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Abstract

The growing demand for head magnetic resonance imaging (MRI) examinations, along
with a global shortage of radiologists, has led to an increase in the time taken to report
head MRI scans around the world. For many neurological conditions, this delay can result
in increased morbidity and mortality. An automated triaging tool could reduce reporting
times for abnormal examinations by identifying abnormalities at the time of imaging and
prioritizing the reporting of these scans. In this work, we present a convolutional neural
network for detecting clinically-relevant abnormalities in To-weighted head MRI scans. Us-
ing a validated neuroradiology report classifier, we generated a labelled dataset of 43,754
scans from two large UK hospitals for model training, and demonstrate accurate classifi-
cation (area under the receiver operating curve (AUC) = 0.943) on a test set of 800 scans
labelled by a team of neuroradiologists. Importantly, when trained on scans from only a
single hospital the model generalized to scans from the other hospital (AAUC < 0.02).
A simulation study demonstrated that our model would reduce the mean reporting time
for abnormal examinations from 28 days to 14 days and from 9 days to 5 days at the two
hospitals, demonstrating feasibility for use in a clinical triage environment.

1. Introduction

Magnetic resonance imaging (MRI) is fundamental to the diagnosis and management of a
range of neurological conditions (Atlas, 2009). For many of these (e.g., acute stroke, brain
tumour, haemorrhage), early detection can lead to better outcomes by increasing the likeli-
hood that a patient will respond positively to treatment (Adams et al., 2005)(Kidwell et al.,
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2004). In recent years, however, a growing demand for head MRI examinations, along with
a global shortage of radiologists, has led to an increase in the time taken to report head MRI
scans around the world (Bender et al., 2019). In the UK, for example, the reporting time
for out-patient head MRI scans has increased every year since 2012 (NHS, 2019), with only
2% of radiology departments currently able to fulfill their imaging reporting requirements
within contracted hours (RCR, 2017). Given the increasingly aging global population (UN,
2019), as well as additional backlogs created as a result of resource re-allocation in radi-
ology departments during the global COVID-19 pandemic (Sangwaiya and Redla, 2020),
reporting times are likely to continue to increase in the coming years, putting a growing
number of patients at risk.

One solution to reduce reporting times for abnormal head scans is to develop an automated
triage tool to identify abnormalities at the time of imaging and prioritize the reporting
of these scans. Convolutional neural networks (CNN) show considerable promise for this
purpose, having achieved remarkable success on a range of medical imaging tasks (McKin-
ney et al., 2020)(Kamnitsas et al., 2016)(Ding et al., 2018). However, a bottleneck to the
development of a CNN-based tool for triaging routine hospital head MRI examinations is
the difficulty of obtaining large, clinically-representative labelled datasets to enable super-
vised learning (Hosny et al., 2018)(Wood et al., 2020a). A number of strategies have been
proposed to deal with this limited availability of labelled training data. Several studies
have demonstrated a hybrid approach to neurological abnormality detection by combining
deep learning with atlas-based image processing and Bayesian inference (Rauschecker et al.,
2020)(Rudie et al., 2020). Overall, however, unsupervised approaches have attracted the
most attention, following the pioneering work of (Schlegl et al., 2017). The basic idea com-
mon to these studies is to train a generative model (e.g., a generative adversarial network
(GAN) (Baur et al., 2020a)(Han et al., 2020), a variational autoencoder (VAE) (Chen and
Konukoglu, 2018)(You et al., 2019)(Kobayashi et al., 2020)(Baur et al., 2020b)(Zimmerer
et al., 2018)(Zimmerer et al., 2019) or a combination of the two (Baur et al., 2018)) to learn
the manifold of normal anatomical variability, and at test time detect abnormalities by look-
ing for outliers in either the latent feature space or the reconstruction loss. Importantly,
only healthy images are needed for model training and these can be obtained from open-
access research databases such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(Petersen et al., 2010) or the Human Connectome Project (HCP) (Van Essen et al., 2013).

Despite showing considerable promise, several important limitations to these unsupervised
studies can be identified. In the majority of cases, images had undergone computation-
ally expensive pre-processing steps such as bias-field correction, skull-stripping and spatial
registration (Chen and Konukoglu, 2018)(Han et al., 2020)(Baur et al., 2018)(You et al.,
2019)(Baur et al., 2020b)(Baur et al., 2020a)(Pawlowski et al., 2018) which limits real-time
clinical utility and, in the case of skull stripping, precludes the detection of important ex-
tracranial abnormalities (Fig. 1) (e.g., orbital and sinonasal masses). Furthermore, model
evaluation was often performed using datasets containing only a single class of abnormality
(e.g., brain tumours (Chen and Konukoglu, 2018)(You et al., 2019)(Han et al., 2020)(Zim-
merer et al., 2018)(Zimmerer et al., 2019), or white matter lesions (Baur et al., 2018)(Baur
et al., 2020a)(Baur et al., 2020b)), whereas a triage tool needs to detect a range of abnor-
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malities, including subtle but clinically important vascular abnormalities (e.g., subarachnoid
haemorrhage or venous sinus thrombosis). Finally, in a number of studies training was per-
formed exclusively with images of healthy young adults (i.e., 22 - 35 years) (Chen and
Konukoglu, 2018)(Pinaya et al., 2019)(Zimmerer et al., 2019)(Zimmerer et al., 2018). This
precludes learning the manifold of normal anatomical variability in the aging brain, par-
ticularly the appearance of small focal areas of increased signal intensity on Ts-weighted
images scattered throughout the cerebral white matter which have been estimated to occur
in > 90% of patients between 60-90 years old (LeMay, 1984a)(De Leeuw et al., 2001), as
well as involutional atrophic changes (Golomb et al., 1993). A clinically useful triage sys-
tem must be able to distinguish between changes which in a hospital setting are considered
‘normal for age’ and those considered ‘excessive for age’ (Fig. 1) and it is likely that models
trained only on images of young (i.e. < 65 years (LeMay, 1984b)) healthy adults would fail
to make this distinction.

In this work, we pursue a different strategy to overcome the limited availability of labelled
head MRI scans. Rather than attempting to learn without labels, we instead sought to
convert archived hospital examinations into a large labelled dataset suitable for supervised
learning by deriving labels from the accompanying radiology reports using a validated neu-
roradiology report classifier. A benefit of using large-scale historical clinical data is that
the full gamut of abnormalities likely to be encountered in a real-world hospital setting are
seen during training. Furthermore, findings which are ‘normal for age’ can be distinguished
from those which are ‘abnormal for age’ simply by including the patient age as input to
the model, since the accompanying radiology reports (from which image labels are derived)
reliably make this distinction (Wood et al., 2020a).

‘White matter lesions Atrophic changes Extracranial masses
Normal Normal Normal

89 years 87 years Skull-stripped

Abnormal Abnormal

74 years 63 years Raw (no skull stripping)
a) b) )

Figure 1: (a) Small foci of increased signal intensity on T2-weighted images scattered throughout the cere-
bral white matter occur naturally in the aging brain (top) but are considered abnormal in younger patients
(bottom). (b) Atrophic changes are part of normal aging (top), but can indicate early-onset neurodegenera-
tive conditions in younger patients (bottom). (c) Important extracranial abnormalities (bottom) are missed
when skull-stripping is performed (top). Abnormality detection systems suitable for clinical settings should
distinguish between normal and abnormal changes in the aging brain, and detect extracranial abnormalities.
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2. Methods
2.1. Data

All 54,115 adult (> 18 years old) axial Ta-weighted MRI head scans performed at King’s
College Hospital NHS Foundation Trust (KCH) and Guy’s and St Thomas’ NHS Foun-
dation Trust (GSTT) between 2008 - 2019 were used in this study. The MRI scans were
obtained on Signa 1.5 T HDX (General Electric Healthcare) or AERA 1.5T (Siemens), and
were extracted from the Patient Archive and Communication Systems. The corresponding
54,115 radiology text reports produced by expert neuroradiologists were also obtained.

A subset of 5000 reports from KCH was randomly selected for annotation by 3 expert neu-
roradiologists in order to develop the neuroradiology report classifier (ALARM) described
in (Wood et al., 2020b). Prior to report labelling, a complete set of clinically relevant cat-
egories of neuroradiological abnormality, as well as the rules by which reports were to be
labelled, was developed (Appendix F). Broadly speaking, findings which would generate a
downstream clinical intervention were labelled ‘abnormal’, as were those which would be
referred for case discussion at a multi-diciplinary team meeting. ALARM achieved an AUC
of 0.992 on a hold-out set of 500 manually-annotated KCH reports. However, differences in
reporting styles could plausibly lead to poor performance (‘domain shift’) when classifying
reports from an external hold-out set. To investigate this, 500 GSTT reports were randomly
selected for annotation by the same 3 neuroradiologists. ALARM achieved an AUC of 0.990
on this external hold-out set of reports, demonstrating that it can be reliably used to label
MRI examinations at both KCH and GSTT (Fig. S1, Table S1). Following this important
validation step, ALARM was used to assign labels to all 43,754 axial Ts-weighted scans
obtained from the two sites between 2008 - 2018 for computer vision model development,
and to all 4861 scans obtained between 2018 - 2019 for use in a simulation study (Table S2).
For computer vision model evaluation, a test set of 800 T9-weighted scans with ‘reference
standard image labels’ was generated by randomly sampling 40 examinations from each site
for each year between 2008 - 2018. Two neuroradiologists labelled these scans as ‘normal’
or ‘abnormal’ applying the same framework used for report labelling - but interrogating the
actual images. Importantly, this dataset contains more than 90 classes of morphologically
distinct abnormalities. Further dataset information is provided in Appendix B.

2.2. Models

We trained (1) a baseline classification model, and (2) a classification model with an ad-
ditional ‘noise-correction’ layer optimised for learning in the presence of label errors (Fig.
2). Both models utilize a 3D Densenet121 network (Huang et al., 2017)) for visual feature
extraction, with the output of the final global average pooling layer concatenated with the
patient’s age and passed through a fully-connected layer (with softmax) to generate predic-
tion probabilities for the two classes (for architecture details, see Appendix G).

Because our neuroradiology report classifier is not a perfect model (i.e. it achieves AUC
< 1, Fig. S1), some small fraction (~ 5%) of the training images will be erroneously
labelled ‘normal’ when in fact they should be labelled ‘abnormal’, and vice versa. Recent
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Figure 2: Baseline classification model and ‘noise correction’ classification model. Both networks perform
visual feature extraction using a 3D Densenet121, and concatenate this with the patient’s age in order to
generate class probabilities. The ‘noise-correction’ model includes an additional layer which modifies the
predictions during training to enable learning the true, rather than the noisy, label distribution.

studies have shown that this ‘label noise’ can significantly impact the performance of deep
learning models (Zhang et al., 2017)(Karimi et al., 2020). Following (Patrini et al., 2017)
and (Sukhbaatar et al., 2015), we seek to overcome label noise by adding a ‘noise-correction’
layer to our network. To motivate this, we note that the probability that a given image x
with true (but unknown) label y* will be assigned a noisy label § can be written as

(7 = jlx) = Zp =i)ply" = ilx) = ZTﬂp T =ilx), (1)

where T is a 2 X 2 ‘transition matrix’ with diagonal elements that specify the probability of
correct labelling and off-diagonal elements which specify the probability of label ‘flipping’:
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In Eqn. 1, p(y*|x; 0) is the distribution which we desire our model to learn (i.e., the proba-
bility distribution of the true label, conditioned on input image x), whereas p(g|x, ) is the
distribution that is actually learned (e.g., by the baseline model) as a result of maximizing
the cross entropy between the noisy labels § and the model predictions. However, we can
force the model to learn the true distribution p(y*|x;#) by weighting the predicted proba-
bilities during training by the corresponding elements of 7" implied by Eqn. 1 - an operation
which can conveniently be recast as a matrix multiplication between the 2 x 2 matrix 7', and
the 2 x 1 softmax output. At test time, when reference standard image labels are available,
T is set to the identity matrix (I2) to enable predictions on the basis of p(y*|x;6).

In general, T' is unknown and must be learned as part of model training. As described in
(Sukhbaatar et al., 2015), however, this often results in 7' converging to Is, in which case
the baseline and ‘noise-corrected’ models are identical. In the case of label errors resulting
from imperfect text classification, however, an accurate estimate of T' is provided by the
confusion matrix which is typically generated as part of NLP model validation (Table S1).
A novel contribution of our work is to show the efficacy of this ‘estimated loss correction’
procedure when training models on medical image datasets labelled using NLP.
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3. Experiments

A number of models were trained using different subsets of the available NLP-labelled data.
In each case, the data were split into training (80%) and validation (20%) sets, ensuring
that no patient appearing in the training set appeared in the validation set. Final model
evaluation was always performed on a test set of images of unseen patients with reference
standard labels assigned by neuroradiologists on the basis of manual image inspection. Our
DenseNet model was based on the Project MONAT (MONAI, 2020) implementation, and
all modelling was performed with PyTorch 1.7.1 (Paszke et al., 2019). Minimal image pre-
processing was performed; all raw axial To-weighted images were re-sampled to a common
voxel size (1 mm?), and then resized to (120 x 120 x 120). We applied histogram standard-
ization to each image, but no spatial registration, bias-field correction or skull stripping was
performed. ADAM optimizer (Kingma and Ba, 2017) was used with an initial learning rate
le-4 which was reduced by a factor of 10 after every 5 epochs without validation loss im-
provement. Training was repeated 5 times for each model using different training/validation
data splits in order to generate confidence intervals (test sets remained fixed). DeLong’s
test (DeLong et al., 1988) was used to determine the statistical significance of differences
in ROC-AUC, and occlusion sensitivity was used to interrogate model decisions.

To quantify the impact that our model would have in a real clinical setting, we performed
a retrospective simulation study using all out-patient examinations performed at KCH and
GSTT between 1/1/2018 - 31/12/2018 to determine what would have happened if our model
had been used to suggest the order in which head MRI examinations were reported. Full
details of the simulation are presented in Appendix C. We also conducted Patient and Public
Initiative (PPI) meetings to gauge the attitudes of patients, their families, and end-users
(i.e. neuroradiology department personnel) to Al-assisted triage (Appendix D).

Probability "abnormal” = 4%

¥ Priority reporting queue

Figure 3: Our classifier can be used to suggest the order in which head MRI examinations are reported
by inserting images in real-time into a dynamic reporting queue based on the predicted likelihood of being
abnormal (shown) or on the predicted category and time spent in the queue (what we do in this study).

3.1. Results

Accurate classification (AUC > 0.9) was seen for both models for all training/testing combi-
nations. However, ‘noise-correction’ led to a small but statistically significant improvement
in all cases (p < 0.05)(Table 1). When trained on scans from only a single hospital the
models generalized to scans from the other hospital (AAUC < 0.02) (Fig. 4). Occlusion
analysis shows that true positive predictions are sensitive to salient image features (Fig.
S2). Table 2 shows the impact that the best performing model (AUC = 0.943) would have
had if it was used to suggest the order that examinations were reported. At both hospi-
tals, the reduction in reporting times for abnormal examinations, as well as the increased
reporting times for normal examinations, was statistically significant (p < 0.001) (Fig. 5).
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Train KCH GSTT Pooled

Test KCH GSTT Pooled KCH GSTT Pooled KCH GSTT Pooled

Baseline 0.921 0.909 0.915 0.903 0.918 0.912 0.925 0.920 0.922
Noise-corrected 0.941 0.925 0.933 0.929 0.931 0.930 0.946 0.939 0.943

Model

Table 1: Classification performance (AUC) for the baseline and ‘noise-corrected’ models. Both show accurate
classification (AUC> 0.9), but ‘noise correction’ led to an improvement for all train/test splits (p < 0.05).

1.0

True positive rate

02 —— Train KCH + GSTT, test KCH + GSTT (AUC = 0.943)
—— Train GSTT, test KCH (AUC = 0.929)
—— Train KCH, test GSTT (AUC = 0.925)

Simulation operating point (sens = 0.9, spec = 0.81)

0.0+
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 4: Receiver operating characteristic curve for the ‘noise-correction’ model (1) trained/tested using
images from both sites (purple), (2) trained on KCH, tested on GSTT (teal), and (3) trained on GSTT,
tested on KCH (blue). Operating point used for the simulation study is also shown (dotted grey).

Time to report

Normal Abnormal

Historical 31 £+ 21 days 28 + 22 days
Our model 36 + 40 days 14 + 23 days
Historical 10 + 8 days 9 4+ 7 days
Our model 15 + 21 days 5 4 7 days

GSTT

KCH

Table 2: Results of the retrospective simulation study, demonstrating the impact that our model would have
on reporting times for abnormal scans at KCH and GSTT. Data are mean delay + standard deviation.

4. Discussion

Our work builds on recent breakthroughs in natural language processing which have made it
feasible to derive labels from radiology reports and assign these to the corresponding images
(Vaswani et al., 2017)(Devlin et al., 2018)(Wood et al., 2020b), enabling the application of
supervised learning at scale. Following (Annarumma et al., 2019)(Wang et al., 2020) and
(Titano et al., 2018), we have put our model into clinical context through a retrospective
simulation, demonstrating that it would reduce the reporting times of abnormal examina-
tions at two real-world hospitals. A consequence of this is that the time to report normal
examinations will be increased, and this may present issues for the few false negative er-
rors which our model makes. Our team of neuroradiologists have determined that mistakes
primarily occur (~ 88%) with findings which are most naturally described in terms of a
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Figure 5: Retrospective simulation results for KCH (top) and GSTT (bottom). Historical reporting delays
(a, e) are compared with what would have been observed if our model had been used to prioritize the
reporting of abnormal scans (b, f) at the two sites. To test for statistical significance, the null hypothesis
distribution was generated (c, d, g, h) by repeating the simulation 1000 times, assigning a random priority
to each examination (blue). At both sites, a statistically significant (p < 0.001) reduction in reporting times
for abnormal examinations (solid red) compared with what was observed historically (dashed red) was seen.

‘spectrum’, but which we have elected to binarize to enable supervised learning. For exam-
ple, ‘minor’, ‘mild’ or ‘modest’ small vessel disease (SVD) is considered ‘normal’, whereas
‘moderate’ or ‘severe’ SVD is considered ‘abnormal’. In most cases, our model was able to
correctly classify SVD; however, equivocal cases (e.g., ‘mild-to-moderate’, which had been
labelled ‘abnormal’ to encourage model sensitivity) were sometimes misclassified. Likewise,
equivocal cases involving atrophy and enlarged perivascular spaces were sometimes misclas-
sified. Given the degree of subjectivity involved (Fig. S3), these errors are highly unlikely
to have a significant clinical impact. Nonetheless, as future work we plan to investigate the
use of regression, rather than binary classification, to model these particular abnormalities.

A limitation of our model is that abnormalities which are not visualisable on Ty-weighted
scans will not be detected. For example, microhaemorrhages and blood breakdown products
are sometimes only visible on gradient-echo or susceptibility-weighted images. However,
these sequences are not typically part of routine head examinations, so this is not a major
issue in practice. A further limitation is that some abnormalities in our ‘abnormal’ category
require more urgent intervention than others. As part of future work, we plan to develop
a third category of ‘emergency diagnoses’ to finesse the triage process further. However,
UK NHS hospitals require that all emergency MRI scans be reported within 24 hours.
Therefore, the benefit of a third category in our healthcare system is likely to be modest.

5. Conclusion

In this work we have presented a head abnormality classifier trained on 43,754 Ty-weighted
head MRI scans labelled using a neuroradiology report classifier, and demonstrated accurate
classification on a test set of 800 scans containing over 90 classes of morphologically distinct
abnormalities. We have shown that the model would reduce the time to report abnormal
examinations at two UK hospitals, demonstrating feasibility as an automated triage tool.
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Appendix A. Neuroradiology report classifier validation
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Figure S1: Reciever operating characteristic (ROC) curve for our neuroradiology report classifier (ALARM),
described in (Wood et al., 2020b), evaluated on 500 radiology reports from both KCH (blue) and GSTT
(teal) which had been manually labelled by a team of 3 neuroradiologists. The model generalized to reports
at GSTT, despite being trained only on reports from KCH (AAUC = 0.002), demonstrating that it can be
reliably used to automate the labelling of MRI examinations at both sites.

True label
Normal | Abnormal | Total
. Normal 428 29 457
Predicted label =T33 510 543
Total 461 539 1000

Table S1: ALARM confusion matrix for a pooled (KCH and GSTT) test set of annotated radiology reports.

Appendix B. Training and testing datasets

The UK’s National Health Research Authority and Research Ethics Committee approved
this study.

Information about the training and testing datasets is provided in Table S2. Note that, for
the test set of 800 manually labelled images (row 2 in Table S2), initial agreement between
the two neuroradiologist labellers was 94.9% (Fleiss’ kappa = 0.87), so that a consensus
classification decision with a third neuroradiologist was made in 5.1% of cases.
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Hospital Scans Patients Age (years) Abnormal

Train KCH 26879 20111 50.9 £ 16.8 69.3%
GSTT 16875 14245 49.8 £17.4 57.9%
Pooled 43754 34356 50.5 + 17.1 68.1%

Test KCH 400 400 49.4 £ 15.9 67.2%
GSTT 400 400 52.9 £ 16.8 47.9%
Pooled 800 800 50.5 £ 17.1 57.6%

Simulation KCH (2018) 2986 2538 51.6 £ 14.3 67.1%
GSTT (2018) 1875 1556 50.2 4+ 14.8 50.1%

Table S2: Training, testing, and simulation dataset statistics. The patient age distribution is given in terms
of (mean + standard deviation), and ‘Abnormal’ refers to the fraction of abnormal examinations in each
dataset.

B.0.1. TEST SET ABNORMALITIES

Our test set of 800 scans (400 from KCH, 400 from GSTT) contains the following distinct
abnormalities:

Mass
— primary intracranial tumour
— haemorrhagic tumour
— epidermoid tumour
— cystic tumour
— Giant perivascular space
— high grade glioma
— low grade glioma
— astrocytoma
— anaplastic oligodendroglioma
— oligodendroglioma
— dysembryoplastic neuroepithelial tumour (DNET)
— multifocal GBM (glioblastoma multiforme)
— cerebral anaplastic lymphoma
— primary lymphoma

— carcinomatous dural infiltration
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meningioma
chondrosarcoma
schwannoma

neoplastic process of internal auditory meatus
optic nerve mass
macroadenoma
subependymoma
subependymal heterotopia
transmantle heterotopia
gangliocytoma
neurocytoma

epidermoid tumour
cerebellar haemangioma
cerebellar medulloblastoma
haemangioblastoma
meningioangiomatosis
melanosis

colloid cyst

choroid fissure cyst
pituitary cyst

arachnoid cyst

neuroglial cyst

pineal cyst

neuroepithelial cyst
abscess

extra axial lesion

posterior fossa extra axial lesion

pineal lesion

16



AUTOMATED TRIAGING OF HEAD MRI EXAMINATIONS USING CNNs

— fourth ventricular nodule
Vascular
— arteriovenous malformation

— aneurysm

cavernoma

— developmental venous anomaly
Acute stroke

— anterior circulation infarcts

— posterior circulation infarcts

— hypoxic ischaemic injury
Abnormal ventricular configuration

— hydrocephalus

— Chiari I malformation

— tonsillar ectopia

— Chiari IT malformation
Haemorrhage

— Any acute / subacute haemorrhage e.g., parenchymal, subarachnoid, subdural, ex-
tradura

— Acute microhaemorrhages / petechial haemorrhages
Extracranial

— excessive accumulation of fluid within the mastoid air cells

— inflammatory change in the paranasal sinuses
Infective/Inflammatory

— encephalitis

— ventriculitis

— vasculitis

— perforating vasculitic process

— herpes simplex encephalitis
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— Creutzfeldt-Jakob disease

— pachymeningitis

— progressive multifocal leukoencephalopathy
— granulomatous inflammatory processes

— aspergillus infection

— toxoplasmosis

— demyelinating process

— systemic lupus erythematosus vasculitis

— Behcet’s vasculitis

— HIV encephalopathy

— progressive neurosarcoid
Damage
— encephalomalacia
— wallerian degeneration in brain stem
Atrophy
— hippocampal/medial temporal volume loss in keeping with Alzheimer’s dementia

— generalised brain volume loss/atrophy/involutional change in excess for the patient’s
age

Small vessel disease and other ageing related

— small vessel disease
— large perivascular spaces
— lacunar infarcts

— cerebral amyloid angiopathy
Miscellaneous

— posterior reversible encephalopathy syndrome
— osmotic demyelination syndrome
— pineal calcification

— polymicrogyria

septation at the aqueduct

— distorted cerebral peduncle
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Appendix C. Retrospective simulation study

To quantify the impact that our model would have in a real clinical environment, we per-
formed a retrospective simulation study using all out-patient examinations performed be-
tween 1/1/2018 - 31/12/2018 to simulate what would have happened if our model had been
used to suggest the order in which head MRI examinations were reported. We excluded
in-patient examinations because at KCH and GSTT in-patient head MRI examinations -
which often contain abnormal images - are mandated to be reported on the same day for
every day of the year, so that a triage system for these examinations would have little impact.

Each head MRI examination had an associated ‘acquisition timestamp’ (i.e., the date and
time of acquisition) as well as a ‘report timestamp’ (i.e., the date and time when the ra-
diology report was published by a neuroradiologist for all in the hospital to see), allowing
the historical ‘report delay’ for each examination to be determined. Using ALARM, we
then labelled each examination as ‘normal’ or ‘abnormal’ in order to stratify report delays
by category. We divided the entire one-year observation period into 365 single-day time
intervals, and used the same number of examinations which were historically reported in
each day as the estimated number of exams which could be feasibly reported from the front
of the re-prioritized queue.

The simulation proceeds by stepping through each day and, using the original acquisition
timestamp, showing the scans performed on that day to our abnormality classifier model.
The model’s output (i.e., the predicted image category) was then used to decide where in
the reporting queue to insert each image. Note that we use the class (i.e. ‘normal’ or ‘ab-
normal’) rather than the predicted probability to decide where in the queue to insert each
scan to avoid easy-to-identify but less urgent abnormalities from jumping ahead of clinically
urgent but difficult-to-classify abnormalities in the queue. In this way, the predicted class
and time already spent in the queue are used to determine reporting order. Once the day’s
scans were added to the existing queue, the first N scans at the front of the queue (where N
is fixed by the number of scans historically reported that day) were then removed from the
front of the queue, and the modelled ‘prioritized report delay’ (i.e. the difference between
the historical ‘acquisition time’ and our modelled ‘report timestamp’) for these scans was
recorded. At the end of the one-year period, the modelled ‘prioritized report delay’ for each
examination was compared to the historical reporting times. In order to compute p-values,
this experiment was repeated 1,000 times under the null hypothesis - that is, assigning a
random priority (class) to each image. In this way, we were able to determine the proba-
bility that the observed reduction in ‘abnormal’ reporting times (and concomitant increase
in ‘normal’ reporting times) due to our prioritization system could have occurred by chance.

This simulation was inspired by the work of (Annarumma et al., 2019) which was performed

in the context of triaging chest radiographs, and we made use of code which these authors
have made available at https://github.com/WMGDataScience/chest_xrays_triaging/
blob/master/reporting_delays_simulation/simulate_reporting.py. Our modified code,
which is optimised for use with our head MRI scan classifier, is available at https://
github.com/MIDIconsortium/Prioritization_simulation.
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Appendix D. Patient and Public Involvement (PPI) survey

We performed Patient and Public Involvement (PPI) meetings and interviews with those
with neurological illness, their families and end-users (neuroradiology department person-
nel).

One question included that normal results would be delayed. Initial PPI with a UK Uni-
versity technology group ‘Next Generation Medical Imaging’ articulated the following key
themes: (1) that patients with abnormalities should ‘queue jump’ reporting and receive
treatment earlier whilst those ‘without abnormalities’ would accept waiting longer. Sub-
sequent PPI with UK charity members from Brainstrust, Stroke Association, Meningioma
UK, Brain Tumour Charity, Tessa Jowell Foundation and Alzheimer’s Society PPI strongly
agreed with these conclusions. In total 29/30 strongly agreed and 1/30 agreed.

Another theme was that PPI felt that in general they would be guided by the end users
(neuroradiologists) assessment of the technology.

The end users strongly agreed (12/12) that patients with abnormalities should ‘queue jump’

reporting and receive treatment earlier whilst those ‘without abnormalities’ should wait
longer.
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Appendix E. Occlusion sensitivity and error analysis

Impression: Signal change and swelling involving the right
amygdala and hippocampus, consistent with a low grade Impression: Right occipital AVM with thrombosed cortical
intrinsic neoplasm draining vein and associated oedema

Impression: There is a mature infarct in the right corona radiata. Impression: Evidence of mature left cerebellar damage

Impression: Cystic intra axial lesion of the left temporal lobe.
Differential diagnosis would include gangliocytoma, DNET Impression: There is extensive, confluent acute infarction
and also neuroepithelial cyst involving the brainstem and both cerebellar hemispheres.

Impression: There is a mass lesion centered on the right middle
and inferior cerebellar peduncles with exophytic cystic changes. Impression: There is a subdural haematoma overlying the left
An intrinsic glial neoplasm appears most likely parietal convexity, mildly indenting the subjacent parietal cortex.

Figure S2: Occlusion sensitivity analysis (kernel size = 5 x 5 X 5, stride = 5) of a representative set of positive
(i.e., ‘abnormal’) images from the combined KCH + GSTT test set. Lighter colors (yellow) correspond to
image regions important to model classification, and darker colors (blue) correspond to image regions less
important to model classification. For reference, the ‘Impression’ section of the accompanying radiology
reports is shown above each image.
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Apart from a few small areas

There are a few small areas of high T2 signal of white matter T2 hyperintensity in There are areas of patchy subcortical and

in the subcortical frontal white matter bilaterally keeping with [iildSHTdIVESSENdiSeise deep white matter T2 hyperintensity in keeping
in keeping with iildSHalVEssEldisease there are otherwise normal intracranial with mild small vessel disease

otherwise normal intracranial appearances appearances.

. . There are numerous focal T2 hyperintensities There are multiple T2 hyperintense foci in the
There are several T2 hyperintense foci in the within the subcortical and deep white matter periventricular and subcortical white matter of
cerebral white matter in keeping with of the fronto-parietal white matter in keeping both cerebral hemispheres suggesting
mild to moderate small vessel disease with mild to moderate small vessel disease mild to moderate small vessel disease

There are extensive abnormal T2 hyperintense

foci involving the subcortical, deep and There are foci of T2 hyperintensities involving
periventricular white matter, in keeping with The cerebral white matter and deep grey matter the periventricular white matter in keeping
severe small vessel disease are in keeping with SEVERE Small Vessel disease with severe small vessel disease

Figure S3: Comparison between ‘mild’, ‘mild to moderate’, and ‘severe’ small vessel disease (SVD). In
most cases, our model was able to correctly classify SVD; however, equivocal cases (e.g., ‘mild-to-moderate’,
which had been labelled by our team of neuroradiologists as ‘abnormal’ to encourage model sensitivity) were
sometimes misclassified. Similarly, equivocal cases involving atrophy and enlarged perivascular spaces were
sometimes misclassified. Given the degree of subjectivity involved, however, these errors are highly unlikely
to have a significant clinical impact.
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Appendix F. Abnormality definitions

Abnormal is defined as one or more abnormality described below. Normal is defined as no
abnormality described below.

F.1. Small vessel disease

(Fazekas et al., 1987) gives a classification system for white matter lesions (WMLs):
1. Mild - punctate WMLS: Fazekas 1
2. Moderate - confluent WMLs: Fazekas II
3. Severe - extensive confluent WMLs: Fazekas I11

To create a binary categorical variable from this system, if the report was unsure/normal
or mild this would be categorized as ‘normal’ as this never requires treatment for cardio-
vascular risk factors. However, if there is a description of moderate or severe WMLs, the
report would be categorized as ‘abnormal’ as these cases sometimes require treatment for
cardiovascular risk factors.

Included as normal are descriptions of scattered non-specific ‘white matter dots’ or “foci of
signal abnormality” (unless a more defuse or specific pathology is implied) and small vessel
disease described as ‘minor’, ‘minimal’ or ‘modest’.

Conversely, those cases which are described as ‘mild to moderate’, ‘confluent’, or ‘beginning
to confluence’ small vessel disease are treated as abnormal.

Genetic small vessel disease, in particular Cerebral Autosomal Dominant Arteriopathy with
Subcortical Infarcts and Leukoencephalopathy (CADASIL), is considered abnormal.

F.2. Mass

— Neoplasms

— Intra-axial including all primary and secondary neoplasms

— Extra-axial including all primary and secondary neoplasms (including pituitary
adenomas)

— Tumour debulking or partial resection as this implies residual tumour

— Ependymal, subependymal or local meningeal enhancement (non-surgical) in the con-
text of a history of an aggressive infiltrative tumour

— Abscess
— Cysts

— retrocebellar cyst (mega cisterna magna not included)
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— Arachnoid cysts
— pineal cysts and choroid fissure cysts

— Rathke’s cleft cysts

Focal cortical dysplasia, nodular grey matter heterotopia, subependymal nodules and
subcortical tubers

Lipoma
Chronic subdural haematoma or hygroma (i.e. cerebrospinal fluid (CSF) equivalent)
Perivascular spaces normal unless giant

MRI examinations for stereotactic surgical planning alone may have very brief reports.
In these scenarios it is typically evident from the clinical information provided that
there is a mass e.g., surgical planning for glioblastoma.

Note that findings that typically may have minimal clinical relevance when confirmed by
a neuroradiology expert, are included in this category e.g., arachnoid cyst. The rationale
is that such a finding might generate a referral to a multidisciplinary team meeting for
clarification clinical relevance. We consider that a referral to a multidisciplinary team
meeting is a clinical intervention and we aim to ensure that any findings that generate a
downstream clinical intervention are included.

F.3.

Vascular

Aneurysms
— including coiled aneurysms regardless of whether there is a residual neck or not
Arteriovenous malformation
Arteriovenous dural fistula
Cavernoma
Capillary telangiectasia
Old / non-specific microhaemorrhages
Petechial haemorrhage
Developmental venous anomaly
Venous sinus thrombosis

Vasculitis if associated with vessel changes such as luminal stenosis or vessel wall
enhancement

Arterial occlusion / flow void abnormality or absence
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— Venous sinus tumor invasion

— Arterial stenosis. If constitutional / normal variant not included.

Note that findings that typically may have minimal clinical relevance when confirmed by
a neuroradiology expert, are included e.g., developmental venous anomaly. The rationale
is that such a finding might generate a referral to a multidisciplinary team meeting for
clarification of clinical relevance. We consider that a referral to a multidisciplinary team
meeting is a clinical intervention and we aim to ensure that any findings that generate a
downstream clinical intervention are included.

Note that a finding that might generate a referral to a multidisciplinary meeting for clari-
fication has been within this category e.g. developmental venous anomaly may be ignored
in clinical practice, but we included it in the “vascular” granular category.

Examples of vascular-like findings which are considered normal include descriptions of slug-
gish flow, flow related signal abnormalities (unless they raise the suspicion of thrombus)
and vascular fenetrations.

F.4. Encephalomalacia
— Gliosis
— Encephalomalacia
— Cavity
— Post-operative tissue changes / appearances are included as encephalomalacia
— Tumour debulking or partial resection as this implies residual tumour

— If the patient has had a craniotomy or biopsy there is likely damage — however, for
example in the case of a burr-hole and drain previously inserted into the extra-axial
space, this does not automatically constitute damage

— “Post-operative changes / appearances” include as damage

— Tumor debulking or partial resection as this includes cavity plus tumour (labelled as
both “damage” and “mass”)

— Chronic infarct / sequelae of infarct

— Chronic haemorrhage / sequelae of haemorrhage (with / without haemosiderin stain-
ing)

— Cortical laminar necrosis

Encephalomalacia-like findings which are considered normal unless there is a clear descrip-
tion of related parenchymal injury include craniotomy, burr-holes, posterior fossa decom-
pression, and 3rd ventriculostomy.

25



F.5.

F.7.
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Acute stroke

Acute / subacute infarct (if demonstrating restricted diffusion)

— Include if there are other descriptors indicating a subacute nature such as swelling
even though restricted diffusion has normalised

Parenchymal post-operative restricted diffusion secondary to retraction injury

Mitochondrial Encephalopathy with Lactic Acidosis and Stroke-like episodes (MELAS)
if associated with restricted diffusion

Hypoxic ischaemic injury if associated with restricted diffusion

Vasculitis if associated with acute / subacute infarct

. White matter inflammation

Multiple sclerosis (MS) including when some plaques show cavitation

Other demyelinating lesions including Acute Disseminated Encephalomyelitis (ADEM)
and Neuromyelitis Optica spectrum disorder (NMO)

Inflammatory lesions in Radiologically Isolated Syndrome / Clinically Isolated Syn-
drome

Focal cortical thinning i.e., secondary to chronic subcortical / cortical lesions, are
labelled as “encephalomalacia“ abnormalities

Progressive Multifocal Leukoencephalopathy (PML)/ Immune Reconstitution Inflam-
matory Syndrome (IRIS)

Leukoencephalopathies - congenital or acquired (including toxic)

Encephalitis / encephalopathy if it involves the white matter, e.g. related to human
immunodeficiency virus (HIV) and congenital cytomegalovirus (CMV)

Posterior Reversible Encephalopathy Syndrome (PRES)

Osmotic demyelination (central pontine myelinolysis/ extrapontine myelinolysis)
Susac syndrome

Radiation if describing white matter abnormality

White matter changes in the context of vasculitis if clearly attributed to vasculitis.

Amyloid-related inflammatory change / inflammatory

Atrophy

Volume loss in excess of age is labelled ‘abnormal’. Volume loss ‘commensurate for age’ is
labelled ‘normal’.
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Hydrocephalus
Acute

Trapped ventricle

Chronic / stable / improving hydrocephalus (it does not matter whether its compen-
sated or not)

normal pressure hydrocephalus (NPH)

Ventricular enlargement

. Haemorrhage

Any acute / subacute haemorrhage parenchymal, subarachnoid, subdural, extradural

Acute microhaemorrhages / petechial haemorrhages

F.10. Foreign body

Shunts
Clips
Coils

If significant metalwork is involved in skull repair e.g. in a cranioplasty (or the occa-
sional craniotomy causing extreme intracranial MRI signal distortion)

If craniotomies are not causing anything other than slight artefact, then these are
considered normal

F.11. Extracranial

Total mastoid opacification / middle ear effusions
Complete opacification / obstruction of the paranasal sinuses
Ignore mucosal thickening

If there is clearly a well-defined unambiguous polyp then label as abnormal. If it
is 'retention cysts’ or ’polypoid mucosal thickening’ then ignore. If it is something
indistinguishable which could be a retention cyst / polyp then ignore. Anything
leading to obstruction - always label as abnormal.

Calvarial / extra-calvarial masses
Osteo-dural defects
Encephaloceles

Pseudomeningoceles
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Extracranial vessel abnormality below the petrous segment e.g. cervical ICA dissec-
tion

Lipoma, Sebaceous cyst or any other mass if extracranial
Orbital abnormalities (including masses)

— Including optic nerve pathology affecting the orbital segment of the nerve i.e.
meningioma

— If there is an abnormality of the intracranial segment of the optic nerve /chiasm
such as atrophy then label as intracranial misc.

Cases with tortuous optic nerves with no other features are ignored
Eye prostheses and proptosis

Ignore pseudophakia

Bone abnormality e.g. low bone signal secondary to haemoglobinopathy

Basilar invagination.

F.12. Intracranial miscellaneous

All the following are categorized as ‘1’ for Intracranial miscellaneous:

Cerebellar ectopia
Brain herniation (for example into a craniectomy defect)

Clear evidence of idiopathic intracranial hypertension (prominent optic nerve sheaths,
intrasellar herniation)

— Non-specific intrasellar arachnoid herniation / empty sella should be otherwise
ignored

— Non-specific tapering of dural venous sinuses should be ignored

Spontaneous intracranial hypotension (pituitary enlargement, pachymeningeal thick-
ening, etc)

— If subdural collections present, these should be also noted separately
Cerebral oedema or reduced CSF spaces
Absent or hypoplastic structures such as agenesis of the corpus callosum

Meningeal thickening or enhancement — for example in the context of neurosarcoid or
vasculitis

Enhancing or thickened cranial nerves
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— Infective processes primarily involving the meninges or ependyma (i.e. ventriculitis
or meningitis)

— Encephalitis if primarily involves the cortex (HSV/autoimmune encephalitis)
— Excessive or unexpected basal ganglia or parenchymal calcification

— Optic neuritis involving the intracranial segments of the optic nerves or chiasmitis
— Adhesions / webs

— Pneumocephalus

— Colpocephaly

— Superficial siderosis

— Ulegyria

— FASIs / UBOs

— Basal ganglia / thalamic changes in the context of metabolic abnormalities
— Band heterotopia and polymicrogyria

— Hypophysitis

— Seizure related changes

Appendix G. densenet architecture

Our model uses the DenseNet121 network for visual feature extraction. This network con-
sists of an initial block of 64 convolutional filters (kernel size = [7 x 7 x 7], stride = 2)
and a ‘max pooling’ layer (kernel size = [3 x 3 x 3], stride = 3), followed by four ‘densely
connected’ convolutional blocks. Each dense block consists of alternating point-wise (ker-
nel size = [1 x 1 x 1]) and volumetric (kernel size = [3 x 3 x 3|) convolutions which are
repeated 6, 12, 24 and 16 times in the four blocks, respectively. Between each dense block
are ‘transition layers’ which consist of a point convolution (kernel size = [1 x 1 x 1]) and
an average pooling layer (kernel size = [2 x 2 x 2], stride = 2). Global average pooling is
applied to the output of the 4" dense block, resulting in a 1024-dimension feature vector
which, following concatenation with the patient’s age, is used for classification.
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