
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

META-CHUNKING: LEARNING EFFICIENT TEXT SEG-
MENTATION VIA LOGICAL PERCEPTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG), while serving as a viable complement to
large language models (LLMs), often overlooks the crucial aspect of text chunking
within its pipeline, which impacts the quality of knowledge-intensive tasks. This
paper introduces the concept of Meta-Chunking, which refers to a granularity be-
tween sentences and paragraphs, consisting of a collection of sentences within
a paragraph that have deep linguistic logical connections. To implement Meta-
Chunking, we designed Perplexity (PPL) Chunking, which balances performance
and speed, and precisely identifies the boundaries of text chunks by analyzing the
characteristics of context perplexity distribution. Additionally, considering the
inherent complexity of different texts, we propose a strategy that combines PPL
Chunking with dynamic merging to achieve a balance between fine-grained and
coarse-grained text chunking. Experiments conducted on eleven datasets demon-
strate that Meta-Chunking can more efficiently improve the performance of single-
hop and multi-hop question answering based on RAG. For instance, on the 2Wiki-
MultihopQA dataset, it outperforms similarity chunking by 1.32 while only con-
suming 45.8% of the time. Furthermore, through the analysis of models of various
scales and types, we observed that PPL Chunking exhibits notable flexibility and
adaptability.

1 INTRODUCTION

Retrieval-augmented generation (RAG), as a cutting-edge technological paradigm, aims to address
challenges faced by large language models (LLMs), such as data freshness (He et al., 2022), hal-
lucinations (Bénédict et al., 2023; Chen et al., 2023b; Zuccon et al., 2023; Liang et al., 2024), and
the lack of domain-specific knowledge (Li et al., 2023; Shen et al., 2023). This is particularly rel-
evant in knowledge-intensive tasks like open-domain question answering (Lazaridou et al., 2022).
By integrating two key components: the retriever and the generator, this technology enables more
precise responses to input queries (Singh et al., 2021; Lin et al., 2023). While the feasibility of
the retrieval-augmentation strategy has been widely demonstrated through practice, its effectiveness
heavily relies on the relevance and accuracy of the retrieved documents (Li et al., 2022; Tan et al.,
2022). The introduction of excessive redundant or incomplete information through retrieval not only
fails to enhance the performance of the generation model but may also lead to a decline in answer
quality (Shi et al., 2023; Yan et al., 2024).

In response to the aforementioned challenges, current research efforts mainly focus on two aspects:
improving retrieval accuracy (Zhuang et al., 2024; Sidiropoulos & Kanoulas, 2022; Guo et al., 2023)
and enhancing the robustness of LLMs against toxic information (Longpre et al.; Kim et al., 2024).
However, in RAG systems, a commonly overlooked aspect is the chunked processing of textual
content, which directly impacts the quality of dense retrieval (Xu et al., 2023). By delicately splitting
long documents into multiple chunks, this module not only significantly improves the processing
efficiency and performance of the system, reducing the consumption of computing resources, but
also enhances the accuracy of retrieval (Besta et al., 2024). Meanwhile, the chunking strategy allows
information to be more concentrated, minimizing the interference of irrelevant information, enabling
LLMs to focus more on the specific content of each text chunk and generate more precise responses
(Su et al., 2024). Traditional text chunking methods, often based on rules or semantic similarity
(Zhang et al., 2021; Langchain, 2023; Lyu et al., 2024), provide some structural segmentation but
are inadequate in capturing subtle changes in logical relationships between sentences. As illustrated
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Figure 1: Overview of RAG pipeline, as well as examples based on rules, similarity, and PPL
segmentation. The same background color represents being located in the same chunk.

in Figure 1, example sentences exhibit a progressive relationship, yet their semantic similarity is
low, which may result in their complete separation. The LumberChunker (Duarte et al., 2024) offers
a novel solution by utilizing LLMs to receive a series of consecutive paragraphs and accurately
identify where content begins to diverge. However, it demands a high level of instruction-following
ability from LLMs, necessitating the use of the Gemini model, which incurs significant resource
and time costs. This raises a practical question: How can we fully utilize the powerful reasoning
capabilities of LLMs while efficiently accomplishing the text chunking task at a lower cost?

This paper introduces the concept of Meta-Chunking, which operates at a granularity between sen-
tences and paragraphs, aiming to enhance logical coherence in the process of text segmentation.
Meta-Chunking consists of sets of sentences within paragraphs that share deep linguistic and log-
ical connections. To address the limitations of traditional methods based on semantic similarity,
we leverage the powerful comprehension and reasoning capabilities of LLMs to devise the Meta-
Chunking strategy: Perplexity (PPL) Chunking. This method calculates the PPL of each sentence
based on its context and identifies text chunk boundaries by analyzing the characteristics of PPL dis-
tribution. It effectively reduces the dependency of text chunking on model scale, enabling smaller
language models with relatively weaker reasoning capabilities to adequately perform this task. Fur-
thermore, PPL Chunking improves the efficiency of LLMs in handling chunking tasks, achieving
both resource and time savings. This provides crucial support for LLMs to process text chunking in
real-world scenarios.

To comprehensively evaluate proposed methods, extensive experiments were conducted on eleven
datasets across four benchmarks, involving both Chinese and English texts, ranging from brief to ex-
tensive documents, and measured through seven key metrics. In response to the inherent complexity
of different datasets, we propose a Meta-Chunking with dynamic combination strategy designed
to achieve a valid balance between fine-grained and coarse-grained text segmentation. Traditional
chunking methods treat sentences as independent logical units, whereas we adopt meta-chunks as
independent logical units. For instance, in the RAG system, if users opt for a small model and
set a relatively low top k value for recall, meta-chunks can be directly utilized. However, in cases
where users employ LLMs with extended contexts and require larger text chunks, meta-chunks can
initially be generated and subsequently merged based on the desired chunk size to achieve the final
chunking outcome. Experimental results fully demonstrate that the Meta-Chunking strategy sig-
nificantly improves performance compared to traditional rule-based and semantic chunking. More
importantly, compared to the current LLMs approache, the method proposed in this paper exhibits
superior performance in terms of efficiency and cost savings.
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2 RELATED WORKS

Text Segmentation It is a fundamental task in NLP, aimed at breaking down text content into its
constituent parts to lay the foundation for subsequent advanced tasks such as information retrieval
(Li et al., 2020) and text summarization (Lukasik et al., 2020; Cho et al., 2022). By conducting topic
modeling on documents, Kherwa & Bansal (2020) and Barde & Bainwad (2017) demonstrate the
identification of primary and sub-topics within documents as a significant basis for text segmenta-
tion. Numerous techniques exist for topic modeling, ranging from algorithms based on probabilistic
methods, such as Latent Dirichlet Allocation (Blei et al., 2003) and Probabilistic Latent Semantic
Analysis (Hofmann et al., 1999), to models that also consider semantic relationships between words
and sentences, like Top2Vec (Angelov, 2020) and BERTopic (Grootendorst, 2022). Additionally,
Zhang et al. (2021) frames text segmentation as a sentence-level sequence labeling task, utilizing
BERT to encode multiple sentences simultaneously. It calculates sentence vectors after model-
ing longer contextual dependencies and finally predicts whether to perform text segmentation after
each sentence. Langchain (2023) provides flexible and powerful support for various text process-
ing scenarios by integrating multiple text segmentation methods, including character segmentation,
delimiter-based text segmentation, specific document segmentation, and recursive chunk segmen-
tation. Although these methods better respect the structure of the document, they have limitations
in deep contextual understanding. To address this issue, semantic-based segmentation (Kamradt,
2024) utilizes embeddings to aggregate semantically similar text chunks and identifies segmentation
points by monitoring significant changes in embedding distances.

Text Chunking in RAG LLMs have demonstrated remarkable capabilities in language-related
tasks through their complex internal structures and reasoning mechanisms (Zheng et al., 2024).
By expanding the input space of LLMs through introducing retrieved text chunks (Guu et al., 2020;
Lewis et al., 2020), RAG significantly improves the performance of knowledge-intensive tasks (Ram
et al., 2023). Text chunking plays a crucial role in RAG, as ineffective chunking strategies can lead
to incomplete contexts or excessive irrelevant information, thereby hurting the performance of QA
systems (Yu et al., 2023). Besides typical granularity levels like sentences or paragraphs (Lyu et al.,
2024; Gao et al., 2023), there are other advanced methods available. Chen et al. (2023a) introduced
a novel retrieval granularity called Proposition, which is the smallest text unit that conveys a single
fact. This method excels in fact-based texts like Wikipedia. However, it may not perform ideally
when dealing with content that relies on flow and contextual continuity, such as narrative texts, lead-
ing to the loss of critical information. Meanwhile, LumberChunker (Duarte et al., 2024) iteratively
harnesses LLMs to identify potential segmentation points within a continuous sequence of textual
content, showing some potential for LLMs chunking. However, this method demands a profound
capability of LLMs to follow instructions and entails substantial consumption when employing the
Gemini model.

3 METHODOLOGY

3.1 META-CHUNKING

Our main contribution is an innovative text segmentation technique named Meta-Chunking, which
leverages the capabilities of LLMs to flexibly partition documents into logically coherent, indepen-
dent chunks. Our approach is grounded in a core principle: allowing variability in chunk size to
more effectively capture and maintain the logical integrity of content. This dynamic adjustment of
granularity ensures that each segmented chunk contains a complete and independent expression of
ideas, thereby avoiding breaks in the logical chain during the segmentation process. This not only
enhances the relevance of document retrieval but also improves content clarity.

As illustrated in Figure 2, our method integrates the advantages of traditional text segmentation
strategies, such as adhering to preset chunk length constraints and ensuring sentence structural in-
tegrity, while enhancing the ability to guarantee logical coherence during the segmentation process.
The key lies in introducing a novel concept between sentence-level and paragraph-level text granu-
larity: Meta-Chunking. A meta chunk consists of a collection of sequentially arranged sentences
within a paragraph, where the sentences not only share semantic relevance but, more importantly,
contain deep linguistic logical connections, including but not limited to causal, transitional, parallel,
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and progressive relationships. These relationships go beyond mere semantic similarity. In order to
achieve this goal, we have designed and implemented the following strategy.

Perplexity Chunking: Given a text, the initial step involves segmenting it into a collection of sen-
tences denoted as (x1, x2, . . . , xn), with the ultimate goal being to further partition these sentences
into several chunks, forming a new set (X1, X2, . . . , Xk), where each chunk comprises a coherent
grouping of the original sentences. We split the text into sentences and use the model to calculate
the PPL of each sentence xi based on the preceding sentences:

PPLM (xi) =

∑K
k=1PPLM (tik|ti<k, t<i)

K
(1)

where K represents the total number of tokens in xi, tik denotes the k-th token in xi, and t<i signifies
all tokens that precede xi. To locate the key points of text segmentation, the algorithm further ana-
lyzes the distribution characteristics of PPLseq = (PPLM (x1),PPLM (x2), . . . ,PPLM (xn)), partic-
ularly focusing on identifying minima:

Minimaindex(PPLseq) =

{
i

∣∣∣∣ min(PPLM (xi−1),PPLM (xi+1))− PPLM (xi) > θ,

or PPLM (xi−1)− PPLM (xi) > θ and PPLM (xi+1) = PPLM (xi)

}
(2)

The meaning of the above formula include: when the PPL on both sides of a point are higher than at
that point, and the difference on at least one side exceeds the preset threshold θ; or when the differ-
ence between the left point and the point is greater than θ and the right point equals the point value.
These minima are regarded as potential chunk boundaries. If the text exceeds the processing range
of LLMs or device, we strategically introduce a key-value (KV) caching mechanism. Specifically,
the text is first divided into several parts according to tokens, forming multiple subsequences. As
the PPL calculation progresses, when the GPU memory is about to exceed the server configuration
or the maximum context length of LLMs, the algorithm appropriately removes KV pairs of previous
partial text, thus not sacrificing too much contextual coherence.

To address diverse chunking needs of users, merely adjusting the threshold to control chunk size
sometimes leads to uneven chunking sizes as the threshold increases, as shown in Section 5.2.2 and
5.2.3. Therefore, we propose a strategy combining Meta-Chunking with dynamic merging, aiming to
flexibly respond to varied chunking requirements. Firstly, we set an initial threshold of 0 or a specific
value based on the PPL distribution and perform Meta-Chunking operations, preliminarily dividing
the document into a series of basic units (c1, c2, . . . , cα). Subsequently, according to the user-
specified chunk length L, we iteratively merge adjacent meta-chunks until the total length satisfies
or approximates the requirement. Specifically, if len(c1, c2, c3) = L or len(c1, c2, c3) < L while
len(c1, c2, c3, c4) > L, then c1, c2, c3 are regarded as a complete chunk.

3.2 THEORETICAL ANALYSIS OF PPL CHUNKING

LLMs are designed to learn a distribution Q that approximates the empirical distribution P from
sample texts. To quantify the closeness between these two distributions, cross-entropy is typically
employed as a metric. Under the discrete scenario, cross-entropy of Q relative to P is formally
defined as follows:

H(P,Q) = Ep[−logQ] = −
∑
x

P (x) logQ(x) = H(P ) +DKL(P ||Q) (3)

where H(P ) represents the empirical entropy, and DKL(P ||Q) is the Kullback-Leibler (KL) diver-
gence between Q and P . The PPL of LLMs, mathematically speaking, is defined as:

PPL(P,Q) = 2H(P,Q) (4)

It is essential to notice that, since H(p) is unoptimizable and bounded as shown in Appendix A.1,
what truly impacts the discrepancy in PPL calculations across different LLMs is the KL divergence,
which serves as a metric to assess the difference between distributions. The greater the KL di-
vergence is, the larger the disparity between two distributions signifies. Furthermore, high PPL
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Figure 2: Overview of the entire process of Meta-Chunking. Each circle represents a complete sen-
tence, and the sentence lengths are not consistent. The vertical lines indicate where to segment. The
two sides at the bottom of the figure reveal Margin Sampling Chunking and Perplexity Chunking.
Circles with the same background color represent a meta-chunk, which is dynamically combined to
make the final chunk length meet user needs.

indicates the cognitive hallucination of LLMs towards the real content, and such portions should not
be segmented.

On the other hand, Shannon (1951) approximates the entropy of any language through a function

GK =−
∑
Tk

P (Tk) log2 P (tk|Tk−1)

=−
∑
Tk

P (Tk) log2 P (Tk) +
∑
Tk−1

P (Tk−1) log2 P (Tk−1) (5)

where Tk represents k consecutive tokens (t1, t2, . . . , tk) in a text sequence, entropy can then be
expressed as

H(P ) = lim
K→∞

GK (6)

Then, based on the proof in Appendix A.1 that GK+1 ≤ GK for all K ≥ 1, we can derive

G1 ≥ G2 ≥ · · · ≥ lim
K→∞

GK = H(P ) (7)

By combining formulas (3) and (7), we observe that for large-scale text processing tasks, increasing
the context length tends to reduce the cross-entropy or PPL, a phenomenon that reflects the ability
of LLMs to make more effective logical inferences and semantic understandings after capturing
broader contextual information. Consequently, during PPL Chunking experiments, we maximize
the input of longer text sequences to LLMs, anticipating more substantial performance gains.

4 EXPERIMENT

4.1 DATASETS AND METRICS

We conducted a comprehensive evaluation on four benchmarks and comparison between Meta-
Chunking and multiple baselines on a series of question answering (QA) datasets, focusing on
both Chinese and English languages, and covering multiple metrics such as the correctness of an-
swers, factuality, and recall of retrieved texts. The CRUD benchmark (Lyu et al., 2024) is a Chinese
dataset containing single-hop, two-hop, and three-hop questions, evaluated using metrics including
BLEU series, ROUGE-L, and BERTScore. We utilize the CUAD dataset from RAGBench bench-
mark (Friel et al., 2024), employing the same evaluation metrics as the CRUD. The MultiHop-RAG
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benchmark (Tang & Yang) assesses recall rates, with metrics such as Hits@ series, MAP@10, and
MRR@10. LongBench benchmark (Bai et al., 2023) comprises various datasets, among which we
exploit eight Chinese and English datasets covering single and multi-hop QA, evaluated based on
F1 and ROUGE-L metrics.

4.2 BASELINES

We primarily compared Meta-Chunking with two types of methods, namely rule-based chunking and
dynamic chunking, noting that the latter incorporates both semantic similarity models and LLMs.
The original rule-based method simply divides long texts into fixed-length chunks, disregarding
sentence boundaries. However, the Llama index method (Langchain, 2023) offers a more nuanced
approach, balancing the maintenance of sentence boundaries while ensuring that token counts in
each segment are close to a preset threshold. On the other hand, similarity chunking (Xiao et al.,
2023) utilizes sentence embedding models to segment text based on semantic similarity, effectively
grouping highly related sentences together. Dense X Retrieval (Chen et al., 2023a) introduces a
new retrieval granularity called propositions, which condenses and segments text by training an
information extraction model. Alternatively, LumberChunker (Duarte et al., 2024) employs LLMs
to predict optimal segmentation points within the text. These methods exhibit unique strengths in
adapting to the context and structure of texts.

It is noteworthy that LumberChunker encounters difficulties when applied to smaller models, thus
impeding the comparison among different methods within the same model. To address this lim-
itation, we introduced a Margin Sampling (MSP) strategy to optimize the method, enhancing its
adaptability to smaller models. This optimization enables a more effective comparison of the per-
formance and time consumption of various chunking methods.

Margin Sampling Chunking: We split the text into a collection of sentences denoted as
(x1, x2, . . . , xn), and the method can be formulated as:

MarginM (xi) = PM

(
y = k1|Prompt(xi, X

′
)
)
− PM

(
y = k2|Prompt(xi, X

′
)
)

(8)

where (k1, k2) indicates a binary decision between yes or no for a segmentation judgment.
Prompt(xi, X

′
) represents forming an instruction between xi ∈ {xl}nl=1 and X

′
, regarding whether

they should be merged, where X
′

encompasses either a single sentence or multiple sentences.
Through the probability PM obtained by model M , we can derive the probability difference
MarginM (xi) between the two options. Subsequently, by contrasting MarginM (xi) with the thresh-
old θ, a conclusion can be drawn regarding whether the two sentences should be segmented. For the
setting of θ, we initially assign it a value of 0 and then adjust it by recording historical MarginM (xi)
and calculating their average.

4.3 EXPERIMENTAL SETTINGS

We primarily use Qwen2-0.5B, Qwen2-1.5B, Qwen2-7B and Baichuan2-7B for Meta-Chunking
(Yang et al., 2024; 2023). Without additional annotations, all language models used in this paper
adopt chat or instruction versions. When chunking, the default parameter configurations of the mod-
els are adopted. For evaluation, Qwen2-7B is employed with the following settings: top p = 0.9,
top k = 5, temperature = 0.1, and max new tokens = 1280. When conducting QA, the system ne-
cessitates dense retrievals from the vector database, with top k set to 8 for CRUD and RAGBench,
10 for MultiHop-RAG, and 5 for LongBench. Text segmentation in the dataset is performed us-
ing NVIDIA H800, and evaluation is conducted using NVIDIA GeForce RTX 3090. To control
variables, we maintain consistent chunk lengths for various chunking methods across each dataset.
Detailed experimental setup information can be found in Appendix A.2.

5 RESULTS AND ANALYSIS

5.1 MAIN RESULTS

Comparison against Baselines. We systematically evaluated the performance of five baseline
methods, as shown in Table 1 (top) and Table 2 (top). Notably, LumberChunker with Qwen2-7B
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Table 1: Main experimental results are presented in five QA datasets. The first four datasets are
sourced from LongBench. Besides Dense X Retrieval, we maintain a consistent chunk length for
various chunking methods in each dataset.

Dataset 2WikiMultihopQA Qasper MultiFieldQA-en MultiFieldQA-zh MultiHop-RAG

Chunking Method F1 Time F1 Time F1 Time F1 Time Hits@10 Hits@4 MAP@10 MRR@10

Baselines with rule-based or similarity-based chunking

Original 11.89 0.21 9.45 0.13 29.89 0.16 22.45 0.06 0.6027 0.4523 0.1512 0.3507

Llama index 11.74 8.12 10.15 5.81 28.30 6.25 21.85 5.53 0.7366 0.5437 0.1889 0.4068

Similarity Chunking 12.00 416.45 9.93 307.05 29.19 318.41 22.39 134.80 0.7232 0.5362 0.1841 0.3934

Dense X Retrieval 5.49 57633.07 8.23 39762.54 29.72 41789.49 - - - - - -

Chunking based on Qwen2-0.5B

MSP Chunking 11.74 788.30 9.67 599.97 31.28 648.76 23.35 480.35 0.7162 0.5246 0.1830 0.3913

PPL Chunking 13.56 140.54 9.62 65.45 31.02 79.72 23.52 64.02 0.7215 0.5583 0.1925 0.4186

Chunking based on Qwen2-1.5B

MSP Chunking 11.30 2189.29 9.49 1487.27 32.81 1614.01 22.08 1881.15 0.7109 0.5517 0.1970 0.4252

PPL Chunking 13.32 190.93 9.82 122.44 31.30 136.96 22.57 107.94 0.7366 0.5570 0.1979 0.4300

achieved a score of 10.65 and a chunking time of 2883.43 seconds on the Qasper dataset but failed
to work effectively on the other four datasets. This indicates significant limitations of this strategy
in adapting to models with 7B parameters and below. Dense X Retrieval condenses and segments
text by training an information extraction model, which does not allow for specifying the chunk
length. Aside from this method, we maintain a consistent chunk length for various other chunking
approaches across each dataset, which are enumerated individually in Appendix A.2.

As shown in Table 1 (bottom), PPL Chunking provides notable improvements in the performance of
QA systems and information retrieval when utilizing models with 0.5B and 1.5B parameter scales.
Specifically, both model configurations show measurable improvements in accuracy and recall met-
rics compared to baseline tasks. Furthermore, they exhibit significant enhancements in processing
speed when compared to dynamic chunking, thereby facilitating easier implementation of LLMs
chunking in real-world scenarios.

Table 2: Main experimental results of LLMs chunking using
Qwen2-7B. Consistent chunk lengths were maintained for
various chunking methods in each dataset. base represents
the basic model, while inst. denotes the model fine-tuned
with instructions.

Dataset 2WikiMultihopQA Qasper MultiFieldQA-en

Chunking Method F1 Time F1 Time F1 Time

Similarity Chunking 12.00 416.45 9.93 307.05 29.19 318.41

LumberChunkerinst. - - 10.65 2883.43 - -

MSP Chunkinginst. 12.94 8781.82 11.37 5755.79 33.56 6287.31

PPL Chunkingbase 14.15 745.11 10.11 493.43 30.92 530.22

PPL Chunkinginst. 13.41 736.69 9.39 486.48 32.35 523.74

Efficiency and Accuracy Trade-
off. Margin Sampling Chunking
addresses the current issue where
LLMs chunking cannot be applied
to models with weak instruction-
following capabilities, and it demon-
strates superior performance com-
pared to LumberChunker, as illus-
trated in Table 2. However, this
method exhibits chunking times sim-
ilar to the LumberChunker algorithm,
both reaching threshold ranges that
are challenging for practical appli-
cations, highlighting inefficiencies of
LLMs in handling chunking tasks.
In contrast, PPL Chunking demon-
strates significant advantages, not only excelling in maintaining or approaching the performance
level provided by Margin Sampling Chunking, but also achieving a substantial leap in processing
efficiency compared to dynamic chunking strategies. Upon deeper examination between the base
model and the instruction model, we found that PPL Chunking exhibits a remarkable flexibility and
adaptability, indicating that it does not have a stringent requirement for the capacity of model to
follow specific instructions.

How Weak Can the Weaker LLM Be? As a fundamental task, text chunking consumes a large
number of tokens when using LLMs like GPT-4 or Gemini, often leading to a significant imbalance
between resource utilization and task benefits. Therefore, using a lightweight model is a practical
choice. Since our method is applicable to both large and small models, in addition to testing 1.5B
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and 7B models, we explored smaller models below 1B parameters. As the model size decreases,
the execution time of the text chunking task significantly reduces, reflecting the advantage of small
models in improving processing efficiency. Furthermore, our approaches do not suffer from signif-
icant performance degradation as the model size decreases, and it outperforms baselines on most
datasets, which further demonstrates the superiority of our methods.

5.2 ANALYSIS

5.2.1 IMPACT OF OVERLAPPING CHUNKING STRATEGIES

As we delve deeper into the influence of text chunking strategies on the performance of complex
QA tasks, we further investigated the performance of various chunking strategies when overlapping
chunks were employed. The original chunking overlap method uses a fixed number of characters
from the end of one chunk to overlap with the start of the next. The Llama index overlap approach
builds upon this by additionally considering sentence integrity. The PPL Chunking overlap strategy,
on the other hand, dynamically assigns sentences represented by minimal points of PPL to both
the preceding and subsequent chunks, resulting in dynamic overlap. These approaches generally
produce overlap lengths averaging around 50 Chinese characters.

Table 3: Performance of different methods on CRUD QA datasets with overlapping chunks. ppl
represents direct PPL Chunking, with a threshold of 0.5. Precise chunk length and overlap length
results are included in Appendix A.3.

Chunking Method Overlap BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-Avg ROUGE-L BERTScore

Single-hop Query

Original Fixed 0.3330 0.2641 0.2214 0.1881 0.2410 0.4060 0.8425

Llama index Dynamic 0.3326 0.2645 0.2214 0.1890 0.2413 0.4039 0.8439

Qwen2-1.5Bppl Dynamic 0.3592 0.2888 0.2435 0.2081 0.2644 0.4332 0.8555

Qwen2-7Bppl Dynamic 0.3582 0.2898 0.2450 0.2097 0.2657 0.4308 0.8548

Baichuan2-7Bppl Dynamic 0.3656 0.2952 0.2497 0.2143 0.2705 0.4393 0.8549

Two-hop Query

Original Fixed 0.2251 0.1300 0.0909 0.0689 0.1114 0.2579 0.8747

Llama index Dynamic 0.2223 0.1282 0.0896 0.0677 0.1099 0.2555 0.8732

Qwen2-1.5Bppl Dynamic 0.2295 0.1331 0.0934 0.0709 0.1143 0.2609 0.8700

Qwen2-7Bppl Dynamic 0.2312 0.1353 0.0949 0.0719 0.1162 0.2638 0.8751

Baichuan2-7Bppl Dynamic 0.2336 0.1350 0.0940 0.0710 0.1154 0.2650 0.8754

Three-hop Query

Original Fixed 0.2384 0.1268 0.0832 0.0602 0.1066 0.2546 0.8823

Llama index Dynamic 0.2331 0.1250 0.0825 0.0598 0.1049 0.2517 0.8796

Qwen2-1.5Bppl Dynamic 0.2453 0.1319 0.0881 0.0643 0.1114 0.2599 0.8808

Qwen2-7Bppl Dynamic 0.2447 0.1330 0.0891 0.0651 0.1122 0.2618 0.8817

Baichuan2-7Bppl Dynamic 0.2463 0.1324 0.0887 0.0651 0.1120 0.2596 0.8811

As demonstrated in Table 3, PPL Chunking overlap strategy shows particularly notable performance
in multi-hop QA scenarios. Specifically, except for the BERTScore metric, PPL Chunking overlap
method achieves a performance gain of 2%–3% on the single-hop task. In the case of two-hop and
three-hop tasks, although the rate of improvement slows slightly, a consistent gain of 0.3%–1% is
maintained. Additionally, the performance across all three models exhibits an upward trend with the
size of model parameters. Although the 1.5B model lags slightly behind the 7B model in terms of
overall performance, it still demonstrates notable improvement over traditional chunking methods,
further validating the effectiveness of PPL Chunking.

5.2.2 COMPARATIVE ANALYSIS OF TWO PPL CHUNKING STRATEGIES

As shown in Figure 3, we compared two PPL Chunking strategies: direct PPL Chunking and PPL
Chunking with dynamic combination, both of which are effective across the CRUD dataset. Through
experimental analysis, we found that the latter demonstrates superior performance. This is primarily
due to direct PPL Chunking, which may result in overly long chunks, whereas the PPL Chunking
with dynamic combination method effectively maintains chunk length and logical consistency.
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In addition, PPL Chunking achieved significant performance improvements compared to traditional
segmentation methods on BLEU series metrics and ROUGE-L. This indicates that our methods
enhance the accuracy and fluency of the generated text to the reference text. Furthermore, this
experiment reveals the delicate balance between model size and performance. Specifically, the per-
formance of Qwen2-1.5B and Baichuan2-7B under this evaluation framework is closely matched,
often surpassing the Qwen2-7B model across multiple metrics.

Figure 3: Performance of different methods on single-hop query in the CRUD QA dataset. ppl
represents direct PPL Chunking, with a threshold of 0.5. comb. indicates PPL Chunking with
dynamic combination, with a threshold of 0 when performing PPL Chunking. Precise chunk length
results and performance of remaining multi-hop scenarios are included in Appendix A.3.

5.2.3 LONG TEXT CHUNKING AND STRATEGY SELECTION

When dealing with longer texts, we adopt the KV caching to calculate the PPL values of sentences
under the premise of maintaining coherence, thereby optimizing the utilization of GPU memory and
computational accuracy. Utilizing the CUAD dataset (average length 11k), we tested three models
shown in Figure 4, which achieved appreciable improvements in BLEU-series metrics. Furthermore,
it is noteworthy that both Qwen2-1.5B and Baichuan2-7B demonstrate comparable performance,
which further confirms that the 1.5B model can maintain a impressive balance between performance
and efficiency when dealing with text chunking of varying lengths.

Figure 4: Performance of different methods on CUAD QA datasets. ppl indicates direct PPL Chunk-
ing, with a threshold of 0.

Figure 5: Performance of different methods in four long-text QA datasets of LongBench is evaluated
based on F1, F1, F1, and ROUGE-L. ppl represents direct PPL Chunking, and comb. indicates PPL
Chunking with dynamic combination. Multi represents threshold values of the parallel method in
four datasets, which are 0.5, 0.5, 1.34, and 0.5 respectively, resulting in chunk lengths of 87, 90, 71,
and 262 in sequence.

9
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On the other hand, we conducted an in-depth exploration of chunking in four long-text QA datasets
of LongBench, and carried out gradient experiments (0 to 0.4, step 0.1) on the threshold of PPL
Chunking, aiming to reveal the intrinsic relationship between PPL distribution and chunking ef-
fectiveness. The analysis of overall PPL distribution of datasets can be found in Appendix A.4.
As shown in Figure 5, when chunk length is small, the direct PPL Chunking brings greater benefits,
whereas when the chunk length is longer, PPL Chunking with dynamic combination performs better.
In addition, experimental results indicate that the optimal configuration of PPL Chunking relies on
the PPL distribution of texts: when the PPL distribution is relatively stable, it is more appropriate to
select a lower threshold (such as setting the threshold to 0 in HotpotQA, MuSiQue, and DuReader);
whereas when the PPL distribution exhibits large fluctuations, choosing a higher threshold (such as
setting the threshold to 0.4 in NarrativeQA) can effectively distinguish paragraphs with different in-
formation densities, improving the chunking effect. Therefore, when employing PPL for chunking,
it is crucial to comprehensively consider the dual factors of chunk length and text PPL distribution
to determine the relatively optimal configuration that maximizes performance.

5.2.4 EXPLORATION OF CHUNKING APPROACH FOR PERFORMANCE OF RE-RANKING

To explore the impact of chunking strategies on the RAG system, we evaluated the combination
of different chunking and re-ranking methods. Initially, a top-10 set of relevant texts was filtered
using a dense retriever. We then compared two re-ranking strategies: (1) the BgeRerank method,
leveraging the bge-reranker-large model (Xiao et al., 2023), and (2) the PPLRerank method with the
Qwen2-1.5B model, utilizing the re-ranking method mentioned in the coarse-grained compression
section in Jiang et al. (2023).

Figure 6: Performance of re-ranking strategies combined with different chunking methods in the
MultiHop-RAG benchmark. ppl represents direct PPL Chunking, with a threshold of 0.5. The base
reveals not utilizing re-ranking strategy. Precise chunk length results are included in Appendix A.5.

Experimental results (see Figure 6) revealed that PPL Chunking and PPLRerank achieved the best
overall performance across all metrics. Further analysis demonstrated that, compared to traditional
chunking, PPL Chunking not only provided performance gains independently but also significantly
enhanced the effectiveness of the subsequent re-ranking. Notably, while traditional chunking and
re-ranking strategies already deliver performance improvements, PPL Chunking resulted in even
greater re-ranking gains. For instance, in the Hits@8 metric, PPLRerank under the original chunk-
ing yielded a 1.42% improvement, whereas PPLRerank under PPL Chunking achieved a 3.59%
improvement.

6 CONCLUSION

This paper proposes the concept of Meta-Chunking along with its implementation strategy, namely
PPL Chunking, which enable a more precise capture of the inherent logical structure of text, thereby
providing a powerful tool for optimizing text segmentation within the RAG pipeline. To bal-
ance the effectiveness of fine-grained and coarse-grained text segmentation, we present a dynamic
combination approach with Meta-Chunking to address the limitation when dealing with diverse
texts. Our comprehensive evaluation using multiple metrics on eleven datasets demonstrates that
Meta-Chunking significantly outperforms both rule-based and similarity-based chunking, while also
achieving a better balance between performance, time cost, and computational cost compared to cur-
rent LLMs approaches.
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A APPENDIX

A.1 THEORETICAL PROOF FOR PPL CHUNKING

Firstly, we illustrate the relationship between cross-entropy and two distributions P and Q in another
way. Based on sequencing inequality

n∑
i=1

aibi ≥
n∑

i=1

aibj(i) ≥
n∑

i=1

aibn+1−i

where a1 ≥ a2 ≥ · · · ≥ an, b1 ≥ b2 ≥ · · · ≥ bn and (j(1), j(2), . . . , j(n)) is an arbitrary sorting
of (1, 2, . . . , n), it can be observed that the sum of products of larger numbers paired together is
the maximum, while the sum of products of larger numbers paired with smaller numbers is the
minimum. We desire the cross-entropy H(P,Q) to be as small as possible, which means that when
P (x) is relatively large, − logQ(x) should be relatively small, thereby resulting in Q(x) also being
relatively large. Therefore, a smaller cross-entropy indicates that the prediction is closer to the actual
label.

Afterwards, inspired by insights provided in Huyen (2019), a property of formula (7) is proved:
GK+1 ≤ GK for all K ≥ 1.

Proof.

GK −GK+1

=−
∑
Tk

P (Tk) loga P (tk|Tk−1) +
∑
Tk+1

P (Tk+1) loga P (tk+1|Tk)

=
∑
Tk−1

 ∑
tk,tk+1

P (Tk+1) loga P (tk+1|Tk)−
∑
tk

P (Tk) loga P (tk|Tk−1)


≥
∑
Tk−1

 ∑
tk,tk+1

P (Tk+1) loga P (tk+1|Tk−1)−
∑
tk

P (Tk) loga P (tk|Tk−1)


=
∑
Tk−1

 ∑
tk,tk+1

P (Tk−1, tk, tk+1) loga P (tk+1|Tk−1)−
∑
tk

P (Tk−1, tk) loga P (tk|Tk−1)


=
∑
Tk−1

∑
tk+1

loga P (tk+1|Tk−1)
∑
tk

P (Tk−1, tk, tk+1)−
∑
tk

P (Tk−1, tk) loga P (tk|Tk−1)


=
∑
Tk−1

∑
tk+1

P (Tk−1, tk+1) loga P (tk+1|Tk−1)−
∑
tk

P (Tk−1, tk) loga P (tk|Tk−1)


=0

The reason for the last equality is that tk+1 and tk belong to the same domain. Thus, the proof is
complete.

Eventually, we illustrate bounds of entropy, so as to demonstrate the positive correlation between
H(P,Q) and DKL(P ||Q) in formula (3).

Proof. Let P be a discrete random variable with a finite range of values denoted by W :=
{w1, w2, . . . , wl}. Set pi = P{P = wi} for i = 1, 2, . . . , l, and assume that pi > 0 for all
i ∈ {1, 2, . . . , l}. According to Lemma 2 in Dragomir & Goh (1997), if

γ := max
i,j

θi
θj

≤ φ(ε) := 1 + ε ln c+
√
ε ln c(ε ln c+ 2)
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then

0 ≤ logc

(
l∑

k=1

pkθk

)
−

l∑
k=1

pk logc θk ≤ ε

where θk ∈ (0,+∞), pk ≥ 0 with
∑l

k=1pk = 1 and c > 1. Given that θk = 1/pk, the aforemen-
tioned inequality can be transformed into

0 ≤ logc l −Hc(P ) ≤ ε

where ε > 0 satisfies the following conditions

max
i,j

pi
pj

≤ φ(ε)

Furthermore, we can derive bounds for entropy as logc l − ε ≤ Hc(P ) ≤ logc l. The proof is
concluded.

A.2 MAIN EXPERIMENTAL DETAILS

All language models utilized in this paper employ the chat or instruct versions where multiple ver-
sions exist, and are loaded in full precision (Float32). The vector database is constructed using
Milvus, where the embedding model for English texts is bge-large-en-v1.5, and bge-base-zh-v1.5
for Chinese texts. When conducting QA, the system necessitates dense retrievals from the vector
database, with top k set to 8 for CRUD and RAGBench, 10 for MultiHop-RAG, and 5 for Long-
Bench.

In experiments, we utilized a total of four benchmarks, and their specific configurations are detailed
as follows:

(a) Rule-based Chunking Methods
• Original: This method divides long texts into segments of a fixed length, such as two

hundred Chinese characters or words, without considering sentence boundaries.
• Llama index (Langchain, 2023): This method considers both sentence completeness and

token counts during segmentation. It prioritizes maintaining sentence boundaries while
ensuring that the number of tokens in each chunk are close to a preset threshold. We use
the SimpleNodeParser function from Llama index, adjusting the chunk size
parameter to control segment length. Overlaps are handled by dynamically overlapping
segments using the chunk overlap parameter, ensuring sentence completeness during
segmentation and overlapping.

(b) Dynamic Chunking Methods
• Similarity Chunking (Xiao et al., 2023): Utilizes pre-trained sentence embedding mod-

els to calculate the cosine similarity between sentences. By setting a similarity thresh-
old, sentences with lower similarity are selected as segmentation points, ensuring that
sentences within each chunk are highly semantically related. This method employs the
SemanticSplitterNodeParser from Llama index. For English texts, we ex-
ploit the bge-large-en-v1.5 model, and for Chinese texts, the bge-base-zh-v1.5 model. The
size of the text chunks is controlled by adjusting the similarity threshold.

• LumberChunker (Duarte et al., 2024): Leverages the reasoning capabilities of LLMs to
predict suitable segmentation points within the text. We utilize Qwen2 models with 1.5B
and 7B parameters, set to full precision.

• Dense X Retrieval (Chen et al., 2023a): Introduces a new retrieval granularity called
propositions, which condenses and segments text by training an information extraction
model.

In order to control variables during the experiment, we ensured that each dataset had approximately
the same size when divided into chunks using different methods. The specific chunk lengths and
corresponding thresholds for each dataset in the main experiment are shown in Table 4. We first
explored direct chunking of Qwen2-72B, using the prompt displayed in Table 5, and found that it
took too long. We then exploited this as a comparison to explore other methods.
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Table 4: Chunk length and corresponding threshold settings for different methods. - indicates no
relevant setting is involved. The first four datasets are sourced from LongBench. 0+comb. signifies
that an initial chunking is performed using a threshold of 0, followed by a dynamic combination
approach to derive the final chunks. In Llama index and Qwen2-72B, a(b) indicates that the chunk
size of a can be achieved by setting the chunking parameter to b. For other instances of a(b), it
represents the dynamic combination of chunks where setting the combination length to b results in
a final chunk size of a.

Dataset 2WikiMultihopQA Qasper MultiFieldQA-en MultiFieldQA-zh MultiHop-RAG

Chunking Method Length Threshold Length Threshold Length Threshold Length Threshold Length Threshold

Baselines with rule-based or similarity-based chunking

Original 123 - 121 - 113 - 178 - 78 -

Llama index 122.61(215) - 120.91(198) - 112.59(208) - 178.04(242) - 79.68 -

Similarity Chunking 125.24 0.82 122.91 0.83 114.18 0.83 180.23 0.73 80.13 0.75

LLMs Direct Chunking

Qwen2-72B 122.13(128) - 120.17(90) - 111.98(88) - 178.05(190) - - -

Chunking based on Qwen2-0.5B

Qwen2-0.5Bsent. 122.33(148) 0+comb. 120.07(147) 0+comb. 112.46(136) 0+comb. 178.09(180) 0+comb. 78.04(91) 0+comb.

Qwen2-0.5Bcomb. 122.39(152) 0+comb. 120.04(155) 0+comb. 112.30(139) 0+comb. 178.36(160) 0+comb. 78.17(89) 0+comb.

Chunking based on Qwen2-1.5B

Qwen2-1.5Bchunk 121.99(148) 0+comb. 120.21(144) 0+comb. 111.52(134) 0+comb. 177.80(200) 0+comb. 78.16(97) 0+comb.

Qwen2-1.5Bcomb. 122.48(152) 0+comb. 120.56(156) 0+comb. 111.35(138) 0+comb. 178.00(159) 0+comb. 78.19(89) 0+comb.

Chunking based on Qwen2-7B

Qwen2-7Bchunk 121.81(138) 0+comb. 120.01(141) 0+comb. 111.56(129) 0+comb. 178.00(188) 0+comb. 77.49(95) 0+comb.

Qwen2-7Bcomb. 122.26(152) 0+comb. 120.26(155) 0+comb. 111.47(137) 0+comb. 177.80(156) 0+comb. 78.11(89) 0+comb.

Qwen2-7B-basecomb. 122.34(152) 0+comb. 120.43(155) 0+comb. 112.76(139) 0+comb. - - - -

Table 5: Prompt for direct chunking of Qwen2-72B.

Chunking Prompt
You are an expert in text segmentation, tasked with dividing given text into blocks. You must
adhere to the following four conditions:
1. Aim to keep each block around 128 English words in length.
2. Segment the text based solely on its logical and semantic structures.
3. Do not alter the original vocabulary or structure of the text.
4. Do not add any new words or symbols.
By solely determining the boundaries for text segmentation, divide the original text into blocks
and output them individually, separated by a clear delimiter ’−−−Block Separator−−−’. Do
not output any other explanations. If you understand, please proceed to segment the following
text into blocks: [Text to be segmented]

In the Margin Sampling Chunking method, we also use prompt, which mainly consists of two parts:
instructions for guiding LLMs to perform chunking and two segmentation schemes. The specific
form is shown in Table 6.

Table 6: Prompt used in Margin Sampling Chunking.

Chunking Prompt
This is a text chunking task. You are a text analysis expert. Please choose one of the following
two options based on the logical structure and semantic content of the provided sentence:
1. Split sentence1+sentence2 into sentence1 and sentence2 two parts;
2. Keep sentence1+sentence2 unsplit in its original form;
Please answer 1 or 2.
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A.3 CHUNKING SITUATIONS OF THE CRUD DATASET

A.3.1 FILTERING OF CORPORA RELATED TO QA TASKS IN THE CRUD DATASET

In this experiment, we selected three QA datasets from the CRUD benchmark. Among them, the
single-hop QA dataset consists of questions focused on extracting factual information from a single
document. These questions typically require precise retrieval of specific details such as dates, in-
dividuals, or events from the provided text. The two-hop QA dataset, on the other hand, evaluates
integration capabilities and understanding of informational relationships between different docu-
ments. The more complex three-hop QA dataset often presents more intricate questions, demanding
LLMs to process a greater number of information sources to formulate a complete and accurate
response.

Before the chunking phase, we collected original news articles used in all types of QA tasks in
CRUD. Specifically, since CRUD provides evidence context snippets relied on by each QA pair, as
well as the original news library where the context snippets are extracted, we can obtain the original
news articles containing the context snippets through sentence matching. Taking the two-hop QA as
an example, CRUD provides two news snippets, news1 and news2, which are necessary to answer
questions. We then save the matched original news articles matched news1 and matched news2 that
contain news1 and news2. Finally, from the original news library of 80,000 articles, we recall all
10,000 news articles containing context snippets as the initial text for chunking.

A.3.2 EXPERIMENTAL SETUP FOR TWO RESEARCHES BASED ON THE CRUD DATASET

We conducted two sets of experiments with overlapping and non-overlapping chunking on the
CRUD dataset, respectively in Section 5.2.1 and 5.2.2. The chunk length and overlap length are
shown in Table 7. Additionally, the specific values for the bar chart presented in Figure 3 are de-
tailed in Table 8.

Table 7: Settings of overlap length and chunk length for different chunking methods in the CRUD
dataset. ppl represents direct PPL Chunking, with a threshold of 0.5. comb. indicates PPL Chunking
with dynamic combination, with a threshold of 0 when performing PPL Chunking.

Chunking Method Overlap Length Chunk Length

Chunking with Overlap

Original 50 218
Llama index 48.78 217.03
Qwen2-1.5Bppl 49.97 212.79
Qwen2-7Bppl 50.41 217.53
Baichuan2-7Bppl 48.91 201.35

Chunking without Overlap

Original 0 179
Llama index 0 177.53
Qwen2-1.5Bppl 0 173.88
Qwen2-7Bppl 0 178.59
Baichuan2-7Bppl 0 162.56
Qwen2-1.5Bcomb. 0 177.95
Qwen2-7Bcomb. 0 178.09
Baichuan2-7Bcomb. 0 178.09

Further analysis demonstrates that in single-hop and double-hop query scenarios presented in Table
8, PPL Chunking achieved significant performance improvements compared to traditional chunking
methods on BLEU series metrics and ROUGE-L. This indicates that our methods enhance the accu-
racy and fluency of the generated text to the reference text. However, the relatively smaller margin
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Table 8: Performance of different methods on the CRUD QA dataset. ppl represents direct PPL
Chunking, with a threshold of 0.5. comb. indicates PPL Chunking with dynamic combination, with
a threshold of 0 when performing PPL Chunking.

Chunking Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-Avg ROUGE-L BERTScore

Single-hop Query

Original 0.3515 0.2788 0.2340 0.1997 0.2548 0.4213 0.8489
Llama index 0.3620 0.2920 0.2480 0.2134 0.2682 0.4326 0.8521
Qwen2-1.5Bppl 0.3714 0.3013 0.2569 0.2223 0.2778 0.4426 0.8563
Qwen2-7Bppl 0.3661 0.2935 0.2481 0.2127 0.2691 0.4379 0.8558
Baichuan2-7Bppl 0.3725 0.3011 0.2558 0.2207 0.2772 0.4429 0.8562
Qwen2-1.5Bcomb. 0.3760 0.3034 0.2577 0.2224 0.2797 0.4443 0.8586
Qwen2-7Bcomb. 0.3724 0.3012 0.2561 0.2206 0.2774 0.4445 0.8584
Baichuan2-7Bcomb. 0.3812 0.3091 0.2622 0.2259 0.2840 0.4494 0.8603

Two-hop Query

Original 0.2322 0.1324 0.0919 0.0695 0.1133 0.2613 0.8768
Llama index 0.2315 0.1321 0.0923 0.0697 0.1133 0.2585 0.8762
Qwen2-1.5Bppl 0.2328 0.1326 0.0918 0.0694 0.1133 0.2611 0.8749
Qwen2-7Bppl 0.2310 0.1323 0.0916 0.0691 0.1124 0.2597 0.8752
Baichuan2-7Bppl 0.2350 0.1341 0.0924 0.0695 0.1141 0.2637 0.8772
Qwen2-1.5Bcomb. 0.2372 0.1363 0.0950 0.0722 0.1164 0.2658 0.8743
Qwen2-7Bcomb. 0.2364 0.1360 0.0945 0.0713 0.1161 0.2661 0.8761
Baichuan2-7Bcomb. 0.2325 0.1329 0.0917 0.0689 0.1133 0.2623 0.8754

Three-hop Query

Original 0.2494 0.1317 0.0869 0.0636 0.1110 0.2595 0.8827
Llama index 0.2464 0.1327 0.0883 0.0644 0.1120 0.2596 0.8840
Qwen2-1.5Bppl 0.2402 0.1260 0.0827 0.0596 0.1054 0.2531 0.8802
Qwen2-7Bppl 0.2415 0.1266 0.0828 0.0597 0.1058 0.2549 0.8816
Baichuan2-7Bppl 0.2460 0.1293 0.0851 0.0615 0.1084 0.2568 0.8828
Qwen2-1.5Bcomb. 0.2449 0.1294 0.0855 0.0624 0.1086 0.2566 0.8828
Qwen2-7Bcomb. 0.2408 0.1274 0.0837 0.0610 0.1068 0.2551 0.8825
Baichuan2-7Bcomb. 0.2494 0.1324 0.0870 0.0632 0.1111 0.2613 0.8832

of improvement observed on the BERTScore, a BERT-based semantic similarity evaluation metric,
may reflect a lower sensitivity of deep semantic understanding to chunking, as well as the limitations
of the current BERTScore models in capturing precise semantics.

Finally, for three-hop query, although the performance of Qwen2-1.5B and Qwen2-7B using PPL
Chunking was slightly lower than traditional methods, Baichuan2-7B performed comparably. How-
ever, when chunk overlap is introduced, the PPL Chunking method exhibits positive changes (as
shown in Tables 3). This suggests that the effectiveness of segmentation strategies may be jointly
influenced by query complexity and text characteristics.

A.4 CHUNKING SITUATIONS OF LONG TEXT DATASETS

We also conducted experiments on longer datasets. According to corresponding expressions in
benchmarks, the average length of the CUAD dataset is 11k, and average lengths of four datasets in
MultiHop-RAG are 9k, 11k, 18k, and 16k. The chunk lengths of these two sets of experiments are
shown in Tables 9 and 10. Additionally, the specific values presented in Figures 4 and 5 correspond
to Tables 11 and 12.

According to Table 10, it can be observed that HotpotQA, MuSiQue, and DuReader achieve a suit-
able chunk length with a lower threshold, while NarrativeQA only reaches it when the threshold
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Table 9: Settings of overlap length and chunk length for different chunking methods in the CUAD
dataset. ppl represents direct PPL Chunking, with a threshold of 0.

Chunking Method Overlap Length Chunk Length

Original 0 98.00
Llama index 0 98.49
Qwen2-1.5Bppl 0 97.70
Qwen2-7Bppl 0 96.08
Baichuan2-7Bppl 0 97.59

Table 10: Chunk length and corresponding threshold settings for different chunking methods in four
long-text QA datasets of LongBench. - indicates no relevant setting. In Llama index, a(b) represents
that a chunk length of a can be obtained by setting the chunking parameter to b. The remaining a(b)
indicates that a final chunk length of a is obtained by setting the combination length to b.

Dataset HotpotQA MuSiQue NarrativeQA DuReader
Chunking Method Length Threshold Length Threshold Length Threshold Length Threshold

Original 87 - 90 - 71 - 262 -
Llama index 86.73(154) - 89.94(157) - 70.35(139) - 262.06(330) -
Qwen2-1.5Bppl 86.72 0.5 89.51 0.5 70.28 1.34 261.41 0.5
Qwen2-1.5Bcomb. 86.80(98) 0+comb. 89.59(103) 0+comb. 70.32(82) 0+comb. 261.34(213) 0+comb.
Qwen2-1.5Bcomb. 86.52(96) 0.1+comb. 89.60(100) 0.1+comb. 70.47(82) 0.1+comb. 261.98(200) 0.1+comb.
Qwen2-1.5Bcomb. 86.58(92) 0.2+comb. 89.75(96) 0.2+comb. 70.17(81) 0.2+comb. 261.92(189) 0.2+comb.
Qwen2-1.5Bcomb. 86.77(85) 0.3+comb. 89.60(88) 0.3+comb. 70.19(79) 0.3+comb. 261.06(170) 0.3+comb.
Qwen2-1.5Bcomb. 86.81(70) 0.4+comb. 89.68(75) 0.4+comb. 70.66(78) 0.4+comb. 261.48(140) 0.4+comb.

is set to 1.34. This indicates that PPL distribution of the first three datasets is relatively flat with
small oscillations, whereas NarrativeQA exhibits significant fluctuations. Considering the chunk-
ing performance presented in Table 12, it suggests that direct PPL Chunking is more suitable when
chunk length is small, while the combination of PPL Chunking and dynamic merging is preferable
for larger chunk lengths. Furthermore, regarding the approach of PPL Chunking with dynamic com-
bination, it is more appropriate to select a smaller threshold when the PPL amplitude is small, and a
larger threshold when the PPL amplitude is significant.

Table 11: Performance of different methods on CUAD QA datasets. ppl indicates direct PPL Chunk-
ing, with a threshold of 0.

Chunking Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-Avg ROUGE-L BERTScore

Original 0.6845 0.4496 0.2997 0.1798 0.3513 0.4217 0.8043
Llama index 0.6966 0.4573 0.3006 0.1730 0.3493 0.4137 0.8001
Qwen2-1.5Bppl 0.7098 0.4722 0.3180 0.1932 0.3677 0.4060 0.8006
Qwen2-7Bppl 0.7038 0.4670 0.3143 0.1911 0.3638 0.4070 0.8018
Baichuan2-7Bppl 0.7195 0.4738 0.3160 0.1884 0.3665 0.4111 0.8025

A.5 EXPERIMENTAL SETUPS FOR EXPLORING THE IMPACT OF CHUNKING ON RE-RANKING

Tables 13 and 14 present chunk lengths that need to be set for Figure 6 and the specific values
for drawing, respectively. Focusing on this batch of experiments, we first retrieve 10 relevant text
chunks for each question through a dense retriever, and then applied various re-ranking methods for
secondary sorting to analyze changes in recall performance.
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Table 12: Performance of different methods in four long-text QA datasets of LongBench. ppl rep-
resents direct PPL Chunking, and comb. indicates PPL Chunking with dynamic combination. Multi
represents threshold values of the parallel method in four datasets, which are 0.5, 0.5, 1.34, and 0.5
respectively, resulting in chunk lengths of 87, 90, 71, and 262 in sequence.

Chunking Method Dataset HotpotQA MuSiQue NarrativeQA DuReader
Threshold F1 F1 F1 ROUGE-L

Original - 15.79 7.21 5.72 20.69
Llama index - 15.72 8.19 5.03 21.41
Qwen2-1.5Bppl Multi 17.74 8.39 6.12 20.77
Qwen2-1.5Bcomb. 0 17.47 8.08 4.93 20.77
Qwen2-1.5Bcomb. 0.1 17.19 7.48 4.91 20.33
Qwen2-1.5Bcomb. 0.2 17.70 7.31 5.20 20.95
Qwen2-1.5Bcomb. 0.3 17.46 7.92 5.08 21.22
Qwen2-1.5Bcomb. 0.4 16.44 8.05 5.80 21.65

Table 13: Chunk length and its corresponding threshold settings when exploring the impact of
chunking on re-ranking. - indicates no relevant setting.

Chunking and Re-ranking Chunk Length Threshold

Original 78 -
Original and BgeRerank 78 -
Original and PPLRerank 78 -

Qwen2-1.5Bppl 77.60 0.5
Qwen2-1.5Bppl and BgeRerank 77.60 0.5
Qwen2-1.5Bppl and PPLRerank 77.60 0.5

Table 14: Performance of re-ranking strategies combined with different chunking methods in the
MultiHop-RAG benchmark. ppl represents direct PPL Chunking, with a threshold of 0.5.

Chunking and Re-ranking Hits@8 Hits@6 Hits@4 Hits@2 MAP@10 MRR@10

Original 0.5627 0.5180 0.4523 0.3499 0.1512 0.3507
Original and BgeRerank 0.5818 0.5406 0.4741 0.3379 0.1486 0.3391
Original and PPLRerank 0.5769 0.5521 0.5055 0.4102 0.1849 0.4147

Qwen2-1.5Bppl 0.6838 0.6244 0.5503 0.4151 0.1954 0.4195
Qwen2-1.5Bppl and BgeRerank 0.6927 0.6435 0.5721 0.4381 0.2075 0.4413
Qwen2-1.5Bppl and PPLRerank 0.7197 0.6931 0.6568 0.5721 0.2590 0.5558
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