
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMPUTE OPTIMAL INFERENCE AND PROVABLE
AMORTISATION GAP IN SPARSE AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

A recent line of work has shown promise in using sparse autoencoders (SAEs)
to uncover interpretable features in neural network representations. However, the
simple linear-nonlinear encoding mechanism in SAEs limits their ability to per-
form accurate sparse inference. In this paper, we investigate sparse inference and
learning in SAEs through the lens of sparse coding. Specifically, we show that
SAEs perform amortised sparse inference with a computationally restricted en-
coder and, using compressed sensing theory, we prove that this mapping is inher-
ently insufficient for accurate sparse inference, even in solvable cases. Building
on this theory, we empirically explore conditions where more sophisticated sparse
inference methods outperform traditional SAE encoders. Our key contribution
is the decoupling of the encoding and decoding processes, which allows for a
comparison of various sparse encoding strategies. We evaluate these strategies
on two dimensions: alignment with true underlying sparse features and correct
inference of sparse codes, while also accounting for computational costs during
training and inference. Our results reveal that substantial performance gains can
be achieved with minimal increases in compute cost. We demonstrate that this
generalises to SAEs applied to large language models (LLMs), where advanced
encoders achieve similar interpretability. This work opens new avenues for un-
derstanding neural network representations and offers important implications for
improving the tools we use to analyse the activations of large language models.

1 INTRODUCTION

Understanding the inner workings of neural networks has become a critical task since these models
are increasingly employed in high-stakes decision-making scenarios (Fan et al., 2021; Shahroudne-
jad, 2021; Räuker et al., 2023). As the complexity and scale of neural networks continue to grow,
so does the importance of developing robust methods for interpreting their internal representations.
This paper explores the synergy between sparse autoencoders (SAEs) and sparse coding techniques,
aiming to advance our ability to extract interpretable features from neural network activations.

Recent work has investigated the “superposition hypothesis” (Elhage et al., 2022), which posits that
neural networks represent interpretable features in a linear manner using non-orthogonal directions
in their latent spaces. Building on this idea, researchers have shown that individual features can be
recovered from these superposed representations using sparse autoencoders (Bricken et al., 2023;
Cunningham et al., 2023). These models learn sparse and overcomplete representations of neural
activations, with the resulting sparse codes often proving to be more interpretable than the original
dense representations (Cunningham et al., 2023; Elhage et al., 2022; Gao et al., 2024).

The mathematical foundation of SAEs aligns closely with that of sparse coding. Both approaches
assume that a large number of sparse codes are linearly projected into a lower-dimensional space,
forming the neural representation. However, while sparse coding typically involves solving an opti-
misation problem for each input, SAEs learn an efficient encoding function through gradient descent,
potentially sacrificing optimal sparsity for computational efficiency. This trade-off introduces what
we term the “amortisation gap” – the disparity between the best sparse code predicted by an SAE en-
coder and the optimal sparse codes that an unconstrained sparse inference algorithm might produce
(Marino et al., 2018).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this paper, we explore this amortisation gap and investigate whether more sophisticated sparse
inference methods can outperform traditional SAE encoders. Our key contribution is decoupling the
encoding and decoding processes, allowing for a comparison of various sparse encoding strategies.
We evaluate four types of encoding methods on synthetic datasets with known ground-truth features.
We evaluate these methods on two dimensions: alignment with true underlying sparse features and
inference of the correct sparse codes, while accounting for computational costs during both training
and inference. To demonstrate real-world applicability, we also train models on GPT-2 activations
(Radford et al., 2019), showing that more complex methods can yield interpretable features in large
language models. This approach aims to identify optimal strategies for extracting interpretable
features from neural representations across different computational regimes.

2 BACKGROUND AND RELATED WORK

2.1 SPARSE NEURAL REPRESENTATIONS

Sparse representations in neural networks specifically refer to activation patterns where only a small
subset of neurons are active for any given input (Olshausen & Field, 1996). These representations
have gained attention due to their potential for improved interpretability and efficiency (Lee et al.,
2007). Sparse autoencoders (SAEs) are neural network architectures designed to learn sparse repre-
sentations of input data (Ng et al., 2011; Makhzani & Frey, 2013). An SAE consists of an encoder
that maps input data to a sparse latent space and a decoder that reconstructs the input from this latent
representation. Sparse coding, on the other hand, is a technique that aims to represent input data
as a sparse linear combination of basis vectors (Olshausen & Field, 1997). The objective of sparse
coding is to find both the optimal basis (dictionary) and the sparse coefficients that minimise recon-
struction error while maintaining sparsity. While both SAEs and sparse coding seek to find sparse
representations, they differ in their approach. SAEs learn an efficient encoding function through
gradient descent, allowing for fast inference but potentially sacrificing optimal sparsity. Sparse cod-
ing, in contrast, solves an optimisation problem for each input, potentially achieving better sparsity
at the cost of increased computational complexity during inference.

2.2 SUPERPOSITION IN NEURAL REPRESENTATIONS

The superposition hypothesis suggests that neural networks can represent more features than they
have dimensions, particularly when these features are sparse (Elhage et al., 2022). Formally, let us
consider a neural representation y ∈ RM and a set of N features, where typically N > M . In a linear
representation framework, each feature fi is associated with a direction wi ∈ RM . The presence
of multiple features is represented by y =

∑N
i=1 xiwi where xi ∈ R represents the activation

or intensity of feature i. Features are often defined as interpretable properties of the input that
a sufficiently large neural network would reliably dedicate a neuron to representing (Olah et al.,
2020).

In an M -dimensional vector space, only M orthogonal vectors can fit. However, the Johnson-
Lindenstrauss Lemma states that if we permit small deviations from orthogonality, we can fit expo-
nentially more vectors into that space. More formally, for any set of N points in a high-dimensional
space, there exists a linear map to a lower-dimensional space of O(logN/ϵ2) dimensions that pre-
serves pairwise distances up to a factor of (1 ± ϵ). This lemma supports the hypothesis that LLMs
might be leveraging a similar principle in superposition.

Superposition occurs when the matrix W = [w1, ..., wN] ∈ RM×N has more columns than rows
(i.e., N > M), making WTW non-invertible. Superposition relies on the sparsity of feature activa-
tions. Let s = |x|0 be the number of non-zero elements in x = [x1, ..., xN]T . When s ≪ N , the
model can tolerate some level of interference between features, as the probability of many features
being active simultaneously (and thus interfering) is low.

2.3 COMPRESSED SENSING AND SPARSE CODING

Compressed sensing theory provides a framework for understanding how sparse signals can be re-
covered from lower-dimensional measurements (Donoho, 2006). This theory suggests that under

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

certain conditions, we can perfectly recover a sparse signal from fewer measurements than tradi-
tionally required by the Nyquist-Shannon sampling theorem. Let s ∈ RN be a sparse signal with
at most K non-zero components. If we make M linear measurements of this signal, represented as
y = Ws where W ∈ RM×N , compressed sensing theory states that we can recover s from y with
high probability if:

M > O
(
K log

(
N

K

))
(1)

This result holds under certain assumptions about the measurement matrix W , such as the Restricted
Isometry Property (RIP) (Candes, 2008). Sparse coding is one approach to recovering such sparse
representations. The objective function for sparse coding (Olshausen & Field, 1996) is:

L(D,α) :=

n∑
i

|xi −Dαi|22 + λ|αi|1 (2)

where D ∈ Rk×m is the dictionary, αi ∈ Rm are the sparse codes for data point xi ∈ Rk, and λ
is a hyperparameter controlling sparsity. Optimisation of this objective typically alternates between
two steps. First is sparse inference: min

α

∑n
i |xi − Dαi|22 + λ|αi|1. Then dictionary learning:

min
D

∑n
i |xi − Dαi|22 s.t. ∀i ∈ 1, ...,m : |D:, i| = 1. These techniques allow extraction of

interpretable, sparse representations from high-dimensional neural data.

2.4 SPARSE AUTOENCODERS

Sparse autoencoders (SAEs) offer an alternative approach to extracting sparse representations, us-
ing amortised inference instead of the iterative optimisation used in sparse coding. SAEs learn to
reconstruct inputs using a sparse set of features in a higher-dimensional space, potentially disentan-
gling superposed features (Elhage et al., 2022; Olshausen & Field, 1997). The architecture of an
SAE consists of an encoder network that maps the input to a hidden, sparse representation of latent
coefficients, and a decoder network that reconstructs the input as a linear combination of vectors,
with the coefficients defined by the sparse representation. Let xi ∈ Rk be an input vector (as in
our sparse coding formulation), and αi ∈ Rm be the hidden representation (analogous to the sparse
codes in sparse coding), where typically m > k. The encoder and decoder functions are defined as:

Encoder : αi = fθ(xi) = σ(Wexi + be) (3)
Decoder : x̂i = gϕ(αi) = Wdαi + bd (4)

where We ∈ Rm×k and Wd ∈ Rk×m are the encoding and decoding weight matrices, be ∈ Rm and
bd ∈ Rk are bias vectors, and σ(·) is a non-linear activation function (e.g., ReLU). The parameters
θ = We, be and ϕ = Wd, bd are learned during training. The training objective of an SAE combines
reconstruction loss with a sparsity constraint:

L(θ, ϕ) = 1

n

n∑
i=1

|xi − x̂i|22 + λLsparse(αi) (5)

where λ > 0 is a hyperparameter controlling the trade-off between reconstruction fidelity and spar-
sity. The sparsity loss Lsparse(αi) is often L1 regularisation Lsparse(α) = ||α||1.

Comparing this formulation to sparse coding, we can see that SAEs provide an amortised inference
method by learning an encoder function fθ that directly maps inputs to sparse codes. This contrasts
with the iterative optimisation process used in sparse coding for inference.

SAE with Inference-Time Optimisation (SAE+ITO) (SAE+ITO) is an extension of the standard
SAE approach that combines the learned dictionary from SAEs with inference-time optimisation for
sparse code inference (Nanda et al., 2024). In this method, the decoder weights Wd learned during
SAE training are retained, but the encoder function fθ is replaced with an optimisation procedure at
inference time. For each input xi, SAE+ITO solves the following optimisation problem:

α∗
i = argmin

αi

|xi −Wdαi|22 + λ|αi|1 (6)

where λ controls the sparsity of the solution. This formulation allows for potentially more accu-
rate sparse codes by directly minimising reconstruction error, rather than relying on the learned

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Sparse Codes
“true features”

Observations
“neural responses”

Learned Codes
“SAE output”

EncoderDecoder

Linear Linear-Nonlinear

Figure 1: Illustration of SAE Amortisation Gap. Left, shows sparse sources in an N = 3 di-
mensional space with at most ∥s∥ ≤ K = 2 non-zero entries. Both blue and red points are valid
sources, by contrast, the top right corner s = (1, 1, 1) is not. Middle, shows the sources as they are
linearly decoded into observation space. This is, in most applications, the activation space of a neu-
ral network that we are trying to lift out of superposition. Right, shows how using a linear-nonlinear
encoder, a SAE is tasked to project the points back onto their correct positions. This is not possible,
because the pre-activations are at most M = 2 dimensional (see proof in Appendix A).

encoder approximation. While this approach incurs higher computational costs during inference, it
can potentially achieve better reconstruction quality and more flexible control over sparsity levels
without retraining the entire model. The optimisation problem can be solved using algorithms such
as matched pursuit (Blumensath & Davies, 2008) and gradient pursuit (Nanda et al., 2024).

2.5 APPLICATIONS IN NEURAL NETWORK MODELS

Sparse autoencoders (SAEs) have emerged as a promising tool for enhancing the interpretability
of large language models (LLMs) by extracting interpretable features from their dense representa-
tions. Early work by Cunningham et al. (2023) and Bricken et al. (2023) demonstrated the potential
of sparse dictionary learning to untangle features, lifting them out of superposition in transformer
MLPs. This approach was extended to attention heads by Kissane et al. (2024), who scaled it to
GPT-2 (Radford et al., 2019). These studies have shown that SAEs can extract highly abstract, mul-
tilingual, and multimodal features from LLMs, including potentially safety-relevant features related
to deception, bias, and dangerous content (Templeton, 2024). In vision models, Gorton (2024) and
Klindt et al. (2023) trained SAEs on convolutional neural network activations. The latter found that
K-means (which is equivalent to one-hot sparse coding) outperformed SAEs (Fig.12) in quantitative
interpretability metrics (Zimmermann et al., 2024).

The scaling of SAEs to larger models has been a focus of recent research, with significant progress
made in applying them to state-of-the-art LLMs. Gao et al. (2024) proposed using k-sparse autoen-
coders (Makhzani & Frey, 2013) to simplify tuning and improve the reconstruction-sparsity frontier,
demonstrating clean scaling laws with respect to autoencoder size and sparsity. They successfully
trained a 16 million latent autoencoder on GPT-4 activations. Similarly, Templeton (2024) reported
extracting high-quality features from Claude 3 Sonnet, while Lieberum et al. (2024) released a com-
prehensive suite of SAEs trained on all layers of Gemma 2 models. These advancements underscore
the importance of developing efficient and accurate SAE techniques to reduce the amortisation gap,
especially as applications to larger models become more prevalent. The growing body of work on
SAEs in LLMs suggests that they may play a crucial role in future interpretability research.

3 METHODS

This section outlines our approach to comparing sparse encoding strategies. We begin by presenting
a theoretical foundation for the suboptimality of sparse autoencoders (SAEs), followed by our data
generation process, encoding schemes, evaluation metrics, and experimental scenarios.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 THEORY: PROVABLE SUBOPTIMALITY OF SAES

Theorem 1 (SAE Amortisation Gap). Let S = RN be N sources following a sparse distribution
PS such that any sample has at most K ≥ 2 non-zero entries, i.e., ∥s∥0 ≤ K,∀s ∈ supp(PS).
The sources are linearly projected into an M -dimensional space, satisfying the restricted isometry
property, where K log N

K ≤ M < N . A sparse autoencoder (SAE) with a linear-nonlinear (L-NL)
encoder must have a non-zero amortisation gap.

The complete proof of Theorem 1 is provided in Appendix A. The theorem considers a setting where
sparse signals s ∈ RN with at most K non-zero entries are projected into an M -dimensional space
(M < N). Compressed sensing theory guarantees that unique recovery of these sparse signals is
possible when M ≥ K log(N/K), up to sign ambiguities (Donoho, 2006). However, we prove
that SAEs fail to achieve this optimal recovery, resulting in a non-zero amortisation gap. The core
of this limitation lies in the architectural constraints of the SAE’s encoder. The linear-nonlinear
(L-NL) structure of the encoder lacks the computational complexity required to fully recover the
high-dimensional (N) sparse representation from its lower-dimensional (M) projection. Figure 1
illustrates this concept geometrically.

3.2 SYNTHETIC DATA

To evaluate our sparse encoding strategies, we generate synthetic datasets with known ground-truth
latent representations and dictionary vectors. We first construct a dictionary matrix D ∈ RM×N ,
where each column represents a dictionary element. We then generate latent representations si ∈
RN with exactly K non-zero entries (K ≪ N), drawn from a standard normal distribution. This
allows us to create observed data points as xi = Dsi+ϵi, where ϵi ∼ N (0, σ2I) represents additive
Gaussian noise. This process yields a dataset D = (xi, si)

n
i=1, where xi ∈ RM and si ∈ RN .

3.3 SPARSE ENCODING SCHEMES

We compare four sparse encoding strategies:

1. Sparse Autoencoder (SAE): f(x) := σ(Wx), where σ is a nonlinear activation function.

2. Multilayer Perceptron (MLP): f(x) := σ(Wnσ(Wn−1 . . . σ(W1x))), with the same de-
coder as the SAE.

3. Sparse Coding (SC): f(x) = argminŝ |x−Dŝ|22+λ||ŝ||1, solved iteratively with st+1 =
st + η∇L, where L is the MSE loss with L1 penalty.

4. SAE with Inference-Time Optimisation (SAE+ITO): Uses the learned SAE dictionary,
optimising sparse coefficients at inference time.

For all methods, we normalise the column vectors of the decoder matrix to have unit norm, prevent-
ing the decoder from reducing the sparsity loss ||ŝ||1 by increasing feature vector magnitudes.

3.4 MEASURING THE QUALITY OF THE ENCODER AND DECODER

For any given x, how do we measure the quality of (1) the encoding (i.e. the sparse coefficients);
and (2) the decoding (i.e. the actual reconstruction, given the coefficients)?

We employ the Mean Correlation Coefficient (MCC) to evaluate both encoder and dictionary quality:

MCC =
1

d

∑
(i,j)∈M

|cij | (7)

where cij is the Pearson correlation coefficient between the i-th true feature and the j-th learned
feature, and M is the set of matched pairs determined by the Hungarian algorithm (or a greedy
approximation when dimensions differ). This metric quantifies alignment between learned sparse
coefficients and true underlying sparse features (encoder quality), and learned dictionary vectors and
true dictionary vectors (dictionary quality).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.5 DISENTANGLING DICTIONARY LEARNING AND SPARSE INFERENCE

Our study decomposes the sparse coding problem into two interrelated tasks: dictionary learning
and sparse inference. Dictionary learning involves finding an appropriate sparse dictionary D ∈
RM×N from data, while sparse inference focuses on reconstructing a signal x ∈ RM using a sparse
combination of dictionary elements, solving for s ∈ RN in x ≈ Ds where s is sparse. These tasks
are intrinsically linked: dictionary learning often involves sparse inference in its inner loop, while
sparse inference requires a dictionary.

Known Sparse Codes. In this scenario, we assume knowledge of the true sparse codes s∗ and
focus solely on the encoder’s ability to predict these latents, effectively reducing the problem to la-
tent regression. We define the objective as minimising L(f(x), s∗) = 1− cos(f(x), s∗), where f is
the encoding function and cos denotes cosine similarity.1 In this setting, only the SAE encoder and
MLP are applicable, as they directly learn mappings from input to latent space. The SAE encoder
learns an amortised inference function, while the MLP learns a similar but more complex mapping.
Conversely, SAE+ITO and sparse coding are not suitable for this task. SAE+ITO focuses on op-
timising reconstruction using a fixed dictionary, which is irrelevant when true latents are known.
Similarly, sparse coding alternates between latent and dictionary optimisation, which reduces to
encoder training when the dictionary is disregarded.

Known Dictionary. When the true dictionary D∗ is known, we focus on optimising the encoder
or inference process while keeping the dictionary fixed. This scenario is applicable to SAE, MLP,
and SAE+ITO methods. For SAE and MLP, we optimise minθ Ex[|x − D∗fθ(x)|22], where fθ
represents the encoder function with parameters θ. SAE+ITO, in contrast, performs gradient-based
optimisation at inference time: mins |x − D∗s|22 + λ|z|1 for each input x, incurring zero training
FLOPs but higher inference-time costs. This differs from SAE and MLP by directly optimising
latent coefficients rather than learning an encoding function. Sparse coding is not applicable in this
scenario, as it reduces to SAE+ITO when the dictionary is known and fixed.

Unknown Sparse Codes and Dictionary. This scenario represents the standard setup in sparse
coding, where both the sparse codes s and the dictionary D are unknown and must be learned
simultaneously. All four methods—SAE, MLP, SAE+ITO, and sparse coding—are applicable in this
context, each approaching the problem differently. SAE and MLP learn both an encoder function
fθ(x) and a dictionary D simultaneously. SAE+ITO and sparse coding learn a dictionary during
training and optimises latents at inference time.

4 SYNTHETIC SPARSE INFERENCE EXPERIMENTS

We present the results of our experiments comparing different sparse encoding strategies across
various scenarios. To provide a minimal setting for investigating the phenomena of interest, all ex-
periments were conducted using synthetic data with N = 16 sparse sources, M = 8 measurements,
and K = 3 active components per timestep, unless otherwise specified (more settings in Sec. 4.4).

4.1 KNOWN SPARSE CODES

We first compare the performance of sparse autoencoders (SAEs) and multilayer perceptrons (MLPs)
in predicting known latent representations. Figure 2 illustrates the performance of SAEs and MLPs
with varying hidden layer widths. MLPs consistently outperform SAEs in terms of Mean Correlation
Coefficient (MCC), with wider hidden layers achieving higher performance (Figure 2a). The MLP
with H = 1024 reaches an MCC approximately 0.1 higher than the SAE at convergence. While
MLPs converge faster in terms of training steps, this comes at the cost of increased computational
complexity (Figure 2b). All MLPs surpass the SAE’s plateau performance at approximately the
same total FLOPs, suggesting a consistent computational threshold beyond which MLPs become
more effective, regardless of hidden layer width.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

101 102 103 104

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

M
CC

SAE
MLP (H = 32)
MLP (H = 256)
MLP (H = 1024)

(a) MCC vs. training steps

107 108 109 1010 1011 1012

FLOPs

0.0

0.2

0.4

0.6

0.8

1.0

M
CC

SAE
MLP (H = 32)
MLP (H = 256)
MLP (H = 1024)

(b) MCC vs. total FLOPs

Figure 2: Performance comparison of SAE and MLPs in predicting known latent representations.
The black dashed line in (b) indicates the average FLOPs at which MLPs surpass SAE performance.

102 103 104

Training Steps

0.5

0.6

0.7

0.8

0.9

M
CC

SAE
SAE+ITO
MLP (H=32)
MLP (H=256)

(a) MCC vs. training steps

108 109 1010 1011 1012

FLOPs

0.5

0.6

0.7

0.8

0.9

M
CC

SAE
SAE+ITO
MLP (H=32)
MLP (H=256)

(b) MCC vs. total FLOPs

Figure 3: Performance comparison of SAE, SAE with inference-time optimisation (SAE+ITO), and
MLPs in predicting latent representations with a known dictionary. Dashed lines in (b) indicate
extrapolated performance beyond the measured range.

4.2 KNOWN DICTIONARY

Next, we examine the performance of different encoding strategies when the true dictionary D∗

is known. Figure 3 shows the performance of SAE, SAE+ITO, and MLPs. MLPs consistently
outperform the standard SAE, achieving an MCC nearly 10% higher at convergence (Figure 3a).
Both MLP configurations (H = 32 and H = 256) converge to similar performance levels, with
the wider network showing faster initial progress. When plotted against total FLOPs, the MLP
curves overlap, suggesting a consistent computational cost-to-performance ratio across different
hidden layer widths (Figure 3b). SAE+ITO initialised with SAE latents exhibits distinct, stepwise
improvements throughout training, ultimately achieving the highest MCC.

4.3 UNKNOWN SPARSE CODES AND DICTIONARY

Finally, we evaluate all four methods when both latent representations and dictionary are unknown.
We use a dataset of 2048 samples, evenly split between training and testing sets, and conduct 5
independent runs of 100, 000 training steps each.

Figures 4 illustrates the performance in latent prediction and dictionary learning, respectively. For
latent prediction, SAE, SAE+ITO, and MLPs converge to similar MCC, with MLPs showing a slight
advantage. Sparse coding demonstrates superior performance, achieving an MCC over 10% higher
than other methods, despite an initial decrease in performance. Sparse coding reaches this higher
performance while using comparable FLOPs to the MLP with H = 256. For dictionary learning,
both MLPs and sparse coding outperform SAE by a margin of approximately 10%. Sparse coding
again exhibits an initial decrease in dictionary MCC before surpassing other methods.

1We use cosine similarity rather than MSE loss in this setting because we found training to be more stable.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000 30000 35000 40000
Training Steps

0.3

0.4

0.5

0.6

0.7

M
CC

SAE
SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(a) Latent prediction: MCC vs. training steps

107 108 109 1010 1011 1012

FLOPs

0.3

0.4

0.5

0.6

0.7

M
CC

SAE
SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(b) Latent prediction: MCC vs. total FLOPs

0 5000 10000 15000 20000 25000 30000 35000 40000
Training Steps

0.4

0.5

0.6

0.7

0.8

0.9

Di
ct

io
na

ry
 M

CC

SAE
SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(c) Dictionary learning: MCC vs. training steps

107 108 109 1010 1011 1012

FLOPs

0.4

0.5

0.6

0.7

0.8

0.9

Di
ct

io
na

ry
 M

CC

SAE
SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(d) Dictionary learning: MCC vs. total FLOPs

Figure 4: Dictionary learning performance comparison when both s∗ and D∗ are unknown.

4.4 PERFORMANCE ACROSS VARYING DATA REGIMES

To understand how performance varies with changes in data characteristics, we trained models under
varying N , M , and K, holding other hyperparameters constant.

25 50 75 100 125
N

10

15

20

25

30

M

SparseCoding - SAE
Recovery Boundary

25 50 75 100 125
N

10

15

20

25

30
MLP - SAE
Recovery Boundary

-0.45
-0.36
-0.27
-0.18
-0.09
0.00
0.09
0.18
0.27
0.36
0.45

La
te

nt
 M

CC
 D

iff
er

en
ce

(a) K = 3

25 50 75 100 125
N

10

15

20

25

30

M

SparseCoding - SAE

Recovery Boundary
25 50 75 100 125

N

10

15

20

25

30
MLP - SAE

Recovery Boundary -0.24
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.24

La
te

nt
 M

CC
 D

iff
er

en
ce

(b) K = 9

Figure 5: Difference in final latent MCC between methods across varying N and M , for K = 3 and
K = 9. Left: Sparse coding vs. SAE. Right: MLP vs. SAE. The black dashed line indicates the
theoretical recovery boundary.

Figure 5 shows the difference in final latent MCC between methods. Sparse coding outperforms
SAE in essentially all data-generation regimes, for both K = 3 and K = 9. MLP and SAE perform
roughly equivalently, with MLP slightly better as M (number of measurements) increases. The
performance advantage of sparse coding is more pronounced in regimes where compressed sensing
theory predicts recoverability (above and to the left of the black dashed line).

Sparsity-Performance Trade-off We also investigated the trade-off between sparsity and perfor-
mance for each method in Figure 6. Sparse coding achieves slightly lower reconstruction error for
each L0 level, barring some very small active latents. Sparse coding shows a Pareto improvement
at each L0 level in terms of MCC, even with very small active latents. The improvement is more
evident when plotting against L1 rather than L0, as L1 accounts for the magnitude of non-zero val-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
L0 Loss

0.0

0.1

0.2

0.3
M

SE
 L

os
s

L0 vs MSE Loss
SAE
MLP
SC (1e-03)
SC (1e-04)
SC (1e-05)
True L0

0.00 0.25 0.50 0.75 1.00
L0 Loss

0.2

0.4

0.6

0.8

M
CC

L0 vs MCC

SAE
MLP
SC (1e-03)
SC (1e-04)
SC (1e-05)
True L0

0.0 0.1 0.2 0.3
L1 Loss

0.0

0.1

0.2

0.3

M
SE

 L
os

s

L1 vs MSE Loss
SAE
MLP
SparseCoding

0.0 0.1 0.2 0.3
L1 Loss

0.2

0.4

0.6

0.8

M
CC

L1 vs MCC

SAE
MLP
SparseCoding

Figure 6: Pareto curves showing sparsity (L0 or L1 loss) against performance (MSE loss or latent
MCC) for models trained with varying L1 penalty coefficients λ. The red dashed line in the top row
shows the true L0 of the sparse sources. Multiple thresholds for active features are shown for sparse
coding due to the presence of very small non-zero values.

ues. The presence of very small non-zero latents in sparse coding motivates the exploration of top-k
sparse coding, detailed in Appendix F.2.

5 INTERPRETABILITY OF SPARSE CODING SCHEMES

A common criticism of more powerful encoding techniques is that they can find concepts that are
more difficult to interpret, or that are not actually used by the model. To investigate the interpretabil-
ity of more complex encoding techniques, we trained both an SAE and MLP on 406 million tokens
from OpenWebText. The MLP used a hidden width of 4224 and both models had 16, 896 sparse
codes. The models were trained on the residual-stream pre-activations of Layer 9 in GPT-2 Small,
which have a dimension of 768. We used a learning rate of 3 · 10−4 and an L1 penalty of 1 · 10−4.
Throughout training, we tracked normalised mean squared error (MSE), dividing it by the error
when predicting the mean activations, as well as L0 sparsity. The final SAE achieved a normalised
MSE of 0.062 with an average L0 of 39.55, while the MLP reached a normalised MSE of 0.051
with an average L0 of 40.20. The final models had a significant number of dead neurons (measured
as not having fired in the last 50, 000 training steps): 71% for the SAE and 66% for the MLP.

To assess the interpretability of the learned features, we selected 200 random features that activated
on our test set of 13.1 million OpenWebText tokens. For each feature, we employed an automated
interpretability classification approach. We identified the top 10 activating examples for the feature
in our test dataset and labelled the token with the highest activation. We also computed logit ef-
fects for each feature through the path expansion WU · f , where WU is the model’s unembedding
matrix and f is the feature vector. The top 10 and bottom 10 tokens resulting from this logit effect
calculation were noted.

We provided both the activating examples and the top and bottom promoted logits to GPT-4, which
was instructed to construct a precise explanation of the feature’s function (prompt in Appendix H).
To evaluate the accuracy of these interpretations, we presented them to another instance of GPT-4
along with 5 new activating examples and 5 non-activating examples, labeling the token on which
the feature potentially activates. The model was then asked to predict which of these examples the
feature would activate on, and we calculated the F1-score compared to the ground truth.

Figure 7 displays the distributions of the F1 scores for the 200 SAE and MLP characteristics. The
results indicate that the MLP features demonstrate interpretability comparable to the SAE features.

6 DISCUSSION

Our study presents both theoretical and empirical evidence for the existence of an inherent amorti-
sation gap in sparse autoencoders (SAEs) when applied to neural network interpretability tasks. We
prove that SAEs with linear-nonlinear encoders cannot achieve optimal sparse recovery in settings
where such recovery is theoretically possible. This limitation is corroborated by our experimental
results, which demonstrate superior performance of more complex encoding methods, such as mul-
tilayer perceptrons (MLPs) and sparse coding, across various synthetic data scenarios. Notably, our

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

SAE MLP
0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
es

N=200
=0.64

N=200
=0.69

Interpretability F1 Score

Figure 7: Distribution of F1 scores for feature interpretability of an SAE and an MLP trained on
residual stream activations of Layer 9 in GPT-2.

investigation of GPT-2 activations reveals that MLP-based features exhibit interpretability compara-
ble to, and in some cases exceeding, that of SAE features. These findings challenge the prevailing
assumption that simpler encoders are necessary for maintaining interpretability. The results of our
study have significant implications for the field of neural network interpretability, particularly in the
context of large language models. They suggest that more sophisticated encoding techniques can
potentially improve feature extraction and interpretability without compromising the validity of the
extracted features. However, this potential improvement comes with increased computational costs.
Our work provides a framework for exploring this trade-off.

The use of simple linear-nonlinear encoders in SAEs for language model interpretability has been
primarily motivated by concerns that more powerful methods might extract features not actually
utilised by the transformer (Bricken et al., 2023). However, this approach may be overly conservative
given the complexity of representations in transformer layers, which result from multiple rounds of
attention and feed-forward computations. Better encoders aligns with recent work on inference-
time optimisation (Nanda et al., 2024), and will be validated as we improve encoding evaluation
(Makelov et al., 2024). Regardless, SAEs are sensitive to hyperparameters and fragile (Cunningham
et al., 2023), so exploring more powerful encoders is warranted.

The computational cost of more complex encoders should be weighed against potential benefits in
feature extraction and interpretability. Given the significant resources already invested in projects
like Gemma Scope (Lieberum et al., 2024), allocating additional compute to enhance representation
quality before decoding may be justified. Importantly, more sophisticated encoders can still maintain
the linear decoder necessary for downstream tasks such as steering. Empirical studies comparing
feature quality across encoder complexities will be important, as will addressing concerns about
non-zero-centered representations raised by Hobbhahn (2023).

Limitations Our study has several limitations that warrant consideration. We primarily explored
scenarios with constant sparsity and uncorrelated channels in the sparse representation, which may
not fully capture the complexity of real-world data. Additionally, our analysis focused on vanilla
implementations of the models, which are susceptible to issues like shrinkage due to the L1 penalty.
To comprehensively understand the current amortisation gap, future work should incorporate recent
SAE variants such as top-k SAEs (Makhzani & Frey, 2013; Gao et al., 2024) and JumpReLU SAEs
(Rajamanoharan et al., 2024b), as discussed in Appendix F.1. This extension would allow us to anal-
yse how large the amortisation gap is with the new SAE architectures. Similarly, our implementation
of SAE+ITO did not use advanced techniques like matched pursuit or gradient pursuit, potentially
underestimating its performance. The traditional dictionary learning approaches explored in Ap-
pendix F suggest room for improvement in this area. Lastly, our synthetic data generation process
did not account for varying feature importance, a key aspect of Elhage et al. (2022)’s framework.
Addressing these limitations in future research would provide a more comprehensive understanding
of sparse encoding strategies and their applicability to complex neural representations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in lan-
guage models. URL https://openaipublic. blob. core. windows. net/neuron-explainer/paper/index.
html.(Date accessed: 14.05. 2023), 2, 2023.

Thomas Blumensath and Mike E Davies. Gradient pursuits. IEEE Transactions on Signal Process-
ing, 56(6):2370–2382, 2008.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decom-
posing language models with dictionary learning. Transformer Circuits Thread, 2, 2023.

Emmanuel J Candes. The restricted isometry property and its implications for compressed sensing.
Comptes rendus. Mathematique, 346(9-10):589–592, 2008.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–
1306, 2006.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. 2004.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Feng-Lei Fan, Jinjun Xiong, Mengzhou Li, and Ge Wang. On interpretability of artificial neural
networks: A survey. IEEE Transactions on Radiation and Plasma Medical Sciences, 5(6):741–
760, 2021.

Alex Foote, Neel Nanda, Esben Kran, Ioannis Konstas, and Fazl Barez. N2g: A scalable approach
for quantifying interpretable neuron representation in llms. In ICLR 2023 Workshop on Trustwor-
thy and Reliable Large-Scale Machine Learning Models.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Tim van Gelder. Defining ‘distributed representation’. Connection science, 4(3-4):175–191, 1992.

Liv Gorton. The missing curve detectors of inceptionv1: Applying sparse autoencoders to incep-
tionv1 early vision. arXiv preprint arXiv:2406.03662, 2024.

Marius Hobbhahn. More findings on memorization and double descent, 2023.
URL https://www.alignmentforum.org/posts/KzwB4ovzrZ8DYWgpw/
more-findings-on-memorization-and-double-descent. [Accessed 29-09-
2024].

Caden Juang, Gonçalo Paulo, Jacob Drori, and Nora Belrose. Open source automated inter-
pretability for sparse autoencoder features, 2024. URL https://blog.eleuther.ai/
autointerp/. [Accessed 29-09-2024].

Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, and Neel Nanda. In-
terpreting attention layer outputs with sparse autoencoders. arXiv preprint arXiv:2406.17759,
2024.

David Klindt, Sophia Sanborn, Francisco Acosta, Frédéric Poitevin, and Nina Miolane. Iden-
tifying interpretable visual features in artificial and biological neural systems. arXiv preprint
arXiv:2310.11431, 2023.

11

https://www.alignmentforum.org/posts/KzwB4ovzrZ8DYWgpw/more-findings-on-memorization-and-double-descent
https://www.alignmentforum.org/posts/KzwB4ovzrZ8DYWgpw/more-findings-on-memorization-and-double-descent
https://blog.eleuther.ai/autointerp/
https://blog.eleuther.ai/autointerp/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. Sparse deep belief net model for visual area
v2. Advances in neural information processing systems, 20, 2007.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2, 2024. URL https://arxiv.org/abs/
2408.05147.

Aleksandar Makelov, George Lange, and Neel Nanda. Towards principled evaluations of sparse
autoencoders for interpretability and control, 2024. URL https://arxiv.org/abs/2405.
08366.

Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint arXiv:1312.5663, 2013.

Joe Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference. In International Con-
ference on Machine Learning, pp. 3403–3412. PMLR, 2018.

Neel Nanda, Arthur Conmy, Lewis Smith, Senthooran Rajamanoharan, Tom Lieberum, János
Kramár, and Vikrant Varma. Progress update 1 from the gdm mech interp team,
2024. URL https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/
full-post-progress-update-1-from-the-gdm-mech-interp-team. [Ac-
cessed 01-09-2024].

Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3):e00024–001, 2020.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997.

Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy Krishnaprasad. Orthogonal
matching pursuit: Recursive function approximation with applications to wavelet decomposition.
In Proceedings of 27th Asilomar conference on signals, systems and computers, pp. 40–44. IEEE,
1993.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders. arXiv preprint arXiv:2404.16014, 2024a.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders. arXiv preprint arXiv:2407.14435, 2024b.

Tilman Räuker, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. Toward transparent ai: A
survey on interpreting the inner structures of deep neural networks. In 2023 ieee conference on
secure and trustworthy machine learning (satml), pp. 464–483. IEEE, 2023.

David E Rumelhart, Geoffrey E Hinton, James L McClelland, et al. A general framework for parallel
distributed processing. Parallel distributed processing: Explorations in the microstructure of
cognition, 1(45-76):26, 1986.

Atefeh Shahroudnejad. A survey on understanding, visualizations, and explanation of deep neural
networks. arXiv preprint arXiv:2102.01792, 2021.

Paul Smolensky et al. Optimality in phonology ii: Harmonic completeness, local constraint con-
junction, and feature domain markedness. The harmonic mind: From neural computation to
optimality-theoretic grammar, 2:27–160, 2006.

12

https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2405.08366
https://arxiv.org/abs/2405.08366
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Glen Taggart. Profilu: A nonlinearity for sparse autoencoders. In AI Alignment Forum, 2024.

Adly Templeton. Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet.
Anthropic, 2024.

Simon Thorpe. Local vs. distributed coding. Intellectica, 8(2):3–40, 1989.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Tim Van Gelder. Compositionality: A connectionist variation on a classical theme. Cognitive
Science, 14(3):355–384, 1990.

Benjamin Wright and Lee Sharkey. Addressing feature suppression in saes. In AI Alignment Forum,
pp. 16, 2024.

Roland S Zimmermann, David A Klindt, and Wieland Brendel. Measuring mechanistic interpretabil-
ity at scale without humans. volume 38, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Background and Related Work 2

2.1 Sparse Neural Representations . 2

2.2 Superposition in Neural Representations . 2

2.3 Compressed Sensing and Sparse Coding . 2

2.4 Sparse Autoencoders . 3

2.5 Applications in Neural Network Models . 4

3 Methods 4

3.1 Theory: Provable Suboptimality of SAEs . 5

3.2 Synthetic data . 5

3.3 Sparse Encoding Schemes . 5

3.4 Measuring the quality of the encoder and decoder 5

3.5 Disentangling Dictionary Learning and Sparse Inference 6

4 Synthetic Sparse Inference Experiments 6

4.1 Known Sparse Codes . 6

4.2 Known Dictionary . 7

4.3 Unknown Sparse Codes and Dictionary . 7

4.4 Performance Across Varying Data Regimes . 8

5 Interpretability of Sparse Coding Schemes 9

6 Discussion 9

A Amortisation gap proof 15

B Conceptual Modelling Framework 16

C Decoder weight analysis 16

D MLP Ablations 18

E Including a bias parameter 18

F Comparison with traditional dictionary learning methods 20

F.1 Optimised Sparse Autoencoders and Sparse Coding 20

F.1.1 Advanced Sparse Autoencoder Techniques 20

F.1.2 Optimised Sparse Coding Approaches . 22

F.2 Top-k sparse coding . 22

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

G Measuring FLOPs 22

G.1 Sparse Coding . 22

G.2 Sparse Autoencoder (SAE) . 24

G.3 Multilayer Perceptron (MLP) . 24

G.4 SAE with Inference-Time Optimisation (SAE+ITO) 24

H Automated interpretability 25

H.1 Feature Interpreter Prompt . 25

H.2 Feature Scorer Prompt . 25

H.3 Evaluation of Automated Interpretability . 25

A AMORTISATION GAP PROOF

Theorem 1 (SAE Amortisation Gap). Let S = RN be N sources following a sparse distribution
PS such that any sample has at most K ≥ 2 non-zero entries, i.e., ∥s∥0 ≤ K,∀s ∈ supp(PS).
The sources are linearly projected into an M -dimensional space, satisfying the restricted isometry
property, where K log N

K ≤ M < N . A sparse autoencoder (SAE) with a linear-nonlinear (L-NL)
encoder must have a non-zero amortisation gap.

This setting is solvable according to compressed sensing theory Donoho (2006), meaning that it is
possible to uniquely recover the true S up to sign flips – we cannot resolve the ambiguity between
the sign of any code element and the corresponding row in the decoding matrix. If a SAE fails to
achieve the same recovery, then there must be a non-zero amortisation gap, meaning that the SAE
cannot solve the sparse inference problem of recovering all sparse sources from their M -dimensional
projection. The problem is the low computational complexity of the L-NL encoder as we see by
looking at its functional mapping. Essentially, the SAE is not able, not even after the nonlinear
activation function, to recover the high dimensionality (N) of the data after a projection into a lower
(M) dimensional space Figure 1.

Proof. Let S = diag(s11, ..., sNN) be a diagonal matrix with non-zero diagonal elements sii ̸=
0,∀i ∈ {1, ..., N}. Ever row si is a valid source signal because it has non-zero support under PS

since, ∥si∥0 = 1 ≤ K,∀i ∈ {1, ..., N}. Let Wd ∈ RN×M be the unknown projection matrix from
N down to M dimensions and We ∈ RM×N be the learned encoding matrix of the SAE. Define
W := WdWe ∈ RN×N and

S′ := SW (8)
the pre-activation matrix from the encoder of the SAE. Since Wd projects down into M dimensions,

rank(W) = rank(WdWe) ≤ M. (9)

It follows that
rank(S′) = rank(SW) ≤ M. (10)

As an intermediate results, we conclude that the pre-activations S′ of the SAE encoder cannot re-
cover the sources S′ ̸= |S| since rank(|S|) = N , because S is a diagonal matrix.

The next step is to see whether the nonlinear activation function might help to map back to the
sources. The SAE must learn an encoding matrix We such that

|S| = max(0, SWdWe) = max(0, SW) = max(0, S′) (11)

where max(0, ·) is the ReLU activation function. Thus, for the SAE to correctly reconstruct the
sparse signals up to sign flips, for any source code σ ∈ supp(PS), we require

(σW)i =

{
|σi| if σi ̸= 0

≤ 0 otherwise
(12)

specifically, S′ must be non-positive off the diagonal and identical to |S| on the diagonal.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Approach: Show that a matrix S′ cannot simultaneously satisfy conditions (eq. 10) and (eq. 12).

According to (eq. 8) and condition (eq. 12), we require that

s1W = (s′11, s
′
12, s

′
13, ..., s

′
1N) = (|s11|, s′12, s′13, ..., s′1N) (13)

with s′1i ≤ 0 for all i ∈ {2, ..., N}. Analogously,

s2W = (s′21, s
′
22, s

′
23, ..., s

′
2N) = (s′21, |s22|, s′23, ..., s′2N) (14)

with s′2i ≤ 0 for all i ∈ {1, 3, ..., N}. Moreover, since ∥s1 + s2∥0 = 2 < K we know that s1 + s2
has non-zero support under PS , so condition (eq. 12) must also hold for it. Thus, we need that

(s1 + s2)W = (|s11 + s21|, |s12 + s22|, γ1, ..., γN−2)

= (|s11 + 0|, |0 + s22|, γ1, ..., γN−2)

= (|s11|, |s22|, γ1, ..., γN−2)

(15)

with some non-positive γi ≤ 0 for all i ∈ {1, ..., N − 2}. However, because of linearity,

(|s11|, |s22|, γ1, ..., γN−2) = (s1 + s2)W

= s1W + s2W

= (|s11|, s′12, s′13, ..., s′1N) + (s′21, |s22|, s′23, ..., s′2N)

= (|s11|+ s′21, s
′
12 + |s22|, s′13 + s′23, ..., s

′
1N + s′2N)

(16)

Thus, |s11| = |s11|+s′21 and |s22| = s′12+|s22|. From which it follows that s′21 = 0 and s′12 = 0. By
repeating this for all si, sj combinations, we obtain that all off-diagonal elements in S′ must be zero.
However, that means S′ = diag(|s11|, ..., |sNN |) must be diagonal. This leads to a contradiction,
since it would imply that rank(S′) = N , violating condition (eq. 10).

Notes: We can generalise the result to any sparse distribution PS with samples ∥s∥1 ≤ k for some
k > 0. In this case, we would choose ∥s1∥ < k

2 and ∥s2∥ < k
2 . Thus, again we would have

(s1 + s2) ∈ supp(PS) since ∥s1 + s2∥ < k, allowing the same reasoning.

B CONCEPTUAL MODELLING FRAMEWORK

The concept of distributed representations in neural networks originated with the Parallel Distributed
Processing (PDP) movement (Rumelhart et al., 1986). This work explored how information could
be encoded across multiple units in a network, rather than in localised, symbolic representations
(Thorpe, 1989). A distributed representation of information means that no single processing unit
in a network performs a syntactically or semantically determinable subtask alone. Instead, an as-
sembly of processing units generates a “distributed pattern of activation” to represent information
(Smolensky et al., 2006; Van Gelder, 1990; Gelder, 1992).

We show in Figure 8 the general modelling framework we are studying for uncovering these dis-
tributed representations. Inputs pass through a neural network and generate some internal neural
representation, that is often distributed and in superposition. We use an encoding process to de-
termine active latents, or features, inherent in that process, and a learned decoder to specify what
those feature directions should be. This lies at the heart of all methods studied: inference-based
methods (i.e., sparse coding), amortised methods (i.e., sparse autoencoders and autoencoders with
a more powerful encoder, such as an MLP) and hybrid approaches (i.e., sparse autoencoder with
inference-time optimisation).

C DECODER WEIGHT ANALYSIS

A useful method for gaining insight into the behavior of our models is through examining the final
weights of the decoder. Specifically, we visualize W⊤W , an N × N matrix, for three scenarios:
when N equals the true sparse dimensionality, when N exceeds it, and when N is smaller than the
true dimensionality.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Encoder

Decoder

“horse”

Inputs

Neural
Network

Output Neural Representation Sparse Codes

Inference
● Sparse Coding

Amortized
● Linear
● LN (SAE)
● MLP

Hybrid
● SAE + ITO

feature A
feature B
feature C

Linear

Figure 8: Illustration of Modelling Framework. Representations in neural networks (left), com-
monly represent input features in superposition (center left) (Elhage et al., 2022). Autoencoders can
be used to extract sparse (interpretable) codes from neural representations (center right). While the
decoder is fixed to be linear (an important assumption), the encoder can be more flexible. Differ-
ent options for the encoder include inference, amortised inference and hybrid version of both (ITO,
inference-time optimisation) (right). Moreover, the encoder might be distinct between training and
testing time.

0 5 10 15
Column Index

0

5

10

15

Co
lu

m
n

In
de

x

SAE

0 5 10 15
Column Index

0

5

10

15

MLP

0 5 10 15
Column Index

0

5

10

15

SparseCoding

0.00

0.25

0.50

0.75

1.00

Figure 9: Visualisation of D⊤D when N matches the true sparse dimension. Sparse coding achieves
near-identity matrices, while sparse autoencoders (SAE) and multilayer perceptrons (MLP) show
significant off-diagonal elements, indicating superposition.

In the case where N matches the true sparse dimension, we observe the matrix D⊤D for the learned
decoder matrix D after training. Figure 9 illustrates this scenario for N = 16 and M = 8, without
applying decoder column unit normalisation. For sparse coding, the matrix D⊤D is approximately
an N × N identity matrix after softmax normalisation. This means that the model has learned a
set of basis vectors where each column of D is nearly orthogonal to all others, indicating that the
features are independent.

In contrast, both the sparse autoencoder (SAE) and the multilayer perceptron (MLP) show D⊤D
matrices with a mix of diagonal and off-diagonal elements. In these cases, many off-diagonal ele-
ments are close to 1.0, suggesting that these models utilise superposition, representing more features
than there are dimensions. This is suboptimal in this particular scenario because the models have
the exact number of dimensions required to represent the feature space effectively. Notably, this
superposition effect diminishes when vector normalisation is applied during training.

We observe similar patterns when N is greater than the true sparse dimensionality (Figure 10) and
when N is smaller (Figure 11). In cases where N exceeds the required dimensionality, sparse
coding still strives to maintain orthogonal feature directions, leading to a near-identity matrix. How-
ever, both SAEs and MLPs show stronger correlations between features, as indicated by larger
off-diagonal elements, though MLPs exhibit less extreme correlations (e.g., off-diagonal values of
around 0.5).

When N is smaller than the true sparse dimension (Figure 11), sparse coding again attempts to
maintain orthogonality, though it is constrained by the reduced number of dimensions. The SAE

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 10 20
Column Index

0

5

10

15

20

Co
lu

m
n

In
de

x

SAE

0 10 20
Column Index

0

5

10

15

20

MLP

0 10 20
Column Index

0

5

10

15

20

SparseCoding

0.00

0.25

0.50

0.75

1.00

Figure 10: Visualisation of D⊤D when N exceeds the true sparse dimension.

0 5 10
Column Index

0
2
4
6
8

10

Co
lu

m
n

In
de

x

SAE

0 5 10
Column Index

0
2
4
6
8

10

MLP

0 5 10
Column Index

0
2
4
6
8

10

SparseCoding

0.00

0.25

0.50

0.75

1.00

Figure 11: Visualisation of D⊤D when N is smaller than the true sparse dimension.

and MLP models, in contrast, continue to exhibit superposition, with off-diagonal elements close
to 1.0. MLPs, however, show somewhat weaker correlations between features, as indicated by off-
diagonal values around 0.5 in some instances.

D MLP ABLATIONS

We also wanted to understand in more fine-grained detail how the hidden width of the MLPs affects
the key metrics of performance, in different regimes of N,M and K. We show this in Figure 12. We
use varying hidden widths and three different combinations of increasingly difficult N,M,K to test
this. We train for 50,000 iterations with a learning rate of 1e-4. We see that MCC (both latent and
dictionary) increases approximately linearly with hidden width, with a slight drop-off at a hidden
width of 512 (most likely due to underfitting). We also see a similar trend in terms of reconstruction
loss, with the most difficult case being most sensitive to hidden width.

E INCLUDING A BIAS PARAMETER

We examine the effect of including a bias parameter in our models in Figure 13. Elhage et al. (2022)
noted that a bias allows the model to set features it doesn’t represent to their expected value. Further,
ReLU in some cases can make “negative interference” (interference when a negative bias pushes
activations below zero) between features free. Further, using a negative bias can convert small
positive interferences into essentially being negative interferences, which helps deal with noise.

However, Theorem 1 doesn’t rely on having biases, and although it generalises to the case with
biases, we would like to be able to simplify our study by not including them. Thus, we show
in Figure 13 that biases have no statistically significant effect on reconstruction loss, latent MCC,
dictionary MCC, or L0, for any of the models, except for the L0 and MCC of the MLP, which
achieves a higher MCC without bias at the cost of a greater L0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

24 25 26 27 28 29

Hidden Width

0.005

0.010

0.015

0.020

M
SE

 L
os

s
N = 16, M = 8, K = 3
N = 32, M = 16, K = 6
N = 64, M = 16, K = 6

24 25 26 27 28 29

Hidden Width

0.3

0.4

0.5

0.6

0.7

La
te

nt
 M

CC

N = 16, M = 8, K = 3
N = 32, M = 16, K = 6
N = 64, M = 16, K = 6

24 25 26 27 28 29

Hidden Width

0.60

0.65

0.70

0.75

0.80

0.85

Di
ct

 M
CC

N = 16, M = 8, K = 3
N = 32, M = 16, K = 6
N = 64, M = 16, K = 6

Figure 12: Varying the hidden width of an MLP autoencoder in varying difficulties of dictionary
learning regimes. Each data point is an MLP trained for 50,000 iterations with a learning rate of
1e-4.

SAE Sparse Coding MLP (H = 64)0.0000

0.0005

0.0010

0.0015

0.0020

Lo
ss

 Te
st

Loss Test
With Bias
Without Bias

SAE Sparse Coding MLP (H = 64)0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
cc

 Te
st

MCC Test

SAE Sparse Coding MLP (H = 64)0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Di
ct

 M
cc

Dict MCC

SAE Sparse Coding MLP (H = 64)0.0

0.1

0.2

0.3

0.4

0.5

L0
 Te

st

L0 Test

Figure 13: Effects on dictionary learning performance for our three models, with and without a bias.
Including a bias has no statistically significant effect on results.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F COMPARISON WITH TRADITIONAL DICTIONARY LEARNING METHODS

To provide a comparison with traditional dictionary learning methods, we incorporated the Least
Angle Regression (LARS) algorithm to compute the Lasso solution in our experimental framework.

The traditional dictionary learning problem can be formulated as a bi-level optimisation task. Given
a set of training samples X = [x1, . . . , xn] ∈ Rm×n, we aim to find a dictionary D ∈ Rm×k and
sparse codes A = [α1, . . . , αn] ∈ Rk×n that minimise the reconstruction error while enforcing
sparsity constraints:

min
D,A

n∑
i=1

(
1

2
∥xi −Dαi∥22 + λ∥αi∥1

)
subject to ∥dj∥2 ≤ 1 for j = 1, . . . , k, where dj represents the j-th column of D, and λ > 0 is a
regularisation parameter controlling the trade-off between reconstruction fidelity and sparsity.

In our experiment, we employed the LARS algorithm to solve the Lasso problem for sparse coding,
while alternating with dictionary updates to learn the optimal dictionary. Specifically, we used the
scikit-learn implementation of dictionary learning, which utilises LARS for the sparse coding
step. The algorithm alternates between two main steps: (1) sparse coding, where LARS computes
the Lasso solution for fixed D, and (2) dictionary update, where D is optimised while keeping the
sparse codes fixed.

To evaluate the performance of this traditional approach, we generated synthetic data following the
same procedure as in our main experiments, with N = 16 sparse sources, M = 8 measurements,
and K = 3 active components per timestep. We trained the dictionary learning model on the
training set and evaluated its performance on the held-out test set. Performance was measured using
the Mean Correlation Coefficient (MCC) between the predicted and true latents, as well as between
the learned and true dictionary elements.

The results of this, presented in Figure 14, make clear that traditional sparse coding significantly
outperforms our vanilla gradient-based implementations, particularly in terms of latent MCC and
dictionary MCC. Whilst our results from the main body show that there does exist a significant
amortisation gap between the vanilla implementations of each of the approaches, we should also
attempt to understand how the optimised versions of each method compare. We discuss this in the
following subsection.

F.1 OPTIMISED SPARSE AUTOENCODERS AND SPARSE CODING

Our initial implementations of sparse autoencoders (SAEs) and sparse coding, while functional, are
far from optimal. They represent the minimum computational mechanisms required to solve the
problems as we have formulated them. However, more sophisticated approaches can significantly
improve performance and address inherent limitations.

F.1.1 ADVANCED SPARSE AUTOENCODER TECHNIQUES

Sparse autoencoders trained with L1 regularisation are susceptible to the shrinkage problem. Wright
& Sharkey (2024) identified feature suppression in SAEs, analogous to the activation shrinkage first
described by Tibshirani (1996) as a property of L1 penalties. The shrinkage problem occurs when
L1 regularisation reduces the magnitude of non-zero coefficients to achieve a lower loss, potentially
underestimating the true effect sizes of important features.

Several techniques have been proposed to mitigate this issue:

• ProLU Activation: Taggart (2024) introduced the ProLU activation function to maintain
scale consistency in feature activations.

• Gated SAEs: Rajamanoharan et al. (2024a) developed Gated Sparse Autoencoders, which
separate the process of determining active directions from estimating their magnitudes.
This approach limits the undesirable side effects of L1 penalties and achieves a Pareto
improvement over standard methods.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

100 200
N (no. components)

10

15

20

25

30

M
 (n

o.
 fe

at
ur

es
)

 Loss, k=3

100 200
N (no. components)

10

15

20

25

30
 Loss, k=6

100 200
N (no. components)

10

15

20

25

30
 Loss, k=9

100 200
N (no. components)

10

15

20

25

30

M
 (n

o.
 fe

at
ur

es
)

Latent MCC , k=3

100 200
N (no. components)

10

15

20

25

30
Latent MCC , k=6

100 200
N (no. components)

10

15

20

25

30
Latent MCC , k=9

100 200
N (no. components)

10

15

20

25

30

M
 (n

o.
 fe

at
ur

es
)

MCC Dict, k=3

100 200
N (no. components)

10

15

20

25

30
MCC Dict, k=6

100 200
N (no. components)

10

15

20

25

30
MCC Dict, k=9

0.0000
0.0075
0.0150
0.0225
0.0300
0.0375
0.0450
0.0525

0.16
0.28
0.40
0.52
0.64
0.76
0.88
1.00

0.660
0.705
0.750
0.795
0.840
0.885
0.930
0.975

Figure 14: Performance of Least-Angle Regression (LARS) to compute the Lasso solution using our
synthetic dictionary learning setup. In general, when comparing to Figure 5, we see an improvement
when using LARS over our naı̈ve implementations of SAEs, MLPs and sparse coding, across loss,
latent MCC, and dictionary MCC.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• JumpReLU SAEs: Rajamanoharan et al. (2024b) proposed JumpReLU SAEs, which set
activations below a certain threshold to zero, effectively creating a non-linear gating mech-
anism.

• Top-k SAEs: Originally proposed by Makhzani & Frey (2013), top-k SAEs were shown
by Gao et al. (2024) to prevent activation shrinkage and scale effectively to large language
models like GPT-4.

F.1.2 OPTIMISED SPARSE CODING APPROACHES

Our initial sparse coding model, using uniformly initialised latents and concurrent gradient-based
optimisation of both sparse codes and the dictionary, is suboptimal. The sparse coding literature
offers several more sophisticated approaches:

• Least Angle Regression (LARS): Introduced by Efron et al. (2004), LARS provides an
efficient algorithm for computing the entire regularisation path of Lasso. It is particularly
effective when the number of predictors is much larger than the number of observations.

• Orthogonal Matching Pursuit (OMP): Pati et al. (1993) proposed OMP as a greedy algo-
rithm that iteratively selects the dictionary element most correlated with the current resid-
ual. It offers a computationally efficient alternative to convex optimisation methods.

Future work will involve pitting these against the optimised SAE architectures discussed above.

F.2 TOP-k SPARSE CODING

Building on this exploration, we introduced a top-k sparse coding approach. We aimed to determine
whether (1) setting very small active latents to zero would improve performance and (2) optimising
with a differentiable top-k function, rather than using exponential or ReLU functions, could yield
further benefits.

Figure 15 presents the results of these experiments. We first trained the sparse coding model for
20,000 steps on the training data and optimised for an additional 1,000 steps on the test data. During
this process, we measured mean squared error (MSE) loss, latent MCC, and the L0 norm of the
latent codes. Due to the presence of very small active latents, all initial setups led to an L0 value of
1.0, indicating that all latents were active, as shown by the blue star in the figure. We also show a
sparse autoencoder trained with different L1 penalties as a comparison.

Next, we applied a top-k operation to enforce sparsity by setting all but the top-k largest activations
to zero. This process resulted in improved L0 values, but the MSE loss and MCC results indicated
that the top-k optimisation itself was hampered by an insufficient learning rate. We hypothesise that
with proper tuning of hyperparameters, we could achieve Pareto improvements by using the top-k
function directly, rather than applying it to exponentiated codes.

We believe that further adjustments to the optimisation process, including a higher learning rate
for top-k functions, could result in better performance. Additionally, applying the top-k function
directly, without exponentiating the codes, may offer further gains in performance and sparsity.

G MEASURING FLOPS

To quantify the computational cost of each method, we calculate the number of floating-point oper-
ations (FLOPs) required for both training and inference. This section details our approach to FLOP
calculation for each method.

G.1 SPARSE CODING

For sparse coding, we calculate FLOPs for both inference and training separately.

Inference: The number of FLOPs for inference in sparse coding is given by:

FLOPsSC-inf =

{
3MN +Nns if learning D

2MN +Nns otherwise
(17)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
L0 Loss

0.0

0.1

0.2

0.3

M
SE

 L
os

s

L0 vs MSE Loss (L1 weight: 0.005)
SparseCoding_L1
SparseAutoEncoder_L1
SparseCoding_InferenceTopK
SparseCoding_OptimizeTopK

0.0 0.2 0.4 0.6 0.8 1.0
L0 Loss

0.2

0.4

0.6

M
CC

L0 vs MCC (L1 weight: 0.005)

SparseCoding_L1
SparseAutoEncoder_L1
SparseCoding_InferenceTopK
SparseCoding_OptimizeTopK

0.0 0.2 0.4 0.6 0.8 1.0
L0 Loss

0.0

0.1

0.2

0.3

M
SE

 L
os

s

L0 vs MSE Loss (L1 weight: 0.05)
SparseCoding_L1
SparseAutoEncoder_L1
SparseCoding_InferenceTopK
SparseCoding_OptimizeTopK

0.0 0.2 0.4 0.6 0.8 1.0
L0 Loss

0.2

0.4

0.6

0.8
M

CC
L0 vs MCC (L1 weight: 0.05)

SparseCoding_L1
SparseAutoEncoder_L1
SparseCoding_InferenceTopK
SparseCoding_OptimizeTopK

0.0 0.2 0.4 0.6 0.8 1.0
L0 Loss

0.0

0.1

0.2

0.3

M
SE

 L
os

s

L0 vs MSE Loss (L1 weight: 0.5)
SparseCoding_L1
SparseAutoEncoder_L1
SparseCoding_InferenceTopK
SparseCoding_OptimizeTopK

0.0 0.2 0.4 0.6 0.8 1.0
L0 Loss

0.2

0.4

0.6

0.8

M
CC

L0 vs MCC (L1 weight: 0.5)

SparseCoding_L1
SparseAutoEncoder_L1
SparseCoding_InferenceTopK
SparseCoding_OptimizeTopK

Figure 15: Comparison of L0 loss vs. MSE loss and L0 loss vs. MCC for Sparse Coding with L1
regularization, top-k inference, and top-k optimization, alongside results for Sparse Autoencoder.
Blue stars represent the initial model’s performance, while curves illustrate the results of applying
top-k sparsity.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where M is the number of measurements, N is the number of sparse sources, and ns is the number of
samples. The additional MN term when learning D accounts for the normalisation of the dictionary.

Training: For training, we calculate the FLOPs as:
FLOPsSC-train = neff · (FLOPsforward + FLOPsloss + FLOPsbackward + FLOPsupdate) (18)

where neff = nsteps · nb

ns
is the effective number of iterations, nsteps is the number of training steps, nb

is the batch size, and ns is the total number of samples. The component FLOPs are calculated as:
FLOPsforward = FLOPsSC-inf (19)

FLOPsloss = 2Mnb +Nnb (20)
FLOPsbackward ≈ 2 · FLOPsforward (21)

FLOPsupdate =

{
Nnb +MN if learning D

Nnb otherwise
(22)

G.2 SPARSE AUTOENCODER (SAE)

For the sparse autoencoder, we calculate FLOPs for both training and inference.

Training: The total FLOPs for SAE training is given by:
FLOPsSAE-train = neff · (FLOPsforward + FLOPsbackward) (23)

where neff is defined as before, and:

FLOPsforward =

{
5MN +N if learning D

4MN +N otherwise
(24)

FLOPsbackward = N + (2NM +N) + 2NM + 2(MN +N) +

{
2NM if learning D

0 otherwise
(25)

Inference: For SAE inference, the FLOPs are calculated as:
FLOPsSAE-inf = (4MN +N) · ns (26)

G.3 MULTILAYER PERCEPTRON (MLP)

For the MLP, we calculate FLOPs for both training and inference, considering a single hidden layer
of size H .

Training: The total FLOPs for MLP training is given by:
FLOPsMLP-train = neff · (FLOPsforward + FLOPsbackward) (27)

where:

FLOPsforward =

{
2MH +H + 2HN +N + 2NM +MN if learning D

2MH +H + 2HN +N + 2NM otherwise
(28)

FLOPsbackward = N + (2NH +N) +H + (2MH +H) + 2NM + 2(MH +H +HN +N)
(29)

where we add 2NM to FLOPsbackward if learning D, and not otherwise.

Inference: For MLP inference, the FLOPs are calculated as:
FLOPsMLP-inf = (2MH +H + 2HN +N + 2NM) · ns (30)

G.4 SAE WITH INFERENCE-TIME OPTIMISATION (SAE+ITO)

For SAE+ITO, we calculate the additional FLOPs required for optimizing the codes during infer-
ence:

FLOPsITO = (MN +N + niter · (4MN + 2M + 11N)) · ns (31)
where niter is the number of optimisation iterations performed during inference.

These FLOP calculations provide a consistent measure of computational cost across all methods,
allowing for fair comparisons of efficiency and performance trade-offs.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

H AUTOMATED INTERPRETABILITY

In this section, we describe the automated interpretability pipeline used to understand and evaluate
the features learned by sparse autoencoders (SAEs) and other models in the context of neuron acti-
vations within large language models (LLMs). The pipeline consists of two distinct tasks: feature
interpretation and feature scoring. These tasks allow us to generate hypotheses about individual
feature activations and to determine whether specific features are likely to activate given particular
token contexts.

H.1 FEATURE INTERPRETER PROMPT

We use a feature interpreter prompt to provide an explanation for a neuron’s activation. The in-
terpreter is tasked with analysing a neuron’s behaviour, given both text examples and the logits
predicted by the neuron. Below is a summary of how the interpreter prompt works:

You are a meticulous AI researcher conducting an investigation into a specific neuron in a language
model. Your goal is to provide an explanation that encapsulates the behavior of this neuron. You
will be given a list of text examples on which the neuron activates. The specific tokens that cause
the neuron to activate will appear between delimiters like <<this>>. If a sequence of consecu-
tive tokens causes the neuron to activate, the entire sequence of tokens will be contained between
delimiters <<just like this>>. Each example will also display the activation value in paren-
theses following the text. Your task is to produce a concise description of the neuron’s behavior by
describing the text features that activate it and suggesting what the neuron’s role might be based
on the tokens it predicts. If the text features or predicted tokens are uninformative, you can omit
them from the explanation. The explanation should include an analysis of both the activating to-
kens and contextual patterns. You will be presented with tokens that the neuron boosts in the next
token prediction, referred to as Top logits, which may refine your understanding of the neu-
ron’s behavior. You should note the relationship between the tokens that activate the neuron and
the tokens that appear in the Top logits list. Your final response should provide a formatted
explanation of what features of text cause the neuron to activate, written as: [EXPLANATION]:
<your explanation>.

H.2 FEATURE SCORER PROMPT

After generating feature interpretations, we implemented a scoring prompt to predict whether a
specific feature is likely to activate on a given token. This ensures that the explanations generated
by the interpreter align with actual activations. The scoring prompt tasks the model with evaluating
if the tokens marked in the examples are representative of the feature in question.

You are provided with text examples where portions of the sentence strongly represent the feature,
with these portions enclosed by << and >>. Some of these examples might be mislabeled. Your
job is to evaluate each example and return a binary response (1 if the tokens are correctly labeled,
and 0 if they are mislabeled). The output must be a valid Python list with 1s and 0s, corresponding
to the correct or incorrect labeling of each example.

H.3 EVALUATION OF AUTOMATED INTERPRETABILITY

To evaluate the accuracy of the interpretations generated by the feature interpreter and feature scorer,
we compared model-generated explanations against held-out examples. The evaluation involved
calculating the F1-score, which was done by presenting the model with a mix of correctly labeled
and falsely labeled examples. The model was then tasked with predicting whether each token in
the example represented a feature or not, based on the previously generated interpretation. By
comparing the model’s predictions with ground truth labels, we can assess how accurately the feature
interpretation aligns with actual neuron activations. This process helps validate the interpretability
of the features learned by SAEs, MLPs, and other models.

This pipeline is based on the work of Juang et al. (2024), which itself builds on the work of others.
Bills et al. (2023) used GPT-4 to generate and simulate neuron explanations by analyzing text that
strongly activated the neuron. Bricken et al. (2023) and Templeton (2024) applied similar techniques
to analyze sparse autoencoder features. Templeton (2024) also introduced a specificity analysis to

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

rate explanations by using another LLM to predict activations based on the LLM-generated inter-
pretation. This provides a quantification of how interpretable a given neuron or feature actually is.
Gao et al. (2024) demonstrated that cheaper methods, such as Neuron to Graph (Foote et al.), which
uses n-gram based explanations, allow for a scalable feature labeling mechanism that does not rely
on expensive LLM computations.

26

	Introduction
	Background and Related Work
	Sparse Neural Representations
	Superposition in Neural Representations
	Compressed Sensing and Sparse Coding
	Sparse Autoencoders
	Applications in Neural Network Models

	Methods
	Theory: Provable Suboptimality of SAEs
	Synthetic data
	Sparse Encoding Schemes
	Measuring the quality of the encoder and decoder
	Disentangling Dictionary Learning and Sparse Inference

	Synthetic Sparse Inference Experiments
	Known Sparse Codes
	Known Dictionary
	Unknown Sparse Codes and Dictionary
	Performance Across Varying Data Regimes

	Interpretability of Sparse Coding Schemes
	Discussion
	Amortisation gap proof
	Conceptual Modelling Framework
	Decoder weight analysis
	MLP Ablations
	Including a bias parameter
	Comparison with traditional dictionary learning methods
	Optimised Sparse Autoencoders and Sparse Coding
	Advanced Sparse Autoencoder Techniques
	Optimised Sparse Coding Approaches

	Top-k sparse coding

	Measuring FLOPs
	Sparse Coding
	Sparse Autoencoder (SAE)
	Multilayer Perceptron (MLP)
	SAE with Inference-Time Optimisation (SAE+ITO)

	Automated interpretability
	Feature Interpreter Prompt
	Feature Scorer Prompt
	Evaluation of Automated Interpretability

