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Abstract
We propose a unified Retrieval-Augmented Generation (RAG) ar-
chitecture that simultaneously ensures factual consistency, output
coherence, and computational efficiency. Our method is tailored
for the CRAG-MM Challenge at KDD Cup 2025, aiming to gener-
ate reliable answers by integrating external knowledge into visual
and natural language queries.

The core of our system is built upon LLaMA 3.2 11B Vision-
Instruct, augmented with a structured reasoningmodule and a self-
verification mechanism. Approximately 4,000 supervised training
instances were constructed through a four-stage pipeline consist-
ing of Chain-of-Thought (CoT) output generation, GPT-based eval-
uation, and rewriting.We apply lightweight Supervised Fine-Tuning
(SFT) using a combination of LoRA and DoRA. During inference,
the system generates a search query from the image and question,
retrieves relevant context, and outputs responses in the structured
format <Reasoning> + <Answer>. To mitigate hallucination and
improve reliability, we incorporate LLM-based consistency checks
and ambiguity detection.The inference engine employs vLLMwith
up to 12 concurrent samples, enabling fast batch inference under
a 10-second latency constraint.

For Task 2 and Task 3, we follow the same overall pipeline as
Task 1 in terms of data construction, fine-tuning, and inference.
While the training data is similarly generated in four stages—data
preparation, initial output generation, evaluation, and rewriting—
Tasks 2 and 3 omit the reasoning component and adopt a light-
weight evaluation scheme based solely on semantic correctness.
We further incorporate web-retrieved auxiliary context to improve
answer accuracy. A single shared model, fine-tuned in Task 1, is
reused across tasks, with the same two-stage inference pipeline:
query generation and context integration. Task 3 extends this pipeline
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to support multi-turn QA by incorporating dialog history into the
input.

Our method achieved top-tier performance across all tasks, ob-
taining the highest scores in the Multi-hop (5.9%) and Reasoning
(10.3%) categories, and was awarded the Special Question Cate-
gory Winner. These results demonstrate the effectiveness, reliabil-
ity, and scalability of our proposed architecture.
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1 Introduction
Wearable devices such as smart glasses are emerging as next-generation
platforms that augment users’ visual experiences in real time and
enable intuitive access to information. In such environments, Vi-
sual Question Answering (VQA) systems—which generate natu-
ral language answers based on visual context—play a central role.
Achieving high-reliability VQA requires the ability to integrate vi-
sual input, external knowledge, and conversational history to gen-
erate immediate and evidence-grounded responses.

Recent advances in Vision-Language LargeModels (VLLMs) have
enabled large-scale multimodal reasoning. However, maintaining
output faithfulness and consistency remains challenging for multi-
step reasoning tasks or questions involving comparison and aggre-
gation. To address these issues,methods such as Retrieval-Augmented
Generation (RAG) [1], which dynamically incorporate external knowl-
edge, and its multimodal extension MM-RAG [2], have gained in-
creasing attention.
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This paper reports our solution and findings from theMeta CRAG-
MM Challenge at KDD Cup 2025, which is based on the CRAG-
MM benchmark [3].The challenge evaluates the performance of
MM-RAG systems in real-world settings, using egocentric images
captured from smart-glass perspectives across three tasks. Task 1
focuses on integrating visual information and knowledge graphs
(KGs) to answer basic questions. Task 2 extends this by requiring
dynamic utilization of both KGs and web snippets. Task 3 further
incorporates dialogue history to support context-aware multi-turn
reasoning [2].

Our team, otonadake, designed a unified MM-RAG architecture
applicable to all three tasks. For Task 1, we developed a faithful
and consistent response generation pipeline by combining inter-
mediate reasoning in Chain-of-Thought (CoT) format [4] with a
self-consistency verification module using Large Language Mod-
els (LLMs). Approximately 4,000 training samples were automati-
cally constructed through a four-stage GPT-based procedure and
used to fine-tune the model via structure-aware Supervised Fine-
Tuning (SFT) with LoRA and DoRA [5, 6].

In Tasks 2 and 3, we simplified the architecture by omitting the
structured reasoning and verification modules from Task 1, and
adopted a lightweight two-stage inference pipeline involving im-
age summarization and query generation. Task 3 additionally in-
corporates dialogue history to enable multi-turn VQA.

The proposed approach achieved strong performance across all
tasks, recording the highest scores in the Multi-hop (5.9%) and Rea-
soning (10.3%) categories, and was awarded the Special Question
Category Winner. These results demonstrate the high generaliz-
ability, faithfulness, and extensibility of our architecture.

This paper focuses on Task 1 as the core setting and presents the
overall design and adaptation of our architecture across tasks, the
automatic construction of high-quality training data, the design of
structured prompts, the verification modules for output reliability,
the complete inference pipeline, and detailed benchmark analysis.

2 Related Work
Retrieval-Augmented Generation (RAG):. RAG has been ex-

tensively studied as a framework to address the factual limitations
and knowledge boundaries of Large LanguageModels (LLMs). Since
its initial proposal, a wide range of improvements have been intro-
duced, particularly in terms of retrieval accuracy and controllabil-
ity of output. Notable examples include RAFT [7], which empha-
sizes retriever sparsity and snippet consistency; Astute RAG [8],
which incorporates explicit reliability modeling and answer rejec-
tion; and Counterfactual Prompting [9], which focuses on control-
ling output risks through counterfactual interventions.

Divide-Then-Align [10] further advances this direction by intro-
ducing alignment control based on knowledge boundaries, acceler-
ating the trend toward controllable and faithful RAG systems.

Our work builds upon these developments by designing a RAG
architecture that combines syntactic constraints with answer re-
jection capabilities, enabling faithful response generation in multi-
modal settings.

Chain-of-ThoughtReasoning and StructuralGuidance: Chain-
of-Thought (CoT) prompting has proven effective for multi-step

reasoning tasks that require mathematical, logical, or knowledge-
intensive processing. It facilitates explainable and verifiable out-
puts by encouraging step-by-step reasoning in natural language [11].

However,most priormethods assume free-formnatural language
generation, and fewhave explicitly considered syntactic constraints
or verification efficiency. Moreover, the integration of CoT reason-
ing with answer rejection has been underexplored.

In our approach, CoT reasoning is guided through structured
XML-style tags (e.g., <QuestionType> to <Conclusion>), enabling
both syntactic and semantic consistency, as well as rejectability of
responses when sufficient evidence is lacking.

Multimodal VQAandOutput Reliability: With the advance-
ment of VLLMs, visual-context-aware VQA has achieved signifi-
cant improvements in accuracy. However, in scenarios involving
multi-hop reasoning and integration of external knowledge, chal-
lenges remain in suppressing hallucinations and ensuring output
consistency and faithfulness [12].

MM-RAG, which aims to enhance response quality by integrat-
ing visual, textual, and external knowledge, offers a promising frame-
work. Nevertheless, reliability controls such as explicit output ver-
ification, structured generation, and rejection mechanisms remain
underdeveloped.

In this work, we address these gaps by introducing a unified
MM-RAG inference pipeline that incorporates structure-guided data
construction, fine-tuning, retrieval, generation, and verification for
Task 1. For Tasks 2 and 3, we adapt the same architecture by omit-
ting structured reasoning while maintaining efficiency and practi-
cal utility through task-specific simplifications.

3 Task 1: Method
3.1 Overview
The objective of Task 1 is to generate accurate responses for Vi-
sual Question Answering (VQA) by constructing structured out-
puts that include intermediate reasoning in the Chain-of-Thought
(CoT) format.We develop a fully automated data construction pipeline
for generating such structured training data, followed by super-
vised fine-tuning that explicitly enforces syntactic consistency. Our
proposed method consists of the following three components:

• A four-stage data construction pipeline that generates syn-
tactically constrained structured outputs

• Supervised fine-tuning (SFT) with explicitly injected struc-
tural inductive bias

• An inference pipeline that integrates retrieval, generation,
and verification to enhance output consistency

The remainder of this section describes each component in de-
tail.

3.2 Supervised Fine-Tuning Data Construction
As illustrated in Figure 1, the data construction pipeline comprises
four stages: data preparation, initial response generation, response
evaluation and selection, and final reconstruction.

Each training sample consists of an image, a natural language
question, and a retrieved context obtained via a search engine.These
elements are combined into a structured prompt designed to guide
the model toward reasoning that incorporates visual, internal, and
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Figure 1: Structured output data construction pipeline

external knowledge. The prompt elicits a response with two dis-
tinct sections: <Reasoning> and <Answer>. The <Reasoning> sec-
tion is further constrained to include exactly five XML-style tags in
a fixed order: <QuestionType>, <VisualEvidence>, <Knowledge>,
<ReasoningProcess>, and <Conclusion>. For the full prompt tem-
plate, refer to Appendix A.

Given the structured prompt, we use the LLaMA 3.2 11B Vision-
Instruct model to generate outputs. To balance determinism and
diversity, we produce one deterministic output with temperature
𝑇 = 0.0, and two stochastic outputs for each of five temperatures
𝑇 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, yielding a total of 11 candidate outputs
per prompt.

Figure 2: Evaluation criteria for semantic correctness.

All candidate outputs are automatically evaluated using GPT-
4o-mini. Each response is assessed along two axes: semantic cor-
rectness and syntactic validity. For semantic correctness, as illus-
trated in Figure 2, responses are categorized as Correct (if the an-
swer is factually accurate), Missing (if the response returns ”I don’t
know”), or Incorrect (if it contains factual errors or contradicts the
context). For syntactic validity, responses are labeled as Valid if all
XML tags are used in the correct order and the <Answer> is within
75 tokens; otherwise, they are marked as Invalid.

Based on the evaluation results, a single best output is selected
for each question according to the following priority: (1) Correct +
Valid, (2) Missing + Valid, (3) Correct + Invalid or Missing + Invalid,
and (4) Incorrect.

For selected outputs that are not syntactically valid, we apply re-
construction using GPT-4o. If the content is semantically correct
but contains syntax errors (e.g., misplaced or malformed tags), we
correct only the syntax. If the response is semantically incorrect
but the retrieved context or image supports the correct answer,
we revise both the reasoning and the final answer to produce a
Correct response. If sufficient evidence is lacking, the response is
reconstructed into a Missing answer in the form of ”I don’t know”
reasoning.

All finalized outputs are serialized into XML-conformant for-
mat, ensuring syntactic consistency and semantic faithfulness.These
serve as the ground-truth supervision signals for fine-tuning.

3.3 Structure-Guided Supervised Fine-Tuning
Wefine-tuned the LLaMA3.2 11BVision-Instructmodel using struc-
tured outputs designed to enforce syntactic consistency and stable
reasoning. To achieve parameter-efficient learning while preserv-
ing the fidelity of structured generation, we adopted a hybrid con-
figuration of Low-Rank Adaptation (LoRA) and Dynamically Opti-
mized Rank Adapters (DoRA). Detailed model configurations and
training setups are provided in Appendix B.

The model was trained with a cross-entropy loss applied to the
entire output sequence, including all XML-style tags. To ensure
syntactic precision, the model was explicitly trained to correctly
reproduce tag order, nesting, and proper closure. Furthermore, to
maintain logical coherence, we enforced the learning of a five-step
structure spanning from <QuestionType> to <Conclusion>.

As a result, the fine-tuned model consistently produces syntac-
tically valid outputs during inference and delivers high-fidelity re-
sponses grounded in visual content, natural language queries, and
external context. The integration of DoRA also contributed to im-
proved stability in generating Chain-of-Thought (CoT) style rea-
soning, without compromising computational efficiency.

3.4 Structured Inference Pipeline
We designed an end-to-end inference pipeline for VQA that inte-
grates retrieval-augmented generation, structured response gener-
ation (Reasoning + Answer), and multi-stage verification. The
pipeline aims to simultaneously optimize accuracy, factual consis-
tency, and reasoning efficiency, and is composed of the following
six stages:

Input Processing: Each sample consists of an image-question
pair. For multimodal understanding, the pipeline performs joint
vision-language processing. To ensure scalability across large datasets,
up to 12 samples are processed in parallel per batch, maximizing
throughput across retrieval, generation, and verification stages.

External Context Retrieval: Using the Image Search API pro-
vided in the CRAG-MM Challenge, the system retrieves 50 visu-
ally similar images per input image. The accompanying structured
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Figure 3: Inference pipeline with retrieval, structured generation, and verification

metadata (e.g., product descriptions, categories) is filtered to ex-
tract only textual descriptions, which are then normalized into
plain-text external context.

TextualQueryGeneration: Afine-tuned vision-languagemodel
generates a concise natural language search query based on the
image and question. This query encapsulates visual and linguistic
semantics and is later used for reranking.

Reranking: To identify themost relevant contexts, a cross-encoder
computes semantic relevance scores between the generated query
and the 50 retrievedmetadata entries.We employ BAAI/bge-reranker-
v2-m3, which demonstrates strong performance on MS MARCO
and BEIR benchmarks. The top-ranked context is used as the Ex-
ternalContext in the structured generation stage.

Structured Response Generation: The selected external con-
text, input image, and question are concatenated into a structured
prompt (see Section ⁇) and passed to the model. The output is
divided into two parts: a <Reasoning> block consisting of five ele-
ments (<QuestionType> to <Conclusion>), followed by a concise
natural language response enclosed in <Answer>. This format en-
forces both factual alignment and logical consistency.

Output Verification: The generated Reasoning + Answer un-
dergoes a two-stage verification process. In the first stage, a vision-
language model evaluates the alignment between the reasoning
and the final answer; mismatches are flagged as potential halluci-
nations. In the second stage, ambiguous expressions (e.g., ”proba-
bly”, ”might”) are automatically detected and rewritten as explicit
”I don’t know” answers to control response confidence.This step is
inspired by the R³V framework (Refine–Reflect–Verify) [13], which
promotes progressive refinement for output fidelity.

This pipeline holistically integrates retrieval quality (Retrieve +
Query + Rerank), structured reasoning (Reasoning + Answer), and
output trustworthiness (Verification), forming a robust inference
framework that ensures scalability, accuracy, and explainability.

4 Task 2 and 3: Method
4.1 Overview
This task aims to generate hallucination-free responses for VQA
through automatic construction of supervised data and fine-tuning.
The overall pipeline is illustrated in Figure 5.

Our pipeline builds upon the official baseline architectures pro-
vided for Task 2 and Task 3 of the Meta CRAG-MMChallenge 2025

and consists of two primary stages. In the first stage, a natural
language search query is generated based on the input image and
question. In the second stage, the retrieved results are integrated
with the input to produce the final response. The same fine-tuned
model as in Task 1 is used throughout.

For Task 3, we extend the architecture of Task 2 by incorporat-
ing the dialogue history as an additional input to support multi-
turn VQA. No architectural changes are made to the model, ensur-
ing compatibility with single-turn and multi-turn settings alike.

4.2 Supervised Fine-Tuning Data Construction
In this section, we describe the construction of supervised data
for Tasks 2 and 3, with a focus on the differences from Task 1
(Section ⁇). The data construction pipeline still consists of four
stages: data preparation, initial response generation, output evalu-
ation and selection, and response reconstruction.

Data Preparation: Each sample comprises an image, a natu-
ral language question, and auxiliary context retrieved via image
search, similar to Task 1. However, unlike Task 1, we do not adopt
the reasoning-style output format. Instead, the dataset is constructed
in a concise question-answer format. This design significantly re-
duces prompt length and generation latency, enabling more effi-
cient response generation.

In preliminary experiments, we explored generating reasoning-
style outputs with a limited subset of data. However, the model’s
performancewas unstable in this format, and thus it was not adopted
in the final experiments.We consider this a promising direction for
future research, as it may provide further performance gains under
a more robust training regime.

Output Evaluation: As in Task 1, all generated outputs are
automatically evaluated using GPT-4o-mini. However, unlike Task
1, the evaluation is based solely on semantic correctness, without
verifying structural tags or syntax. This simplifies the evaluation
flow and reduces computational overhead.

ResponseReconstruction: For Tasks 2 and 3, both image search
and web search APIs are available for retrieving external context.
The web-based context often contains useful descriptions that help
the model arrive at correct answers, and we observed that its in-
clusion had a positive impact on response quality.

Therefore, when a generated output is initially labeled as incor-
rect, but sufficient evidence exists in the retrieved context to infer a
correct answer, the output is manually or automatically corrected
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Figure 4: (Left) Accuracy and hallucination rate across learning rates. (Right) Module-wise performance comparison.

and retained as a Correct sample. This strategy improves the di-
versity and reliability of the supervised data used for fine-tuning.

4.3 Structured Supervised Fine-Tuning
We fine-tuned the LLaMA 3.2 11B Vision-Instruct model using the
structured training data described above. To balance syntactic fi-
delity and computational efficiency, we applied a combination of
LoRA and DoRA techniques.

Detailed model configuration and training settings are provided
in Appendix C.

4.4 Structured Inference Pipeline
In contrast to Task 1, this pipeline omits both the reranking mod-
ule in Retrieve External Context and the output verification
module. Preliminary experiments found no significant gain from
output verification, and reranking was not explored in this task.

This streamlined design prioritizes inference speed and general-
ity. The pipeline consists of four key modules, with only modules
that differ from Task 1 described below. Shared components are
omitted for brevity.

Figure 5: Inference pipeline for Tasks 2 and 3

Generate TextQuery: Afine-tuned vision-languagemodel takes
the image and question as input and generates a natural language
search query that reflects user intent. To enhance query quality,
we include explicit instructions in the prompt such as “Generate
keywords suitable for web search,” enabling better integration of
visual and linguistic signals.

Retrieve External Context: External context is retrieved exclu-
sively via a Web Search API, with the top 3 results extracted for
each input. Unlike Task 1, we do not use image-based search APIs,
as preliminary analysis revealed that such sources often introduce

noise and degrade answer quality. This design choice leaves room
for future refinement.

Answer: The retrieved web context, input image, and question
are concatenated to form the final prompt, which is fed into the
fine-tuned model for answer generation. To preserve model gen-
erality, we avoid excessive prompt customization relative to the
provided baseline.

With this design, the model is invoked only twice per inference:
once for visual summarization and once for answer generation.
The use of a single API (Web search) contributes to high infer-
ence throughput. Furthermore, by minimizing reliance on complex
prompt engineering, the pipeline demonstrates strong generaliz-
ability across tasks and domains.

5 Results
In this task, the primary objective is to generate responses that are
both accurate and safe, under a scoring scheme where correct an-
swers receive +1 and incorrect ones receive −1. A major challenge
lies in suppressing “confident hallucinations”—overconfident yet
incorrect outputs—which are common in vision-language models
(VLMs), while preserving the structural integrity of the generated
outputs.

To mitigate overfitting to visual features, we freeze the vision
encoder and apply LoRA adapters only to the MLP and attention
modules. The learning rate is set to 2×10−4. This configuration en-
ables stable generation of outputs with both structural consistency
and semantic faithfulness in the form of <Reasoning> + <Answer>.

As shown in the left panel of Figure 4, increasing the learn-
ing rate improves the accuracy but also elevates the hallucination
rate, revealing a clear trade-off between precision and reliability. In
the right panel, we compare different module configurations and
observe that removing LoRA from the MLP module temporarily
boosts accuracy but leads to a noticeable increase in hallucinations,
thereby undermining the logical consistency of the reasoning pro-
cess.

Furthermore, we apply the same LoRA configuration to Tasks
2 and 3, which results in a favorable trade-off between hallucina-
tions and refusals (i.e., missing answers). The generated outputs
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also received the highest ratings in human evaluation. These find-
ings demonstrate that the architecture designed for Task 1 gener-
alizes well to other tasks, serving as a reliable backbone for trust-
worthy inference.

6 Conclusion
In this work, we proposed a novel MM-RAG architecture that in-
tegrates structured CoT reasoning and a self-verification module
to enable reliable VQA in wearable environments, such as smart
glasses.

For Task 1, we constructed high-fidelity training data by auto-
matically generating structurally constrained outputs with GPT,
incorporating visual information, external context, and syntactic
structure.We then performed structure-aware SFT using both LoRA
and DoRA. Our experiments showed that tuning only the MLP and
attention layers while freezing the vision encoder yields the best
trade-off between structural stability and output reliability. More-
over, we observed a strong impact of learning rate and LoRA con-
figuration on the balance between accuracy and hallucination.

For Tasks 2 and 3, we demonstrated that a simplified two-stage
inference pipeline—excluding structured reasoning and output verification—
can still be effectively derived from the Task 1 design, achieving
high throughput and generalizability across single-turn and multi-
turn QA settings.

Our architecture does not rely on handcrafted prompts or human-
annotated labels, yet achieves a strong balance between structured
output fidelity, semantic accuracy, and inference efficiency. No-
tably, our system achieved the highest scores in the Reasoning and
Multi-hop categories of the KDDCup 2025, demonstrating its prac-
tical utility and robustness.

Future directions include improving the stability of structured
reasoning under low-resource conditions, reducing the computa-
tional cost of verification, and further minimizing prompt depen-
dency. We believe that our approach to structured reasoning and
output consistency provides a solid foundation for future develop-
ments in vision-language models and their real-world VQA appli-
cations.
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Appendix
A Prompt Template for Faithful VQA
A.1 System Prompt:

<CurrentTime>{query𝑡 𝑖𝑚𝑒} < /𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒 >
<Directive> Act as a precise, faithful, and trustwor-
thy assistant specialized in Visual Question Answering
(VQA). For each question, reason step-by-step using a
Chain of Thought (CoT) approach: start with careful
analysis of visual information derived from the image,
incorporate relevant internal factual knowledge, and—
if available—use external context. End with a logically
coherent answer. </Directive>
<Objective> Generate answers that: - Are faithful to
visual information derived from the image - Are precise
and natural in language - Are logically coherent in
reasoning
Follow this source priority: 1. Visual information
derived from the image 2. Internal factual knowledge
3. External context, only if it clearly supports both
the image and the question (<ExternalContext>)
Do not speculate or make unsupported assumptions. </Ob-
jective>
<Guidelines> - Use only clearly visible visual evidence
derived from the image. - Do not speculate, invent
details, or rely on assumptions. - Use external context
only if it clearly supports both the image and the
question. - Only respond with "I don't know." if the
evidence is clearly insufficient and any other answer
would require speculation. - Follow the specified tag
structure exactly. Do not allow any formatting errors
or missing tags. </Guidelines>

A.2 User Prompt:

<|image|>
<Question>question</Question>
<ExternalContext>{context}</ExternalContext>
<Instructions> Analyze the image and question care-
fully. Follow the structured reasoning format below
to answer step-by-step using a Chain of Thought (CoT)
approach. End with a logically coherent and concise
final answer.
<Formatting> - Use the exact tags: <Reasoning> and
<FinalAnswer> - Within <Reasoning>, include all of
the following tags in the given order: <Question-
Type>, <VisualEvidence>, <Knowledge>, <ReasoningPro-
cess>, <Conclusion> - Each tag must be properly
closed (e.g., <Reasoning>...</Reasoning>, <FinalAn-
swer>...</FinalAnswer>) - Place <FinalAnswer> after
<Reasoning>. Write it as a single natural sentence. -
Do not repeat or copy any part of the input prompt
or question. Begin your output with original reasoning
content. - Strictly follow the specified tag struc-
ture. Any formatting errors or missing tags are not
acceptable. </Formatting> </Instructions>

<Reasoning> <QuestionType> The question is: "question"
Identify the type of this question (e.g., yes/no, ob-
ject, counting, attribute) and explain the reasoning
strategy that best fits answering it. </QuestionType>
<VisualEvidence> Identify and describe only what is
clearly visible and verifiable in the image. Use natu-
ral language to describe key visual elements that are
most relevant to answering the question. For each el-
ement, briefly mention: - What the object is - Its
visual attributes (e.g., color, shape, material, tex-
ture, size, printed text, logos, symbols) - Its spa-
tial or functional relationships (e.g., on, next to,
inside, held by, covering) Be concise. Start with the
most relevant elements. Do not include speculation or
unnecessary full sentences. </VisualEvidence>
<Knowledge> Provide relevant internal factual knowl-
edge that complements the visual evidence. If any ex-
ternal context contradicts the image, defer to the
image. </Knowledge>
<ReasoningProcess> Integrate insights from visual evi-
dence and internal knowledge step-by-step. Refer back
to earlier observations when needed. Do not make un-
supported assumptions. </ReasoningProcess>
<Conclusion> Taking into account all previous
reasoning—including visual evidence, internal knowl-
edge, and reasoning steps— provide a final judgment
and its justification that is logically consistent and
comprehensive in answering the question: "question".
</Conclusion> </Reasoning>
<FinalAnswer> Provide a single, natural sentence that
clearly answers the question. Your answer must be log-
ically consistent with the reasoning above. </FinalAn-
swer>
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B Model and Training Configuration for Task 1

Table 1: Task 1: Model Configuration

Item Setting

Base Model LLaMA 3.2 11B Vision-Instruct
Implementation Unsloth FastVisionModel
Vision Layers Frozen
Language Layers Tuned
Attention Modules Enabled
MLP Modules Enabled
LoRA Rank 8
LoRA Alpha 16
LoRA Dropout 0.1
LoRA Bias Disabled
DoRA Enabled

Table 2: Task 1: Training Configuration

Item Setting

Epochs 2
Batch Size 2 × 4 (with gradient accumulation)
Optimizer AdamW (adamw_torch)
Learning Rate 2 × 10−4
Scheduler Cosine Decay
Warm-up Ratio 10%
Precision Mode bfloat16

C Model and Training Configuration for Task
2 & 3

Table 3: Task 2 & 3: Model Configuration

Item Setting

Base Model LLaMA 3.2 11B Vision-Instruct
Implementation Unsloth FastVisionModel
Vision Layers Frozen
Language Layers Tuned
Attention Modules Enabled
MLP Modules Enabled
LoRA Rank 8
LoRA Alpha 16
LoRA Dropout 0.1
LoRA Bias Disabled
DoRA Enabled

Table 4: Task 2 & 3: Training Configuration

Item Setting

Epochs 1
Batch Size 1 × 4 (with gradient accumulation)
Optimizer AdamW (adamw_torch)
Learning Rate 4 × 10−4
Scheduler Linear
Warm-up Steps 2
Precision Mode bfloat16
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