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ABSTRACT

A recent line of work has shown promise in using sparse autoencoders (SAEs)
to uncover interpretable features in neural network representations. However, the
simple linear-nonlinear encoding mechanism in SAEs limits their ability to per-
form accurate sparse inference. In this paper, we investigate sparse inference and
learning in SAEs through the lens of sparse coding. Specifically, we show that
SAEs perform amortised sparse inference with a computationally restricted en-
coder and, using compressed sensing theory, we prove that this mapping is inher-
ently insufficient for accurate sparse inference, even in solvable cases. Building
on this theory, we empirically explore conditions where more sophisticated sparse
inference methods outperform traditional SAE encoders. Our key contribution
is the decoupling of the encoding and decoding processes, which allows for a
comparison of various sparse encoding strategies. We evaluate these strategies
on two dimensions: alignment with true underlying sparse features and correct
inference of sparse codes, while also accounting for computational costs during
training and inference. Our results reveal that substantial performance gains can
be achieved with minimal increases in compute cost. We demonstrate that this
generalises to SAEs applied to large language models (LLMs), where advanced
encoders achieve similar interpretability. This work opens new avenues for un-
derstanding neural network representations and offers important implications for
improving the tools we use to analyse the activations of large language models.

1 INTRODUCTION

Understanding the inner workings of neural networks has become a critical task since these models
are increasingly employed in high-stakes decision-making scenarios (Fan et al., 2021; Shahroudne-
jad, 2021; Räuker et al., 2023). As the complexity and scale of neural networks continue to grow,
so does the importance of developing robust methods for interpreting their internal representations.
This paper explores the synergy between sparse autoencoders (SAEs) and sparse coding techniques,
aiming to advance our ability to extract interpretable features from neural network activations.

Recent work has investigated the “superposition hypothesis” (Elhage et al., 2022), which posits that
neural networks represent interpretable features in a linear manner using non-orthogonal directions
in their latent spaces. Building on this idea, researchers have shown that individual features can be
recovered from these superposed representations using sparse autoencoders (Bricken et al., 2023;
Cunningham et al., 2023). These models learn sparse and overcomplete representations of neural
activations, with the resulting sparse codes often proving to be more interpretable than the original
dense representations (Cunningham et al., 2023; Elhage et al., 2022; Gao et al., 2024).

The mathematical foundation of SAEs aligns closely with that of sparse coding. Both approaches
assume that a large number of sparse codes are linearly projected into a lower-dimensional space,
forming the neural representation. However, while sparse coding typically involves solving an opti-
misation problem for each input, SAEs learn an efficient encoding function through gradient descent,
potentially sacrificing optimal sparsity for computational efficiency. This trade-off introduces what
we term the “amortisation gap” – the disparity between the best sparse code predicted by an SAE en-
coder and the optimal sparse codes that an unconstrained sparse inference algorithm might produce
(Marino et al., 2018).
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In this paper, we explore this amortisation gap and investigate whether more sophisticated sparse
inference methods can outperform traditional SAE encoders. Our key contribution is decoupling the
encoding and decoding processes, allowing for a comparison of various sparse encoding strategies.
We evaluate four types of encoding methods on synthetic datasets with known ground-truth features.
We evaluate these methods on two dimensions: alignment with true underlying sparse features and
inference of the correct sparse codes, while accounting for computational costs during both training
and inference. To demonstrate real-world applicability, we also train models on GPT-2 activations
(Radford et al., 2019), showing that more complex methods can yield interpretable features in large
language models. This approach aims to identify optimal strategies for extracting interpretable
features from neural representations across different computational regimes.

2 BACKGROUND AND RELATED WORK

2.1 SPARSE NEURAL REPRESENTATIONS

Sparse representations in neural networks specifically refer to activation patterns where only a small
subset of neurons are active for any given input (Olshausen & Field, 1996). These representations
have gained attention due to their potential for improved interpretability and efficiency (Lee et al.,
2007). Sparse autoencoders (SAEs) are neural network architectures designed to learn sparse repre-
sentations of input data (Ng et al., 2011; Makhzani & Frey, 2013). An SAE consists of an encoder
that maps input data to a sparse latent space and a decoder that reconstructs the input from this latent
representation. Sparse coding, on the other hand, is a technique that aims to represent input data
as a sparse linear combination of basis vectors (Olshausen & Field, 1997). The objective of sparse
coding is to find both the optimal basis (dictionary) and the sparse coefficients that minimise recon-
struction error while maintaining sparsity. While both SAEs and sparse coding seek to find sparse
representations, they differ in their approach. SAEs learn an efficient encoding function through
gradient descent, allowing for fast inference but potentially sacrificing optimal sparsity. Sparse cod-
ing, in contrast, solves an optimisation problem for each input, potentially achieving better sparsity
at the cost of increased computational complexity during inference.

2.2 SUPERPOSITION IN NEURAL REPRESENTATIONS

The superposition hypothesis suggests that neural networks can represent more features than they
have dimensions, particularly when these features are sparse (Elhage et al., 2022). Formally, let us
consider a neural representation y ∈ RM and a set of N features, where typically N > M . In a linear
representation framework, each feature fi is associated with a direction wi ∈ RM . The presence
of multiple features is represented by y =

∑N
i=1 xiwi where xi ∈ R represents the activation

or intensity of feature i. Features are often defined as interpretable properties of the input that
a sufficiently large neural network would reliably dedicate a neuron to representing (Olah et al.,
2020).

In an M -dimensional vector space, only M orthogonal vectors can fit. However, the Johnson-
Lindenstrauss Lemma states that if we permit small deviations from orthogonality, we can fit expo-
nentially more vectors into that space. More formally, for any set of N points in a high-dimensional
space, there exists a linear map to a lower-dimensional space of O(logN/ϵ2) dimensions that pre-
serves pairwise distances up to a factor of (1 ± ϵ). This lemma supports the hypothesis that LLMs
might be leveraging a similar principle in superposition.

Superposition occurs when the matrix W = [w1, ..., wN ] ∈ RM×N has more columns than rows
(i.e., N > M ), making WTW non-invertible. Superposition relies on the sparsity of feature activa-
tions. Let s = |x|0 be the number of non-zero elements in x = [x1, ..., xN ]T . When s ≪ N , the
model can tolerate some level of interference between features, as the probability of many features
being active simultaneously (and thus interfering) is low.

2.3 COMPRESSED SENSING AND SPARSE CODING

Compressed sensing theory provides a framework for understanding how sparse signals can be re-
covered from lower-dimensional measurements (Donoho, 2006). This theory suggests that under
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certain conditions, we can perfectly recover a sparse signal from fewer measurements than tradi-
tionally required by the Nyquist-Shannon sampling theorem. Let s ∈ RN be a sparse signal with
at most K non-zero components. If we make M linear measurements of this signal, represented as
y = Ws where W ∈ RM×N , compressed sensing theory states that we can recover s from y with
high probability if:

M > O
(
K log

(
N

K

))
(1)

This result holds under certain assumptions about the measurement matrix W , such as the Restricted
Isometry Property (RIP) (Candes, 2008). Sparse coding is one approach to recovering such sparse
representations. The objective function for sparse coding (Olshausen & Field, 1996) is:

L(D,α) :=

n∑
i

|xi −Dαi|22 + λ|αi|1 (2)

where D ∈ Rk×m is the dictionary, αi ∈ Rm are the sparse codes for data point xi ∈ Rk, and λ
is a hyperparameter controlling sparsity. Optimisation of this objective typically alternates between
two steps. First is sparse inference: min

α

∑n
i |xi − Dαi|22 + λ|αi|1. Then dictionary learning:

min
D

∑n
i |xi − Dαi|22 s.t. ∀i ∈ 1, ...,m : |D:, i| = 1. These techniques allow extraction of

interpretable, sparse representations from high-dimensional neural data.

2.4 SPARSE AUTOENCODERS

Sparse autoencoders (SAEs) offer an alternative approach to extracting sparse representations, us-
ing amortised inference instead of the iterative optimisation used in sparse coding. SAEs learn to
reconstruct inputs using a sparse set of features in a higher-dimensional space, potentially disentan-
gling superposed features (Elhage et al., 2022; Olshausen & Field, 1997). The architecture of an
SAE consists of an encoder network that maps the input to a hidden, sparse representation of latent
coefficients, and a decoder network that reconstructs the input as a linear combination of vectors,
with the coefficients defined by the sparse representation. Let xi ∈ Rk be an input vector (as in
our sparse coding formulation), and αi ∈ Rm be the hidden representation (analogous to the sparse
codes in sparse coding), where typically m > k. The encoder and decoder functions are defined as:

Encoder : αi = fθ(xi) = σ(Wexi + be) (3)
Decoder : x̂i = gϕ(αi) = Wdαi + bd (4)

where We ∈ Rm×k and Wd ∈ Rk×m are the encoding and decoding weight matrices, be ∈ Rm and
bd ∈ Rk are bias vectors, and σ(·) is a non-linear activation function (e.g., ReLU). The parameters
θ = We, be and ϕ = Wd, bd are learned during training. The training objective of an SAE combines
reconstruction loss with a sparsity constraint:

L(θ, ϕ) = 1

n

n∑
i=1

|xi − x̂i|22 + λLsparse(αi) (5)

where λ > 0 is a hyperparameter controlling the trade-off between reconstruction fidelity and spar-
sity. The sparsity loss Lsparse(αi) is often L1 regularisation Lsparse(α) = ||α||1.

Comparing this formulation to sparse coding, we can see that SAEs provide an amortised inference
method by learning an encoder function fθ that directly maps inputs to sparse codes. This contrasts
with the iterative optimisation process used in sparse coding for inference.

SAE with Inference-Time Optimisation (SAE+ITO) (SAE+ITO) is an extension of the standard
SAE approach that combines the learned dictionary from SAEs with inference-time optimisation for
sparse code inference (Nanda et al., 2024). In this method, the decoder weights Wd learned during
SAE training are retained, but the encoder function fθ is replaced with an optimisation procedure at
inference time. For each input xi, SAE+ITO solves the following optimisation problem:

α∗
i = argmin

αi

|xi −Wdαi|22 + λ|αi|1 (6)

where λ controls the sparsity of the solution. This formulation allows for potentially more accu-
rate sparse codes by directly minimising reconstruction error, rather than relying on the learned
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Linear Linear-Nonlinear

Figure 1: Illustration of SAE Amortisation Gap. Left, shows sparse sources in an N = 3 di-
mensional space with at most ∥s∥ ≤ K = 2 non-zero entries. Both blue and red points are valid
sources, by contrast, the top right corner s = (1, 1, 1) is not. Middle, shows the sources as they are
linearly decoded into observation space. This is, in most applications, the activation space of a neu-
ral network that we are trying to lift out of superposition. Right, shows how using a linear-nonlinear
encoder, a SAE is tasked to project the points back onto their correct positions. This is not possible,
because the pre-activations are at most M = 2 dimensional (see proof in Appendix A).

encoder approximation. While this approach incurs higher computational costs during inference, it
can potentially achieve better reconstruction quality and more flexible control over sparsity levels
without retraining the entire model. The optimisation problem can be solved using algorithms such
as matched pursuit (Blumensath & Davies, 2008) and gradient pursuit (Nanda et al., 2024).

2.5 APPLICATIONS IN NEURAL NETWORK MODELS

Sparse autoencoders (SAEs) have emerged as a promising tool for enhancing the interpretability
of large language models (LLMs) by extracting interpretable features from their dense representa-
tions. Early work by Cunningham et al. (2023) and Bricken et al. (2023) demonstrated the potential
of sparse dictionary learning to untangle features, lifting them out of superposition in transformer
MLPs. This approach was extended to attention heads by Kissane et al. (2024), who scaled it to
GPT-2 (Radford et al., 2019). These studies have shown that SAEs can extract highly abstract, mul-
tilingual, and multimodal features from LLMs, including potentially safety-relevant features related
to deception, bias, and dangerous content (Templeton, 2024). In vision models, Gorton (2024) and
Klindt et al. (2023) trained SAEs on convolutional neural network activations. The latter found that
K-means (which is equivalent to one-hot sparse coding) outperformed SAEs (Fig.12) in quantitative
interpretability metrics (Zimmermann et al., 2024).

The scaling of SAEs to larger models has been a focus of recent research, with significant progress
made in applying them to state-of-the-art LLMs. Gao et al. (2024) proposed using k-sparse autoen-
coders (Makhzani & Frey, 2013) to simplify tuning and improve the reconstruction-sparsity frontier,
demonstrating clean scaling laws with respect to autoencoder size and sparsity. They successfully
trained a 16 million latent autoencoder on GPT-4 activations. Similarly, Templeton (2024) reported
extracting high-quality features from Claude 3 Sonnet, while Lieberum et al. (2024) released a com-
prehensive suite of SAEs trained on all layers of Gemma 2 models. These advancements underscore
the importance of developing efficient and accurate SAE techniques to reduce the amortisation gap,
especially as applications to larger models become more prevalent. The growing body of work on
SAEs in LLMs suggests that they may play a crucial role in future interpretability research.

3 METHODS

This section outlines our approach to comparing sparse encoding strategies. We begin by presenting
a theoretical foundation for the suboptimality of sparse autoencoders (SAEs), followed by our data
generation process, encoding schemes, evaluation metrics, and experimental scenarios.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 THEORY: PROVABLE SUBOPTIMALITY OF SAES

Theorem 1 (SAE Amortisation Gap). Let S = RN be N sources following a sparse distribution
PS such that any sample has at most K ≥ 2 non-zero entries, i.e., ∥s∥0 ≤ K,∀s ∈ supp(PS).
The sources are linearly projected into an M -dimensional space, satisfying the restricted isometry
property, where K log N

K ≤ M < N . A sparse autoencoder (SAE) with a linear-nonlinear (L-NL)
encoder must have a non-zero amortisation gap.

The complete proof of Theorem 1 is provided in Appendix A. The theorem considers a setting where
sparse signals s ∈ RN with at most K non-zero entries are projected into an M -dimensional space
(M < N ). Compressed sensing theory guarantees that unique recovery of these sparse signals is
possible when M ≥ K log(N/K), up to sign ambiguities (Donoho, 2006). However, we prove
that SAEs fail to achieve this optimal recovery, resulting in a non-zero amortisation gap. The core
of this limitation lies in the architectural constraints of the SAE’s encoder. The linear-nonlinear
(L-NL) structure of the encoder lacks the computational complexity required to fully recover the
high-dimensional (N ) sparse representation from its lower-dimensional (M ) projection. Figure 1
illustrates this concept geometrically.

3.2 SYNTHETIC DATA

To evaluate our sparse encoding strategies, we generate synthetic datasets with known ground-truth
latent representations and dictionary vectors. We first construct a dictionary matrix D ∈ RM×N ,
where each column represents a dictionary element. We then generate latent representations si ∈
RN with exactly K non-zero entries (K ≪ N ), drawn from a standard normal distribution. This
allows us to create observed data points as xi = Dsi+ϵi, where ϵi ∼ N (0, σ2I) represents additive
Gaussian noise. This process yields a dataset D = (xi, si)

n
i=1, where xi ∈ RM and si ∈ RN .

3.3 SPARSE ENCODING SCHEMES

We compare four sparse encoding strategies:

1. Sparse Autoencoder (SAE): f(x) := σ(Wx), where σ is a nonlinear activation function.

2. Multilayer Perceptron (MLP): f(x) := σ(Wnσ(Wn−1 . . . σ(W1x))), with the same de-
coder as the SAE.

3. Sparse Coding (SC): f(x) = argminŝ |x−Dŝ|22+λ||ŝ||1, solved iteratively with st+1 =
st + η∇L, where L is the MSE loss with L1 penalty.

4. SAE with Inference-Time Optimisation (SAE+ITO): Uses the learned SAE dictionary,
optimising sparse coefficients at inference time.

For all methods, we normalise the column vectors of the decoder matrix to have unit norm, prevent-
ing the decoder from reducing the sparsity loss ||ŝ||1 by increasing feature vector magnitudes.

3.4 MEASURING THE QUALITY OF THE ENCODER AND DECODER

For any given x, how do we measure the quality of (1) the encoding (i.e. the sparse coefficients);
and (2) the decoding (i.e. the actual reconstruction, given the coefficients)?

We employ the Mean Correlation Coefficient (MCC) to evaluate both encoder and dictionary quality:

MCC =
1

d

∑
(i,j)∈M

|cij | (7)

where cij is the Pearson correlation coefficient between the i-th true feature and the j-th learned
feature, and M is the set of matched pairs determined by the Hungarian algorithm (or a greedy
approximation when dimensions differ). This metric quantifies alignment between learned sparse
coefficients and true underlying sparse features (encoder quality), and learned dictionary vectors and
true dictionary vectors (dictionary quality).
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3.5 DISENTANGLING DICTIONARY LEARNING AND SPARSE INFERENCE

Our study decomposes the sparse coding problem into two interrelated tasks: dictionary learning
and sparse inference. Dictionary learning involves finding an appropriate sparse dictionary D ∈
RM×N from data, while sparse inference focuses on reconstructing a signal x ∈ RM using a sparse
combination of dictionary elements, solving for s ∈ RN in x ≈ Ds where s is sparse. These tasks
are intrinsically linked: dictionary learning often involves sparse inference in its inner loop, while
sparse inference requires a dictionary.

Known Sparse Codes. In this scenario, we assume knowledge of the true sparse codes s∗ and
focus solely on the encoder’s ability to predict these latents, effectively reducing the problem to la-
tent regression. We define the objective as minimising L(f(x), s∗) = 1− cos(f(x), s∗), where f is
the encoding function and cos denotes cosine similarity.1 In this setting, only the SAE encoder and
MLP are applicable, as they directly learn mappings from input to latent space. The SAE encoder
learns an amortised inference function, while the MLP learns a similar but more complex mapping.
Conversely, SAE+ITO and sparse coding are not suitable for this task. SAE+ITO focuses on op-
timising reconstruction using a fixed dictionary, which is irrelevant when true latents are known.
Similarly, sparse coding alternates between latent and dictionary optimisation, which reduces to
encoder training when the dictionary is disregarded.

Known Dictionary. When the true dictionary D∗ is known, we focus on optimising the encoder
or inference process while keeping the dictionary fixed. This scenario is applicable to SAE, MLP,
and SAE+ITO methods. For SAE and MLP, we optimise minθ Ex[|x − D∗fθ(x)|22], where fθ
represents the encoder function with parameters θ. SAE+ITO, in contrast, performs gradient-based
optimisation at inference time: mins |x − D∗s|22 + λ|z|1 for each input x, incurring zero training
FLOPs but higher inference-time costs. This differs from SAE and MLP by directly optimising
latent coefficients rather than learning an encoding function. Sparse coding is not applicable in this
scenario, as it reduces to SAE+ITO when the dictionary is known and fixed.

Unknown Sparse Codes and Dictionary. This scenario represents the standard setup in sparse
coding, where both the sparse codes s and the dictionary D are unknown and must be learned
simultaneously. All four methods—SAE, MLP, SAE+ITO, and sparse coding—are applicable in this
context, each approaching the problem differently. SAE and MLP learn both an encoder function
fθ(x) and a dictionary D simultaneously. SAE+ITO and sparse coding learn a dictionary during
training and optimises latents at inference time.

4 SYNTHETIC SPARSE INFERENCE EXPERIMENTS

We present the results of our experiments comparing different sparse encoding strategies across
various scenarios. To provide a minimal setting for investigating the phenomena of interest, all ex-
periments were conducted using synthetic data with N = 16 sparse sources, M = 8 measurements,
and K = 3 active components per timestep, unless otherwise specified (more settings in Sec. 4.4).

4.1 KNOWN SPARSE CODES

We first compare the performance of sparse autoencoders (SAEs) and multilayer perceptrons (MLPs)
in predicting known latent representations. Figure 2 illustrates the performance of SAEs and MLPs
with varying hidden layer widths. MLPs consistently outperform SAEs in terms of Mean Correlation
Coefficient (MCC), with wider hidden layers achieving higher performance (Figure 2a). The MLP
with H = 1024 reaches an MCC approximately 0.1 higher than the SAE at convergence. While
MLPs converge faster in terms of training steps, this comes at the cost of increased computational
complexity (Figure 2b). All MLPs surpass the SAE’s plateau performance at approximately the
same total FLOPs, suggesting a consistent computational threshold beyond which MLPs become
more effective, regardless of hidden layer width.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

101 102 103 104

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

M
CC

SAE
MLP (H = 32)
MLP (H = 256)
MLP (H = 1024)

(a) MCC vs. training steps

107 108 109 1010 1011 1012

FLOPs

0.0

0.2

0.4

0.6

0.8

1.0

M
CC

SAE
MLP (H = 32)
MLP (H = 256)
MLP (H = 1024)

(b) MCC vs. total FLOPs

Figure 2: Performance comparison of SAE and MLPs in predicting known latent representations.
The black dashed line in (b) indicates the average FLOPs at which MLPs surpass SAE performance.
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Figure 3: Performance comparison of SAE, SAE with inference-time optimisation (SAE+ITO), and
MLPs in predicting latent representations with a known dictionary. Dashed lines in (b) indicate
extrapolated performance beyond the measured range.

4.2 KNOWN DICTIONARY

Next, we examine the performance of different encoding strategies when the true dictionary D∗

is known. Figure 3 shows the performance of SAE, SAE+ITO, and MLPs. MLPs consistently
outperform the standard SAE, achieving an MCC nearly 10% higher at convergence (Figure 3a).
Both MLP configurations (H = 32 and H = 256) converge to similar performance levels, with
the wider network showing faster initial progress. When plotted against total FLOPs, the MLP
curves overlap, suggesting a consistent computational cost-to-performance ratio across different
hidden layer widths (Figure 3b). SAE+ITO initialised with SAE latents exhibits distinct, stepwise
improvements throughout training, ultimately achieving the highest MCC.

4.3 UNKNOWN SPARSE CODES AND DICTIONARY

Finally, we evaluate all four methods when both latent representations and dictionary are unknown.
We use a dataset of 2048 samples, evenly split between training and testing sets, and conduct 5
independent runs of 100, 000 training steps each.

Figures 4 illustrates the performance in latent prediction and dictionary learning, respectively. For
latent prediction, SAE, SAE+ITO, and MLPs converge to similar MCC, with MLPs showing a slight
advantage. Sparse coding demonstrates superior performance, achieving an MCC over 10% higher
than other methods, despite an initial decrease in performance. Sparse coding reaches this higher
performance while using comparable FLOPs to the MLP with H = 256. For dictionary learning,
both MLPs and sparse coding outperform SAE by a margin of approximately 10%. Sparse coding
again exhibits an initial decrease in dictionary MCC before surpassing other methods.

1We use cosine similarity rather than MSE loss in this setting because we found training to be more stable.
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107 108 109 1010 1011 1012

FLOPs

0.4

0.5

0.6

0.7

0.8

0.9

Di
ct

io
na

ry
 M

CC

SAE
SAE_ITO
SparseCoding
MLP (H=32)
MLP (H=256)

(d) Dictionary learning: MCC vs. total FLOPs

Figure 4: Dictionary learning performance comparison when both s∗ and D∗ are unknown.

4.4 PERFORMANCE ACROSS VARYING DATA REGIMES

To understand how performance varies with changes in data characteristics, we trained models under
varying N , M , and K, holding other hyperparameters constant.
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(b) K = 9

Figure 5: Difference in final latent MCC between methods across varying N and M , for K = 3 and
K = 9. Left: Sparse coding vs. SAE. Right: MLP vs. SAE. The black dashed line indicates the
theoretical recovery boundary.

Figure 5 shows the difference in final latent MCC between methods. Sparse coding outperforms
SAE in essentially all data-generation regimes, for both K = 3 and K = 9. MLP and SAE perform
roughly equivalently, with MLP slightly better as M (number of measurements) increases. The
performance advantage of sparse coding is more pronounced in regimes where compressed sensing
theory predicts recoverability (above and to the left of the black dashed line).

Sparsity-Performance Trade-off We also investigated the trade-off between sparsity and perfor-
mance for each method in Figure 6. Sparse coding achieves slightly lower reconstruction error for
each L0 level, barring some very small active latents. Sparse coding shows a Pareto improvement
at each L0 level in terms of MCC, even with very small active latents. The improvement is more
evident when plotting against L1 rather than L0, as L1 accounts for the magnitude of non-zero val-
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Figure 6: Pareto curves showing sparsity (L0 or L1 loss) against performance (MSE loss or latent
MCC) for models trained with varying L1 penalty coefficients λ. The red dashed line in the top row
shows the true L0 of the sparse sources. Multiple thresholds for active features are shown for sparse
coding due to the presence of very small non-zero values.

ues. The presence of very small non-zero latents in sparse coding motivates the exploration of top-k
sparse coding, detailed in Appendix F.2.

5 INTERPRETABILITY OF SPARSE CODING SCHEMES

A common criticism of more powerful encoding techniques is that they can find concepts that are
more difficult to interpret, or that are not actually used by the model. To investigate the interpretabil-
ity of more complex encoding techniques, we trained both an SAE and MLP on 406 million tokens
from OpenWebText. The MLP used a hidden width of 4224 and both models had 16, 896 sparse
codes. The models were trained on the residual-stream pre-activations of Layer 9 in GPT-2 Small,
which have a dimension of 768. We used a learning rate of 3 · 10−4 and an L1 penalty of 1 · 10−4.
Throughout training, we tracked normalised mean squared error (MSE), dividing it by the error
when predicting the mean activations, as well as L0 sparsity. The final SAE achieved a normalised
MSE of 0.062 with an average L0 of 39.55, while the MLP reached a normalised MSE of 0.051
with an average L0 of 40.20. The final models had a significant number of dead neurons (measured
as not having fired in the last 50, 000 training steps): 71% for the SAE and 66% for the MLP.

To assess the interpretability of the learned features, we selected 200 random features that activated
on our test set of 13.1 million OpenWebText tokens. For each feature, we employed an automated
interpretability classification approach. We identified the top 10 activating examples for the feature
in our test dataset and labelled the token with the highest activation. We also computed logit ef-
fects for each feature through the path expansion WU · f , where WU is the model’s unembedding
matrix and f is the feature vector. The top 10 and bottom 10 tokens resulting from this logit effect
calculation were noted.

We provided both the activating examples and the top and bottom promoted logits to GPT-4, which
was instructed to construct a precise explanation of the feature’s function (prompt in Appendix H).
To evaluate the accuracy of these interpretations, we presented them to another instance of GPT-4
along with 5 new activating examples and 5 non-activating examples, labeling the token on which
the feature potentially activates. The model was then asked to predict which of these examples the
feature would activate on, and we calculated the F1-score compared to the ground truth.

Figure 7 displays the distributions of the F1 scores for the 200 SAE and MLP characteristics. The
results indicate that the MLP features demonstrate interpretability comparable to the SAE features.

6 DISCUSSION

Our study presents both theoretical and empirical evidence for the existence of an inherent amorti-
sation gap in sparse autoencoders (SAEs) when applied to neural network interpretability tasks. We
prove that SAEs with linear-nonlinear encoders cannot achieve optimal sparse recovery in settings
where such recovery is theoretically possible. This limitation is corroborated by our experimental
results, which demonstrate superior performance of more complex encoding methods, such as mul-
tilayer perceptrons (MLPs) and sparse coding, across various synthetic data scenarios. Notably, our
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Figure 7: Distribution of F1 scores for feature interpretability of an SAE and an MLP trained on
residual stream activations of Layer 9 in GPT-2.

investigation of GPT-2 activations reveals that MLP-based features exhibit interpretability compara-
ble to, and in some cases exceeding, that of SAE features. These findings challenge the prevailing
assumption that simpler encoders are necessary for maintaining interpretability. The results of our
study have significant implications for the field of neural network interpretability, particularly in the
context of large language models. They suggest that more sophisticated encoding techniques can
potentially improve feature extraction and interpretability without compromising the validity of the
extracted features. However, this potential improvement comes with increased computational costs.
Our work provides a framework for exploring this trade-off.

The use of simple linear-nonlinear encoders in SAEs for language model interpretability has been
primarily motivated by concerns that more powerful methods might extract features not actually
utilised by the transformer (Bricken et al., 2023). However, this approach may be overly conservative
given the complexity of representations in transformer layers, which result from multiple rounds of
attention and feed-forward computations. Better encoders aligns with recent work on inference-
time optimisation (Nanda et al., 2024), and will be validated as we improve encoding evaluation
(Makelov et al., 2024). Regardless, SAEs are sensitive to hyperparameters and fragile (Cunningham
et al., 2023), so exploring more powerful encoders is warranted.

The computational cost of more complex encoders should be weighed against potential benefits in
feature extraction and interpretability. Given the significant resources already invested in projects
like Gemma Scope (Lieberum et al., 2024), allocating additional compute to enhance representation
quality before decoding may be justified. Importantly, more sophisticated encoders can still maintain
the linear decoder necessary for downstream tasks such as steering. Empirical studies comparing
feature quality across encoder complexities will be important, as will addressing concerns about
non-zero-centered representations raised by Hobbhahn (2023).

Limitations Our study has several limitations that warrant consideration. We primarily explored
scenarios with constant sparsity and uncorrelated channels in the sparse representation, which may
not fully capture the complexity of real-world data. Additionally, our analysis focused on vanilla
implementations of the models, which are susceptible to issues like shrinkage due to the L1 penalty.
To comprehensively understand the current amortisation gap, future work should incorporate recent
SAE variants such as top-k SAEs (Makhzani & Frey, 2013; Gao et al., 2024) and JumpReLU SAEs
(Rajamanoharan et al., 2024b), as discussed in Appendix F.1. This extension would allow us to anal-
yse how large the amortisation gap is with the new SAE architectures. Similarly, our implementation
of SAE+ITO did not use advanced techniques like matched pursuit or gradient pursuit, potentially
underestimating its performance. The traditional dictionary learning approaches explored in Ap-
pendix F suggest room for improvement in this area. Lastly, our synthetic data generation process
did not account for varying feature importance, a key aspect of Elhage et al. (2022)’s framework.
Addressing these limitations in future research would provide a more comprehensive understanding
of sparse encoding strategies and their applicability to complex neural representations.
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A AMORTISATION GAP PROOF

Theorem 1 (SAE Amortisation Gap). Let S = RN be N sources following a sparse distribution
PS such that any sample has at most K ≥ 2 non-zero entries, i.e., ∥s∥0 ≤ K,∀s ∈ supp(PS).
The sources are linearly projected into an M -dimensional space, satisfying the restricted isometry
property, where K log N

K ≤ M < N . A sparse autoencoder (SAE) with a linear-nonlinear (L-NL)
encoder must have a non-zero amortisation gap.

This setting is solvable according to compressed sensing theory Donoho (2006), meaning that it is
possible to uniquely recover the true S up to sign flips – we cannot resolve the ambiguity between
the sign of any code element and the corresponding row in the decoding matrix. If a SAE fails to
achieve the same recovery, then there must be a non-zero amortisation gap, meaning that the SAE
cannot solve the sparse inference problem of recovering all sparse sources from their M -dimensional
projection. The problem is the low computational complexity of the L-NL encoder as we see by
looking at its functional mapping. Essentially, the SAE is not able, not even after the nonlinear
activation function, to recover the high dimensionality (N ) of the data after a projection into a lower
(M ) dimensional space Figure 1.

Proof. Let S = diag(s11, ..., sNN ) be a diagonal matrix with non-zero diagonal elements sii ̸=
0,∀i ∈ {1, ..., N}. Ever row si is a valid source signal because it has non-zero support under PS

since, ∥si∥0 = 1 ≤ K,∀i ∈ {1, ..., N}. Let Wd ∈ RN×M be the unknown projection matrix from
N down to M dimensions and We ∈ RM×N be the learned encoding matrix of the SAE. Define
W := WdWe ∈ RN×N and

S′ := SW (8)
the pre-activation matrix from the encoder of the SAE. Since Wd projects down into M dimensions,

rank(W ) = rank(WdWe) ≤ M. (9)

It follows that
rank(S′) = rank(SW ) ≤ M. (10)

As an intermediate results, we conclude that the pre-activations S′ of the SAE encoder cannot re-
cover the sources S′ ̸= |S| since rank(|S|) = N , because S is a diagonal matrix.

The next step is to see whether the nonlinear activation function might help to map back to the
sources. The SAE must learn an encoding matrix We such that

|S| = max(0, SWdWe) = max(0, SW ) = max(0, S′) (11)

where max(0, ·) is the ReLU activation function. Thus, for the SAE to correctly reconstruct the
sparse signals up to sign flips, for any source code σ ∈ supp(PS), we require

(σW )i =

{
|σi| if σi ̸= 0

≤ 0 otherwise
(12)

specifically, S′ must be non-positive off the diagonal and identical to |S| on the diagonal.
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Approach: Show that a matrix S′ cannot simultaneously satisfy conditions (eq. 10) and (eq. 12).

According to (eq. 8) and condition (eq. 12), we require that

s1W = (s′11, s
′
12, s

′
13, ..., s

′
1N ) = (|s11|, s′12, s′13, ..., s′1N ) (13)

with s′1i ≤ 0 for all i ∈ {2, ..., N}. Analogously,

s2W = (s′21, s
′
22, s

′
23, ..., s

′
2N ) = (s′21, |s22|, s′23, ..., s′2N ) (14)

with s′2i ≤ 0 for all i ∈ {1, 3, ..., N}. Moreover, since ∥s1 + s2∥0 = 2 < K we know that s1 + s2
has non-zero support under PS , so condition (eq. 12) must also hold for it. Thus, we need that

(s1 + s2)W = (|s11 + s21|, |s12 + s22|, γ1, ..., γN−2)

= (|s11 + 0|, |0 + s22|, γ1, ..., γN−2)

= (|s11|, |s22|, γ1, ..., γN−2)

(15)

with some non-positive γi ≤ 0 for all i ∈ {1, ..., N − 2}. However, because of linearity,

(|s11|, |s22|, γ1, ..., γN−2) = (s1 + s2)W

= s1W + s2W

= (|s11|, s′12, s′13, ..., s′1N ) + (s′21, |s22|, s′23, ..., s′2N )

= (|s11|+ s′21, s
′
12 + |s22|, s′13 + s′23, ..., s

′
1N + s′2N )

(16)

Thus, |s11| = |s11|+s′21 and |s22| = s′12+|s22|. From which it follows that s′21 = 0 and s′12 = 0. By
repeating this for all si, sj combinations, we obtain that all off-diagonal elements in S′ must be zero.
However, that means S′ = diag(|s11|, ..., |sNN |) must be diagonal. This leads to a contradiction,
since it would imply that rank(S′) = N , violating condition (eq. 10).

Notes: We can generalise the result to any sparse distribution PS with samples ∥s∥1 ≤ k for some
k > 0. In this case, we would choose ∥s1∥ < k

2 and ∥s2∥ < k
2 . Thus, again we would have

(s1 + s2) ∈ supp(PS) since ∥s1 + s2∥ < k, allowing the same reasoning.

B CONCEPTUAL MODELLING FRAMEWORK

The concept of distributed representations in neural networks originated with the Parallel Distributed
Processing (PDP) movement (Rumelhart et al., 1986). This work explored how information could
be encoded across multiple units in a network, rather than in localised, symbolic representations
(Thorpe, 1989). A distributed representation of information means that no single processing unit
in a network performs a syntactically or semantically determinable subtask alone. Instead, an as-
sembly of processing units generates a “distributed pattern of activation” to represent information
(Smolensky et al., 2006; Van Gelder, 1990; Gelder, 1992).

We show in Figure 8 the general modelling framework we are studying for uncovering these dis-
tributed representations. Inputs pass through a neural network and generate some internal neural
representation, that is often distributed and in superposition. We use an encoding process to de-
termine active latents, or features, inherent in that process, and a learned decoder to specify what
those feature directions should be. This lies at the heart of all methods studied: inference-based
methods (i.e., sparse coding), amortised methods (i.e., sparse autoencoders and autoencoders with
a more powerful encoder, such as an MLP) and hybrid approaches (i.e., sparse autoencoder with
inference-time optimisation).

C DECODER WEIGHT ANALYSIS

A useful method for gaining insight into the behavior of our models is through examining the final
weights of the decoder. Specifically, we visualize W⊤W , an N × N matrix, for three scenarios:
when N equals the true sparse dimensionality, when N exceeds it, and when N is smaller than the
true dimensionality.
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Encoder

Decoder

“horse”

Inputs

Neural
Network

Output Neural Representation Sparse Codes

Inference
● Sparse Coding

Amortized
● Linear
● LN (SAE)
● MLP

Hybrid
● SAE + ITO

feature A
feature B
feature C

Linear

Figure 8: Illustration of Modelling Framework. Representations in neural networks (left), com-
monly represent input features in superposition (center left) (Elhage et al., 2022). Autoencoders can
be used to extract sparse (interpretable) codes from neural representations (center right). While the
decoder is fixed to be linear (an important assumption), the encoder can be more flexible. Differ-
ent options for the encoder include inference, amortised inference and hybrid version of both (ITO,
inference-time optimisation) (right). Moreover, the encoder might be distinct between training and
testing time.
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Figure 9: Visualisation of D⊤D when N matches the true sparse dimension. Sparse coding achieves
near-identity matrices, while sparse autoencoders (SAE) and multilayer perceptrons (MLP) show
significant off-diagonal elements, indicating superposition.

In the case where N matches the true sparse dimension, we observe the matrix D⊤D for the learned
decoder matrix D after training. Figure 9 illustrates this scenario for N = 16 and M = 8, without
applying decoder column unit normalisation. For sparse coding, the matrix D⊤D is approximately
an N × N identity matrix after softmax normalisation. This means that the model has learned a
set of basis vectors where each column of D is nearly orthogonal to all others, indicating that the
features are independent.

In contrast, both the sparse autoencoder (SAE) and the multilayer perceptron (MLP) show D⊤D
matrices with a mix of diagonal and off-diagonal elements. In these cases, many off-diagonal ele-
ments are close to 1.0, suggesting that these models utilise superposition, representing more features
than there are dimensions. This is suboptimal in this particular scenario because the models have
the exact number of dimensions required to represent the feature space effectively. Notably, this
superposition effect diminishes when vector normalisation is applied during training.

We observe similar patterns when N is greater than the true sparse dimensionality (Figure 10) and
when N is smaller (Figure 11). In cases where N exceeds the required dimensionality, sparse
coding still strives to maintain orthogonal feature directions, leading to a near-identity matrix. How-
ever, both SAEs and MLPs show stronger correlations between features, as indicated by larger
off-diagonal elements, though MLPs exhibit less extreme correlations (e.g., off-diagonal values of
around 0.5).

When N is smaller than the true sparse dimension (Figure 11), sparse coding again attempts to
maintain orthogonality, though it is constrained by the reduced number of dimensions. The SAE
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Figure 10: Visualisation of D⊤D when N exceeds the true sparse dimension.
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Figure 11: Visualisation of D⊤D when N is smaller than the true sparse dimension.

and MLP models, in contrast, continue to exhibit superposition, with off-diagonal elements close
to 1.0. MLPs, however, show somewhat weaker correlations between features, as indicated by off-
diagonal values around 0.5 in some instances.

D MLP ABLATIONS

We also wanted to understand in more fine-grained detail how the hidden width of the MLPs affects
the key metrics of performance, in different regimes of N,M and K. We show this in Figure 12. We
use varying hidden widths and three different combinations of increasingly difficult N,M,K to test
this. We train for 50,000 iterations with a learning rate of 1e-4. We see that MCC (both latent and
dictionary) increases approximately linearly with hidden width, with a slight drop-off at a hidden
width of 512 (most likely due to underfitting). We also see a similar trend in terms of reconstruction
loss, with the most difficult case being most sensitive to hidden width.

E INCLUDING A BIAS PARAMETER

We examine the effect of including a bias parameter in our models in Figure 13. Elhage et al. (2022)
noted that a bias allows the model to set features it doesn’t represent to their expected value. Further,
ReLU in some cases can make “negative interference” (interference when a negative bias pushes
activations below zero) between features free. Further, using a negative bias can convert small
positive interferences into essentially being negative interferences, which helps deal with noise.

However, Theorem 1 doesn’t rely on having biases, and although it generalises to the case with
biases, we would like to be able to simplify our study by not including them. Thus, we show
in Figure 13 that biases have no statistically significant effect on reconstruction loss, latent MCC,
dictionary MCC, or L0, for any of the models, except for the L0 and MCC of the MLP, which
achieves a higher MCC without bias at the cost of a greater L0.
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Figure 12: Varying the hidden width of an MLP autoencoder in varying difficulties of dictionary
learning regimes. Each data point is an MLP trained for 50,000 iterations with a learning rate of
1e-4.
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Figure 13: Effects on dictionary learning performance for our three models, with and without a bias.
Including a bias has no statistically significant effect on results.
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F COMPARISON WITH TRADITIONAL DICTIONARY LEARNING METHODS

To provide a comparison with traditional dictionary learning methods, we incorporated the Least
Angle Regression (LARS) algorithm to compute the Lasso solution in our experimental framework.

The traditional dictionary learning problem can be formulated as a bi-level optimisation task. Given
a set of training samples X = [x1, . . . , xn] ∈ Rm×n, we aim to find a dictionary D ∈ Rm×k and
sparse codes A = [α1, . . . , αn] ∈ Rk×n that minimise the reconstruction error while enforcing
sparsity constraints:

min
D,A

n∑
i=1

(
1

2
∥xi −Dαi∥22 + λ∥αi∥1

)
subject to ∥dj∥2 ≤ 1 for j = 1, . . . , k, where dj represents the j-th column of D, and λ > 0 is a
regularisation parameter controlling the trade-off between reconstruction fidelity and sparsity.

In our experiment, we employed the LARS algorithm to solve the Lasso problem for sparse coding,
while alternating with dictionary updates to learn the optimal dictionary. Specifically, we used the
scikit-learn implementation of dictionary learning, which utilises LARS for the sparse coding
step. The algorithm alternates between two main steps: (1) sparse coding, where LARS computes
the Lasso solution for fixed D, and (2) dictionary update, where D is optimised while keeping the
sparse codes fixed.

To evaluate the performance of this traditional approach, we generated synthetic data following the
same procedure as in our main experiments, with N = 16 sparse sources, M = 8 measurements,
and K = 3 active components per timestep. We trained the dictionary learning model on the
training set and evaluated its performance on the held-out test set. Performance was measured using
the Mean Correlation Coefficient (MCC) between the predicted and true latents, as well as between
the learned and true dictionary elements.

The results of this, presented in Figure 14, make clear that traditional sparse coding significantly
outperforms our vanilla gradient-based implementations, particularly in terms of latent MCC and
dictionary MCC. Whilst our results from the main body show that there does exist a significant
amortisation gap between the vanilla implementations of each of the approaches, we should also
attempt to understand how the optimised versions of each method compare. We discuss this in the
following subsection.

F.1 OPTIMISED SPARSE AUTOENCODERS AND SPARSE CODING

Our initial implementations of sparse autoencoders (SAEs) and sparse coding, while functional, are
far from optimal. They represent the minimum computational mechanisms required to solve the
problems as we have formulated them. However, more sophisticated approaches can significantly
improve performance and address inherent limitations.

F.1.1 ADVANCED SPARSE AUTOENCODER TECHNIQUES

Sparse autoencoders trained with L1 regularisation are susceptible to the shrinkage problem. Wright
& Sharkey (2024) identified feature suppression in SAEs, analogous to the activation shrinkage first
described by Tibshirani (1996) as a property of L1 penalties. The shrinkage problem occurs when
L1 regularisation reduces the magnitude of non-zero coefficients to achieve a lower loss, potentially
underestimating the true effect sizes of important features.

Several techniques have been proposed to mitigate this issue:

• ProLU Activation: Taggart (2024) introduced the ProLU activation function to maintain
scale consistency in feature activations.

• Gated SAEs: Rajamanoharan et al. (2024a) developed Gated Sparse Autoencoders, which
separate the process of determining active directions from estimating their magnitudes.
This approach limits the undesirable side effects of L1 penalties and achieves a Pareto
improvement over standard methods.
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Figure 14: Performance of Least-Angle Regression (LARS) to compute the Lasso solution using our
synthetic dictionary learning setup. In general, when comparing to Figure 5, we see an improvement
when using LARS over our naı̈ve implementations of SAEs, MLPs and sparse coding, across loss,
latent MCC, and dictionary MCC.
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• JumpReLU SAEs: Rajamanoharan et al. (2024b) proposed JumpReLU SAEs, which set
activations below a certain threshold to zero, effectively creating a non-linear gating mech-
anism.

• Top-k SAEs: Originally proposed by Makhzani & Frey (2013), top-k SAEs were shown
by Gao et al. (2024) to prevent activation shrinkage and scale effectively to large language
models like GPT-4.

F.1.2 OPTIMISED SPARSE CODING APPROACHES

Our initial sparse coding model, using uniformly initialised latents and concurrent gradient-based
optimisation of both sparse codes and the dictionary, is suboptimal. The sparse coding literature
offers several more sophisticated approaches:

• Least Angle Regression (LARS): Introduced by Efron et al. (2004), LARS provides an
efficient algorithm for computing the entire regularisation path of Lasso. It is particularly
effective when the number of predictors is much larger than the number of observations.

• Orthogonal Matching Pursuit (OMP): Pati et al. (1993) proposed OMP as a greedy algo-
rithm that iteratively selects the dictionary element most correlated with the current resid-
ual. It offers a computationally efficient alternative to convex optimisation methods.

Future work will involve pitting these against the optimised SAE architectures discussed above.

F.2 TOP-k SPARSE CODING

Building on this exploration, we introduced a top-k sparse coding approach. We aimed to determine
whether (1) setting very small active latents to zero would improve performance and (2) optimising
with a differentiable top-k function, rather than using exponential or ReLU functions, could yield
further benefits.

Figure 15 presents the results of these experiments. We first trained the sparse coding model for
20,000 steps on the training data and optimised for an additional 1,000 steps on the test data. During
this process, we measured mean squared error (MSE) loss, latent MCC, and the L0 norm of the
latent codes. Due to the presence of very small active latents, all initial setups led to an L0 value of
1.0, indicating that all latents were active, as shown by the blue star in the figure. We also show a
sparse autoencoder trained with different L1 penalties as a comparison.

Next, we applied a top-k operation to enforce sparsity by setting all but the top-k largest activations
to zero. This process resulted in improved L0 values, but the MSE loss and MCC results indicated
that the top-k optimisation itself was hampered by an insufficient learning rate. We hypothesise that
with proper tuning of hyperparameters, we could achieve Pareto improvements by using the top-k
function directly, rather than applying it to exponentiated codes.

We believe that further adjustments to the optimisation process, including a higher learning rate
for top-k functions, could result in better performance. Additionally, applying the top-k function
directly, without exponentiating the codes, may offer further gains in performance and sparsity.

G MEASURING FLOPS

To quantify the computational cost of each method, we calculate the number of floating-point oper-
ations (FLOPs) required for both training and inference. This section details our approach to FLOP
calculation for each method.

G.1 SPARSE CODING

For sparse coding, we calculate FLOPs for both inference and training separately.

Inference: The number of FLOPs for inference in sparse coding is given by:

FLOPsSC-inf =

{
3MN +Nns if learning D

2MN +Nns otherwise
(17)
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Figure 15: Comparison of L0 loss vs. MSE loss and L0 loss vs. MCC for Sparse Coding with L1
regularization, top-k inference, and top-k optimization, alongside results for Sparse Autoencoder.
Blue stars represent the initial model’s performance, while curves illustrate the results of applying
top-k sparsity.
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where M is the number of measurements, N is the number of sparse sources, and ns is the number of
samples. The additional MN term when learning D accounts for the normalisation of the dictionary.

Training: For training, we calculate the FLOPs as:
FLOPsSC-train = neff · (FLOPsforward + FLOPsloss + FLOPsbackward + FLOPsupdate) (18)

where neff = nsteps · nb

ns
is the effective number of iterations, nsteps is the number of training steps, nb

is the batch size, and ns is the total number of samples. The component FLOPs are calculated as:
FLOPsforward = FLOPsSC-inf (19)

FLOPsloss = 2Mnb +Nnb (20)
FLOPsbackward ≈ 2 · FLOPsforward (21)

FLOPsupdate =

{
Nnb +MN if learning D

Nnb otherwise
(22)

G.2 SPARSE AUTOENCODER (SAE)

For the sparse autoencoder, we calculate FLOPs for both training and inference.

Training: The total FLOPs for SAE training is given by:
FLOPsSAE-train = neff · (FLOPsforward + FLOPsbackward) (23)

where neff is defined as before, and:

FLOPsforward =

{
5MN +N if learning D

4MN +N otherwise
(24)

FLOPsbackward = N + (2NM +N) + 2NM + 2(MN +N) +

{
2NM if learning D

0 otherwise
(25)

Inference: For SAE inference, the FLOPs are calculated as:
FLOPsSAE-inf = (4MN +N) · ns (26)

G.3 MULTILAYER PERCEPTRON (MLP)

For the MLP, we calculate FLOPs for both training and inference, considering a single hidden layer
of size H .

Training: The total FLOPs for MLP training is given by:
FLOPsMLP-train = neff · (FLOPsforward + FLOPsbackward) (27)

where:

FLOPsforward =

{
2MH +H + 2HN +N + 2NM +MN if learning D

2MH +H + 2HN +N + 2NM otherwise
(28)

FLOPsbackward = N + (2NH +N) +H + (2MH +H) + 2NM + 2(MH +H +HN +N)
(29)

where we add 2NM to FLOPsbackward if learning D, and not otherwise.

Inference: For MLP inference, the FLOPs are calculated as:
FLOPsMLP-inf = (2MH +H + 2HN +N + 2NM) · ns (30)

G.4 SAE WITH INFERENCE-TIME OPTIMISATION (SAE+ITO)

For SAE+ITO, we calculate the additional FLOPs required for optimizing the codes during infer-
ence:

FLOPsITO = (MN +N + niter · (4MN + 2M + 11N)) · ns (31)
where niter is the number of optimisation iterations performed during inference.

These FLOP calculations provide a consistent measure of computational cost across all methods,
allowing for fair comparisons of efficiency and performance trade-offs.
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H AUTOMATED INTERPRETABILITY

In this section, we describe the automated interpretability pipeline used to understand and evaluate
the features learned by sparse autoencoders (SAEs) and other models in the context of neuron acti-
vations within large language models (LLMs). The pipeline consists of two distinct tasks: feature
interpretation and feature scoring. These tasks allow us to generate hypotheses about individual
feature activations and to determine whether specific features are likely to activate given particular
token contexts.

H.1 FEATURE INTERPRETER PROMPT

We use a feature interpreter prompt to provide an explanation for a neuron’s activation. The in-
terpreter is tasked with analysing a neuron’s behaviour, given both text examples and the logits
predicted by the neuron. Below is a summary of how the interpreter prompt works:

You are a meticulous AI researcher conducting an investigation into a specific neuron in a language
model. Your goal is to provide an explanation that encapsulates the behavior of this neuron. You
will be given a list of text examples on which the neuron activates. The specific tokens that cause
the neuron to activate will appear between delimiters like <<this>>. If a sequence of consecu-
tive tokens causes the neuron to activate, the entire sequence of tokens will be contained between
delimiters <<just like this>>. Each example will also display the activation value in paren-
theses following the text. Your task is to produce a concise description of the neuron’s behavior by
describing the text features that activate it and suggesting what the neuron’s role might be based
on the tokens it predicts. If the text features or predicted tokens are uninformative, you can omit
them from the explanation. The explanation should include an analysis of both the activating to-
kens and contextual patterns. You will be presented with tokens that the neuron boosts in the next
token prediction, referred to as Top logits, which may refine your understanding of the neu-
ron’s behavior. You should note the relationship between the tokens that activate the neuron and
the tokens that appear in the Top logits list. Your final response should provide a formatted
explanation of what features of text cause the neuron to activate, written as: [EXPLANATION]:
<your explanation>.

H.2 FEATURE SCORER PROMPT

After generating feature interpretations, we implemented a scoring prompt to predict whether a
specific feature is likely to activate on a given token. This ensures that the explanations generated
by the interpreter align with actual activations. The scoring prompt tasks the model with evaluating
if the tokens marked in the examples are representative of the feature in question.

You are provided with text examples where portions of the sentence strongly represent the feature,
with these portions enclosed by << and >>. Some of these examples might be mislabeled. Your
job is to evaluate each example and return a binary response (1 if the tokens are correctly labeled,
and 0 if they are mislabeled). The output must be a valid Python list with 1s and 0s, corresponding
to the correct or incorrect labeling of each example.

H.3 EVALUATION OF AUTOMATED INTERPRETABILITY

To evaluate the accuracy of the interpretations generated by the feature interpreter and feature scorer,
we compared model-generated explanations against held-out examples. The evaluation involved
calculating the F1-score, which was done by presenting the model with a mix of correctly labeled
and falsely labeled examples. The model was then tasked with predicting whether each token in
the example represented a feature or not, based on the previously generated interpretation. By
comparing the model’s predictions with ground truth labels, we can assess how accurately the feature
interpretation aligns with actual neuron activations. This process helps validate the interpretability
of the features learned by SAEs, MLPs, and other models.

This pipeline is based on the work of Juang et al. (2024), which itself builds on the work of others.
Bills et al. (2023) used GPT-4 to generate and simulate neuron explanations by analyzing text that
strongly activated the neuron. Bricken et al. (2023) and Templeton (2024) applied similar techniques
to analyze sparse autoencoder features. Templeton (2024) also introduced a specificity analysis to
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rate explanations by using another LLM to predict activations based on the LLM-generated inter-
pretation. This provides a quantification of how interpretable a given neuron or feature actually is.
Gao et al. (2024) demonstrated that cheaper methods, such as Neuron to Graph (Foote et al.), which
uses n-gram based explanations, allow for a scalable feature labeling mechanism that does not rely
on expensive LLM computations.
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