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Abstract

Neural code translation is the task of convert-001
ing source code from one programming lan-002
guage to another. The scarcity of parallel code003
data impedes code translation models’ abil-004
ity to learn accurate cross-language alignment,005
thus restricting performance improvements. In006
this paper, we introduce MIRACLE, a semi-007
supervised approach that improves code trans-008
lation through curriculum learning on code009
data with ascending alignment levels. It lever-010
ages static analysis and compilation to gen-011
erate synthetic parallel code datasets with en-012
hanced alignment to address the challenge of013
data scarcity. Extensive experiments show that014
MIRACLE significantly improves code transla-015
tion performance on C++, Java, Python, and C,016
surpassing state-of-the-art models by substan-017
tial margins. Notably, it achieves up to a 43%018
improvement in C code translation with fewer019
than 150 annotated examples.020

1 Introduction021

Code translation is the task of converting source022

code written in one programming language (PL) to023

another. It is valuable for migrating existing code024

to other languages, and can significantly reduce the025

costs of legacy code maintenance and new platform026

development. One line of work in code translation027

follows the “pre-training - fine-tuning” approach028

(Ahmad et al., 2021a; Wang et al., 2021; Roziere029

et al., 2021a; Fried et al., 2022; Zheng et al., 2023).030

However, pre-training tasks such as masked lan-031

guage modeling (MLM) and auto-regressive lan-032

guage modeling (Devlin et al., 2019; Feng et al.,033

2020; Guo et al., 2020) are usually quite different034

from the downstream tasks such as code transla-035

tion, and the performance on the latter is limited by036

the discrepancy. Another line of work takes an un-037

supervised learning approach for code translation.038

Established techniques from unsupervised neural039

machine translation (NMT) (Lample et al., 2017;040

Artetxe et al., 2017; Lample et al., 2018; Artetxe 041

et al., 2019), such as back-translation and denois- 042

ing auto-encoding, can be applied to code data 043

effectively, achieving promising performances on 044

code translation (Edunov et al., 2018; Roziere et al., 045

2020; Agarwal et al., 2021; Ahmad et al., 2022; 046

Szafraniec et al., 2022; Kusum et al., 2022; Huang 047

et al., 2023). However, unsupervised learning in- 048

troduces significant noise in the training process, 049

which is particularly harmful to code generation 050

tasks that require precision. 051

Parallel code data refers to pairs of code snip- 052

pets from different programming languages that 053

are functionally equivalent and bug-free. It is es- 054

sential for neural models to learn the correct align- 055

ment of data structures, APIs, and grammatical 056

rules across different languages. However, exist- 057

ing parallel code data is limited in quantity and 058

supported languages (Nguyen et al., 2013, 2015; 059

Karaivanov et al., 2014; Lu et al., 2021; Chen et al., 060

2018; Ahmad et al., 2021b; Zhu et al., 2022; Zheng 061

et al., 2023). Without training on sufficient parallel 062

code, the models, especially self-supervised and 063

unsupervised ones, can potentially learn incorrect 064

mappings of syntax and data structures from one 065

language to another (Pan et al., 2023). We refer to 066

this issue as “shallow translation”. Figure 1 illus- 067

trates an example of shallow translation. 068

Considering the limitations of existing methods, 069

we argue that it is crucial to efficiently generate 070

high-quality and well-aligned parallel code data to 071

effectively learn cross-lingual alignment. In this pa- 072

per, we propose a novel seMI-supeRvised pArallel 073

Code aLignmEnt approach, termed MIRACLE, 074

that leverages static analysis and compilation to 075

generate synthetic parallel code datasets with en- 076

hanced alignment. MIRACLE improves code trans- 077

lation through curriculum learning on code datasets 078

with ascending alignment levels. The static analy- 079

sis and compilation secure the syntactical correct- 080

ness and alignment of the synthetic parallel code 081
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Figure 1: An example of the “Shallow Translation” problem, with the Java function shown in the first column
as input, the C++ translations from baseline method TransCoder-ST, and our proposed method MIRACLE (with
CodeT5 as generator). The highlighted parts show that TransCoder-ST’s translation directly copied types, data
structures, and statements from the input Java code, which are non-existent or grammatically incorrect in the target
language C++, while MIRACLE was able to correctly convert them in the corresponding C++ grammar.

in a cost-efficient way. Moreover, the proposed082

alignment-ascending curriculum learning is robust083

to data noise, which effectively mitigates the shal-084

low translation problem.085

Our contributions can be summarized as fol-086

lows: (1) We propose MIRACLE, a novel semi-087

supervised code translation method that leverages088

static analysis and compilation to generate syn-089

thetic parallel code with enhanced alignment in a090

scalable way. The proposed method can be gener-091

alized to multiple languages and various models092

with little overhead. (2) We introduce alignment-093

ascending curriculum learning, where the code094

translation model is trained on both synthetic par-095

allel code and annotated parallel code, considering096

the alignment level, noise level, and quantity of097

each type of data. We demonstrate that curricu-098

lum learning improves the code translation model’s099

performance and enhances alignment across dif-100

ferent languages, resulting in more precise transla-101

tions. (3) Extensive experiments show that MIRA-102

CLE successfully improves code translation perfor-103

mance by up to 30% on C++, Java, and Python, out-104

performing state-of-the-art baselines on translation105

between Python and C++ by 5.7%, C++ and Python106

by 6%, and Python and Java by 8% in execution-107

based evaluation (CA@1). Notably, our method108

improves C translations by up to 43% with less109

than 150 annotated training instances.110

2 Method111

The lack of parallel code data poses a challenge112

for training code translation models, which rely113

on large amounts of parallel data to achieve good 114

performance. Semi-supervised methods can lever- 115

age monolingual data to generate synthetic parallel 116

data but often struggle to maintain alignment qual- 117

ity between source and target languages. There- 118

fore, we aim to efficiently generate synthetic par- 119

allel code with enhanced cross-lingual alignment 120

through alignment-ascending curriculum learning. 121

Our approach, MIRACLE, focuses on function- 122

level code translation, as functions are the building 123

blocks of programs. Figure 2 shows an overview 124

of the proposed method. 125

2.1 Parallel Code Data Generation 126

To address the data scarcity challenge, we pro- 127

pose a parallel code generation method using 128

semi-supervised learning. The method consists 129

of two modules, a hypotheses generator fG, and 130

a selector fD. The hypotheses generator fG is 131

sequence-to-sequence model that takes as input a 132

code snippet x from the source language s and 133

generates a set of hypothetical translations Yh = 134

{y(1)h , y
(2)
h , .., y

(M)
h } in the target language t. Here, 135

Yh consists of M translations (hypotheses) for the 136

same input code snippet x. The generator fG is 137

trained on a limited amount of parallel code data 138

(DL, L is for labeled), and will be used to gen- 139

erate a large number of hypotheses for monolin- 140

gual code data (DU , U is for unlabeled). The 141

selector fD comprises a set of K filtering crite- 142

ria F = {Fk}Kk=1 where Ỹh,k = Fk(Yh) takes 143

Yh as input and outputs the subset of hypotheses 144

Ỹh,k ⊂ Yh that passes the criterion Fk. 145
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Figure 2: Overview of MIRACLE for Code Translation. MIRACLE utilizes a two-step process to generate high-
quality translation hypotheses from monolingual code inputs. First, the generator produces multiple translation
hypotheses using tempered sampling. Next, the selector applies static analysis and compilation techniques to select
the most promising hypotheses. By employing various selection criteria, MIRACLE generates synthetic parallel
code datasets with varying alignment levels and quality. These synthetic datasets, along with annotated parallel
code datasets, are organized into a curriculum, where the alignment and quality gradually improve. The proposed
curriculum-based approach enhances code translation performance.

2.1.1 Hypotheses Generation146

The hypotheses generator fG is initialized by train-147

ing on a limited amount of parallel code data. This148

is to enable fG with the ability to translate code149

from the source language s to the target language150

t. To further improve fG’s translation capability,151

we leverage the snippet training method from (Zhu152

et al., 2022), which matches code comments in par-153

allel programs to get snippet-level parallel training154

data. A snippet usually consists of several lines155

of code and is not necessarily a complete function.156

We then use the trained fG to generate hypotheses157

for a large amount of monolingual code.158

Snippet Training. We use two small annotated159

parallel code datasets, DLs and DL, with differ-160

ent levels of alignment to train fG. The parallel161

code data aligned at snippet-level is denoted as162

DLs = {(x, y)(ls)}|DLs |
ls=1 , and the function-level163

parallel data is denoted as DL = {(x, y)(l)}|DL|
l=1 .164

DLs can be constructed from DL by matching code165

comments from the parallel programs (Zhu et al.,166

2022). We first train fG on DLs , and then continue167

the training on DL. We refer to this step as snippet168

training, which helps the generator to learn fine-169

grained alignment between different languages and170

substantially improves fG’s ability to generate hy-171

potheses with better alignment to the input code.172

This step enables fG to generate valid hypotheses173

with sufficient initial quality.174

Tempered Sampling. Let DU = {x(i)}|DU |
i=1 be a175

monolingual dataset in source language s, where 176

each x(i) is a function-level code block. With DU 177

as input, we can generate a set of translation hy- 178

potheses in the target language t with the trained 179

fG. To increase the diversity of the hypotheses 180

and improve coverage for different possible trans- 181

lations, we employ tempered sampling to acquire 182

M different hypotheses for each input code. Tem- 183

pered sampling makes use of a tuned scaled soft- 184

max to control the degree of randomness (tempera- 185

ture) in the sampling process (Ackley et al., 1985; 186

Hinton et al., 2015). We denote the hypotheses 187

set as H = {Yh
(1),Yh

(2), . . . ,Yh
(i), . . . ,Yh

|DU |}, 188

where Yh
(i) = {yh(1), yh(2), .., yh(M)} is a set of 189

different translations for xi in target language t. 190

2.1.2 Hypotheses Selection 191

The selector fD takes H as input and produces 192

H̃ = {Ỹ(i)
h }|DU |

i=1 , in which Ỹ(i)
h is the subset of 193

Y(i)
h that passes the selection criteria F , i.e., Ỹ(i)

h = 194

F(Y(i)
h ). If Ỹ(i)

h contains more than one hypothesis, 195

only one is kept, as our preliminary experiments 196

confirm that keeping more than one hypothesis for 197

each input does not yield improved performance 198
1. We pair all the y

(i)
h with the input corresponding 199

input code x(i) to acquire pseudo parallel dataset 200

DS = {(x, yh)(l)}
|DS |
l=1 . In practice, we rely on 201

cross-lingual static code analysis and compilation 202

as selection criteria F for the hypotheses. 203

1If Ỹ(i)
h is empty, it will be discarded.
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Cross-Lingual Static Analysis. To ensure that204

the selected hypotheses have high alignment qual-205

ity with the input code, we use cross-lingual static206

analysis to compare the key information of both207

the input code and all the hypotheses. Static code208

analysis is a technique used to analyze source code209

without executing the program. One way to per-210

form static code analysis is through the use of an211

abstract syntax tree (AST). An AST is a tree-like212

data structure that represents the structure of a pro-213

gram’s source code. It captures the high-level struc-214

ture of the code and the relationships between its215

elements, enabling a deeper understanding of the216

code beyond the sequence level. Figure 2 shows an217

example AST generated from a Java function.218

Specifically, we compare the number of func-219

tions, and after matching each pair of functions220

from the output with the input, we check whether221

the return types are equivalent, and if the parameter222

lists match in terms of the number of parameters223

and the type of each parameter. For non-typed224

languages such as Python, we skip the type part225

and only compare the number of functions and the226

parameter list of each function. Passing the cross-227

lingual static analysis is a strong indicator of the228

alignment quality of the hypotheses to the input,229

which helps in selecting the best hypotheses.230

Compilation Filtering. We additionally leverage231

compilation to filter out hypotheses that may con-232

tain errors. Specifically, we compile the generated233

code using the target compiler and check for any234

compilation errors. Any hypothesis that fails to235

compile is discarded. This step further improves236

the quality of the selected hypotheses by ensur-237

ing that they are syntactically correct and can be238

compiled successfully.239

2.2 Alignment-Ascending Curriculum240

Learning241

By pairing the hypotheses with their correspond-242

ing inputs, we obtain multiple synthetic parallel243

code datasets at different stages of the generation244

process. Without the selector, the generation is245

reduced to plain back-translation. We denote the246

unfiltered synthetic parallel data from the unfil-247

tered hypotheses, as BT data. Similarly, we de-248

note the synthetic parallel data from cross-lingual249

static analysis and compilation filtering as STAT250

and COMP, respectively. In addition, we denote the251

subset of hypotheses that pass both criteria, static252

analysis and compilation, as AND data. We adopt253

a curriculum learning approach to train our code254

translation model, strategically leveraging the qual- 255

ity of the data at different stages. Our curriculum 256

consists of multiple training phases, progressively 257

incorporating different types of data. We first train 258

with the unfiltered synthetic parallel data, allowing 259

the model to grasp the basic translation patterns. 260

Next, we introduce the cross-lingual static anal- 261

ysis filtered data, which helps refine the model’s 262

understanding of language-specific code idioms 263

and improve translation accuracy. Subsequently, 264

we integrate the compilation filtered data, which 265

further enhances the model’s ability to generate 266

syntactically correct translations. The curriculum 267

then advances to utilize the intersection of both fil- 268

tered datasets, combining the benefits of both data 269

sources. We then introduce snippet-level annotated 270

data to enhance translation performance in specific 271

code segments. Finally, we conclude by training 272

with function-level annotated data, enabling the 273

model to capture higher-level structural patterns 274

and produce more coherent translations. By follow- 275

ing this carefully designed curriculum, MIRACLE 276

not only benefits from exposure to a diverse range 277

of training data but also progressively refines its 278

translation quality and alignment, leading to im- 279

proved performance and robustness. 280

3 Experiments 281

Datasets. We make use of the annotated COST 282

dataset from (Zhu et al., 2022) to support snip- 283

pet training and execution-based evaluation. The 284

COST dataset contains parallel code aligned at 285

both program and snippet levels. To support 286

execution-based evaluation, we execute all pro- 287

grams in COST and remove the ones that throw 288

run-time errors and the ones with empty execu- 289

tion output. We refer to the resulting dataset as 290

ECOST (Execution-based COST). ECOST has 291

approximately 1, 000 function-level training in- 292

stances for C++, Java, and Python, and 150 for 293

C. We employ a train/validation/test split ratio of 294

approximately 70:5:25. To support snippet and 295

function-level training, we extract the functions 296

from ECOST through AST parsing2 to get both 297

snippet-level and function-level parallel data (DLs 298

and DL), which we refer to as ECOST-snippet and 299

ECOST-function. 300

Synthetic Parallel Code Generation. We use the 301

CODENET dataset (Puri et al., 2021) as the mono- 302

lingual code data (DU ) for parallel code generation. 303

2https://tree-sitter.github.io/tree-sitter/
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Figure 3: Synthetic parallel code examples, with PLBART (Ahmad et al., 2021a) as generator. The synthetic parallel
data demonstrates great alignment quality, with minor noise in some cases.

CODENET is a large-scale dataset containing 13M304

programs spanning 55 languages. The programs305

in CODENET originate from code submissions to306

online judge of programming problems. We select307

the “Accepted” submissions (i.e., submissions that308

pass the online judge) in 4 languages, C++, Java,309

Python and C, from around 1, 600 problems. Af-310

ter some quality filtering, we get approximately311

87, 000 examples. We experiment with two dif-312

ferent models as the generator model, PLBART313

(Ahmad et al., 2021a) and CodeT5 (Wang et al.,314

2021). The monolingual CODENET data are used315

as inputs to the generators to obtain the hypotheses316

through tempered sampling with a temperature of317

0.5 and sample size M set to 10. We then get the318

synthetic parallel code through selection by static319

analysis and compilation (F).320

Baselines and Evaluation Metrics. We com-321

pare against five advanced code translation models.322

CodeBERT (Feng et al., 2020), PLBART (Ahmad323

et al., 2021a), and CodeT5 (Wang et al., 2021) are324

programming language models pre-trained with325

self-supervised learning techniques on large-scale326

open-source code datasets. These models can per-327

form code translation as a downstream task af-328

ter fine-tuning on parallel code data. TransCoder329

(Roziere et al., 2020) is an unsupervised code trans-330

lation model that relied on back-translation for331

data augmentation. TransCoder-ST (Roziere et al.,332

2021b) improves TransCoder by leveraging unit333

testing to generate parallel code data. After gen-334

erating the synthetic parallel code, we train code335

translation models using the generated data and336

evaluate their performances. CodeBERT, PLBART337

and CodeT5 need fine-tuning to perform code trans-338

lation, therefore they are fine-tuned on ECOST339

with both snippet-level and function-level data. On 340

the other hand, TransCoder and TransCoder-ST 341

do not need fine-tuning as they are unsupervised 342

methods. All models are evaluated on ECOST test 343

set. CodeBLEU(Ren et al., 2020) is a weighted 344

sum of n-gram matching, AST matching, and data 345

flow matching between source and target programs. 346

Computation Accuracy (CA) (Roziere et al., 2020) 347

is a new metric introduced in TransCoder that mea- 348

sures if the hypothesis has the same execution out- 349

put as the reference. We use CA@1 for all the 350

evaluations. Model training details are included in 351

the Appendix A. 352

4 Results and Analysis 353

We evaluate two variations of our method, 354

MIRACLE-PLBART and MIRACLE-CodeT5, by 355

performing parallel code generation with PLBART 356

and CodeT5 as generators and curriculum learning 357

with their generated data respectively. The gener- 358

ated parallel code data is referred to as MIRACLE- 359

function. We focus on two aspects, generated data 360

quality and improvements in code translation per- 361

formance. 362

4.1 Quality of the Synthetic Parallel Code 363

Statistics of MIRACLE-function. With 86, 972 364

monolingual code as input, we manage to generate 365

516, 142 and 529, 108 synthetic parallel code pairs 366

in 6 language pairs from PLBART and CodeT5, 367

respectively. Table 1 shows the statistics of the 368

synthetic parallel code data generated by PLBART. 369

Note that the datasets resulting from static analysis 370

and compilation are not subsets of back-translation, 371

because for back-translation we randomly pick a 372

hypothesis from the 10 sampled hypotheses, and 373
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PLBART Number of Pairs Selection Rate

Selector C++ – Java C++ – Py C++ – C Java – Py Java – C Py – C C++ – Java C++ – Py C++ – C Java – Py Java – C Py – C

Back Translation (BT) 47540 63637 49550 37233 22919 39231 1 1 1 1 1 1

Static Analysis (STAT) 25211 58157 14945 31228 13059 33882 0.53 0.91 0.30 0.84 0.57 0.86

Compilation (COMP) 15258 36224 1893 13525 1562 11088 0.32 0.57 0.04 0.36 0.07 0.28

SA & Compilation (AND) 9278 34733 1200 12104 1313 10730 0.20 0.55 0.02 0.33 0.06 0.27

Table 1: Statistics of MIRACLE-function, with PLBART (Ahmad et al., 2021a) as generator. Due to page limit,
statistics for CodeT5 (Wang et al., 2021) generated data are included in the Appendix A. SA & Compilation refers
to the intersection of the Static Analysis and Compilation selections.

for static analysis and compilation we select the374

hypothesis from the ones that pass the selection375

criteria. From the selection rate, we can observe376

that static analysis is the most lenient to Python, as377

it is a weakly-typed language. Compilation has the378

least selection rate on C. This is due to data scarcity379

as the generator has poor performance on C due to380

being trained with less than 150 examples.381

Qualitative Analysis. We further perform qualita-382

tive analysis and manually inspect samples of the383

generated data. Table 3 illustrates four examples384

from the synthetic parallel code, with two in Java385

– C++, and two in Python – C++. The Java and386

Python codes are the monolingual input from CO-387

DENET, and the C++ codes are the synthetic codes.388

The generated code snippets are in good alignment389

with their corresponding inputs, with correct map-390

ping of types, data structures, and syntax. Note391

that the synthetic codes still contain some noise.392

However, Table 2 and 3 results indicate that it does393

not impede the effectiveness of the synthetic code394

in improving code translation performance.395

4.2 Performances in Code Translation396

Comparison with Baseline Models. Table 2397

shows the CodeBLEU and Computation Accu-398

racy performance on C++, Java, and Python of399

the baseline models and MIRACLE-PLBART and400

MIRACLE-CodeT5. In terms of CodeBLEU, both401

MIRACLE models outperform all baselines, with402

MIRACLE-CodeT5 surpassing the best baseline403

performance by 8% on Python – C++ and Java –404

Python translation. In terms of Computation Ac-405

curacy, MIRACLE-CodeT5 outperforms the best406

baseline performance by 5% on Python – C++407

and C++ – Java, 6% on C++-Python, and 8% on408

Python-Java. Moreover, both MIRACLE mod-409

els outperform their respective generator models410

on all the language pairs and both metrics by a411

wide margin. Compared to CodeT5, MIRACLE-412

CodeT5’s Computation Accuracy on Python – C++413

and Python – Java improves by 20%, and on Java414

– Python and C++ – Python the improvements are 415

25% and 30%, respectively. 416

Performance on Low-resource Languages. In 417

ECOST, C only has less than 150 parallel code 418

pairs with each language, making it suitable for 419

evaluating in more challenging low-resource lan- 420

guage settings. As shown in Table 1, the compi- 421

lation rate is the lowest when C is involved, as 422

the generator is not able to generate high-quality 423

data when the training data of C is significantly 424

less. Table 3 shows the performance of the two 425

implementations of MIRACLE and their respective 426

generators. For PLBART, MIRACLE improves the 427

CodeBLEU by up to 40% and improves the Com- 428

putation Accuracy (CA@1) by up to 43%. This 429

shows that the augmentation of parallel code gener- 430

ation works well in low-resource language settings, 431

where the generator’s performance is weak. For 432

CodeT5, the improvement in CA@1 is up to 23%. 433

Analysis of Alignment-Ascending Curriculum 434

Table 5 presents the datasets employed in curricu- 435

lum learning and their acquisition methods. To 436

assess the impact of the quality, volume, and order 437

of the datasets in the alignment-ascending curricu- 438

lum, we train models with different variations of 439

the curriculum and compare their Computation Ac- 440

curacy, as detailed in Table 4. Initially, a base 441

model is trained solely on the annotated dataset 442

ECOST-function, where its modest size yields lim- 443

ited performances. Incorporating ECOST-snippet 444

markedly enhances model performance, underscor- 445

ing the value of snippet-based training. Adding the 446

high-quality synthetic data, AND, further improves 447

the performance. Similarly, the integration of unfil- 448

tered noisy data, BT, also boosts the performance. 449

However, neither AND nor BT alone reaches the 450

efficacy of MIRACLE, highlighting the critical 451

role of both data quality and volume. Reversing 452

the order of the alignment-ascending curriculum 453

to AND+COMP+STAT+BT+Snippet+Function 454

causes the performance to drop significantly com- 455

pared to MIRACLE, emphasizing the importance 456
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CodeBLEU Computation Accuracy

Model Java – C++ Py – C++ C++-Java Py – Java C++ – Py Java – Py Java – C++ Py – C++ C++ – Java Py – Java C++ –Py Java – Py

CodeBERT 61.75 50.18 29.71 42.21 46.99 46.69 13.44 4.82 10.22 3.93 6.33 5.74

PLBART 71.39 66.62 71.27 64.76 62.05 60.62 25.54 24.40 27.15 23.87 32.23 32.33

CodeT5 72.76 64.99 72.13 64.26 59.16 61.25 37.63 19.28 41.13 23.87 20.78 24.77

Trancoder 72.54 66.47 70.36 63.61 56.29 55.29 49.73 25.60 40.86 22.36 41.87 46.22

Trancoder-ST 71.47 61.28 70.96 64.81 58.85 57.70 51.08 36.14 44.09 35.35 43.98 51.96

MIRACLE-PLBART 74.55 68.43 72.90 67.14 63.09 63.47 41.94 35.24 40.05 33.84 38.55 41.09

MIRACLE-CodeT5 74.94 69.25 74.85 69.64 65.10 65.95 51.08 41.87 49.19 43.20 50.00 49.55

Table 2: Performance comparison of two implementations of MIRACLE with PLBART and CodeT5 against baseline
approaches. The metrics used for comparison are CodeBLEU and Computation Accuracy (CA@1). Across both
measures, MIRACLE outperforms the baseline approaches, demonstrating its effectiveness in code translation.

CodeBLEU Computation Accuracy
Model C++ – C Java–C Python – C C – C++ C–Java C – Python C++ – C Java – C Python – C C – C++ C – Java C – Python

PLBART 40.66 56.85 43.66 42.77 32.49 52.98 2.60 0 1.56 5.19 0 14.06
MIRACLE-PLBART 79.08 72.37 61.73 80.34 68.79 61.92 33.77 28.77 17.19 48.05 23.29 28.12

CodeT5 82.06 74.16 62.25 80.04 71.25 61.06 66.23 47.95 25.00 64.94 39.73 28.12
MIRACLE-CodeT5 82.26 74.59 63.87 81.24 74.21 66.65 68.83 56.16 31.25 64.94 45.21 51.56

Table 3: Performance comparison before and after applying MIRACLE on low-resource language C. The results
show substantial performance improvements across all measures after the application of our method, indicating the
effectiveness of MIRACLE on low-resource languages.

Curriculum Data Volume Java – C++ Py – C++ C++ – Java Py – Java C++ – Py Java – Py

Function 3,326 0.81 4.52 1.88 3.63 16.87 16.62
Snippet+Function 35,144 25.54 24.4 27.15 23.87 32.23 32.33
AND+Snippet+Function 104,502 34.68 34.64 33.06 32.93 36.45 37.16
BT+Snippet+Function 295,254 38.98 34.94 37.1 30.21 35.54 39.58
AND+COMP+STAT+BT+Snippet+Function 551,286 38.98 32.23 37.63 33.84 35.84 39.58

BT+STAT+COMP+AND+Snippet+Function (MIRACLE) 551,286 41.94 35.24 40.05 33.84 38.55 41.09

Table 4: Comparison of variations of curriculum. Data Volume refers to the number of parallel codes. The base
model is PLBART. All results are measured in Computation Accuracy. Results demonstrate the effectiveness of
alignment-enhancing curriculum learning.

Data Type Volume Source
BT Synthetic 260110 Back Translation
STAT Synthetic 176482 Static Analysis
COMP Synthetic 79550 Compilation
AND Synthetic 69358 Static Analysis & Compilation
Snippet Annotated 31818 ECoST
Function Annotated 3326 ECoST

Table 5: Datasets for Alignment-Ascending curriculum
learning. Volume refers to number of parallel codes.

of the order of the curriculum. Interestingly, this457

inverted curriculum aligns closely in performance458

with BT+Snippet+Function, likely due to the larger459

volume of the BT dataset overpowering the effect460

of the previous datasets.461

Qualitative Analysis. Figure 4 shows examples of462

various model translations and their execution out-463

puts given the same input code. The first column464

corresponds to the code used as input in the source465

language, and the last column corresponds to the466

ground truth translation in the target language. All467

examples are from the ECOST test set. We com- 468

pare MIRACLE-CodeT5 with two other baselines, 469

TransCoder-ST and CodeT5. In the first two ex- 470

amples, we observe that both baselines demon- 471

strate the “shallow translation” problem. In the 472

C++ – Python example, both TransCoder-ST and 473

CodeT5 directly copy from the input code. While 474

min_element is a valid built-in function defined 475

in header <algorithm> in C++, it does not exist 476

in Python, resulting in compilation errors for both 477

baselines. TransCoder-ST also exhibits an inabil- 478

ity to translate multiple functions at once. In the 479

Python – Java example, both TransCoder-ST and 480

CodeT5 translate the keyword "not" in Python to 481

"!" in Java. However, the operator "!" cannot be 482

used when the operand is an integer. By translating 483

at the token level, these baselines fail to take con- 484

text into consideration, causing run-time errors. In 485

both cases, MIRACLE-CodeT5 can translate the 486

function calls and statements from the source lan- 487

7



Figure 4: Qualitative translation results from MIRACLE and baseline methods with the same input. In all three
examples, the baselines’ results exhibit the "Shallow Translation" problem, where code snippets are directly copied
or translated token by token from the source language, causing compilation and run-time errors in the target language.
MIRACLE’s translation shows its strong ability to correctly align the syntax and APIs across different languages.

guage to the target language correctly. In the Java –488

Python example, both baselines fail at translating489

a complex for loop, while MIRACLE correctly490

translates this in a different way from the ground491

truth, showing a strong capability of understand-492

ing the input code and mapping it into a different493

language.494

5 Conclusion495

In this paper, we introduce MIRACLE, a semi-496

supervised approach utilizes static analysis and497

compilation to generate synthetic parallel code498

datasets with enhanced alignment, and improves499

code translation through curriculum learning on500

code datasets with ascending alignment levels. We501

evaluate the performance of MIRACLE through502

extensive experiments conducted on multiple lan-503

guages and models. The proposed alignment-504

ascending curriculum learning significantly im-505

proves the computation accuracy of code transla-506

tion, outperforming state-of-the-art baselines by a507

significant margin. Notably, our method achieves508

remarkable gains in C translations even with a lim- 509

ited number of annotated training instances. Our 510

work showcases the importance of parallel code 511

data with good alignment quality and the effective- 512

ness of alignment-ascending curriculum learning 513

in enhancing code translation capabilities. Future 514

work can extend to more tasks that benefit from 515

large amount of parallel data. 516

6 Limitations and Future Work 517

Despite the promising results and contributions, 518

MIRACLE relies heavily on the generation of par- 519

allel code data and does not take into account other 520

types of information that may be useful for code 521

translation, such as comments or documentation. 522

Incorporating such information into the generation 523

process could potentially further improve the qual- 524

ity of the generated data. Moreover, our evalua- 525

tion is mainly focused on execution-based metrics, 526

which measure the quality of the generated code 527

based on its ability to execute correctly. While 528

these metrics are important, they do not capture 529

8



other aspects of code quality, such as readability,530

maintainability, or style. Future work could ex-531

plore the development of metrics that capture these532

aspects of code quality.533
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A Appendix 735

A.1 Related Work 736

Parallel Code Data. Parallel code data refers to 737

code pairs from different programming languages 738

that are functionally equivalent and bug-free. Ex- 739

isting datasets are characterized by relatively high 740

alignment but are limited in size and supported 741

languages. For example, CodeXGLUE (Lu et al., 742

2021) constructed a Java – C# translation dataset by 743

matching function names from open-source repos- 744

itories. MuST-PT (Zhu et al., 2022) introduced 745

10



a program translation dataset CoST, with snippet-746

level alignment that supports 7 programming lan-747

guages. CoST was collected from the coding tu-748

torial website GeeksforGeeks3, where each cod-749

ing problem is provided with solutions in up to750

7 languages, with each in similar structure and751

comments. AVATAR (Ahmad et al., 2021b) only752

supports the translation between Java and Python.753

Other kinds of datasets are usually significantly754

larger and support a wider range of languages, but755

the alignment quality is low. These are usually756

collected from competitive online code judgments.757

Given a coding problem, users can submit their758

solutions in various supported languages and get759

judged based on online tests. The user-contributed760

solutions to the same problems are collected as761

parallel code in different languages. For example,762

Google Code Jam and Project CodeNet (Puri et al.,763

2021) were both collected in this manner. However,764

due to the diverse backgrounds and the large num-765

ber of users, the solutions for the same problem766

have wide discrepancies in distribution across dif-767

ferent languages, which lowers alignment quality.768

Neural Code Translation. Recent advances in ma-769

chine learning, especially in self-supervised learn-770

ing techniques, have benefited a wide range of tasks771

(Vaswani et al., 2017; Liu et al., 2019; Lample and772

Conneau, 2019; Liu et al., 2020; Sehwag et al.).773

Some techniques from NLP were transferred to774

programming languages and have achieved great775

success. Similar to BERT (Devlin et al., 2019),776

CodeBERT (Feng et al., 2020) is a code language777

model pre-trained on CodeSearchNet (Husain et al.,778

2019) with Masked Language Modeling (MLM).779

PLBART (Ahmad et al., 2021a) is pre-trained the780

same way as BART (Lewis et al., 2020), with781

Denoising Auto-Encoding (DAE) (Lample et al.,782

2018) on GitHub data. Although CodeBERT and783

PLBART are pre-trained on code, they model code784

the same way as natural language sequences with-785

out considering code-specific features. Inspired786

by T5 (Raffel et al., 2020), CodeT5 (Wang et al.,787

2021) is pre-trained on CodeSearchNet but with788

an identifier-aware objective to align more with789

programming language distributions. All three790

models use general pre-training to gain program-791

ming language intelligence, without optimizing for792

any specific tasks. They require fine-tuning on793

task-specific data to perform downstream tasks.794

TransCoder (Roziere et al., 2020) is an unsuper-795

3https://www.geeksforgeeks.org/

vised code translation model that relies on back- 796

translation to generate pseudo-parallel code data 797

during training. However, back-translation intro- 798

duces noisy code into the training process, compro- 799

mising the model’s ability to generate high-quality 800

translations. TransCoder-ST (Roziere et al., 2021b) 801

improves TransCoder by adding automated unit 802

tests to filter out invalid translations and reduce 803

noise from the back-translation process. However, 804

obtaining unit tests for different languages is expen- 805

sive, and running unit tests is unscalable for a large 806

amount of code data. MuST-PT (Zhu et al., 2022) 807

leverages snippet-level DAE and translations for 808

pre-training before fine-tuning on program-level 809

data, which improves code translation performance. 810

However, MuST-PT is less scalable, as it relies 811

solely on a limited amount of finely aligned parallel 812

code for training without utilizing widely available 813

non-parallel code. 814

A.2 Implementation Details 815

All models are trained with a batch size of 16 for 10 816

epochs, with a learning rate of 5e−5. Experiments 817

are performed on one NVIDIA A100 GPU with 818

80G memory. For tempered sampling, we use a 819

sample size of 10 with a fixed temperature of 0.5. 820

For evaluation, we use beam search with a beam 821

size of 5. We use a max sequence length of 200 822

tokens for both the inputs and outputs. 823

Preprocessing. For all the program data, we first 824

remove all the comments, docstrings, and empty 825

lines. New lines are replaced with special to- 826

ken NEW_LINE. For pre-tokenization, Python is pre- 827

tokenized with a TreeSitter-based tokenizer from 828

TransCoder(Roziere et al., 2020), for better han- 829

dling of indentations. Other languages are not pre- 830

tokenized. When running experiments, the data 831

will be tokenized again using the corresponding 832

tokenizer of each model. 833

Function Info Extraction. We rely on AST 834

parsing to extract function information from pro- 835

grams, which are further used for static analysis 836

and execution-based evaluation. An AST is a tree- 837

like data structure that represents the structure of a 838

program’s source code. It captures the high-level 839

structure of the code and the relationships between 840

its elements, enabling a deeper understanding of 841

the code beyond the sequence level. To create an 842

AST, the source code is first parsed to identify its 843

syntactic elements, such as keywords, operators, 844

and identifiers. The parser then constructs the AST 845

by assigning each syntactic element to a node in 846
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Figure 5: An illustration of function info extraction through AST parsing. Given an input program, we first generate
its corresponding AST, and then extract function-related information from AST into program_dict. The tree in the
top middle shows an example of AST. After the functions are extracted, the leftover part of the program is called
program_shell, which can be used for execution-based evaluation later.

the tree. An AST consists of terminal and non-847

terminal nodes. Terminal nodes are leaf nodes848

in AST and are part of the source code. Non-849

terminal nodes are not part of the source code.850

With the help of AST, we can extract function-851

related information by matching the correspond-852

ing non-terminal nodes in that language, such853

as method_declaration, method_invocation,854

formal_parameters etc. One of the most widely855

used open-source AST parsing tools is TreeSitter4.856

It supports most of the commonly used program-857

ming languages. Figure 5 shows an example of a858

Java program and its AST (parsed by TreeSitter).859

The blue nodes are non-terminal and the purple860

nodes are terminal.861

Sourcing of Monolingual Code Inputs. CO-862

DENET (Puri et al., 2021) is a huge dataset contain-863

ing 13 million of programs in 55 languages. The864

programs in CODENET are from code submissions865

to online judge websites of programming problems.866

We use CODENET as a source of monolingual code867

inputs for parallel code generation. We select the868

“Accepted” submissions (submissions that pass the869

prescribed tests) in 4 languages, C++, Java, Python,870

and C, from around 1600 problems, which gives871

us approximately 1 million programs. To ensure872

the quality of the input data, we set two filtering873

criteria: (1) the program should be modularized,874

which means it should contain at least one function875

(other than main() or Main() function), and (2)876

the program should be bug-free, which means it877

can be compiled without errors. After applying878

the two steps of filtering, only around 8% of the879

programs remain, approximately 87k.880

4https://tree-sitter.github.io/tree-sitter/

Parallel Code Generation. We experiment with 881

two different models as the generator model, 882

PLBART (Ahmad et al., 2021a) and CodeT5 (Wang 883

et al., 2021). The generator models are initialized 884

by first training on the snippet-level data, and then 885

the function-level data from ECOST. We then uti- 886

lize the monolingual CODENET data as inputs and 887

acquire the hypotheses from the generators through 888

tempered sampling. For cross-lingual static analy- 889

sis, we extract the function information of both the 890

monolingual inputs and all the hypotheses and com- 891

pare them. For compilation, we use the compiler 892

of each language to compile all the hypotheses. 893

Since the hypotheses are functions not programs, 894

we pair each of them with a set of common imports 895

in the corresponding language before compilation 896

to avoid dependency errors. For Python, we first 897

try with python2, and subsequently with python3 898

if python2 returns with an error. The statistics of 899

the selected hypotheses generated by MIRACLE- 900

CodeT5 can be found in Table 6. 901

Execution-Based Evaluation. ECOST test set is 902

used for all the evaluations. ECOST train set and 903

generated parallel data are used for model train- 904

ing. The train/valid/test split of ECOST is 70:5:25, 905

and the generated parallel dataset is 85:5:10. The 906

statistics of ECOST are shown in Table 7. To eval- 907

uate the quality of the generated hypotheses, we 908

employ an execution-based evaluation strategy. By 909

inserting the generated hypothesis of an input func- 910

tion into the program_shell of the ground truth 911

program, we execute the modified program and 912

compare its output against the original output. This 913

process allows us to verify whether the hypothesis 914

successfully passes the built-in test cases, thus eval- 915
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CodeT5 Number of Pairs Selection Rate

Selector C++-Java C++-Py C++-C Java-Py Java-C Py-C C++-Java C++-Py C++-C Java-Py Java-C Py-C

Back Translation (BT) 47637 64037 49550 37422 22935 39335 1 1 1 1 1 1
Static Analysis (STAT) 25211 58663 14945 31379 13059 34072 0.53 0.92 0.30 0.84 0.57 0.87
Compilation (COMP) 17373 36544 2290 16888 3821 13947 0.36 0.57 0.05 0.45 0.17 0.35
SA & Compilation (AND) 10811 35457 1325 15256 2731 13309 0.23 0.55 0.03 0.41 0.12 0.34

Table 6: Statistics of CODENET-MIRACLE, with CodeT5 (Wang et al., 2021) as generator. SA & Compilation
refers to the intersection of the Static Analysis and Compilation selections.

Function-Level Snippet-Level

CoST C++-Java C++-Py C++-C Java-Py Java-C Py-C C++-Java C++-Py C++-C Java-Py Java-C Py-C

Train 1014 947 138 947 146 134 10472 8893 1358 8716 1305 1074
Val 51 46 14 47 14 14 417 324 78 340 78 69
Test 372 332 77 331 73 64 2493 1991 450 1964 422 313

Table 7: Data split and number of parallel code pairs in ECoST.

uating its correctness and suitability. However, the916

function names in the generated hypotheses might917

not match the function calls in program_shell,918

causing execution errors. Therefore, through func-919

tion information extraction, we replace the func-920

tion name of the hypotheses with the corresponding921

ground truth function name before each evaluation.922

A.3 Broader Impacts923

The ability to automatically translate code between924

programming languages can help software devel-925

opers port existing codebases from one language926

to another, allowing them to work with a wider927

range of tools and frameworks. It can also facil-928

itate collaboration between developers who work929

with different programming languages. In addition,930

our work has the potential to reduce the barriers931

to entry for new developers who want to learn a932

new programming language. By enabling them to933

translate code from a language they are familiar934

with to a new language, they can quickly learn the935

connections and differences between the two lan-936

guages, and start working on projects in the new937

language. Moreover, it also has the potential to cre-938

ate more inclusive software engineering learning939

environments, which makes computer science more940

accessible for learners from various backgrounds.941

However, there are also potential negative impacts942

of this work, such as the possibility of automated943

code translation leading to loss of jobs for software944

developers or increased reliance on automated tools945

in the software development process.946
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