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Abstract

A neural radiance field (NeRF) enables the synthesis of cutting-edge realistic
novel view images of a 3D scene. It includes density and color fields to model
the shape and radiance of a scene, respectively. Supervised by the photometric
loss in an end-to-end training manner, NeRF inherently suffers from the shape-
radiance ambiguity problem, i.e., it can perfectly fit training views but does not
guarantee decoupling the two fields correctly. To deal with this issue, existing
works have incorporated prior knowledge to provide an independent supervision
signal for the density field, including total variation loss, sparsity loss, distortion
loss, etc. These losses are based on general assumptions about the density field,
e.g., it should be smooth, sparse, or compact, which are not adaptive to a specific
scene. In this paper, we propose a more adaptive method to reduce the shape-
radiance ambiguity. The key is a rendering method that is only based on the density
field. Specifically, we first estimate the color field based on the density field and
posed images in a closed form. Then NeRF’s rendering process can proceed. We
address the problems in estimating the color field, including occlusion and non-
uniformly distributed views. Afterwards, it is applied to regularize NeRF’s density
field. As our regularization is guided by photometric loss, it is more adaptive
compared to existing ones. Experimental results show that our method improves
the density field of NeRF both qualitatively and quantitatively. Our code is available
at https://github.com/qihangGH/Closed-form-color-field.

1 Introduction

A neural radiance field (NeRF) [20, 4, 23, 8, 32] is a cutting-edge technique in computer graphics
and computer vision that enables the synthesis of realistic novel view images of a 3D scene from
a collection of posed 2D images. It represents a 3D scene with a density and a color field, which
describe the scene’s shape and radiance, respectively. Despite its impressive novel-view synthesis
capability, the NeRF suffers from an inherent shape-radiance ambiguity problem [33]. To be more
specific, a family of degradation solutions exist, which can perfectly recover training views but
produce incorrect shape. As a consequence, poor novel views would be rendered.

The shape-radiance ambiguity exists because a NeRF-based method usually renders an image using
the Max volume rendering algorithm [17]. It integrates the density and color fields closely. As shown
in Fig. 1(a), a pixel is rendered as the sum of products of density and color values. In general, such a
rendering process is supervised by the photometric loss in an end-to-end training manner, where the
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Figure 1: Graphical representations of the NeRF and its regularizations.

density and color fields do not receive independent supervision signals. As a result, NeRF can either
modify its density or color field to reduce the loss. Unfortunately, performing the latter may well fit
the training views, but neglect the error in shape.

To reduce the ambiguity, previous work focuses on different aspects. A group of methods utilizes
additional assumptions, e.g., sparse or dense depth priors [5, 25, 22, 29], to bypass the influence of
the color field and directly supervise the density field. A group of other methods improves NeRF’s
representation, e.g., by modeling the surface normal [30], to inherently reduce the ambiguity. Besides,
a group of methods incorporates prior belief to the original NeRF’s representation for regularization.
Typical ones are volume-based loss, such as sparsity [10, 7] and total variation (TV) loss [26, 7],
and ray-based loss, such as background entropy loss [15, 27], ray-entropy loss [13], and distortion
loss [1]. These losses directly supervise the density field with reasonable prior knowledge, so that
the shape-radiance ambiguity can be alleviated. We typically focus on the third group of methods
and their effects on explicit NeRF models, which are well-known for their training and rendering
efficiency. Despite the efficacy of learning a better density field, most existing regularizations are not
aware of the geometry of a scene. They are based on some general assumptions, e.g., the space tends
to be sparse, the density should distribute smoothly in the space, and it should distribute compactly
along a ray. Thus, such regularizations may be less adaptive or too aggressive.

In this paper, we propose a more adaptive method to regularize the density field, which elegantly
breaks the entanglement of the shape and radiance in NeRFs. Specifically, we devise a rendering
method that is only based on the density field as shown in Fig. 1(c). The key is to first estimate
the color field given the density field and posed training images by using predefined rules. Then,
the NeRF’s rendering process can proceed as usual. Notably, the color field is not learnable here,
and so the rendering results solely depend on the density field. In this case, the photometric loss
can well supervise the scene shape. Calculating the color field from a density field, however, faces
several hurdles, such as occlusion and non-uniformly distributed views. We tackle them by weighting
the observed colors with transmittance and using a residual color estimation scheme, respectively.
Overall, our regularization is more adaptive to specific scene geometry compared with existing
volume and ray-based ones, as it is guided by the photometric loss. The results of two typical explicit
NeRFs, including Plenoxels [7] and Direct Voxel Grid Optimization (DVGO) [27, 28], on the NeRF
Synthetic [20], LLFF [19], and DTU datasets [12] demonstrate the superiority of our method. Overall,
our contributions are summarized as follows:

1. We propose a closed-form color field estimation method given the density field and posed
images. We deal with problems that include occlusion and non-uniformly distributed views.
Experimental results show that the estimated color field has acceptable rendering quality.

2. We use the estimated color field for regularization, and reduce shape-radiance ambiguity
accordingly. Our method is aware of scene shape and so more adaptive. Experimental results
show that our loss improves the shape both qualitatively and quantitatively.

3. We implement our regularization method with CUDA kernels. Thus, the computational cost
for training a scene is still acceptable.

2 Related Work

Novel-view synthesis. The NeRF [20] has revolutionized the novel-view synthesis technology [24]
with its impressive rendering quality. It uses fully-connected neural networks to map a 3D location
and viewing direction to a density and view-dependent color. Then a novel view is synthesized by
using the MAX volume rendering algorithm [17]. Besides the implicit neural network representation,

2



explicit NeRFs [14, 7, 27, 28, 21, 2] are proposed to accelerate both training and rendering speed.
The density and color field are represented by voxel grids, which store the density values or the color
features. In this way, a lightweight multilayer perceptron (MLP) should suffice for predicting the
view-dependent colors. Furthermore, researchers have paid great effort to optimize the rendering
quality in challenging scenarios [1, 16, 18], training speed [14, 7, 27, 28, 21, 31], and inference speed
[11, 10, 3, 23, 8, 32]. Despite these improvements, the NeRF’s representation of a scene inherently
suffers from the shape-radiance ambiguity problem [33]. A complex color field can well fit the
training images while leaving an error in geometry. Although Zhang et al. [33] analyzes that the
NeRF relieves the problem by using an MLP with limited capacity and low-frequency positional
encoding components, the shape-radiance ambiguity problem needs to be solved more systematically.

Regularization methods for the density field. The regularization methods can be divided into
volume-based and ray-based ones. The most simple volume-based regularization is the sparsity loss
[10, 32, 7]. It is based on the fact that most of the space in a scene is empty. Another effective
regularization is the TV loss [26, 7], which assumes that the density values of adjacent voxels should
not change drastically. It helps increase the smoothness of the density field. Ray-based regularization
methods, on the other hand, impose prior beliefs on how the density along a ray should distribute.
The background entropy loss [15, 27] forces the final transmittance of a ray to be either 1 or 0,
which means that the ray can only belong to the background or the foreground. This can effectively
sharpen the contour of an object. The ray-entropy loss [13] is an improved version of the background
entropy loss. It argues that the density values along a ray should have a low entropy. This is achieved
by minimizing the Shannon entropy of the normalized ray density. Such a regularization helps
produce better geometry than the vanilla NeRF. The distortion loss [1] shares a similar idea with the
ray-entropy loss. It encourages the density along a ray to distribute as compactly as possible. This is
achieved by optimizing the non-empty intervals to be narrow and near to each other. Experimental
results show that the distortion loss effectively removes the floaters in the free space.

Overall, we notice that the above volume and ray-based methods are all based on general assumptions.
They are directly applied to the density field, and so may be less adaptive. In this paper, we propose a
more adaptive method to regularize the density field, which is guided by the photometric loss.

3 Preliminaries

A radiance field is composed of a density field Fσ and a color field Fc. The density Fσ
v ∈ R of a

point v ∈ R3 indicates the differential probability of a ray hitting a particle at v, and Fc
v,d ∈ R3

represents the color emitted by v along the direction d. The NeRF uses volume rendering to render
the color Ĉ(r) of a ray r(t) = o+ td that starts at a camera’s original point o following the Max [17]
rendering equation

Ĉ(r) =

∫ tf

tn

T (t)Fσ
r(t)F

c
r(t),d dt, (1)

where tn and tf are near and far bounds for the integral, and the T (t) is the transmittance defined as

T (t) = exp

(∫ t

tn

−Fσ
r(s)ds

)
. (2)

To deal with the integral, the NeRF assumes that the density and color are piece-wise constant along
the ray r. Thus, the integrals above become summations.

Given a collection of images and their corresponding camera poses. A photometric loss Lp is applied
to minimize the difference between a rendered pixel color Ĉ(r) and its ground-truth pixel value C(r)
as follows,

Lp =
1

|R|
∑
r∈R

∣∣∣∣∣∣C(r)− Ĉ(r)
∣∣∣∣∣∣2
2
, (3)

where R is a mini-batch of rays.

In such a formulation, let Fwc
r(t),d = T (t)Fσ

r(t)F
c
r(t),d denotes the transmittance-density-weighted

color field, the photometric loss in effect optimizes Fwc
r(t),d to fit training views. An optimal Fwc

r(t),d

learned on training views, however, does not guarantee a correct density field, since it can be achieved
by infinitely possible combinations of density and color fields. This raises the shape-radiance
ambiguity problem.
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4 Method

The method is divided into two parts. First, we elaborate on the color field estimation method given a
density field and posed images. Then we use the estimated color field for regularization.

4.1 Closed-Form Color Field Estimation

The key problem in this subsection is to estimate a color field F̂c
v,d as accurately as possible given a

density field Fσ
v and posed observation images.

Spherical harmonics representation for the color field. We use spherical harmonics (SH) to
represent the color of each point. The SH includes a series of orthogonal and complete basis functions
defined on the surface of the unit sphere S [9]. Following [7], a linear combination of SH basis
functions is used to approximate the color of a point v observed from a direction d as

Fc
v,d =

L∑
ℓ=0

ℓ∑
m=−ℓ

hm
ℓ Y m

ℓ (d), (4)

where L is the degree of the SH basis, Y m
ℓ (d) is the SH function with a degree ℓ, order m, and

hm
ℓ is its coefficient. Note that hm

ℓ is a function of v. We omit its notation for brevity. Under this
formulation, the color estimation problem is equivalent to estimating the SH coefficients.

Similar to Fourier series, the coefficient of a specific frequency band can be obtained by integrating
the product of the color and the corresponding SH function as follows,

hm
ℓ =

∫
d∈S

Fc
v,dY

m
ℓ (d)dd

=

∫
d∈S

pd(d)
Fc

v,dY
m
ℓ (d)

pd(d)
dd

≈ 1

K

K∑
k=1

Fc
v,dk

Y m
ℓ (dk)

pd(dk)
, dk ∼ pd(d),

(5)

where pd(d) is the probability density function of directions, and the integral is approximated by
Monte Carlo sampling. In our case, we assume that the direction should be uniformly distributed and
pd(d) ≡ 1

4π . However, we cannot randomly select the direction since its color could not be observed.
Actually, we only know the samples dk from posed images.

Transmittance-weighted color for occlusion handling. The posed images provide a set of
{dk,Fc

v,dk
} for Eq. (5). We use a colored rectangle as an example scene as shown in Fig. 2,

where v is a point on its surface. Specifically, there are four cameras with centers ok, k = 1, 2, 3, 4,
and the direction dk = ok−v

∥ok−v∥ is a normalized vector that connects ok and v. Assume that the pro-
jection matrix of the kth camera is Pk, the Fc

v,dk
is the observation color at Pkv of the image plane.

v

𝐨0

𝐨2

𝐨3

Observation

color

Observation

transmittance

𝐨1

Radiance field

ℱ𝐯,𝐝0
𝑐

ℱ𝐯,𝐝1
𝑐

ℱ𝐯,𝐝2
𝑐

ℱ𝐯,𝐝3
𝑐

Figure 2: Observation colors and transmittance.

Ideally, if there is no occlusion, the radi-
ance emitted by v can be directly captured
by a camera (o2 and o3). Then, the ra-
diance is the same as the corresponding
observation color (Fc

v,d2
and Fc

v,d3
). How-

ever, it is possible that the point v is oc-
cluded (o0 and o1), in which case the ob-
servation color (Fc

v,d0
and Fc

v,d1
) is not

the radiance emitted by v, but the radiance
of a surface point that is closest to the cam-
era center. These observations should be
treated differently when estimating the SH
coefficients. We resort to the transmittance
Tv,k between v and ok, i.e.,

Tv,k = exp

(∫ ∥ok−v∥

0

−Fσ
r(s;v,dk)

ds

)
, (6)
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where r(s;v,dk) = v+sdk. As Tv,k exponentially accumulates the density along a ray, an occluded
ray has a very low transmittance. Thus, we use it as a weight factor and modify Eq. (5) as follows,

ĥm
ℓ =

1∑K
k=1 Tv,k

K∑
k=1

Tv,kFc
v,dk

Y m
ℓ (dk)

pd(dk)
. (7)

Residual estimation for non-uniformly distributed views. The estimation given by Eq. (7) is
strongly affected by non-uniformly distributed sample directions. To calculate the coefficient of a
frequency band, the integral in Eq. (5) relies on the orthogonality of the SH basis that∫

d∈S

Y m
ℓ (d)Y j

i (d)dd =

{
1, i = ℓ and j = m,

0, otherwise.
(8)
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Figure 3: Non-uniform samples generate a larger bias.

When we discretize the integral with
samples that are non-uniformly dis-
tributed on the sphere S, Eq. (8) may
be violated. For simplicity, we use
the product of two trigonometric func-
tions cos 0x · cosx as an example. As
shown in Fig. 3, the positive and neg-
ative values in uniform samples better
compensate each other to approach a
zero-value summation, while the non-
uniform case generates a large bias.

To reduce the estimation bias, we pro-
pose a residual estimation scheme.
The basic idea is to subtract the terms
that integrate to zero in the integral to
reduce their influences. Specifically,
we further modify Eq. (7) as follows,

ĥm
ℓ =

1∑K
k=1 Tv,k

K∑
k=1

Tv,k · c̃m
ℓ k · Y m

ℓ (dk)

pd(dk)
, (9)

with c̃m
ℓ k defined as

c̃m
ℓ k = Fc

v,dk
−

ℓ∑
i=0

m̃∑
j=−i

ĥj
i · Y

j
i (dk). (10)

where m̃ = m if i = ℓ, else m̃ = i. This scheme can effectively reduce estimation biases. Please
refer to the Appendix A for more explanations.

4.2 Regularization with the Estimated Color Field

We use the estimated color field F̂c
v,d to reduce the shape-radiance ambiguity. Specifically, we can

render a closed-form pixel Ccf (r) with F̂c
v,d and Fσ

v following the volume rendering equation as per
Eq. (1). Then, a closed-form photometric loss (CF loss for short) can be calculated as follows,

Lcf =
1

|Rcf |
∑

r∈Rcf

||C(r)− Ccf (r)||22 , (11)

where Rcf is a mini-batch of rays. With a weight factor λ, the regularization term λLcf is added to
the training loss for reducing the shape-radiance ambiguity.

5 Experiments

5.1 Experimental Settings

Datasets. To evaluate our method, we conduct experiments on DTU [12], NeRF synthetic [20],
and LLFF datasets [19]. Each DTU scene has 49 or 64 images. We evenly select 5 or 6 images
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from them as testing ones. Besides, we downsample the 1600× 1200 images to be 800× 600 ones.
For NeRF synthetic and LLFF datasets, we follow the conventional train-test split used in previous
studies. By default, we use a black background for DTU and NeRF synthetic datasets, as it makes the
shape-radiance ambiguity more severe on some scenes.

Baselines. We choose two explicit NeRFs, including Plenoxels [7] and DVGO [27, 28], as baselines.
Among them, the Plenoxels has been trained with the sparsity loss and TV loss, and DVGO has been
trained with the background entropy loss.

Metrics. Besides the commonly applied peak signal-to-noise ratio (PSNR) metric of images, we
calculate the PSNR of depth for the NeRF Synthetic dataset to evaluate the geometry, since it provides
the ground truth depth. Depth values are normalized into the range [0, 1] before calculating the PSNR.
Additionally, we adopt the metric named inverse mean residual color (IMRC) [6] to evaluate the
geometry of a scene. It is defined as the transmittance-density-weighted residual color in dB as
follows

IMRC = −10 log10

∑
v∈V

∑
k Tv,k (1− exp (−Fσ

v · δv))
(

c̃LL v,k

)2∑
v∈V

∑
k Tv,k (1− exp (−Fσ

v · δv))
, (12)

where Tv,k is the transmittance defined in Eq. (6), c̃LL v,k is the final residual color defined in Eq.
(10), and δv is the half-width of a voxel as the step size. To get deeper insights into Eq. (12), it is
a weighted mean squared error of the radiance emitted from all directions dk of all points v. The
error or residual color c̃LL v,k of a point v at a direction dk is the difference between the ground truth
observation color and recovered radiance based on the geometry. The better geometry should better
recover the color field. Thus, the higher the IMRC, the lower the residual color, the better.

Implementation details. The codes of Plenoxels and DVGO are borrowed from the official release.
A uniform probability distribution pd(d) of directions is applied. In other words, pd(d) ≡ 1

4π is a
constant value. Please refer to Appendix B.1.1 for more discussions about the probability density
function of directions. We implement the CF loss with CUDA kernels. For explicit NeRFs, the 3D
space is divided into voxel grids. We need to estimate the color field for the voxels. Specifically, the
block number is set as the number of voxels. Each block has 128 threads and each thread handles a
ray that connects the voxel and a camera. Following [7], we set the SH degree to 2, i.e., there are
3 ∗ (2 + 1)2 = 27 SH coefficients per voxel. For Plenoxels, the number of rays |Rcf | is set to 25 for
all datasets. The weight factor λ is set to 10, 0.1, and 0.5 for the DTU, NeRF synthetic, and LLFF
dataset, respectively. For DVGO, the number of rays |Rcf | is set to 10 for all datasets. The weight
factor λ is set to 1 and 0.1 for the coarse and fine stage of the DTU dataset, 2 and 0.1 for the coarse
and fine stage of the NeRF synthetic dataset, and 0.1 for the LLFF dataset. All the experiments are
run on a single NVIDIA Tesla A100 GPU.

5.2 Results of the Closed-Form Color Field Estimation Given Trained Density Fields

In this subsection, we verify the effectiveness of the closed-form color estimation. Specifically, we
train Plenoxels and DVGO with their original implementations without adding the CF loss. Then, the
density fields of these trained models are used to estimate color fields without any training process.

Table 1: Ablation study on DTU
scenes based on Plenoxels’ den-
sity.

Occlusion
handling

Residual
estimation

PSNR

14.61
✓ 13.57

✓ 25.99
✓ ✓ 26.49

The occlusion handling and residual estimation play significant
roles. We conduct an ablation study here. The results based on
Plenoxels’ density fields are reported in Table 1. In Fig. 4, we
additionally showcase an example based on a DVGO’s density field.
Specifically, when we directly estimate SH coefficients according
to Eq. (7) without using the residual estimation scheme, the ren-
dered images look bad as shown by the first two sub-figures. This
is because estimating the SH coefficient of one frequency band is
affected by other frequency components if we cannot uniformly
sample directions from the 2D sphere. Since the images of each
DTU scene are approximately taken from a half sphere, the views
are non-uniformly distributed. As a result, the estimation of SH co-
efficients suffers from biases. On the other hand, when we estimate
without occlusion handling, i.e., without using transmittance to weight an observation, the estimation
result is blurred as shown by the third sub-figure. This is because in the estimation, Fc

v,dk
of different

dk is not guaranteed to be the radiance emitted from the same point v, but possibly that of a point
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Figure 4: Ablation study on DTU scan 122 based on DVGO’s density.
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Figure 5: Color field estimation results of DTU scan 63.

nearer to a camera. When both occlusion handling and residual estimation are applied, as shown in
the fourth sub-figure, the rendering result is visually acceptable, and quantitatively, has a much higher
PSNR that approaches the trained one. To summarize, both the table and figure show that the residual
estimation improves the PSNR considerably. With only occlusion handling, the PSNR decreases, but
when it is combined with the residual color estimation, the PSNR is further improved.

The estimation results are not only affected by the algorithm, but also by the quality of the density
field. Specifically, the estimation is based on an assumption that, if a point is not occluded, its
radiance along a direction is directly determined by the corresponding observation color in the image.
This assumption is true for the ideal case, where the density is sharp enough and the color reduces to
the surface light field [33]. By using this assumption, the closed-form color field becomes sensitive
to false geometry. If the geometry or the density field is not correct or sharp enough, which breaks
this assumption, the color estimation results will be bad. In Fig. 5, we show the estimation results
based on the density field of DVGO and Plenoxels, respectively. We also visualize the depth map of
the scene and render the residual color. The Plenoxels suffers a sharper PSNR drop from the trained
image (34.06) to estimated one (29.09). This is because it has an inferior density field as qualitatively
shown by the depth maps. The errors in the density field affect the estimation process and result in
poor rendering quality. In contrast, a better density field given by the DVGO permits a higher PSNR
(33.08) of the estimated color field. Note that the closed-form color field is more sensitive to the
quality of density field than the trained one, as it produces a larger PSNR difference (3.99 > 1.35)
between two methods. By using the closed-form photometric loss, the rendering errors caused by an
inferior density field can be back-propagated to improve the density field.

5.3 Results of Regularization and Comparison

In this subsection, we analyze the regularization results. Specifically, we apply our regularization
to Plenoxels and DVGO and train from scratch. Based on DVGO, we additionally add a fine-tuned
distortion loss for comparison. Table 2 reports the PSNR, IMRC, and PSNR of depth.

For Plenoxels, the CF loss improves all metrics on all datasets. It effectively improves the geometry
of a scene. As shown in Fig. 6, the floaters in the free space (marked by red circles) are penalized,
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Table 2: Comparison of PNSR ↑/IMRC ↑/(PSNR of depth↑) on the three datasets (Best).

Method DTU NeRF synthetic LLFF

Plenoxels [7] 31.86 / 15.88 29.83 / 16.55 / 22.70 26.30 / 19.15
Plenoxels [7] + CF loss 32.08 / 16.66 29.84 / 16.59 / 23.08 26.40 / 20.02

DVGO [27, 28] 32.15 / 18.19 31.58 / 17.25 / 25.46 26.23 / 18.87
DVGO [27, 28] + Distortion loss [1] 32.20 / 18.47 31.50 / 17.93 / 25.68 26.33 / 20.76
DVGO [27, 28] + CF loss 32.23 / 18.51 32.24 / 17.61 / 26.36 26.26 / 19.66
DVGO [27, 28] + Distortion loss [1] + CF loss 32.26 / 18.80 32.23 / 18.90 / 26.68 26.34 / 20.92
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PSNR: 26.22  
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PSNR: 33.54  
Plenoxels Plenoxels+ CF loss + CF loss

Figure 6: Our loss improves the geometry of a scene by making the density field sharper and removing
the floaters in the free space. The two scenes are DTU scan 37 and 105 from left to right.

and the density field becomes sharper (marked by green circles). This is reasonable because the
observation colors of the points in wrong geometry, e.g., floaters or a thick surface, tend to be
very high frequency. The SH of degree 2 fails to fit such a high-frequency color variation, and the
estimated color field may produce poor rendering results, as represented by a high CF loss. During
back-propagation, the CF loss can guide to a better density field.

For DVGO, the best results for all metrics on all datasets are obtained when the CF loss is added or
both CF loss and distortion loss are added. These two losses complement each other’s advantages, but
the CF loss is more sensitive to specific geometric errors. We visualize the rendered images, depth,
and residual color of several scenes for better comparison. As shown in Fig. 7, the DVGO fails to
recover two details of a house as marked by blue and red rectangles. The distortion loss relieves
the problems, but the windows in the red rectangle are still distorted. We try to further increase the
weight factor of the distortion loss but this does not help. In contrast, our loss significantly improves
the quality of the density field as shown by the depth maps and residual colors. Two more examples
are shown in Fig. 8. It is noteworthy that the scene with a mic is trained with abundant views
(100 views) uniformly distributed in the upper hemisphere. Under a black background, however, it
severely suffers from the shape-radiance ambiguity problem. A part of the wire is confused with the
background, and lots of floaters exist around the wire. The distortion loss makes no difference as
it is not aware of the geometry of the scene. The CF loss successfully distinguishes the wire and
background, producing a better density field. The right scene in Fig. 8 is another example. The
DVGO, with or without distortion loss, mistakenly reconstructs the upper surface of the bottom rock.
This mistake is avoided by our method. Overall, the CF loss effectively improves the geometry of a
scene qualitatively and quantitatively.
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Figure 7: Comparison of distortion loss and CF loss on DTU scan 24.
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Figure 8: Comparison of distortion loss and CF loss on the mic from the NeRF synthetic dataset and
DTU scan 40.

5.4 Computational Cost

Table 3: Training time (minutes)
with different batch sizes (B).
B DTU NeRF synthetic LLFF

0 17.7 16.0 24.2
10 32.7 20.5 29.4
25 43.0 25.5 34.6

In this subsection, we analyze the computational cost. Specifically,
in each training step, a batch of B rays are used. Then, only the
colors of the voxels intersected with these rays need to be estimated.
Suppose that each ray involves the order of N voxels, there are
M = BN voxels. To estimate the color of a voxel, the density
values along the ray from the voxel to K source cameras need to
be calculated. Then the total number of voxels involved is of order
KMN = KBN2. In our implementation, each CUDA block
handles one of the M voxels, and each thread handles one of the
K cameras. As the threads are executed in parallel, in theory, this
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reduces the computation overhead from the order of KBN2 to N . In practice, we observe that
sometimes the computational overhead is affected by the batch size. This is due to the hardware
limit of the maximum CUDA threads. When an excessive number of threads are used, they are
not guaranteed to be executed in parallel. In Table 3, we report the computational cost of training
Plenoxels by using different batch sizes for regularization. The number of source cameras K used
are 44 or 58 for the DTU, 100 for NeRF synthetic, and from 17 to 54 for LLFF dataset. The DTU
dataset requires longer training time because it is trained for 12 epochs, while the NeRF synthetic
dataset is trained for 9 epochs. For 9 epochs, the DTU dataset costs about 24 and 32 minutes for 10
and 25 rays, respectively. Compare these with those of NeRF synthetic dataset, we can observe that
the large number of K = 100 cameras does not obviously increase the computational burden.

6 Conclusion

The shape-radiance ambiguity is a significant problem of NeRFs. Even with a simple background
and abundant training images, wrong geometry can be learned and poor novel-views can be rendered.
In this paper, we propose a new regularization method to break the entanglement of density and
color field. The key is a closed-form color estimation method, which can recover the color field
of a scene given a density field and a set of posed training images. We overcome the difficulties
in estimating the color fields by handling the occlusion and non-uniformly distributed views. The
image quality rendered by our closed-form color field approaches the trained one. Then, we use the
photometric loss derived from the estimated color field to provide an independent supervision signal
for the density field. Both the PSNR and IMRC of two explicit NeRFs, including Plenoxels and
DVGO, are improved. Experimental results show the capability of the CF loss to correct geometric
errors compared with existing volume and ray-based losses.

PSNR: 26.47  PSNR: 23.91  

Closed-form color fieldTrained color fieldGround truth

Figure 9: Color estimation results of a highly reflective object given the trained DVGO density.

Limitations and future work. The closed-form color field has difficulties to perfectly recover highly
reflective objects. As shown in Fig. 9, the surface of the scissors is less reflective compared to the
ground truth. Although increasing the SH degree can relieve this problem to some extent as shown
in Appendix B.1.2, it needs to be solved more systematically. For example, the probability density
function pd(d) of directions can be better estimated, and a rigorous proof of the bias reduction
strategy needs to be further studied. Besides, a well-estimated color field has the potential to get rid
of the parameterized color field in a NeRF, and then only the density field needs to be trained and
stored.
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Appendix

A More Explanations for the Residual Color Estimation Scheme

We first shed light on why the residual color estimation scheme helps reduce the bias caused by
nonuniform sampling. Then we conduct numerical experiments to support our claim. For simplicity,
the explanation is based on using Fourier series to approximate one-dimensional signals. The basic
idea is the same and can be easily extended to the case that uses spherical harmonics (SH) to
approximate the signals defined on a spherical surface.

Suppose that the target signal f(x) defined on [−π, π] is “good” enough, or satisfies the Dirichlet
Conditions, so it could be expanded into Fourier series, i.e.,

f(x) = A0 +

∞∑
n=1

[an cos(nx) + bn sin(nx)] . (13)

Given a set of samples {(xt, f(xt))|t = 1, ..., T}, we aim to estimate the Fourier coefficients up to a
typical degree kmax. The calculation of the coefficient ak is well-known as

ak =
1

π

∫ π

−π

f(x) cos(kx)dx

=
1

π

∫ π

−π

{
A0 cos(kx) +

∞∑
n=1

[an cos(nx) cos(kx) + bn sin(nx) cos(kx)]

}
dx.

(14)

Using the Monte Carlo method, the above integral can be approximated by T samples x1, ..., xT as

âk =
1

π

2π

T

T∑
t=1

{
A0 cos(kxt) +

∞∑
n=1

[an cos(nxt) cos(kxt) + bn sin(nxt) cos(kxt)]

}
. (15)

Because of the orthogonal completeness of the trigonometric function set, if uniform sampling is
performed and the number of samples is large enough, all other terms in Eq. (15) will approach 0
except for ak cos(kxt) cos(kxt). Moreover, according to the Monte Carlo method, we have∫ π

−π

cos(kx) cos(kx)dx ≈ 2π

T

T∑
t=1

cos(kxt) cos(kxt). (16)

And then,

âk ≈ 1

π

2π

T

T∑
t=1

ak cos(kxt) cos(kxt) = ak
1

π

2π

T

T∑
t=1

cos(kxt) cos(kxt) ≈ ak
1

π
π = ak. (17)

In the nonuniform sampling case, however, non-negligible estimation biases will be generated. As
an example, we visualize the bias generated by the direct current component 1

T

∑T
t=1 A0 cos(xt) in

Fig, 10. In the uniform sampling case, 1
T

∑T
t=1 A0 cos(xt) is better approaching 0, as the positive

(red) and negative (blue) function values are well counteracted. In contrast, the nonuniform sampling
case induces a larger bias as controlled by the magnitude of A0. We show such a bias in a numerical
experiment later.

To reduce the bias caused by
∑T

t=1 A0 cos(kxt), we find it effective to subtract this component in
the estimation, i.e.,

ak =
1

π

∫ π

−π

f(x) cos(kx)dx

=
1

π

∫ π

−π

(f(x)−A0) cos(kx)dx

=
1

π

∫ π

−π

{ ∞∑
n=1

[an cos(nx) cos(kx) + bn sin(nx) cos(kx)]

}
dx.

(18)
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Figure 10: Nonuniform sampling generates a larger estimation bias than that of uniform sampling.

This time the Monte Carlo estimator of ak becomes

â′k =
2

T

T∑
t=1

{ ∞∑
n=1

[an cos(nxt) cos(kxt) + bn sin(nxt) cos(kxt)]

}
. (19)

Compared with âk defined in Eq. (15), â′k completely eliminates the bias caused by∑T
t=1 A0 cos(kxt). Thus, the Monte Carlo estimator

2

T

T∑
t=1

(f(xt)−A0) cos(kxt) (20)

as derived from 1
π

∫ π

−π
(f(x)−A0) cos(kx)dx suffers less bias from nonuniform sampling than

2

T

T∑
t=1

f(xt) cos(kxt) (21)

as derived from 1
π

∫ π

−π
f(x) cos(kx)dx. Because A0 is actually unknown, we first estimate this direct

current component using the Monte Carlo method as

Â0 =
1

T

T∑
t=1

f(xt). (22)

Then, we substitute the unknown A0 with Â0 in Eq. (20).

Note that, the bias of other components that are integrated to 0 could be analysed and eliminated
similarly. We show in the experiments later that such a treatment effectively reduces the estimation
bias.

As a summary, when estimating the coefficient ak of a frequency component, we should subtract
all other frequency components that are integrated to 0 to reduce the estimation bias as much as
possible. Notably, the coefficients for frequency components k + 1, k + 2, ..., kmax are unknown
if we perform the estimation in turn from 1 to k. One feasible solution is to perform the estimation
iteratively. Concretely, in the first round, we only subtract the frequency components 1 to k− 1 when
estimating ak. Then in the second round, we can subtract all other components. The iteration is ended
until the difference of the estimated coefficients in the adjacent round becomes small enough. In
the main paper, only one round of estimation is performed considering the computational overheads.
Notice that because the SH functions also has orthogonal completeness, the above scheme, i.e.,
estimating the coefficients in turn and eliminating the influences of other frequency components,
also makes a difference for estimating SH coefficients as we have done in the main paper.

We perform numerical experiments about Fourier series to support our claim. We compare three
estimators, including the original Monte Carlo estimator, Monte Carlo estimator using our bias
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reducing strategy, and the estimator based on the least square method. Specifically, the least square
solution is

1 cos(x1) sin(x1) · · · cos(kmaxx1) sin(kmaxx1)
1 cos(x2) sin(x2) · · · cos(kmaxx2) sin(kmaxx2)
...

...
...

. . .
...

...
1 cos(xT ) sin(xT ) · · · cos(kmaxxT ) sin(kmaxxT )


†

f(x1)
f(x2)

...
f(xT )

 , (23)

where † denotes pseudo-inverse. We make sure that the number of samples T is larger than the
number of coefficients to be estimated.

For the target signals, we randomly choose from trigonometric and polynomial functions, and
determine their coefficients randomly. As a result, three random target functions are chosen as
follows,

f1(x) = 2 + 0.03x2 + 2 sin(x) + cos(3x),

f2(x) = 10− 0.02x+ 0.01x2 + cos(x)− sin(2x),

f3(x) = 5 + 0.05x2 − 0.001x3 − sin(x) + 2 cos(2x).

(24)

To perform nonuniform sampling, we sample xt from a normal distribution N (0, σ2). To compare
the three estimators quantitatively, we uniformly sample 1000 points from [−2σ, 2σ]. Then, we
calculate the root mean squared error (RMSE) of this 1000 points. Because of the randomness of the
estimation process, we repeat the estimation for 100, 000 times and report the mean RMSE (MRMSE)
as the final metric, i.e.,

MRMSE =
1

100000

100000∑
i=1

√√√√ 1

1000

1000∑
j=1

(
f(xij)− f̂i(xij)

)2
, (25)

where xij is the jth sample in the ith estimation process. f(·) is the ground-truth signal and f̂i(·) is
the estimated signal in the ith estimation process. The lower the MRMSE, the better.

We set kmax = 3, σ = 10, and the number of samples for estimation T = 10, 20, ..., 100. The
MRMSE results for f1(x), f2(x), and f3(x) are shown in Fig. 11. It is clear that with our bias reduc-
ing strategy, the estimation is consistently better than original Monte Carlo estimation. Furthermore,
in the case of sparse sampling, the least square method suffers a sharp performance degradation.
When only 10 samples are available, it is even worse than the original Monte Carlo estimation. When
more samples are given, our method and the least square method become comparable.

Number of samples for coefficient estimation (𝑇)

M
R

M
S

E

Monte Carlo Monte Carlo with bias reducing Least square

𝑓1(𝑥) 𝑓2(𝑥) 𝑓3(𝑥)

Figure 11: The MRMSE↓ results for f1(x), f2(x), and f3(x).

In addition, we add different direct current values to f1(x) to increase its A0, and fix T = 100. The
MRMSE results are listed in Table 4. It shows that the estimation bias of Monte Carlo estimation
increases with a larger A0, while our method and the least square method are invariant about such
additions.

Finally, the computational cost of our method, least square method, and original Monte Carlo method
for one estimation with 100 samples are 1.196 × 10−4 s, 1.052 × 10−4 s, and 0.978 × 10−4 s
respectively. The experiments are performed on an Intel i7-9700 CPU. Overall, we can conclude that
our method effectively reduces estimation biases with acceptable computational overhead.
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Table 4: The MRMSE↓ results when adding different direct current values to f1(x).

Addition 0 1 5 10 50 100

Monte Carlo with bias reducing 3.89 3.89 3.89 3.89 3.89 3.89
Least square 3.90 3.90 3.90 3.90 3.90 3.90
Monte Carlo 4.09 4.17 4.60 5.31 13.53 25.13

B More Experimental Results

B.1 More Closed-Form Color Estimation Results

B.1.1 Probability Density Functions for Directions

A common choice for modeling the distribution of 3D directions is to use the von Mises-Fisher (vMF)
distribution defined as follows,

v(d;µ, c) =
c

2π(ec − e−c)ecµ⊤d
, (26)

where µ is the normalized mean direction, and c is the concentration parameter. Because the
vMF distribution only deals with the unimodal case, we resort to the mixture of von Mises-Fisher
distribution defined as

p(d;d1, ...,dK , c) =
1

K

K∑
k=1

v(dk;µ, c), (27)

where d1, ...,dK are known viewing directions as the modes of the distribution. It is noteworthy that
when c approaches zero, the probability density function becomes a uniform distribution. Thus, the
uniform distribution used in the main paper is a special case of the mixture of vMF distribution. The
concentration parameter c is a hyper-parameter. We vary it, and use the probability density function
to estimate the color field of DTU scenes given the density field from trained DVGOs. The PSNR
results of estimated color fields are reported in Table 5. It shows that a large concentration parameter
decreases PSNR. Although c = 0.01 is slightly better by 0.01 PSNR, we apply a uniform distribution
(c = 0) in the main paper for its simplified and more efficient calculation process.

Table 5: Color estimation results on DTU scenes with different concentration parameters.

Concentration parameter 0 0.01 0.1 1 2

PSNR 29.44 29.45 29.43 28.93 27.97

B.1.2 Different SH Degrees

In Table 6, we report the PSNR of estimated color fields using different SH degrees. It shows a clear
trend that the PSNR increases with the increase of the SH degree. The computational cost is not
obviously affected by the SH degree, but the higher SH degree requires much memory.

Table 6: PSNR of estimated color fields using different SH degrees based on DVGO’s density fields.

SH degree 0 1 2 3 4
SH basis 1 4 9 16 25

2563 grid 26.13 26.99 27.89 28.30 28.62
5123 grid 27.22 28.29 29.44 29.98 -

B.2 More Regularization Results

B.2.1 Visualization and Comparison of Ray-based Losses

We train the DVGO [15, 27] on a typical scene (DTU scan 40). After training, we calculate common
ray-based losses, including the photometric loss, per-point RGB loss [27], background entropy loss
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Ground-truth of a 

training view

Trained color field Closed-form color field
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Figure 12: Visualization and comparison of common ray-based losses on a typical scene with false
geometry. All losses are normalized into [0, 1]. The red rectangles mark the false geometry region,
and the percentages of the losses in this region over the whole image are shown on the left-top
corners.

[15, 27], ray-entropy loss [13], and distortion loss [1], of a training view based on the trained model.
For ray-based losses, each pixel has a loss value, so we can visualize the losses as images as shown in
Fig. 12. We marked a region with a red rectangle, where the top surface of the bottom rock is falsely
reconstructed. On the left-top corners of the loss images, we list the percentages of the losses in the
red rectangle over the whole image. These percentages reflect to what extent the corresponding losses
focus on the geometric error. The photometric loss of the training view has a very low percentage
of 4.7%. This demonstrates that minimizing the photometric loss cannot assure a correct geometry,
which is caused by the shape-radiance ambiguity problem. For other ray-based losses, they are also
not sensitive enough to the false geometry, with the largest percentage of 12.4%. In contrast, the CF
loss has a significantly larger percentage of 28%. It focuses more on geometric errors than common
ray-based losses. The errors can be reflected by the image rendered by the closed-form color field, as
shown by the right-top image of Fig. 12. The red rectangle has a large closed-form photometric loss,
and, more importantly, this loss can be used to improve the geometry of the scene.

B.2.2 Effect of the Weight Factor λ and Number of Rays |Rcf |

We vary the two hyper-parameters, including the weight factor and number of rays, on Plenoxels [7],
and report the average PSNR and IMRC of the DTU dataset in Table 7. The PSNR and IMRC have
an increasing trend when we increase the weight factor. Moreover, we showcase an example scene
in Figs. 13-14. By increasing the weight factor or the number of rays, the problem of thick surface
has been relieved. When the weight factor is too large (λ = 20), however, the PSNR decreases. This
is because the CF loss dominates the training. While it only provides the supervision signals to the
density field, the color field cannot be well optimized. Therefore, the weight factor cannot be too
large.

For the number of rays, increasing it helps improve the geometry of the scene. However, more rays
mean higher computational cost. To be more specific, 17 minutes are needed on average to train the
DTU scenes without CF loss. When we add the CF loss and use 10 rays in every iteration, 32 minutes
are needed on average. The time cost further increases to 43 minutes if we use 25 rays. To ensure the
training efficiency, we do not increase the number of rays further.
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Table 7: Average PSNR↑/IMRC↑ of different weight factors λ and numbers of rays |Rcf | on the
DTU dataset.

|Rcf | λ = 1 λ = 2 λ = 5 λ = 10

10 32.00 / 16.18 32.02 / 16.29 32.03 / 16.44 32.04 / 16.59
25 32.04 / 16.12 32.06 / 16.26 32.07 / 16.50 32.08 / 16.66

PSNR: 27.72 PSNR: 27.79 PSNR: 27.81 PSNR: 27.79

IMRC: 14.96 IMRC: 15.46 IMRC: 16.10 IMRC: 16.47 IMRC: 16.73

PSNR: 27.73
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Figure 13: Effect of the weight factor on DTU scan 24.
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|ℛ𝑐𝑓| = 10, 𝜆 = 10 |ℛ𝑐𝑓| = 25, 𝜆 = 10
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Figure 14: Effect of the number of rays on DTU scan 24.
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