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Abstract

Identifying the relevant input features that have a critical influence on the output
results is indispensable for the development of explainable artificial intelligence
(XAl). Remove-and-Retrain (ROAR) is a widely accepted approach for assessing
the importance of individual pixels by measuring changes in accuracy following
their removal and subsequent retraining of the modified dataset. However,
we uncover notable limitations in pixel-perturbation strategies. When viewed
from a geometric perspective, this method perturbs pixels by moving each
sample in the pixel-basis direction. However, we have found that this approach
is coordinate-dependent and fails to discriminate between differences among
features, thereby compromising the reliability of the evaluation. To address this
challenge, we introduce an alternative feature-perturbation approach named
Geometric Remove-and-Retrain (GOAR). GOAR offers a perturbation strategy
that takes into account the geometric structure of the dataset, providing a
coordinate-independent metric for accurate feature comparison. Through a
series of experiments with both synthetic and real datasets, we substantiate that
GOAR's geometric metric transcends the limitations of pixel-centric metrics.

Introduction

Feature attribution methods, which involve
the identification of input features most rel-
evant to a model’s output, are pivotal in ex-
plainable artificial intelligence (XAl) research
[30, 29, [31] [38] [25]. These explanations have
been used to both analyze [19, 20, 43] and de-
bug |2l [I] neural networks. As various attribu-
tion methods are being proposed, it becomes
essential to set up benchmarks to evaluate
them [23, 9] &1 [11].

A widely used approach for assessing attribu-
tion methods is the pixel-perturbation strat-
egy. This strategy removes pixels associated
with relevant features from an image and then
measures the model performance after retrain-
ing on this modified dataset. If the model’s
accuracy drops significantly, it indicates the
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Figure 1: Pitfalls of pixel-perturbation ap-
proaches. The shaded regions represent the
decision boundaries of models trained on each
dataset. Pixel-perturbation methods like Remove-
and-Retrain (ROAR) and Remove-and-Debias
(ROAD) fail to eliminate information from the
dataset, which results in little degradation in
performance even after removing features. In
contrast, our GOAR offers a geometrically natu-
ral way to remove features. It enables a precise
and effective comparison of attribution methods.

ROAR

method successfully identified crucial features. Within this strategy, two prominent metrics stand
out: "Remove-and-Retrain" (ROAR) [II], which replaces important pixels with a fixed value, and
"Remove-and-Debias" (ROAD) [25], which substitues pixels with a noisy linear interpolation.

XAl in Action: Past, Present, and Future Applications @ NeurlPS 2023.



Despite the widespread use of pixel-perturbation strategies, we reveal a significant geometric
issue associated with them.To elucidate this issue, we consider a 2-class Gaussian mixture dataset
(Figure . As the perturbation strength of input increases, one can observe how identified
features impact the output classification. In this example, both ROAR and ROAD fail to effectively
erase information, leaving the dataset still separable. Neither good nor bad features cannot
lead to an accuracy drop after pixel-perturbation, resulting in ineffective comparison of features.
Our analysis indicates that this problem originates from the reliance of feature removal on pixel
coordinates which are unrelated to the intrinsic geometric structure of the dataset.

To address this problem, we introduce a feature-perturbation strategy named Geometric Remove-
and-Retrain (GOAR). GOAR perturbs images by moving the data sample along the feature
direction, eliminating the dependence on pixel coordinates. However, naively shifting the image
along the feature direction can lead to a retrained model predicting class labels based on spurious
patterns related to the subtracted features. We tackle this issue by leveraging the diffusion model
to ensure that perturbed data points remain closely aligned with their original data manifold.
Unlike other metrics, GOAR removes information from the dataset in a precise and effective way,
as shown in Figure[T]

We validate our geometric analysis and the effectiveness of GOAR through experiments on both
synthetic and real datasets. In a toy example, we show that pixel-perturbation strategies have
problems in comparing features, whereas GOAR provides an accurate comparison. Furthermore,
we conduct experiments on MNIST [6], FashionMNIST [40], and CIFAR10 [15] to show that
pixel-perturbation strategies have drawbacks in comparing various attribution methods, whereas
GOAR appropriately compares these methods without such problems.

Our contributions are summarized as follows:

= We examine pixel-perturbation strategies from a geometric perspective and reveal their
limitations arising from their reliance on pixel coordinates.

= We propose a new feature-perturbation strategy named GOAR.

= We validate our geometric analysis and demonstrate the efficacy of GOAR through
experiments on both synthetic and real datasets.

2 Preliminary

Remove-and-Retrain (ROAR) [11]. ROAR operates by removing pixels associated with
important features. The performance is then evaluated based on the drop in accuracy when the
model is retrained on this modified dataset. A steeper decline in performance suggests that the
attribution method has more accurately identified the critical features upon which the model
relies for predictions. This concept is referred to as fidelity [8].

To be self-contained, we define the ROAR process as follows: Given a dataset D = {(x;,v:)}",
where x € R", and y € {1,...,c}, along with a classifier f : R™ — {1,---,c}, our goal is to
assess the attribution methods e : x; — v;, where v; denotes the feature obtained from each
sample z;. Now, we choose the pixel with the highest k% value from v; and set the corresponding
pixels in x; to a fixed value of 0. This process can be represented as Z; = (1 — M;) ® z; = m;(x;),
where M; is the binary mask where erasing pixels are set to 1, and ©® denotes element-wise
multiplication. Then, we train the model on the modified dataset D = {(%;,y;)}7_; and measure
how much the accuracy decreases.

Remove-and-Debias (ROAD) [25]. After the introduction of ROAR, several studies identified
potential pitfalls related to fixed value imputation. When the model is retrained on the modified
dataset, it learns to rely on the mask-related information in Z; to predict the class label. This
makes the model exploit the spurious correlation between the mask and the label, preventing us
from measuring how much information has been lost from x; due to pixel perturbation.

Rong et al. [25] employ information theory and demonstrate that the problem stems from high
mutual information between the modified image Z; and the imputation mask M;. They define this
problem as class information leakage. Based on this analysis, ROAD adopts a different approach
for pixel imputation, utilizing noisy linear interpolation instead of fixed values. With noisy linear



imputation, ROAD effectively removes the information of M; from Z;, thereby preventing the
model from predicting the class label based on mask-related information.

3 Geometric challenges in ROAR

In § 3.3} we analyze ROAR's evaluation mechanism from a geometric perspective. In §[3:2] we
formalize the pitfalls of ROAR's pixel-perturbation strategy. In §[3.3] we attribute the cause
of issues with ROAR to two main factors: the reliance on pixel-coordinate and the all-or-none
removal processes.

3.1 Mechanism of ROAR

We formalize the mechanism of the accuracy drop in ROAR. For ease of discussion, we consider
a dataset D = {(z1,0), (z2,1)} with only one data point for each of the binary labels, 0 or
1. Note that the input ; = (z;, 27, -+ ,z) is an n-dimensional vector, where the subscript
denotes the sample index, and the superscript indicates vector elements, i.e., pixels. We assume
the model mispredicts when the difference between perturbed 1 and Zo for all pixels is less than
€. This corresponds to a situation where Z; and %, are too similar to distinguish.

Upon perturbing z1 and a2 with ROAR (replacing important pixels with zeros), let the difference
between them be denoted as dz = (dx!, ..., dx™). Among these dx® values, we define coordinates
with a magnitude greater than € as relevant, while the rest as irrelevant. According to our
assumption, irrelevant coordinates do not contribute to distinguishing between the two samples,
as their differences are already smaller than ¢. On the other hand, in the case of relevant
coordinates, the information of only a single relevant coordinate is sufficient to make samples
separable. Therefore, the accuracy drop in ROAR occurs when all relevant coordinates are erased
for each sample.

3.2 Pitfalls of ROAR

From the findings of § 3.1} we uncover two main problems of ROAR. The first problem is
that ROAR vyields different results depending on the choice of coordinates. For example, we
could represent the same dataset with the coordinate system such that dx = (dz!,0,...,0). In
this representation, if v; = v2 = (1,0,---,0), then simply removing one pixel will result in
performance degradation. However, if we choose coordinates that have two or more relevant
pixels, there is no accuracy drop until all those pixels are removed. This example shows that even
identical geometric situations can lead to differing ROAR results based on coordinate choices.

Pitfall 1

ROAR is not invariant to the coordinate transformation.

The second problem is that ROAR cannot distinguish differences in the feature vector at relevant
coordinates. To illustrate this, we consider a dataset D defined by dz = (1,2, ¢), and assume two
attribution methods, denoted as e and ¢’. Features derived from e are v; = vy = (1,2,0), while
those from e’ are v; = vy = (2,1,0). ldeally, one might anticipate ROAR to favor method e
due to its feature alignment with the distinctive direction of the samples. However, the accuracy
drop in ROAR only occurs after removing all the relevant coordinates, which in this case are the
first two pixels. Therefore, both e and ¢’ witness an accuracy drop after two pixels are removed,
rendering them indistinguishable. This example highlights that variations in relevant coordinates
do not influence ROAR's outcomes, making it unable to distinguish between methods ¢ and ¢'.
Importantly, this limitation indicates that the main purpose of ROAR, feature comparison, might
remain unfulfilled.

Pitfall 2

ROAR is not discriminative to differences in features at relevant coordinates.
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Figure 2: Projection onto the data manifold. Perturbation of input data (a) without manifold
projection and (b) with manifold projection.

3.3 Origin of Pitfalls

Pitfall 1 arises because ROAR removes features from images based on pixel coordinates, ignoring
the data’s geometric structure. Therefore, to mitigate this issue, the pixel-perturbation strategy
should be replaced with a coordinate-free perturbation approach.

The reason for Pitfall 2 is that when ROAR erases pixel information, it does so in an all-or-none
manner. Because the information in a pixel remains intact until it is removed, it is possible to
prevent an accuracy drop by retaining only those pixels that are perfectly intact. To resolve this
issue, we need to gradually remove all features from the image.

4 Geometric Remove-And-Retrain (GOAR)

In this section, we introduce a novel evaluation metric using the feature-perturbation strategy:
GOAR. In §[4.1] we explain that due to the presence of off-manifold components in the feature
vector, naive perturbation along the feature vector is not advisable. In §[4.2] we present how to
remove off-manifold components after perturbation by utilizing the diffusion model. In §[4.3] we
explain how to measure performance degradation in GOAR.

4.1 Feature perturbation

In §[3] our analysis reveals that the pitfalls of ROAR stem from its reliance on pixel coordinates
and all-or-none manner removal. To overcome this drawback, we require a novel evaluation
metric that perturbs images without depending on pixel coordinates.

A straightforward approach is shifting samples in the feature direction, denoted as &; = z; — v;.
However, as depicted in Figure , if the feature vector has an off-manifold component, this
approach leads to samples escaping the data manifold [3| 37, 36]. When we retrain the model on
this modified dataset, it tends to predict the class label based on the off-manifold feature in v;
rather than utilizing the remaining information in x;. This problem can be viewed as a type of
class information leakage that arises from significant mutual information between Z; and v;. To
mitigate this problem, it is imperative to eliminate the off-manifold components.

4.2 Projection onto the data manifold

To eliminate the off-manifold component in Z; = x; — v;, projecting the perturbed image
onto the data manifold is necessary. Our goal is to remove any off-manifold components in
while preserving its on-manifold components. We approach the off-manifold component as an
adversarial attack and apply an adversarial purification technique [21], 27] [42]. Especially, Nie
et al. [2I] found that adding minor noise to an image and subsequently denoising it via a diffusion
model [10] [32, [34] maintains the image signal while efficiently counteracting the attack.

However, unlike conventional adversarial purification, which deals only with nearly imperceptible
attacks, our method entails notable modifications to the image. Merely introducing minor noise
fails to eliminate all off-manifold components. Yet, excessively large noise is discouraged as it
not only purifies the image but also substantially modifies the data’s significant components.
Interestingly, we discovered that it is possible to perform additional adversarial purification by



treating v itself as noise. This can be understood as the diffusion model effectively captures and
removes the off-manifold components mixed in v as a noise.

Specifically, our purification process is as follows: Starting with the perturbed image = — v, we
introduce a small noise w, yielding & = x — v + w. Next, we employ the diffusion model to
denoise . This approach effectively eliminates irrelevant information associated with off-manifold
directions while keeping the meaningful on-manifold components unchanged.

We present visual results in Figure [AT] For details of the algorithm and hyper-parameter setting,
please refer to Appendix

4.3 Performance degradation

ROAR and ROAD measure performance degradation by assessing how much a model's accuracy
drops as perturbations are added. GOAR adopts a distinct measurement criterion, which involves
tallying the cumulative number of misclassified examples. This approach is chosen because,
in GOAR, a sample can regain separability after losing its information, effectively becoming
indistinguishable from other class labels. Therefore, even after the image becomes distinguishable
again, such cases are considered successful instances of performance degradation.

5 Experiments

In this section, we verify our analysis and highlight the effectiveness of GOAR with experiments.
First, we use a toy dataset to demonstrate the shortcomings of the pixel-perturbation strategies
for evaluating features, while showing that GOAR provides an accurate comparison (§ .
Furthermore, we show that pixel-perturbation strategies have drawbacks in comparing various
attribution methods in real datasets, whereas GOAR can appropriately compare these methods

without such problems (§[5.2)).

In §[5.1] we conduct experiments on a synthetic Gaussian mixture dataset and use a 3-layer MLP
model. In §[5.2) we conduct experiments on three image classification datasets: MNIST [g],
FashionMNIST [40], and CIFAR10 [15]. We compare four attribution methods: Input gradient
(Grad) [30], Grad x Input (IxG) [29], SmoothGrad (SG) |31], and Integrated gradient (1G) [38].
As a control, we opt for a randomly generated vector (Random) as a feature, serving as a lower
bound for performance comparison. We use a simple 3-layer CNN model for all experiments. For
implementation details, please refer to Appendix [B]

5.1 Feature assessment with a toy dataset

To test whether benchmarks can effectively 104 1.0 .
compare the quality of features, we first create

a 64-dimensional Gaussian mixture dataset, 3 091 05 \
i.e., T ~ N(z; pg, 0.3I). Here, data z, sam- £ o8- T o 1
pled from class 1 and 2, follow 1 = (1,...,1) 5 ] Lo e oAD
and pz = (—1,...,—1), respectively. When =~

trained on a simple neural network, the in- 06 1 \
put gradients align parallel with the difference T 05 :
of the M vectors for each class k. In other Perturbation strength (||v||2) Replaced pixel ratio
words, the input gradients effectively capture

the ground truth features. Figure 3: Feature assessment with a toy

dataset. Comparison of features using ROAR,
features. As shown in Figure 3, as the noise ROAD, and GOAR. The different colors corre-
ratio increases, the feature quality deteriorates. SP_O’?d to the extent of dlsr.uptlon. applied to the
However. benchmarks like ROAR and ROAD original feature, as shown in the inset of GOAR.
show no difference in performance regardless

of noise size. In essence, they are unable to differentiate between feature qualities. In contrast,
we observe GOAR's performance rapidly deteriorating as the noise level increases, demonstrating
its ability to accurately assess feature quality.

We then add noise of varying ratios to the
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Figure 4: Feature assessment with real datasets. Comparison of attribution methods using
ROAR, ROAD, and GOAR. Here, real image datasets of MNIST, FashionMNIST (FMNIST),
and CIFAR10 are used for evaluating five attribution methods.

5.2 Feature assessment with real datasets

In Figure [d} we present the results of evaluating various attribution methods using ROAR, ROAD,
and GOAR. ROAR and ROAD exhibit minimal differences in performance within attribution
methods, making it nearly impossible to compare different methods, especially on the MNIST and
FashionMNIST datasets. Furthermore, the fact that all methods perform even worse than the
Random, which is a baseline, raises doubts about the results obtained through these approaches.

However, GOAR effectively allows the comparison of different methods. Our approach indicates
that Grad and SG produce better feature vectors than methods involving input multiplication,
such as IG and IxG, while Grad and SG show almost no difference.

6 Discussions

GOAR overcomes the constraints of previous evaluation metrics like ROAR or ROAD, but it
still has limitations stemming from its reliance on the diffusion model. First, employing the
diffusion model is time-consuming. For specific computational costs, Appendix [B] can be referred.
Additionally, when features have low-frequency components in their off-manifold direction, the
diffusion model may struggle to effectively project the modified image onto the data manifold
[21], [45]. Therefore, future research should focus on debiasing the off-manifold direction without
relying on the diffusion model.

7 Conclusion

In conclusion, we analyzed pixel-perturbation metrics like ROAR and ROAD from a geometric
perspective, revealing their limitations in comparing feature attribution methods. Their approaches
are coordinate-dependent and fail to discriminate differences in features at relevant coordinates.
To address these issues, we introduce a novel feature-perturbation metric named GOAR. With
experiments on both toy and real datasets, we show that GOAR outperforms pixel-based
approaches in comparing features. We hope our geometric analysis and metric help cultivate a
new insight into feature attribution methods and their evaluation metrics.
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A Related Works

Feature attribution methods. Feature attribution methods aim to discover the relevant feature
of given input that influences the model’s prediction behind the scenes. These can be categorized
into (i) removal-based approaches and (ii) gradient-based approaches. Removal-based approaches
[18| 24 28] involve removing parts of the input and extracting the features the model focuses on
based on their impact. Gradient-based approaches [26), 35, 30, 131}, [38, [29] find feature vectors
that the model reacts to sensitively by using gradients with respect to the input or intermediate
latent space. In this study, we use input gradient [30], SmoothGrad [31], Integrated gradient
[38], and Grad x Input [29] for the comparison.

Evaluation Metric of the Feature Attribution Method Various evaluation benchmarks
have been proposed so far, such as sanity checks [39] [1], human explanations [13], or synthetic
datasets [I7] with known ground truth features. ROAR [1I] is one of the standard metrics that
evaluates the feature maps extracted by XAl methods by removing a certain percentage (k%) of
important pixels based on these feature maps and observing the resulting model accuracy drop on
the modified dataset. When the same k% leads to a larger performance drop, the corresponding
feature map is considered better.

Several works have highlighted concerns regarding ROAR and made efforts to resolve them.
[25] 33} 2, [12] [7] [44] For instance, ROAD [25] highlights that when important pixels are masked
with fixed values during removal, the information in the mask can be used in the prediction
during the retraining phase, leading to label leakage. To address this, ROAD proposes noisy
linear imputation. Many studies have critiqued ROAR from an information theory perspective.
However, our paper is the first attempt to address the geometric issues in the ROAR process.

Manifold projection with diffusion model Various methods have been proposed to re-project
images that have deviated from the image manifold using the diffusion model. One of the most
prominent approaches is the field of inverse problems [14] 5] [4], which aims to recover the original
source when the observed results are noisy. These methods suggest conditional image generation
given observed images. Another area of research is adversarial purification [2I] [16]. In a study by
Nie et al. [21], it was discovered that adding small noise and then denoising with the diffusion
model can effectively remove adversarial attacks. Our research adapts and modifies this second
approach to suit our situation.

B Implementation details

Classifier For experiments with the real dataset, we employed a 3-layer CNN architecture. Each
layer had channel numbers 32, 64, and 64, with kernel sizes of 5, 3, and 3, respectively. After
the CNN layers, the output went through two fully connected (FC) layers. These FC layers had
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widths of 64 and 32, respectively. The hyperparameters used for training were as follows: learning
rate = 3 x 10~%, batch size = 256, Adam optimizer, and early stopping criteria = 5.

Diffusion model For all experiments, we used the DDPM [10] model. We use the DDIM [32]
sampler for inference. The total number of inference steps is 25.

Adversarial purification To effectively remove the off-manifold component in v, we add
additional noise w to perturbed image z — v. We add noise of a magnitude that increases the
diffusion timestep by 0.167", where T is a maximum diffusion timestep, i.e. 1000. It corresponds
to the additional DDIM inference step of 4.

Computational cost High computational cost is one of the significant limitations of GOAR.
Retraining for one perturbation takes approximately minutes, while diffusion model sampling
takes about minutes. Therefore, future work is needed to either avoid using the diffusion model
or reduce the computational cost.

C Algorithm

In this section, for reproducibility, we provide the PyTorch [22] code for manifold projection. The
source code for our experiments will be publicly available upon publication.

Manifold projection First, we determine the diffusion timestep ¢, _, that matches the magni-
tude of the added v. Next, we add noise w of the predetermined size to x and adjust the timestep
accordingly. In this case, the timestep becomes t,_ 4w = ty—y + 0.167. Finally, we sample
x — v 4+ w with DDIM from ¢,_,,, to 0.

import torch

def perturbation_strength_to_t (perturbation_strength, scheduler, in_ch
=3, diffusion_timestep):
)22
Args
perturbation_strength : 12 norm of v
scheduler : huggingface diffusers scheduler
in_ch : number of input channels
) )
noise_to_signal_ratio = (l1-scheduler.alphas_cumprod).sqrt() /
scheduler.alphas_cumprod.sqrt ()
dnsr = noise_to_signal_ratio - np.abs(remove_size) * self.
init_trans.std.mean() / 0.5 / np.sqrt(in_ch#*32%x32)
t = dnsr.abs () .argmin() / diffusion_timestep
return t

def t_to_t_idx(t, scheduler, diffusion_steps=1000):
return (scheduler.timesteps - diffusion_steps*t).abs().argmin()

def adv_purification(x, diffusion_model, scheduler,
perturbation_strength, additional_noise_t_idx=4):
)2
Args
X : perturbed image, i.e., x - Vv
diffusion_model : pretrained diffusion model
perturbation_strength : norm of v
scheduler : DDIM scheduler, you could find it in Huggingface
diffusers library
additional_noise_t_idx : the size of additional noise for
better purification
220
# fix random seed
generator = torch.Generator ().manual_seed (SEED)

# define timesteps
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scheduler.set_time

# estimate proper

steps (num_inferences=25)

diffusion timestep for x-v+w

t_x = perturbation_strength_to_t (remove_size, scheduler)
t_idx_x = t_to_t_idx(t_x, scheduler)

t_idx_x_plus_noise

= t_idx_x+additional_noise_t_idx

t_x_plus_noise = scheduler.timesteps[t_idx_x_plus_noise]

# add additional noise for better adversarial purification

noise_signal_ratio

= (1-scheduler.alphas_cumprod) .sqrt () /

scheduler.alphas_cumprod.sqrt ()

xt = x + (noise_signal_ratio[t_x_plus_noise] - noise_signal_ratiol
t_x]) * torch.randn(x0.shape, generator=generator)

xt = torch.sqrt(self.alphas_cumprod[t_x_plus_noise]) * xt

# DDIM sampling (xt -> x0)

for t in enumerate

(scheduler.timesteps):

if t > t_x_plus_noise:

continue
et

diffusion_model (xt, t)

xt = scheduler.step(et, t, xt, eta=0, generator=generator).

prev_sample
x0 = xt

return xO0

Listing 1: Adversarial purification

12



	Introduction
	Preliminary
	Geometric challenges in ROAR
	Mechanism of ROAR
	Pitfalls of ROAR
	Origin of Pitfalls

	Geometric Remove-And-Retrain (GOAR)
	Feature perturbation
	Projection onto the data manifold
	Performance degradation

	Experiments
	Feature assessment with a toy dataset
	Feature assessment with real datasets

	Discussions
	Conclusion
	Related Works
	Implementation details
	Algorithm

