Alignment-Guided Curriculum Learning for Semi-Supervised Code
Translation

Anonymous ACL submission

Abstract

Neural code translation is the task of convert-
ing source code from one programming lan-
guage to another. The scarcity of parallel code
data impedes code translation models’ abil-
ity to learn accurate cross-language alignment,
thus restricting performance improvements. In
this paper, we introduce MIRACLE, a semi-
supervised approach that improves code trans-
lation through curriculum learning on code
data with ascending alignment levels. It lever-
ages static analysis and compilation to gen-
erate synthetic parallel code datasets with en-
hanced alignment to address the challenge of
data scarcity. Extensive experiments show that
MIRACLE significantly improves code transla-
tion performance on C++, Java, Python, and C,
surpassing state-of-the-art models by substan-
tial margins. Notably, it achieves up to a 43%
improvement in C code translation with fewer
than 150 annotated examples.

1 Introduction

Code translation is the task of converting source
code written in one programming language (PL) to
another. It is valuable for migrating existing code
to other languages, and can significantly reduce the
costs of legacy code maintenance and new platform
development. One line of work in code translation
follows the “pre-training - fine-tuning” approach
(Ahmad et al., 2021a; Wang et al., 2021; Roziere
et al., 2021a; Fried et al., 2022; Zheng et al., 2023).
However, pre-training tasks such as masked lan-
guage modeling (MLM) and auto-regressive lan-
guage modeling (Devlin et al., 2019; Feng et al.,
2020; Guo et al., 2020) are usually quite different
from the downstream tasks such as code transla-
tion, and the performance on the latter is limited by
the discrepancy. Another line of work takes an un-
supervised learning approach for code translation.
Established techniques from unsupervised neural
machine translation (NMT) (Lample et al., 2017;

Artetxe et al., 2017; Lample et al., 2018; Artetxe
et al., 2019), such as back-translation and denois-
ing auto-encoding, can be applied to code data
effectively, achieving promising performances on
code translation (Edunov et al., 2018; Roziere et al.,
2020; Agarwal et al., 2021; Ahmad et al., 2022;
Szafraniec et al., 2022; Kusum et al., 2022; Huang
et al., 2023). However, unsupervised learning in-
troduces significant noise in the training process,
which is particularly harmful to code generation
tasks that require precision.

Parallel code data refers to pairs of code snip-
pets from different programming languages that
are functionally equivalent and bug-free. It is es-
sential for neural models to learn the correct align-
ment of data structures, APIs, and grammatical
rules across different languages. However, exist-
ing parallel code data is limited in quantity and
supported languages (Nguyen et al., 2013, 2015;
Karaivanov et al., 2014; Lu et al., 2021; Chen et al.,
2018; Ahmad et al., 2021b; Zhu et al., 2022; Zheng
et al., 2023). Without training on sufficient parallel
code, the models, especially self-supervised and
unsupervised ones, can potentially learn incorrect
mappings of syntax and data structures from one
language to another (Pan et al., 2023). We refer to
this issue as “shallow translation”. Figure 1 illus-
trates an example of shallow translation.

Considering the limitations of existing methods,
we argue that it is crucial to efficiently generate
high-quality and well-aligned parallel code data to
effectively learn cross-lingual alignment. In this pa-
per, we propose a novel seMI-supeRvised pArallel
Code aLignmEnt approach, termed MIRACLE,
that leverages static analysis and compilation to
generate synthetic parallel code datasets with en-
hanced alignment. MIRACLE improves code trans-
lation through curriculum learning on code datasets
with ascending alignment levels. The static analy-
sis and compilation secure the syntactical correct-
ness and alignment of the synthetic parallel code

Input (Java)

n) { intn){
HashSet<Integer> us = new HashSet <int>us ;
HashSet<Integer>();
for (inti=0;1<n; i++)
us.add(arr[i]);
int count = 1;
int curr_ele = arr[0] - 1;

intcount=1;

Transcoder-ST (C++)
Boolean areElementsContiguous(int arr[], int Boolean areElementsContiguous (intarr [],

for(inti=0:i<n:i++){
us.add (arr[i]);

intcurr ele=arr[0]-1;

MIRACLE (C++)

bool areElementsContiguous (int arr [] , int
n){

unordered_set < int > us ;

for(inti=0;i<n;i++)

us .insert (arr[i]);

intcount=1;

intcurr ele=arr[0]-1;

while (us . find (curr_ele) !=us .end ()) {

while (us.contains(curr_ele) ==true) { while (us . contains (curr_ele) == true) { count ++
count++; count ++ i
]) curr_ele -- ;
curr_ele--; curr_ele - ;

curr ele = arr[0] + 1;

while (us.contains(curr_ele) == true) {
count++;
curr_ele++;

count ++ ;
curr_ele ++ ;

return (count == (us.size()));

curr ele=arr [01+1;
while (us . contains (curr_ele) == true) {

return (count == (us .size ()));

curr ele=arr[0]1+1;

while (us . find (curr_ele) !=us .end ()) {
count ++ ;
curr_ele ++ ;

return (count == (us .size ()));

Figure 1: An example of the “Shallow Translation” problem, with the Java function shown in the first column
as input, the C++ translations from baseline method TransCoder-ST, and our proposed method MIRACLE (with
CodeTS5 as generator). The highlighted parts show that TransCoder-ST’s translation directly copied types, data
structures, and statements from the input Java code, which are non-existent or grammatically incorrect in the target
language C++, while MIRACLE was able to correctly convert them in the corresponding C++ grammar.

in a cost-efficient way. Moreover, the proposed
alignment-ascending curriculum learning is robust
to data noise, which effectively mitigates the shal-
low translation problem.

Our contributions can be summarized as fol-
lows: (1) We propose MIRACLE, a novel semi-
supervised code translation method that leverages
static analysis and compilation to generate syn-
thetic parallel code with enhanced alignment in a
scalable way. The proposed method can be gener-
alized to multiple languages and various models
with little overhead. (2) We introduce alignment-
ascending curriculum learning, where the code
translation model is trained on both synthetic par-
allel code and annotated parallel code, considering
the alignment level, noise level, and quantity of
each type of data. We demonstrate that curricu-
lum learning improves the code translation model’s
performance and enhances alignment across dif-
ferent languages, resulting in more precise transla-
tions. (3) Extensive experiments show that MIRA-
CLE successfully improves code translation perfor-
mance by up to 30% on C++, Java, and Python, out-
performing state-of-the-art baselines on translation
between Python and C++ by 5.7%, C++ and Python
by 6%, and Python and Java by 8% in execution-
based evaluation (CA@1). Notably, our method
improves C translations by up to 43% with less
than 150 annotated training instances.

2 Method

The lack of parallel code data poses a challenge
for training code translation models, which rely

on large amounts of parallel data to achieve good
performance. Semi-supervised methods can lever-
age monolingual data to generate synthetic parallel
data but often struggle to maintain alignment qual-
ity between source and target languages. There-
fore, we aim to efficiently generate synthetic par-
allel code with enhanced cross-lingual alignment
through alignment-ascending curriculum learning.
Our approach, MIRACLE, focuses on function-
level code translation, as functions are the building
blocks of programs. Figure 2 shows an overview
of the proposed method.

2.1 Parallel Code Data Generation

To address the data scarcity challenge, we pro-
pose a parallel code generation method using
semi-supervised learning. The method consists
of two modules, a hypotheses generator f¢, and
a selector fp. The hypotheses generator fg is
sequence-to-sequence model that takes as input a
code snippet x from the source language s and
generates a set of hypothetical translations)V, =
{y,(ll), y,(f), o y,(lM)} in the target language ¢. Here,
Y, consists of M translations (hypotheses) for the
same input code snippet x. The generator f¢ is
trained on a limited amount of parallel code data
(Dy, L is for labeled), and will be used to gen-
erate a large number of hypotheses for monolin-
gual code data (Dy;, U is for unlabeled). The
selector fp comprises a set of K filtering crite-
ria F = {Fk}ﬁ(zl where jivh,k = Fi(Yy) takes
Y, as input and outputs the subset of hypotheses
j)Vth C Y, that passes the criterion F,.

Synthetic Parallel Code

Alignment Ascending

Generator

Java
static void show(int [] pdata){
StringBuffer stb = new StringBuffer() ;

Java - C++

Tempered
Translation Model

stb.append (pdata [0]) Sampling
for (inta= 1; a < pdatalength; a++) {
stb.append("" + pdata[a]);

—
Java - Python
Translation Model

System.out.printIn(stb.toString());

Static Analysis

method_declaration

Selector

Static Analysis

Compilation

Curriculum

Annotated Parallel Data
Function-level
Aligned
Snippet-level
Aligned
Synthetic Parallel Data
cout << stb << endl; — ~
[(Static Analysis &) |

v H Compilation
Function_dict] H (AND)

C++

int show(string pdata) {

string stb="";

stb += pd C++

for (int 3304 show(vector<int>& pdata) {

sth+="1"gyring stb="";

¥ stb+=pdata [0 ;

COUL<<S for (inta= 1;a <pdatasize(); a+4) {
P stb +="" + pdata[al;

function_name show

Compilation
(COMP)

T return_type it 4 :
string H

Static Analysis

Function_dict

(STAT)

- — Function_dict
function_name show
modifiers void show formal_parameters block .
=) En =R e
in] st paaeiecll__ing

function_name show
return_type void

Select

- Back Translation
4 -
parameters | vector<int> | £ \ (BT)

N\ 4

Figure 2: Overview of MIRACLE for Code Translation. MIRACLE utilizes a two-step process to generate high-
quality translation hypotheses from monolingual code inputs. First, the generator produces multiple translation
hypotheses using tempered sampling. Next, the selector applies static analysis and compilation techniques to select
the most promising hypotheses. By employing various selection criteria, MIRACLE generates synthetic parallel
code datasets with varying alignment levels and quality. These synthetic datasets, along with annotated parallel
code datasets, are organized into a curriculum, where the alignment and quality gradually improve. The proposed
curriculum-based approach enhances code translation performance.

2.1.1 Hypotheses Generation

The hypotheses generator fg is initialized by train-
ing on a limited amount of parallel code data. This
is to enable fs with the ability to translate code
from the source language s to the target language
t. To further improve fg’s translation capability,
we leverage the snippet training method from (Zhu
et al., 2022), which matches code comments in par-
allel programs to get snippet-level parallel training
data. A snippet usually consists of several lines
of code and is not necessarily a complete function.
We then use the trained fg to generate hypotheses
for a large amount of monolingual code.

Snippet Training. We use two small annotated
parallel code datasets, Dy, and Dy, with differ-
ent levels of alignment to train fg. The parallel
code data aligned at snippet-level is denoted as

Dr. = {(z.y) ™}
parallel data is denoted as Dy, = {(z, y)(l)}gf'.
Dy, can be constructed from Dy, by matching code
comments from the parallel programs (Zhu et al.,
2022). We first train f on Dy, , and then continue
the training on Dy,. We refer to this step as snippet
training, which helps the generator to learn fine-
grained alignment between different languages and
substantially improves fg’s ability to generate hy-
potheses with better alignment to the input code.
This step enables fg to generate valid hypotheses
with sufficient initial quality.

and the function-level

Tempered Sampling. Let Dy = {x(i)}gaf' be a

monolingual dataset in source language s, where
each () is a function-level code block. With Dy
as input, we can generate a set of translation hy-
potheses in the target language ¢ with the trained
fa. To increase the diversity of the hypotheses
and improve coverage for different possible trans-
lations, we employ tempered sampling to acquire
M different hypotheses for each input code. Tem-
pered sampling makes use of a tuned scaled soft-
max to control the degree of randomness (tempera-
ture) in the sampling process (Ackley et al., 1985;
Hinton et al., 2015). We denote the hypotheses
setas H = {yh(l), yh(2), R ,yh(i), ce ,yh‘DU‘},
where Y, = {5, 5, @, .,y M} is a set of
different translations for x; in target language ¢.

2.1.2 Hypotheses Selection

The selector fp takes H as input and produces
1= (Y201 in which Y1 is the subset of
y,(j) that passes the selection criteria F, i.e., 37}(;) =
F (y,(ﬁ). If 37}(;) contains more than one hypothesis,
only one is kept, as our preliminary experiments
confirm that keeping more than one hypothesis for
each input does not yield improved performance
' We pair all Fhe y](f) with the input corresponding
input code () to acquire pseudo parallel dataset
Ds = {(z,yp)V gf'. In practice, we rely on
cross-lingual static code analysis and compilation
as selection criteria F for the hypotheses.

'If Y is empty, it will be discarded.

Cross-Lingual Static Analysis. To ensure that
the selected hypotheses have high alignment qual-
ity with the input code, we use cross-lingual static
analysis to compare the key information of both
the input code and all the hypotheses. Static code
analysis is a technique used to analyze source code
without executing the program. One way to per-
form static code analysis is through the use of an
abstract syntax tree (AST). An AST is a tree-like
data structure that represents the structure of a pro-
gram’s source code. It captures the high-level struc-
ture of the code and the relationships between its
elements, enabling a deeper understanding of the
code beyond the sequence level. Figure 2 shows an
example AST generated from a Java function.

Specifically, we compare the number of func-
tions, and after matching each pair of functions
from the output with the input, we check whether
the return types are equivalent, and if the parameter
lists match in terms of the number of parameters
and the type of each parameter. For non-typed
languages such as Python, we skip the type part
and only compare the number of functions and the
parameter list of each function. Passing the cross-
lingual static analysis is a strong indicator of the
alignment quality of the hypotheses to the input,
which helps in selecting the best hypotheses.
Compilation Filtering. We additionally leverage
compilation to filter out hypotheses that may con-
tain errors. Specifically, we compile the generated
code using the target compiler and check for any
compilation errors. Any hypothesis that fails to
compile is discarded. This step further improves
the quality of the selected hypotheses by ensur-
ing that they are syntactically correct and can be
compiled successfully.

2.2 Alignment-Ascending Curriculum
Learning

By pairing the hypotheses with their correspond-
ing inputs, we obtain multiple synthetic parallel
code datasets at different stages of the generation
process. Without the selector, the generation is
reduced to plain back-translation. We denote the
unfiltered synthetic parallel data from the unfil-
tered hypotheses, as BT data. Similarly, we de-
note the synthetic parallel data from cross-lingual
static analysis and compilation filtering as STAT
and COMP, respectively. In addition, we denote the
subset of hypotheses that pass both criteria, static
analysis and compilation, as AND data. We adopt
a curriculum learning approach to train our code

translation model, strategically leveraging the qual-
ity of the data at different stages. Our curriculum
consists of multiple training phases, progressively
incorporating different types of data. We first train
with the unfiltered synthetic parallel data, allowing
the model to grasp the basic translation patterns.
Next, we introduce the cross-lingual static anal-
ysis filtered data, which helps refine the model’s
understanding of language-specific code idioms
and improve translation accuracy. Subsequently,
we integrate the compilation filtered data, which
further enhances the model’s ability to generate
syntactically correct translations. The curriculum
then advances to utilize the intersection of both fil-
tered datasets, combining the benefits of both data
sources. We then introduce snippet-level annotated
data to enhance translation performance in specific
code segments. Finally, we conclude by training
with function-level annotated data, enabling the
model to capture higher-level structural patterns
and produce more coherent translations. By follow-
ing this carefully designed curriculum, MIRACLE
not only benefits from exposure to a diverse range
of training data but also progressively refines its
translation quality and alignment, leading to im-
proved performance and robustness.

3 Experiments

Datasets. We make use of the annotated COST
dataset from (Zhu et al., 2022) to support snip-
pet training and execution-based evaluation. The
CoOST dataset contains parallel code aligned at
both program and snippet levels. To support
execution-based evaluation, we execute all pro-
grams in COST and remove the ones that throw
run-time errors and the ones with empty execu-
tion output. We refer to the resulting dataset as
ECOST (Execution-based CoST). ECOST has
approximately 1,000 function-level training in-
stances for C++, Java, and Python, and 150 for
C. We employ a train/validation/test split ratio of
approximately 70:5:25. To support snippet and
function-level training, we extract the functions
from ECOST through AST parsing® to get both
snippet-level and function-level parallel data (Dry,,
and Dr,), which we refer to as ECOST-snippet and
ECoST-function.

Synthetic Parallel Code Generation. We use the
CODENET dataset (Puri et al., 2021) as the mono-
lingual code data (Dyy) for parallel code generation.

*https://tree-sitter.github.io/tree-sitter/

}
System.out.printin(stb.toString()); cout << stb << endl;

}

Input (Java) Synthetic Output (C++) Input (Python) Synthetic Output (C++)
static void show(int [] pdata){ void show(vector<int>& pdata) { float f (floata, floatb) {
StringBuffer stb = new StringBuffer() ; string stb=""; intp=a,q=b;
stb.append (pdata[01) ; stb += pdata[0; deff(a,b): while (q1=0){
for (inta=1; a < pdata.length; a ++) { for (inta = 1; a < pdata.size(); a++) { p.q=a, b p=q;
sth.append("™ + pdata[a]); stb +="" + pdata[a]; th;quq_!:qO :p% q q=p%q;

returna/p*b returnal/p*b;

}

public static long gcd (long a , long b){
longc=a%b;

if(c==0){ longc=a%hb;
returnb ; if(c==07)

} returnb ;

else { else

returnged (b, c);
} }

returnged (b, c);

}

long gcd (long a, long b)) {

def check (n, array) : |void check (intn ,intarray[]){

ifll<=n: if(1.0<=n)
array [0]+=1 array [0] ++;
elif0.6<=n<1.1: elseif (1.0<=n)
array [1]+=1 array [1] ++;
elif0.2<=n<0.6: elseif (0.2<=n)
array [2]+=1 array [2] ++;
else : else array [3]++;

array [3]+=1 }

Figure 3: Synthetic parallel code examples, with PLBART (Ahmad et al., 2021a) as generator. The synthetic parallel
data demonstrates great alignment quality, with minor noise in some cases.

CODENET is a large-scale dataset containing 13M
programs spanning 55 languages. The programs
in CODENET originate from code submissions to
online judge of programming problems. We select
the “Accepted” submissions (i.e., submissions that
pass the online judge) in 4 languages, C++, Java,
Python and C, from around 1, 600 problems. Af-
ter some quality filtering, we get approximately
87,000 examples. We experiment with two dif-
ferent models as the generator model, PLBART
(Ahmad et al., 2021a) and CodeT5 (Wang et al.,
2021). The monolingual CODENET data are used
as inputs to the generators to obtain the hypotheses
through tempered sampling with a temperature of
0.5 and sample size M set to 10. We then get the
synthetic parallel code through selection by static
analysis and compilation (F).

Baselines and Evaluation Metrics. We com-
pare against five advanced code translation models.
CodeBERT (Feng et al., 2020), PLBART (Ahmad
et al., 2021a), and CodeT5 (Wang et al., 2021) are
programming language models pre-trained with
self-supervised learning techniques on large-scale
open-source code datasets. These models can per-
form code translation as a downstream task af-
ter fine-tuning on parallel code data. TransCoder
(Roziere et al., 2020) is an unsupervised code trans-
lation model that relied on back-translation for
data augmentation. TransCoder-ST (Roziere et al.,
2021b) improves TransCoder by leveraging unit
testing to generate parallel code data. After gen-
erating the synthetic parallel code, we train code
translation models using the generated data and
evaluate their performances. CodeBERT, PLBART
and CodeT5 need fine-tuning to perform code trans-
lation, therefore they are fine-tuned on ECOST

with both snippet-level and function-level data. On
the other hand, TransCoder and TransCoder-ST
do not need fine-tuning as they are unsupervised
methods. All models are evaluated on ECOST test
set. CodeBLEU(Ren et al., 2020) is a weighted
sum of n-gram matching, AST matching, and data
flow matching between source and target programs.
Computation Accuracy (CA) (Roziere et al., 2020)
is a new metric introduced in TransCoder that mea-
sures if the hypothesis has the same execution out-
put as the reference. We use CA@1 for all the
evaluations. Model training details are included in
the Appendix A.

4 Results and Analysis

We evaluate two variations of our method,
MIRACLE-PLBART and MIRACLE-CodeT?5, by
performing parallel code generation with PLBART
and CodeTS5 as generators and curriculum learning
with their generated data respectively. The gener-
ated parallel code data is referred to as MIRACLE-
function. We focus on two aspects, generated data
quality and improvements in code translation per-
formance.

4.1 Quality of the Synthetic Parallel Code

Statistics of MIRACLE-function. With 86,972
monolingual code as input, we manage to generate
516, 142 and 529, 108 synthetic parallel code pairs
in 6 language pairs from PLBART and CodeTS5,
respectively. Table 1 shows the statistics of the
synthetic parallel code data generated by PLBART.
Note that the datasets resulting from static analysis
and compilation are not subsets of back-translation,
because for back-translation we randomly pick a
hypothesis from the 10 sampled hypotheses, and

PLBART Number of Pairs Selection Rate

Selector C++-Java C++-Py C++-C Java—-Py Java-C Py-C | C++-Java C++-Py C++-C Java—Py Java—C Py-C
Back Translation (BT) 47540 63637 49550 37233 22919 39231 1 1 1 1 1 1
Static Analysis (STAT) 25211 58157 14945 31228 13059 33882 0.53 0.91 0.30 0.84 0.57 0.86
Compilation (COMP) 15258 36224 1893 13525 1562 11088 0.32 0.57 0.04 0.36 0.07 0.28
SA & Compilation (AND) 9278 34733 1200 12104 1313 10730 0.20 0.55 0.02 0.33 0.06 0.27

Table 1: Statistics of MIRACLE-function, with PLBART (Ahmad et al., 2021a) as generator. Due to page limit,
statistics for CodeT5 (Wang et al., 2021) generated data are included in the Appendix A. SA & Compilation refers
to the intersection of the Static Analysis and Compilation selections.

for static analysis and compilation we select the
hypothesis from the ones that pass the selection
criteria. From the selection rate, we can observe
that static analysis is the most lenient to Python, as
it is a weakly-typed language. Compilation has the
least selection rate on C. This is due to data scarcity
as the generator has poor performance on C due to
being trained with less than 150 examples.
Qualitative Analysis. We further perform qualita-
tive analysis and manually inspect samples of the
generated data. Table 3 illustrates four examples
from the synthetic parallel code, with two in Java
— C++, and two in Python — C++. The Java and
Python codes are the monolingual input from Co-
DENET, and the C++ codes are the synthetic codes.
The generated code snippets are in good alignment
with their corresponding inputs, with correct map-
ping of types, data structures, and syntax. Note
that the synthetic codes still contain some noise.
However, Table 2 and 3 results indicate that it does
not impede the effectiveness of the synthetic code
in improving code translation performance.

4.2 Performances in Code Translation

Comparison with Baseline Models. Table 2
shows the CodeBLEU and Computation Accu-
racy performance on C++, Java, and Python of
the baseline models and MIRACLE-PLBART and
MIRACLE-CodeTS5. In terms of CodeBLEU, both
MIRACLE models outperform all baselines, with
MIRACLE-CodeT5 surpassing the best baseline
performance by 8% on Python — C++ and Java —
Python translation. In terms of Computation Ac-
curacy, MIRACLE-CodeT5 outperforms the best
baseline performance by 5% on Python — C++
and C++ — Java, 6% on C++-Python, and 8% on
Python-Java. Moreover, both MIRACLE mod-
els outperform their respective generator models
on all the language pairs and both metrics by a
wide margin. Compared to CodeT5, MIRACLE-
CodeT5’s Computation Accuracy on Python — C++
and Python — Java improves by 20%, and on Java

— Python and C++ — Python the improvements are
25% and 30%, respectively.

Performance on Low-resource Languages. In
ECOST, C only has less than 150 parallel code
pairs with each language, making it suitable for
evaluating in more challenging low-resource lan-
guage settings. As shown in Table 1, the compi-
lation rate is the lowest when C is involved, as
the generator is not able to generate high-quality
data when the training data of C is significantly
less. Table 3 shows the performance of the two
implementations of MIRACLE and their respective
generators. For PLBART, MIRACLE improves the
CodeBLEU by up to 40% and improves the Com-
putation Accuracy (CA@1) by up to 43%. This
shows that the augmentation of parallel code gener-
ation works well in low-resource language settings,
where the generator’s performance is weak. For
CodeT35, the improvement in CA@1 is up to 23%.
Analysis of Alignment-Ascending Curriculum
Table 5 presents the datasets employed in curricu-
lum learning and their acquisition methods. To
assess the impact of the quality, volume, and order
of the datasets in the alignment-ascending curricu-
lum, we train models with different variations of
the curriculum and compare their Computation Ac-
curacy, as detailed in Table 4. Initially, a base
model is trained solely on the annotated dataset
ECoST-function, where its modest size yields lim-
ited performances. Incorporating ECOST-snippet
markedly enhances model performance, underscor-
ing the value of snippet-based training. Adding the
high-quality synthetic data, AND, further improves
the performance. Similarly, the integration of unfil-
tered noisy data, BT, also boosts the performance.
However, neither AND nor BT alone reaches the
efficacy of MIRACLE, highlighting the critical
role of both data quality and volume. Reversing
the order of the alignment-ascending curriculum
to AND+COMP+STAT+BT+Snippet+Function
causes the performance to drop significantly com-
pared to MIRACLE, emphasizing the importance

CodeBLEU Computation Accuracy
Model Java—C++ Py-C++ C++-Java Py-Java C++-Py Java—-Py | Java—C++ Py—-C++ C++-Java Py-Java C++-Py Java—Py
CodeBERT 61.75 50.18 29.71 42.21 46.99 46.69 13.44 4.82 10.22 393 6.33 5.74
PLBART 71.39 66.62 71.27 64.76 62.05 60.62 25.54 24.40 27.15 23.87 3223 3233
CodeT5 72.76 64.99 7213 64.26 59.16 61.25 37.63 19.28 41.13 23.87 20.78 24.77
Trancoder 72.54 66.47 70.36 63.61 56.29 55.29 49.73 25.60 40.86 22.36 41.87 46.22
Trancoder-ST 71.47 61.28 70.96 64.81 58.85 57.70 51.08 36.14 44.09 3535 43.98 51.96
MIRACLE-PLBART 74.55 68.43 72.90 67.14 63.09 63.47 41.94 35.24 40.05 33.84 38.55 41.09
MIRACLE-CodeT5 74.94 69.25 74.85 69.64 65.10 65.95 51.08 41.87 49.19 43.20 50.00 49.55

Table 2: Performance comparison of two implementations of MIRACLE with PLBART and CodeT5 against baseline
approaches. The metrics used for comparison are CodeBLEU and Computation Accuracy (CA@1). Across both
measures, MIRACLE outperforms the baseline approaches, demonstrating its effectiveness in code translation.

CodeBLEU Computation Accuracy
Model C++-C Java-C Python-C C-C++ C-Java C-Python | C++-C Java—-C Python—-C C-C++ C-Java C-Python
PLBART 40.66 56.85 43.66 42.77 32.49 52.98 2.60 0 1.56 5.19 0 14.06
MIRACLE-PLBART | 79.08 72.37 61.73 80.34 68.79 61.92 33.77 28.77 17.19 48.05 23.29 28.12
CodeT5 82.06 74.16 62.25 80.04 71.25 61.06 66.23 47.95 25.00 64.94 39.73 28.12
MIRACLE-CodeT5 82.26 74.59 63.87 81.24 74.21 66.65 68.83 56.16 31.25 64.94 45.21 51.56

Table 3: Performance comparison before and after applying MIRACLE on low-resource language C. The results
show substantial performance improvements across all measures after the application of our method, indicating the

effectiveness of MIRACLE on low-resource languages.

Curriculum Data Volume | Java— C++ Py-C++ C++-Java Py-Java C++-Py Java-Py
Function 3,326 0.81 4.52 1.88 3.63 16.87 16.62
Snippet+Function 35,144 25.54 244 27.15 23.87 32.23 32.33
AND+Snippet+Function 104,502 34.68 34.64 33.06 32.93 36.45 37.16
BT+Snippet+Function 295,254 38.98 34.94 37.1 30.21 35.54 39.58
AND+COMP+STAT+BT+Snippet+Function 551,286 38.98 32.23 37.63 33.84 35.84 39.58
BT+STAT+COMP+AND+Snippet+Function (MIRACLE) ‘ 551,286 ‘ 41.94 35.24 40.05 33.84 38.55 41.09

Table 4: Comparison of variations of curriculum. Data Volume refers to the number of parallel codes. The base
model is PLBART. All results are measured in Computation Accuracy. Results demonstrate the effectiveness of

alignment-enhancing curriculum learning.

Data Type Volume Source

BT Synthetic 260110 Back Translation

STAT Synthetic 176482 Static Analysis

COMP Synthetic 79550 Compilation

AND Synthetic 69358 Static Analysis & Compilation
Snippet | Annotated 31818 ECoST

Function | Annotated 3326 ECoST

Table 5: Datasets for Alignment-Ascending curriculum
learning. Volume refers to number of parallel codes.

of the order of the curriculum. Interestingly, this
inverted curriculum aligns closely in performance
with BT+Snippet+Function, likely due to the larger
volume of the BT dataset overpowering the effect
of the previous datasets.

Qualitative Analysis. Figure 4 shows examples of
various model translations and their execution out-
puts given the same input code. The first column
corresponds to the code used as input in the source
language, and the last column corresponds to the
ground truth translation in the target language. All

examples are from the ECOST test set. We com-
pare MIRACLE-CodeT5 with two other baselines,
TransCoder-ST and CodeT5. In the first two ex-
amples, we observe that both baselines demon-
strate the “shallow translation” problem. In the
C++ — Python example, both TransCoder-ST and
CodeTS5 directly copy from the input code. While
min_element is a valid built-in function defined
in header <algorithm> in C++, it does not exist
in Python, resulting in compilation errors for both
baselines. TransCoder-ST also exhibits an inabil-
ity to translate multiple functions at once. In the
Python — Java example, both TransCoder-ST and
CodeTS5 translate the keyword "not” in Python to
"1" in Java. However, the operator cannot be
used when the operand is an integer. By translating
at the token level, these baselines fail to take con-
text into consideration, causing run-time errors. In
both cases, MIRACLE-CodeT5 can translate the
function calls and statements from the source lan-

II'”

Input (C++) MIRACLE (Python) Transcoder-ST (Python) CodeT5 (Python) Groundtruth (Python)
int getMin(int arr[], int n) { def getMin (arr ,n) : dei(:g}iil:[:liagéx:gm (arr,arr+1) def getMin(arr,n):
return *min_element(arr, arr + n); } | return min (arr) def getMin (arr ,n) : def getMax (;Il' n): ’ return min(arr)
int getMax(int arr[], int n) { def getMax (arr,n): return * min_element (arr,n) &) . def getMax(arr,n):
return *max_element(arr, arr +n); }| return max (arr)) Teturn max_element (arr, arr +n return max(arr)

Test Code (Python)
arr = [12,1234,45,67,1]

Execution Output

count += 1
return 1 << count;

count ++ ;
return (1 << count) ;

n = len(arr)
getMin(arr, n); getMax(arr, n) el & < s Al s Cllal=l
Input (Python) MIRACLE (Java) Transcoder-ST (Java) CodeT5 (Java) Groundtruth (Java)
public static int nextPowerOf2 (int n
static int nextPowerOf2 (intn) {){ static int nextPowerOf2 (intn) { [static int nextPowerOf2(int n) {
def nextPowerOf2(n): int count=0; int count=0 ; int count=0; int count = 0;
count = 0; if(n!=0&& (n& (n-1))==0) | if((n!=0)&& (! (n&(n-1)) | if(n1=0&& ! (n&(n-1))) |if(n>0&& (& (n-1))==0)
if (n and not (n & (n - 1))): return n ;)DRE returnn ; return n;
return n while (n!=0) { returnn ; } while (n!=0) { while(n !=0) {
while(n !=0): n>>=1; while ((n!=0)){ n>>=1; n>>=1;
n>>=1 count ++ ; n>>=1; count ++ ; count +=1;

return 1 << count ;

return (1 <<count) ; return 1 << count;

Test Code (Java)

public static void main(String args[]) {

Execution Output

intn=0; error: bad operand pe error: bad operand pe
System.out.println(nextPowerOf2(n)); 0 ary operato o op 0
Input (Java) MIRACLE (Python) Transcoder-ST (Python) CodeT5 (Python) Groundtruth (Python)
L . . def findTrailingZeros (n) : . - .
static int findTrailingZeros(int n) { count=0 def findTrailingZeros (n) : def findTrailingZeros (n) : def findTrailingZeros(n):
int count =0; . i=5 count=0 count =0 count =0
focro(LlJrr]:tl+=-5n;lni'/|>=1;l =95) while n//i>=1: foriinrange (5,n//i+1,5):| foriinrange (5): w:lll;e_(r;>=5).
return c;unt" count+=n//i count+=n//i count+=n//i -
)) count +=n
i*=5 return count return count
return count return count
Test Code (Python) Execution Output
n=100 boundLoca or: loca
print("Count of trailing Os " + s teirdetiling : w ariable 'i' referenced before ARIVIEe 0 9 © 0 g0 00
"in 100! is", findTrailingZeros(n)) assig s Sl Clr e Lo <

Figure 4: Qualitative translation results from MIRACLE and baseline methods with the same input. In all three
examples, the baselines’ results exhibit the "Shallow Translation" problem, where code snippets are directly copied
or translated token by token from the source language, causing compilation and run-time errors in the target language.
MIRACLE’s translation shows its strong ability to correctly align the syntax and APIs across different languages.

guage to the target language correctly. In the Java —
Python example, both baselines fail at translating
a complex for loop, while MIRACLE correctly
translates this in a different way from the ground
truth, showing a strong capability of understand-
ing the input code and mapping it into a different
language.

5 Conclusion

In this paper, we introduce MIRACLE, a semi-
supervised approach utilizes static analysis and
compilation to generate synthetic parallel code
datasets with enhanced alignment, and improves
code translation through curriculum learning on
code datasets with ascending alignment levels. We
evaluate the performance of MIRACLE through
extensive experiments conducted on multiple lan-
guages and models. The proposed alignment-
ascending curriculum learning significantly im-
proves the computation accuracy of code transla-
tion, outperforming state-of-the-art baselines by a
significant margin. Notably, our method achieves

remarkable gains in C translations even with a lim-
ited number of annotated training instances. Our
work showcases the importance of parallel code
data with good alignment quality and the effective-
ness of alignment-ascending curriculum learning
in enhancing code translation capabilities. Future
work can extend to more tasks that benefit from
large amount of parallel data.

6 Limitations and Future Work

Despite the promising results and contributions,
MIRACLE relies heavily on the generation of par-
allel code data and does not take into account other
types of information that may be useful for code
translation, such as comments or documentation.
Incorporating such information into the generation
process could potentially further improve the qual-
ity of the generated data. Moreover, our evalua-
tion is mainly focused on execution-based metrics,
which measure the quality of the generated code
based on its ability to execute correctly. While
these metrics are important, they do not capture

other aspects of code quality, such as readability,
maintainability, or style. Future work could ex-
plore the development of metrics that capture these
aspects of code quality.

References

David H Ackley, Geoffrey E Hinton, and Terrence J Se-
jnowski. 1985. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147-169.

Mayank Agarwal, Kartik Talamadupula, Fernando
Martinez, Stephanie Houde, Michael Muller, John
Richards, Steven I Ross, and Justin D Weisz. 2021.
Using document similarity methods to create par-
allel datasets for code translation. arXiv preprint
arXiv:2110.05423.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021a. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655-2668.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi
Ray, and Kai-Wei Chang. 2022. Summarize and
generate to back-translate: Unsupervised transla-
tion of programming languages. arXiv preprint
arXiv:2205.11116.

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat
Chakraborty, and Kai-Wei Chang. 2021b. Avatar: A
parallel corpus for java-python program translation.
arXiv preprint arXiv:2108.11590.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2019.
An effective approach to unsupervised machine trans-
lation. arXiv preprint arXiv:1902.01313.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2017. Unsupervised neural ma-
chine translation. arXiv preprint arXiv:1710.11041.

Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-
to-tree neural networks for program translation. In
Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT (1).

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. arXiv preprint arXiv:1808.09381.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages

1536-1547, Online. Association for Computational
Linguistics.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Yufan Huang, Mengnan Qi, Yongqiang Yao, Maoquan
Wang, Bin Gu, Colin Clement, and Neel Sundare-
san. 2023. Program translation via code distillation.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10903-10914.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Svetoslav Karaivanov, Veselin Raychev, and Martin
Vechev. 2014. Phrase-based statistical translation
of programming languages. In Proceedings of the
2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming &
Software, pages 173—184.

Kusum Kusum, Abrar Ahmed, Bhuvana C, and V. Vivek.
2022. Unsupervised translation of programming lan-
guage - a survey paper. In 2022 4th International
Conference on Advances in Computing, Communica-
tion Control and Networking (ICAC3N), pages 384—
388.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv e-prints,
pages arXiv—1901.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’ Aurelio Ranzato. 2017. Unsupervised ma-
chine translation using monolingual corpora only.
arXiv preprint arXiv:1711.00043.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’ Aurelio Ranzato. 2018. Unsupervised ma-
chine translation using monolingual corpora only. In
International Conference on Learning Representa-
tions.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of

https://proceedings.neurips.cc/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/ICAC3N56670.2022.10074182
https://doi.org/10.1109/ICAC3N56670.2022.10074182
https://doi.org/10.1109/ICAC3N56670.2022.10074182

the Association for Computational Linguistics, pages

7871-7880.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726-742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1).

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N
Nguyen. 2013. Lexical statistical machine transla-
tion for language migration. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software
Engineering, pages 651-654.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N
Nguyen. 2015. Divide-and-conquer approach for
multi-phase statistical migration for source code (t).
In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages
585-596. IEEE.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna,
Divya Sankar, Lambert Pouguem Wassi, Michele
Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha,
and Reyhaneh Jabbarvand. 2023. Understanding the
effectiveness of large language models in code trans-
lation. arXiv preprint arXiv:2308.03109.

Ruchir Puri, David S Kung, Geert Janssen, Wei
Zhang, Giacomo Domeniconi, Vladmir Zolotov, Ju-
lian Dolby, Jie Chen, Mihir Choudhury, Lindsey
Decker, et al. 2021. Project codenet: A large-scale
ai for code dataset for learning a diversity of coding
tasks. arXiv preprint arXiv:2105.12655.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1-67.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. In NeurIPS.

10

Baptiste Roziere, Marie-Anne Lachaux, Marc
Szafraniec, and Guillaume Lample. 2021a. Dobf: A
deobfuscation pre-training objective for program-
ming languages. arXiv preprint arXiv:2102.07492.

Baptiste Roziere, Jie Zhang, Francois Charton, Mark
Harman, Gabriel Synnaeve, and Guillaume Lample.
2021b. Leveraging automated unit tests for unsuper-
vised code translation. In International Conference
on Learning Representations.

Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina,
Sihui Dai, Chong Xiang, Mung Chiang, and Prateek
Mittal. Robust learning meets generative models:
Can proxy distributions improve adversarial robust-
ness? In International Conference on Learning Rep-
resentations.

Marc Szafraniec, Baptiste Roziere, Hugh Leather Fran-
cois Charton, Patrick Labatut, and Gabriel Synnaeve.
2022. Code translation with compiler representations.
arXiv preprint arXiv:2207.03578.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8696-8708.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual benchmarking
on humaneval-x. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 5673-5684.

Ming Zhu, Karthik Suresh, and Chandan K Reddy. 2022.
Multilingual code snippets training for program trans-
lation. In 36th AAAI Conference on Artificial Intelli-
gence (AAAI).

A Appendix
A.1 Related Work

Parallel Code Data. Parallel code data refers to
code pairs from different programming languages
that are functionally equivalent and bug-free. Ex-
isting datasets are characterized by relatively high
alignment but are limited in size and supported
languages. For example, CodeXGLUE (Lu et al.,
2021) constructed a Java — C# translation dataset by
matching function names from open-source repos-
itories. MuST-PT (Zhu et al., 2022) introduced

a program translation dataset CoST, with snippet-
level alignment that supports 7 programming lan-
guages. CoST was collected from the coding tu-
torial website GeeksforGeeks?, where each cod-
ing problem is provided with solutions in up to
7 languages, with each in similar structure and
comments. AVATAR (Ahmad et al., 2021b) only
supports the translation between Java and Python.
Other kinds of datasets are usually significantly
larger and support a wider range of languages, but
the alignment quality is low. These are usually
collected from competitive online code judgments.
Given a coding problem, users can submit their
solutions in various supported languages and get
judged based on online tests. The user-contributed
solutions to the same problems are collected as
parallel code in different languages. For example,
Google Code Jam and Project CodeNet (Puri et al.,
2021) were both collected in this manner. However,
due to the diverse backgrounds and the large num-
ber of users, the solutions for the same problem
have wide discrepancies in distribution across dif-
ferent languages, which lowers alignment quality.
Neural Code Translation. Recent advances in ma-
chine learning, especially in self-supervised learn-
ing techniques, have benefited a wide range of tasks
(Vaswani et al., 2017; Liu et al., 2019; Lample and
Conneau, 2019; Liu et al., 2020; Sehwag et al.).
Some techniques from NLP were transferred to
programming languages and have achieved great
success. Similar to BERT (Devlin et al., 2019),
CodeBERT (Feng et al., 2020) is a code language
model pre-trained on CodeSearchNet (Husain et al.,
2019) with Masked Language Modeling (MLM).
PLBART (Ahmad et al., 2021a) is pre-trained the
same way as BART (Lewis et al., 2020), with
Denoising Auto-Encoding (DAE) (Lample et al.,
2018) on GitHub data. Although CodeBERT and
PLBART are pre-trained on code, they model code
the same way as natural language sequences with-
out considering code-specific features. Inspired
by T5 (Raffel et al., 2020), CodeT5 (Wang et al.,
2021) is pre-trained on CodeSearchNet but with
an identifier-aware objective to align more with
programming language distributions. All three
models use general pre-training to gain program-
ming language intelligence, without optimizing for
any specific tasks. They require fine-tuning on
task-specific data to perform downstream tasks.
TransCoder (Roziere et al., 2020) is an unsuper-

Shttps://www.geeksforgeeks.org/

11

vised code translation model that relies on back-
translation to generate pseudo-parallel code data
during training. However, back-translation intro-
duces noisy code into the training process, compro-
mising the model’s ability to generate high-quality
translations. TransCoder-ST (Roziere et al., 2021b)
improves TransCoder by adding automated unit
tests to filter out invalid translations and reduce
noise from the back-translation process. However,
obtaining unit tests for different languages is expen-
sive, and running unit tests is unscalable for a large
amount of code data. MuST-PT (Zhu et al., 2022)
leverages snippet-level DAE and translations for
pre-training before fine-tuning on program-level
data, which improves code translation performance.
However, MuST-PT is less scalable, as it relies
solely on a limited amount of finely aligned parallel
code for training without utilizing widely available
non-parallel code.

A.2 Implementation Details

All models are trained with a batch size of 16 for 10
epochs, with a learning rate of 5e — 5. Experiments
are performed on one NVIDIA A100 GPU with
80G memory. For tempered sampling, we use a
sample size of 10 with a fixed temperature of 0.5.
For evaluation, we use beam search with a beam
size of 5. We use a max sequence length of 200
tokens for both the inputs and outputs.
Preprocessing. For all the program data, we first
remove all the comments, docstrings, and empty
lines. New lines are replaced with special to-
ken NEW_LINE. For pre-tokenization, Python is pre-
tokenized with a TreeSitter-based tokenizer from
TransCoder(Roziere et al., 2020), for better han-
dling of indentations. Other languages are not pre-
tokenized. When running experiments, the data
will be tokenized again using the corresponding
tokenizer of each model.

Function Info Extraction. We rely on AST
parsing to extract function information from pro-
grams, which are further used for static analysis
and execution-based evaluation. An AST is a tree-
like data structure that represents the structure of a
program’s source code. It captures the high-level
structure of the code and the relationships between
its elements, enabling a deeper understanding of
the code beyond the sequence level. To create an
AST, the source code is first parsed to identify its
syntactic elements, such as keywords, operators,
and identifiers. The parser then constructs the AST
by assigning each syntactic element to a node in

Program

class_body Function]

String d ="

for (inti = 0; i < num.length(); i++) { functions

Pu—
import java.util.*; method_declaration ~ method_declaration private static int digitSum(...) {
public class Main { P . int sum =0;
public static void main(String[] args) { — \ T (> Stingd=""
String s = "1245"; modifiers int digitSum formal_parameters block for (inti=0; ...
System.out.printin(digitSum(s)); }
} N) private static Q (String num) {1}
private static int digitSum(String num) {
int sum = 0; | Program_dict

["pri

Program_shell
L

vate static int digitSum(..."]
import java.util.*;

d = String.valueOf(num.charAt(i)); function_names

['main’, 'digitSum’] public class Main {

sum += Integer.parselnt(d);

}

return sum;

return_types
parameter_lists

['(String[] args)', (String num)’]

['void', 'int] public static void main(...) {

-

}

target_call

)

digitSum <target_function>

}

program_shell

["import java..”, "<target_function>", "}"]

}

Figure 5: An illustration of function info extraction through AST parsing. Given an input program, we first generate
its corresponding AST, and then extract function-related information from AST into program_dict. The tree in the
top middle shows an example of AST. After the functions are extracted, the leftover part of the program is called
program_shell, which can be used for execution-based evaluation later.

the tree. An AST consists of terminal and non-
terminal nodes. Terminal nodes are leaf nodes
in AST and are part of the source code. Non-
terminal nodes are not part of the source code.
With the help of AST, we can extract function-
related information by matching the correspond-
ing non-terminal nodes in that language, such
as method_declaration, method_invocation,
formal_parameters etc. One of the most widely
used open-source AST parsing tools is TreeSitter*.
It supports most of the commonly used program-
ming languages. Figure 5 shows an example of a
Java program and its AST (parsed by TreeSitter).
The blue nodes are non-terminal and the purple
nodes are terminal.

Sourcing of Monolingual Code Inputs. Co-
DENET (Puri et al., 2021) is a huge dataset contain-
ing 13 million of programs in 55 languages. The
programs in CODENET are from code submissions
to online judge websites of programming problems.
We use CODENET as a source of monolingual code
inputs for parallel code generation. We select the
“Accepted” submissions (submissions that pass the
prescribed tests) in 4 languages, C++, Java, Python,
and C, from around 1600 problems, which gives
us approximately 1 million programs. To ensure
the quality of the input data, we set two filtering
criteria: (1) the program should be modularized,
which means it should contain at least one function
(other than main() or Main() function), and (2)
the program should be bug-free, which means it
can be compiled without errors. After applying
the two steps of filtering, only around 8% of the
programs remain, approximately 87k.

*https://tree-sitter.github.io/tree-sitter/

12

Parallel Code Generation. We experiment with
two different models as the generator model,
PLBART (Ahmad et al., 2021a) and CodeT5 (Wang
et al., 2021). The generator models are initialized
by first training on the snippet-level data, and then
the function-level data from ECOST. We then uti-
lize the monolingual CODENET data as inputs and
acquire the hypotheses from the generators through
tempered sampling. For cross-lingual static analy-
sis, we extract the function information of both the
monolingual inputs and all the hypotheses and com-
pare them. For compilation, we use the compiler
of each language to compile all the hypotheses.
Since the hypotheses are functions not programs,
we pair each of them with a set of common imports
in the corresponding language before compilation
to avoid dependency errors. For Python, we first
try with python2, and subsequently with python3
if python2 returns with an error. The statistics of
the selected hypotheses generated by MIRACLE-
CodeTS5 can be found in Table 6.

Execution-Based Evaluation. ECOST test set is
used for all the evaluations. ECOST train set and
generated parallel data are used for model train-
ing. The train/valid/test split of ECOST is 70:5:25,
and the generated parallel dataset is 85:5:10. The
statistics of ECOST are shown in Table 7. To eval-
uate the quality of the generated hypotheses, we
employ an execution-based evaluation strategy. By
inserting the generated hypothesis of an input func-
tion into the program_shell of the ground truth
program, we execute the modified program and
compare its output against the original output. This
process allows us to verify whether the hypothesis
successfully passes the built-in test cases, thus eval-

CodeT5 \ Number of Pairs \ Selection Rate

Selector \ C++-Java C++-Py C++-C Java-Py Java-C Py-C \ C++-Java C++-Py C++-C Java-Py Java-C Py-C
Back Translation (BT) 47637 64037 49550 37422 22935 39335 1 1 1 1 1 1
Static Analysis (STAT) 25211 58663 14945 31379 13059 34072 0.53 0.92 0.30 0.84 0.57 0.87
Compilation (COMP) 17373 36544 2290 16888 3821 13947 0.36 0.57 0.05 0.45 0.17 0.35
SA & Compilation (AND) 10811 35457 1325 15256 2731 13309 0.23 0.55 0.03 0.41 0.12 0.34

Table 6: Statistics of CODENET-MIRACLE, with CodeT5 (Wang et al., 2021) as generator. SA & Compilation
refers to the intersection of the Static Analysis and Compilation selections.

‘ Function-Level

‘ Snippet-Level

CoST | C++-Java C++Py C++C Java-Py Java-C Py-C | C++Java C++Py C++C Java-Py Java-C Py-C

Train 1014 947 138 947 146
Val 51 46 14 47 14
Test 372 332 71 331 73

134 10472 8893 1358 8716 1305 1074
14 417 324 78 340 78 69
64 2493 1991 450 1964 422 313

Table 7: Data split and number of parallel code pairs in ECoST.

uating its correctness and suitability. However, the
function names in the generated hypotheses might
not match the function calls in program_shell,
causing execution errors. Therefore, through func-
tion information extraction, we replace the func-
tion name of the hypotheses with the corresponding
ground truth function name before each evaluation.

A.3 Broader Impacts

The ability to automatically translate code between
programming languages can help software devel-
opers port existing codebases from one language
to another, allowing them to work with a wider
range of tools and frameworks. It can also facil-
itate collaboration between developers who work
with different programming languages. In addition,
our work has the potential to reduce the barriers
to entry for new developers who want to learn a
new programming language. By enabling them to
translate code from a language they are familiar
with to a new language, they can quickly learn the
connections and differences between the two lan-
guages, and start working on projects in the new
language. Moreover, it also has the potential to cre-
ate more inclusive software engineering learning
environments, which makes computer science more
accessible for learners from various backgrounds.
However, there are also potential negative impacts
of this work, such as the possibility of automated
code translation leading to loss of jobs for software
developers or increased reliance on automated tools
in the software development process.

13

	Introduction
	Method
	Parallel Code Data Generation
	Hypotheses Generation
	Hypotheses Selection

	Alignment-Ascending Curriculum Learning

	Experiments
	Results and Analysis
	Quality of the Synthetic Parallel Code
	Performances in Code Translation

	Conclusion
	Limitations and Future Work
	Appendix
	Related Work
	Implementation Details
	Broader Impacts

