034	0.2577	0.2224	0.2797	0.4443	0.8586
	Qwen2-7B _{comb.}	0.3724	0.3012	0.2561	0.2206	0.2774	0.4445	0.8584
	Baichuan2-7B _{comb.}	0.3812	0.3091	0.2622	0.2259	0.2840	0.4494	0.8603
				Two-hop	Query			
	Original	0.2322	0.1324	0.0919	0.0695	0.1133	0.2613	0.8768
	Llama_index	0.2315	0.1321	0.0923	0.0697	0.1133	0.2585	0.8762
	Qwen2-1.5B _{ppl}	0.2328	0.1326	0.0918	0.0694	0.1133	0.2611	0.8749
	Qwen2-7B _{ppl}	0.2310	0.1323	0.0916	0.0691	0.1124	0.2597	0.8752
	Baichuan2-7B _{ppl}	0.2350	0.1341	0.0924	0.0695	0.1141	0.2637	0.8772
	Qwen2-1.5B _{comb.}	0.2372	0.1363	0.0950	0.0722	0.1164	0.2658	0.8743
	Qwen2-7B _{comb.}	0.2364	0.1360	0.0945	0.0713	0.1161	0.2661	0.8761
	Baichuan2-7B _{comb.}	0.2325	0.1329	0.0917	0.0689	0.1133	0.2623	0.8754
				Three-ho	p Query			
	Original	0.2494	0.1317	0.0869	0.0636	0.1110	0.2595	0.8827
	Llama_index	0.2464	0.1327	0.0883	0.0644	0.1120	0.2596	0.8840
	Qwen2-1.5B _{ppl}	0.2402	0.1260	0.0827	0.0596	0.1054	0.2531	0.8802
	Qwen2-7B _{ppl}	0.2415	0.1266	0.0828	0.0597	0.1058	0.2549	0.8816
	Baichuan2-7 B_{ppl}	0.2460	0.1293	0.0851	0.0615	0.1084	0.2568	0.8828
	Qwen2-1.5B _{comb} .	0.2449	0.1294	0.0855	0.0624	0.1086	0.2566	0.8828
	Qwen2-7B _{comb.}	0.2408	0.1274	0.0837	0.0610	0.1068	0.2551	0.8825
	Baichuan2-7B _{comb} .	0.2494	0.1324	0.0870	0.0632	0.1111	0.2613	0.8832

954 955

956

957

of improvement observed on the BERTScore, a BERT-based semantic similarity evaluation metric, may reflect a lower sensitivity of deep semantic understanding to chunking, as well as the limitations of the current BERTScore models in capturing precise semantics.

Finally, for three-hop query, although the performance of Qwen2-1.5B and Qwen2-7B using PPL
Chunking was slightly lower than traditional methods, Baichuan2-7B performed comparably. However, when chunk overlap is introduced, the PPL Chunking method exhibits positive changes (as
shown in Tables 3). This suggests that the effectiveness of segmentation strategies may be jointly
influenced by query complexity and text characteristics.

963 964

A.4 CHUNKING SITUATIONS OF LONG TEXT DATASETS

We also conducted experiments on longer datasets. According to corresponding expressions in benchmarks, the average length of the CUAD dataset is 11k, and average lengths of four datasets in MultiHop-RAG are 9k, 11k, 18k, and 16k. The chunk lengths of these two sets of experiments are shown in Tables 9 and 10. Additionally, the specific values presented in Figures 4 and 5 correspond to Tables 11 and 12.

According to Table 10, it can be observed that HotpotQA, MuSiQue, and DuReader achieve a suitable chunk length with a lower threshold, while NarrativeQA only reaches it when the threshold

974	dataset. ppl represe	nts direct PPL Chunking	ng, with a threshold	l of 0.
975		Chunking Method	Overlap Length	Chunk Length
976		0		0
977		Original	0	98.00
978		Llama_index	0	98.49
979		Qwen2-1.5B _{ppl}	0	97.70
980		Owen2-7B	0	96.08
981		Reichwar 27D	0	07.50
982		Balchuan2-7B _{ppl}	0	97.59

Table 9: Settings of overlap length and chunk length for different chunking methods in the CUAD dataset. *ppl* represents direct PPL Chunking, with a threshold of 0.

Table 10: Chunk length and corresponding threshold settings for different chunking methods in four long-text QA datasets of LongBench. - indicates no relevant setting. In Llama_index, a(b) represents that a chunk length of a can be obtained by setting the chunking parameter to b. The remaining a(b) indicates that a final chunk length of a is obtained by setting the combination length to b.

Dataset	taset HotpotQA		MuS	iQue	Narra	tiveQA	DuReader	
Chunking Method	Length	Threshold	Length	Threshold	Length	Threshold	Length	Threshold
Original	87	-	90	-	71	-	262	-
Llama_index	86.73(154)	-	89.94(157)	-	70.35(139)	-	262.06(330)	-
Qwen2-1.5Bppl	86.72	0.5	89.51	0.5	70.28	1.34	261.41	0.5
Qwen2-1.5B _{comb.}	86.80(98)	0+comb.	89.59(103)	0+comb.	70.32(82)	0+comb.	261.34(213)	0+comb.
Qwen2-1.5B _{comb.}	86.52(96)	0.1+comb.	89.60(100)	0.1+comb.	70.47(82)	0.1+comb.	261.98(200)	0.1+comb.
Qwen2-1.5B _{comb.}	86.58(92)	0.2+comb.	89.75(96)	0.2+comb.	70.17(81)	0.2+comb.	261.92(189)	0.2+comb.
Qwen2-1.5B _{comb.}	86.77(85)	0.3+comb.	89.60(88)	0.3+comb.	70.19(79)	0.3+comb.	261.06(170)	0.3+comb.
Qwen2-1.5B _{comb.}	86.81(70)	0.4+comb.	89.68(75)	0.4+comb.	70.66(78)	0.4+comb.	261.48(140)	0.4+comb.

is set to 1.34. This indicates that PPL distribution of the first three datasets is relatively flat with
small oscillations, whereas NarrativeQA exhibits significant fluctuations. Considering the chunking performance presented in Table 12, it suggests that direct PPL Chunking is more suitable when
chunk length is small, while the combination of PPL Chunking and dynamic merging is preferable
for larger chunk lengths. Furthermore, regarding the approach of PPL Chunking with dynamic combination, it is more appropriate to select a smaller threshold when the PPL amplitude is small, and a
larger threshold when the PPL amplitude is significant.

Table 11: Performance of different methods on CUAD QA datasets. *ppl* indicates direct PPL Chunking, with a threshold of 0.

ng, with a un conor	a 01 0.						
Chunking Method	BLEU-1	BLEU-2	BLEU-3	BLEU-4	BLEU-Avg	ROUGE-L	BERTScore
Driginal	0.6845	0.4496	0.2997	0.1798	0.3513	0.4217	0.8043
Llama_index	0.6966	0.4573	0.3006	0.1730	0.3493	0.4137	0.8001
Qwen2-1.5B _{ppl}	0.7098	0.4722	0.3180	0.1932	0.3677	0.4060	0.8006
Qwen2-7B _{ppl}	0.7038	0.4670	0.3143	0.1911	0.3638	0.4070	0.8018
Baichuan2-7B _{ppl}	0.7195	0.4738	0.3160	0.1884	0.3665	0.4111	0.8025

1018 A.5 EXPERIMENTAL SETUPS FOR EXPLORING THE IMPACT OF CHUNKING ON RE-RANKING

1020Tables 13 and 14 present chunk lengths that need to be set for Figure 6 and the specific values1021for drawing, respectively. Focusing on this batch of experiments, we first retrieve 10 relevant text1022chunks for each question through a dense retriever, and then applied various re-ranking methods for1023secondary sorting to analyze changes in recall performance.

Table 12: Performance of different methods in four long-text QA datasets of LongBench. *ppl* represents direct PPL Chunking, and *comb*. indicates PPL Chunking with dynamic combination. *Multi*represents threshold values of the parallel method in four datasets, which are 0.5, 0.5, 1.34, and 0.5
respectively, resulting in chunk lengths of 87, 90, 71, and 262 in sequence.

Chunking Method	Dataset Threshold	HotpotQA F1	MuSiQue F1	NarrativeQA F1	DuReader ROUGE-L
Original	-	15.79	7.21	5.72	20.69
Llama_index	-	15.72	8.19	5.03	21.41
Qwen2-1.5B _{ppl}	Multi	17.74	8.39	6.12	20.77
Qwen2-1.5B _{comb.}	0	17.47	8.08	4.93	20.77
Qwen2-1.5B _{comb.}	0.1	17.19	7.48	4.91	20.33
Qwen2-1.5B _{comb.}	0.2	17.70	7.31	5.20	20.95
Qwen2-1.5B _{comb.}	0.3	17.46	7.92	5.08	21.22
Qwen2-1.5B _{comb.}	0.4	16.44	8.05	5.80	21.65

1052Table 13: Chunk length and its corresponding threshold settings when exploring the impact of
chunking on re-ranking. - indicates no relevant setting.

Chunking and Re-ranking	Chunk Length	Threshold
Original	78	-
Original and BgeRerank	78	-
Original and PPLRerank	78	-
Qwen2-1.5B _{ppl}	77.60	0.5
Qwen2-1.5B _{ppl} and BgeRerank	77.60	0.5
Qwen2-1.5B _{ppl} and PPLRerank	77.60	0.5

Table 14: Performance of re-ranking strategies combined with different chunking methods in the MultiHop-RAG benchmark. *ppl* represents direct PPL Chunking, with a threshold of 0.5.

Chunking and Re-ranking	Hits@8	Hits@6	Hits@4	Hits@2	MAP@10	MRR@1
Original	0.5627	0.5180	0.4523	0.3499	0.1512	0.3507
Original and BgeRerank	0.5818	0.5406	0.4741	0.3379	0.1486	0.3391
Original and PPLRerank	0.5769	0.5521	0.5055	0.4102	0.1849	0.4147
$Qwen2-1.5B_{ppl}$	0.6838	0.6244	0.5503	0.4151	0.1954	0.4195
Qwen2-1.5B $_{ppl}$ and BgeRerank	0.6927	0.6435	0.5721	0.4381	0.2075	0.4413
Qwen2-1.5 B_{nnl} and PPLRerank	0.7197	0.6931	0.6568	0.5721	0.2590	0.5558