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Abstract

Semi-implicit variational inference (SIVI) has been introduced to expand the an-
alytical variational families by defining expressive semi-implicit distributions in
a hierarchical manner. However, the single-layer architecture commonly used in
current SIVI methods can be insufficient when the target posterior has complicated
structures. In this paper, we propose hierarchical semi-implicit variational infer-
ence, called HSIVI, which generalizes SIVI to allow more expressive multi-layer
construction of semi-implicit distributions. By introducing auxiliary distributions
that interpolate between a simple base distribution and the target distribution, the
conditional layers can be trained by progressively matching these auxiliary dis-
tributions one layer after another. Moreover, given pre-trained score networks,
HSIVI can be used to accelerate the sampling process of diffusion models with
the score matching objective. We show that HSIVI significantly enhances the
expressiveness of SIVI on several Bayesian inference problems with complicated
target distributions. When used for diffusion model acceleration, we show that
HSIVI can produce high quality samples comparable to or better than the existing
fast diffusion model based samplers with a small number of function evaluations
on various datasets.

1 Introduction

Variational inference (VI) is an approximate Bayesian inference method that is gaining in popularity,
where one tries to find an approximation to the target posterior distribution using an optimization
approach (Jordan et al., 1999; Wainwright & Jordan, 2008; Blei et al., 2016). To do that, it first posits
a family of variational distributions and then seeks the closest member from this family that minimizes
some statistical distance to the target posterior, usually the Kullback-Leibler (KL) divergence. As the
posterior is not analytically available, an equivalent formulation is often adopted in practice where
one maximizes the evidence lower bound (ELBO) instead (Jordan et al., 1999).

One classical VI method is mean-field VI, which assumes a factorizable structure of the variational
distributions over the parameters or latent variables (Bishop & Tipping, 2000). This often leads
to closed-form coordinate-ascent update rules when certain conditional conjugacy conditions are
satisfied. In practice, the conditional conjugacy may not hold and the true posterior could be much
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more complicated than what a factorized variational distribution can accurately approximate. In
recent years, several attempts have been made in VI that alleviate these constraints by designing more
flexible variational families (Jaakkola & Jordan, 1998; Saul & Jordan, 1996; Giordano et al., 2015;
Tran et al., 2015; Rezende & Mohamed, 2015; Dinh et al., 2017; Kingma et al., 2016; Papamakarios
et al., 2019), together with generic training algorithms via Monte Carlo gradient estimators (Nott
et al., 2012; Paisley et al., 2012; Ranganath et al., 2014; Rezende et al., 2014; Kingma & Welling,
2014). While successful, these approaches all assume tractable densities of variational distributions.
To further expand the capacity of variational families, one approach is to incorporate the implicit
models that have intractable densities but are easy to sample from (Huszár, 2017; Tran et al., 2017;
Mescheder et al., 2017; Shi et al., 2018a,b; Song et al., 2019). However, as the densities are intractable
for implicit models, one often resorts to density ratio estimation for ELBO evaluation during training,
which is known to be difficult in high dimensional settings (Sugiyama et al., 2012). To avoid density
ratio estimation, semi-implicit variational inference (SIVI) has been proposed where the variational
distributions are formed through a semi-implicit hierarchical construction, and various training criteria
have been employed (Yin & Zhou, 2018; Moens et al., 2021; Titsias & Ruiz, 2019; Yu & Zhang,
2023).

While striking a good balance between approximation flexibility and training efficiency, current SIVI
methods often use a single conditional layer which can be insufficient when the target posterior
possesses complicated structures (e.g., multimodality, see an example in Section 5.1). To enhance
the expressiveness of single-layer models, an intuitive but effective approach is to extend them to
multi-layer hierarchical models (Vahdat & Kautz, 2020; Ranganath et al., 2016; Sobolev & Vetrov,
2019). In this paper, we propose hierarchical semi-implicit variational inference (HSIVI), which is a
generalization of SIVI that allows multiple conditional layers. Instead of training the hierarchical
semi-implicit model end to end, we introduce auxiliary distributions that interpolate between a simple
base distribution and the target distribution to guide the intermediate semi-implicit distributions
toward the target distribution. The conditional layers are then trained sequentially to match these
auxiliary bridging distributions given the fitted semi-implicit distributions from the previous layers
(Figure 1), using different criteria from before. This way, HSIVI allows progressive learning of the
target distribution that significantly reduces the burden of each conditional layer. Moreover, HSIVI
with the score matching objective can also be used to accelerate the sampling process of diffusion
models where the pre-trained score networks corresponding to different noise levels provide a natural
sequence of bridging distributions. In experiments, we demonstrate the effectiveness of HSIVI on
both Bayesian inference tasks with complicated target distributions and diffusion model acceleration.

2 Background on semi-implicit variational inference

The semi-implicit variational family (Yin & Zhou, 2018; Titsias & Ruiz, 2019) is defined as

qϕ(x) =

∫
qϕ(x|z)q(z)dz, (1)

where ϕ are the variational parameters, qϕ(x|z) is called the conditional layer, and q(z) is called
the mixing layer. This variational family is said to be semi-implicit as qϕ(x|z) is required to be
explicit and q(z) is often implicit. The semi-implicit variational family is capable of capturing more
complicated dependencies between variables (Yin & Zhou, 2018; Titsias & Ruiz, 2019; Yu & Zhang,
2023) than explicit variational families without the hierarchical structure. Given the observed data D,
the classical VI methods often use the evidence lower bound (ELBO) for training, which is defined
as ELBO := Eqϕ(x) [log p(D,x)− log qϕ(x)]. However, as qϕ(x) is no longer tractable in SIVI,
alternative training objectives have been introduced.

ELBO related objectives Yin & Zhou (2018) considered a sequence of lower bounds of the ELBO

LSIVI-LB(p(x|D)∥qϕ(x)) := Ez∼q(z),x∼qϕ(x,z)E{z(i)}Ki=1
i.i.d.∼ q(z)

log
p(D,x)

1
K+1

(
qϕ(x|z) +

∑K
k=1 qϕ(x|z(k))

) .
(2)

It is an asymptotically exact surrogate in the sense that limK→∞ LSIVI-LB = ELBO. Titsias & Ruiz
(2019) proposed unbiased implicit variational inference (UIVI) which uses samples from the inverse
conditional distribution qϕ(z|x) (from an MCMC run, e.g. Hamiltonian Monte Carlo (Neal, 2011)) to
provide an unbiased gradient estimator of the exact ELBO. See more details of UIVI in Appendix B.
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Figure 1: An example for 4-layer HSIVI. The target distribution p0(x) is a Gaussian mixture and
the auxiliary distributions {pi(x)}3i=0 are constructed using the diffusion bridge. The auxiliary
distributions are plotted in the squares, where the blue heatmap describes the probability density and
the arrows represent the score functions of the auxiliary distributions.

Score matching objective Besides the ELBO, score based distance measures have also been used
for variational inference where the score function S(x) := ∇x log p(x|D) = ∇x log p(D,x) is
assumed to be tractable (Liu et al., 2016; Zhang et al., 2018; Hu et al., 2018). Yu & Zhang (2023)
considered the following Fisher divergence between the target distribution and the semi-implicit
variational distribution

DFisher(p(x|D)∥qϕ(x)) := Ex∼qϕ(x)∥S(x)−∇x log qϕ(x)∥22. (3)

By reformulating DFisher as the maximum of the following optimization problem

DFisher(p(x|D)∥qϕ(x)) = max
f(x)

[
2f(x)T (S(x)−∇x log qϕ(x))− ∥f(x)∥22

]
,

and using a similar trick as in denoising score matching (Vincent, 2011; Song & Ermon, 2019), one
can transform the minimization of DFisher into the following minimax problem which is tractable

min
ϕ

max
ψ
LSIVI-SM(p(x|D)∥qϕ(x)) := Ez∼q(z),x∼qϕ(x|z)

[
2fψ(x)

T [S(x)−∇x log qϕ(x|z)]− ∥fψ(x)∥22
]
.

(4)
In practice, fψ(x) is parametrized using neural networks. The above minimax optimization problem
can be efficiently solved by optimizing ψ and ϕ alternately.

3 Hierarchical semi-implicit variational inference

The semi-implicit variational family qϕ(x) in equation (1) is indeed a single-layer model in the sense
that it contains only one conditional layer. Our main idea is to expand this single-layer semi-implicit
variational family into its multi-layer variants and introduce a sequence of auxiliary distributions to
guide the semi-implicit distributions toward the target distribution. This leads to a new SIVI method
which we call hierarchical semi-implicit variational inference (HSIVI). We start with the following
definition which is motivated by equation (1).
Definition 1 (Hierarchical Semi-Implicit Distribution). Let xT ∼ qT (xT ) for some T ∈ N∗,
where qT (xT ) is called the variational prior. Let qt(xt|xt+1;ϕt) be the t-th conditional layer for
0 ≤ t ≤ T − 1. Denote {ϕk}T−1

k=t by ϕ≥t. The t-th layer hierarchical semi-implicit distribution
qt(xt;ϕ≥t) is defined recursively from T − 1 to 0 by

qt(xt;ϕ≥t) =

∫
qt(xt|xt+1;ϕt)qt+1(xt+1;ϕ≥t+1)dxt+1, 0 ≤ t ≤ T − 1, (5)

where qT (xT ;ϕ≥T ) := qT (xT ). Here, the t-th conditional layer qt(xt|xt+1;ϕt) is required to be
explicit and reparametrizable with a tractable score function ∇xt

log qt(xt|xt+1;ϕt).

Compared to the single-layer semi-implicit variational family (1), the family of hierarchical semi-
implicit distributions provides a principled way to construct more expressive mixing layers using multi-
layer architectures. Also, unlike the hierarchical variational models (Ranganath et al., 2016) which
require an extra reverse model and explicit variational prior, hierarchical semi-implicit distributions
inherit the advantage of SIVI that allows qt(xt;ϕ≥t) to be implicit, and as shown next, they do not
require a reverse model and can be progressively trained using the simple algorithms of SIVI for each
conditional layer, from t = T − 1 to t = 0.
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Algorithm 1 Hierarchical semi-implicit variational inference (sequential training)

Input: Auxiliary bridge {pt(x)}T−1
t=0 ; initial value of parameters ϕ(0) = {ϕ(0)

i }
T−1
t=0 .

Output: The optimal parameters ϕ∗.
Initialization: ϕ← ϕ(0).
for t = T − 1 to 0 do

while not converge do
Sample a minibatch {x(k)

T }
K
k=1 from the variational prior qT (xT ).

if t < T − 1 then
Sequentially sample {x(k)

t+1}Kk=1 through q(xi|xi+1;ϕi) from i = T − 1 to i = t+ 1.
Detach the computation graphs from {x(k)

t+1}Kk=1.
end if
Update ϕt by optimizing the LSIVI-f (pt(xt)∥qt(xt;ϕ≥t)) based on the minibatch {x(k)

t+1}Kk=1.
end while
ϕ∗
t ← ϕt.

end for
ϕ∗ ← {ϕ∗

t }T−1
t=0 .

3.1 Progressive approximation with the auxiliary bridge

In this section, we introduce a bridging technique for progressively approximating the target dis-
tribution p(x) using hierarchical semi-implicit distributions. Rather than approximating p(x) with
q0(x;ϕ≥0) directly, we construct a sequence of intermediate auxiliary distributions {pt(x)}T−1

t=0
as a bridge between the target distribution p0(x) := p(x) and an easy-to-approximate distribution
pT−1(x), to amortize the difficulty of one-pass fitting. A typical example of an auxiliary bridge is
the geometric interpolation as described below.
Example 1 (Geometric Interpolation). Let S(x) := ∇ log p(x) be the score function of target
distribution p(x) and Sbase(x) := ∇ log pbase(x) be the score function of a base distribution pbase(x).
In geometric interpolation (Neal, 2001; Bernton et al., 2019), each auxiliary distribution pt(x) for
0 ≤ t ≤ T − 1 has the following probability density function (pdf) and score function

pt(x) ∝ pbase(x)
1−λtp(x)λt , St(x) := ∇x log pt(x) = (1− λt)Sbase(x) + λtS(x), (6)

where {λt}T−1
t=0 is a non-negative decreasing sequence satisfying λ0 = 1.

Intuitively, we expect the distance between two neighboring distributions pt(x) and pt+1(x) to
be not too large so that it would be easy to construct a conditional distribution qt(xt|xt+1) such
that pt(xt) ≈

∫
qt(xt|xt+1)pt+1(xt+1)dxt+1. Note that the auxiliary bridge {pt(x)}T−1

t=0 does not
necessarily need to have analytical pdfs (up to a constant). In fact, it suffices if they have tractable
score functions {St(x)}T−1

t=0 which lead to another type of auxiliary bridge (Example 2 in Section 4).

3.2 Sequential training of HSIVI

Given the auxiliary distributions {pt(xt)}T−1
t=0 , a natural approach is to progressively train the

hierarchical semi-implicit distribution qt(xt;ϕ≥t) to match pt(xt) from t = T − 1 to t = 0. Let
the parameters ϕt in the t-th conditional layer be independent across different ts. We first train
qT−1(xT−1;ϕT−1) to match pT−1(xT−1) by optimizing ϕT−1 w.r.t. the single-layer SIVI objective
LSIVI-f (pT−1(xT−1)∥qT−1(xT−1;ϕT−1)). For t = T − 2, . . . , 0, given the trained semi-implicit
distribution qt+1(xt+1;ϕ≥t+1), we can fix it as the mixing layer and train the t-th conditional layer
qt(xt|xt+1;ϕt) by optimizing ϕt w.r.t. the single-layer SIVI objective LSIVI-f (pt(xt)∥qt(xt;ϕ≥t))
as well. Note this is fine as the mixing layer can be implicit in SIVI. Here, f is some distance criterion,
e.g. LSIVI-LB in equation (2) or LSIVI-SM in equation (4). In this article, we mainly focus on LSIVI-LB
and LSIVI-SM, while other distance criteria can also be applied. We summarize this sequential training
procedure in Algorithm 1.

Score based training In addition to the common assumption that pt(x) is known up to a constant,
it is worth noting that LSIVI-LB is also applicable when only the score functions {St(x)}T−1

t=0 are
available which is important for the diffusion bridge construction of auxiliary distributions in Example
2. Concretely, assume qt(xt|xt+1;ϕt) is induced by a parametrized transform xt = ht(xt+1, ϵ;ϕt)
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where ϵ ∼ pϵ(ϵ) is a random noise. The only term in LSIVI-LB (pt(xt)∥qt(xt;ϕ≥t)) containing
pt(xt) is Eqt(xt;ϕ≥t) log pt(xt) (see equation (2)) whose gradient takes the form

∇ϕt
Eqt(xt;ϕ≥t) log pt(xt) = Eqt+1(xt+1;ϕ≥t+1)pϵ(ϵ)St (ht(xt+1, ϵ;ϕt))∇ϕt

ht(xt+1, ϵ;ϕt). (7)

In the training of HSIVI-SM, each term LSIVI-SM (pt(xt)∥qt(xt;ϕ≥t)) involves a nested optimization
of ft(xt;ψt). When the score functions are computationally expensive, we find that an alternative
parametrization ft(xt;ψt) := St(xt)− gt(xt;ψt) is useful to avoid the time-consuming evaluation
of St(xt) when optimizing ψt in equation (4). The reason for this lies in Proposition 1. See
Appendix C.2 for the proof of Proposition 1.

Proposition 1. Let qt(xt,xt+1;ϕ≥t) = qt(xt|xt+1;ϕt)qt+1(xt+1;ϕ≥t+1). The minimax optimiza-
tion of LSIVI-SM (pt(xt)∥qt(xt;ϕ≥t)) is equivalent to

min
ϕt

Eqt(xt,xt+1;ϕ≥t) [St(xt)− gt(xt;ψt)]
T
[St(xt) + gt(xt;ψt)− 2∇xt log qt(xt|xt+1;ϕt)] ,

min
ψt

Eqt(xt,xt+1;ϕ≥t)∥gt(xt;ψt)−∇xt
log qt(xt|xt+1;ϕt)∥22.

Marginal approximation v.s. joint approximation Previous works (Bernton et al., 2019; Bao
et al., 2022) often construct a joint distribution p(x0:T ) and minimize KL(p(x0:T−1)∥q(x0:T−1))
where q(x0:T−1) is a variational distribution. In HSIVI, we directly approximate pt(xt) using the
semi-implicit variational distributions. When p(x0:T−1) is complex and T is small, the variational
distribution q(x0:T−1) may be insufficient to fully capture the joint distribution p(x0:T−1). For
example, the optimal fit of the joint distribution for diffusion models established by Analytic-
DPM (Bao et al., 2022) does not guarantee that the marginal distributions would be approximated
well (see Table 2 for comparison).

4 Application to diffusion model acceleration

4.1 Review of diffusion models

Recently, diffusion models have shown great success on many generative modeling benchmarks,
including image generation (Ho et al., 2020; Song et al., 2020a,b), graph generation (Niu et al., 2020),
and text generation (Austin et al., 2021). Diffusion models work by adding noise to the training
data in the forward process and then removing the noise to recover the data in the backward process,
which can be integrated into a general stochastic differential equation (SDE) framework. The forward
process {us}s∈[0,L] is usually described by

dus = f(us, s)ds+ g(s)dws, u0 ∼ p0(·), (8)

where p0(·) is the data distribution, ws is a standard Brownian motion, and f(us, s) and g(s) are the
drift and diffusion coefficients respectively. To generate samples from the data distribution, one can
run the following backward process

dus = [f(us, s)− g2(s)∇us log ps(us)]ds+ g(s)dw̄s, uL ∼ pL(·), (9)

where ps(·) is the pdf of us and w̄s is a standard Brownian motion when time flows from L to
0. As the score function ∇us

log ps(us) is intractable, we need to estimate it by denoising score
matching (Vincent, 2011; Song et al., 2020b). See more details of diffusion models and the training
objectives in Appendix A.

4.2 Diffusion model acceleration via HSIVI

While diffusion models prove effective for generative modeling, it often takes a large number of
discretization steps in the backward process (9) to produce high quality samples, which caps their
potential for real time applications. Note that the forward process (8) naturally provides another type
of auxiliary bridge, which combined with HSIVI, can be used to accelerate the sampling process of
diffusion models.

Example 2 (Diffusion Bridge). Consider the forward process {us}s∈[0,L] with L > 0 (defined in
equation (8)) in diffusion models. We choose T discrete time steps 0 ≈ s0 < · · · < sT−1 ≤ L and
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let xt := ust with probability density function pt(·). Assume each auxiliary distributions pt(·) for
0 ≤ t ≤ T − 1 admits a score function as

St(x) := ∇x log pt(x) ≈ S∗(x, st), 0 ≤ t ≤ T − 1,

where S∗(x, s) is a pre-trained score model with the denoising score matching loss (equation (13)
in Appendix A). Let us denote S∗(x, st) by S∗

t (x) for short. With sufficient samples from the data
distribution p0(x) and model capacity, the approximation S∗

t (x) can be reasonably accurate for
almost all x and t (Song et al., 2020b).

As the pre-trained score model provides a diffusion bridge from the simple distribution pT−1 (e.g.,
standard Gaussian) to the data distribution, we can train the hierarchical semi-implicit distributions to
approximate the diffusion bridge within the HSIVI framework. Given the expressiveness of hierar-
chical semi-implicit distributions, we may expect an accurate approximation of the data distribution
with a small number T and hence acceleration can be achieved.

However, the memory usage during the sequential training process for HSIVI might be large because
of the necessity for independent parameters. Therefore, we may employ a parameter sharing scheme
which is commonly assumed in diffusion models (Song & Ermon, 2019; Ho et al., 2020) such that
different conditional layers share the same parameters ϕ. Note that sequential training is not suitable
in this setting. Therefore, we propose a joint training procedure that minimizes a weighted sum of the
SIVI objectives

LHSIVI-f (ϕ) =

T−1∑
t=0

β(t)LSIVI-f (pt(xt)∥qt(xt;ϕ)) , (10)

where β(t) : {0, . . . , T − 1} → R+ is a positive weighting function and f is some distance criterion.
See Algorithm 2 in Appendix C.3 for more details of joint training.

More specifically, in this work, we mainly focus on building the diffusion bridge with variance
preserving SDE (VP-SDE) (Song et al., 2020b) such that us|u0 ∼ N (

√
α(s)u0, (1− α(s))I) with

a decreasing function α(s) of s. We use LHSIVI-SM in equation (10) for training and set the weighting
function β(t) = 1− α(st) as recommended in Song et al. (2020b), which tends to train layers that
are far from t = 0 first during the training, resembling the sequential training. Another popular
formulation of diffusion models is to fit a noise model ϵ∗(x, s) that predicts the noise added to a
noisy sample x at time s (Ho et al., 2020). HSIVI-SM also generalizes to the case where a pre-trained
noise model is available. The pre-trained noise model forms a (generalized) diffusion bridge by
letting ϵ∗t (x) = ϵ∗(x, st), and we call the corresponding training method “ϵ-training”. We provide a
reparametrized objective function L̃HSIVI-SM for ϵ-training in Appendix C.4.

Several efforts have been made to accelerate the sampling process of diffusion models, including
faster numerical ordinary differential equation (ODE) solvers (Song et al., 2020a; Zhang & Chen,
2022; Lu et al., 2022) and distillation techniques (Luhman & Luhman, 2021; Salimans & Ho, 2022;
Zheng et al., 2022). Our approach is different from these previous efforts in that we accelerate the
stochastic diffusion model directly (hence would provide more diverse samples (Figure 6)) and do
not require sampling datasets from the diffusion models prior to distillation which is computationally
expensive. From a Bayesian perspective, HSIVI is related to Song & Ermon (2019), where the
authors used the annealed Langevin dynamics guided by a pre-trained score model to sample from
the data distribution. By solving this problem using a variational inference approach, HSIVI enjoys
faster sampling speed and scales better to high-dimensional data.

5 Experiments

In this section, we first compare HSIVI to its single-layer counterpart, SIVI, on two inference
tasks. We use the sequential training method where each conditional layer in the hierarchical semi-
implicit variational distributions has independent parameters. We then apply HSIVI-SM to diffusion
model acceleration on various datasets. As the memory consumption for generative models is
large, we use the joint training method where the conditional layers in hierarchical semi-implicit
distributions have shared parameters across different ts. For all experiments, each conditional layer
is modeled as a Gaussian distribution with parametrized mean and variance. More details of the
model architectures and hyper-parameters are included in Appendix E. The code is available at
https://github.com/longinYu/HSIVI.
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Figure 2: Comparison of 10,000 generated samples from SIVI and 5-layer HSIVI on a two-
dimensional Gaussian mixture model (blue).
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Figure 3: The posterior estimates obtained by different methods. For each method, we collect 100,000
samples to calculate the sample mean and confidence interval.

5.1 Target distribution approximation

Gaussian mixture model We first evaluate HSIVI and SIVI on a two-dimensional Gaussian
mixture model. The target distribution p(x) takes the form p(x) =

∑8
i=1 1/8 · N (x;µi, σ

2I) where
µi = [10 cos( iπ4 ), 10 sin(

iπ
4 )]

T , σ = 1. For HSIVI, we construct an auxiliary bridge of T = 5 with
geometric interpolation in Example 1, where pbase(x) = N (x;0, I) and λt = 1− t/5. The results
are presented in Figure 2. Note that the modes in this Gaussian mixture model are far apart from each
other, and both SIVI-LB and SIVI-SM are trapped in local modes. In contrast, both HSIVI-LB and
HSIVI-SM discover all modes and provide an accurate approximation of the target distribution with
HSIVI-SM being better for recovering the right scale of variance.

High-dimensional conditioned diffusion The second example is a high-dimensional Bayesian
inference problem arising from the following Langevin SDE

dxs = 10xs(1− x2s)ds+ dws, (11)

where x0 = 0 and ws is a one-dimensional standard Brownian motion. This system describes the
motion of a particle with negligible mass trapped in an energy potential with thermal fluctuations
represented by the Brownian forcing (Cui et al., 2016). Using an Euler-Maruyama scheme with step
size ∆s = 0.01 on a time interval [0, 3], we discretize the SDE (11) into x = (xd1 , . . . , xd300) where
di = 0.01i, which gives the prior distribution pprior(x) of the 300-dimensional variable x. The noisy
observations y is obtained by y = x+ ξ, where ξ ∼ N (0, σ2I) with σ = 0.1. Our goal is to infer
the posterior distribution of the latent states p(x|y) ∝ pprior(x)p(y|x). The ground truth is formed
by running 100,000 independent stochastic gradient Langevin dynamics (SGLD) chains with a step
size of 0.0001 and collecting the results after 10,000 iterations.

For HSIVI, we form the auxiliary bridge using geometric interpolation with pbase(x) = N (x;y, σ2I)
and λt = 1 − t/(T − 1) for t = 0, . . . , T − 1. Figure 3 shows the estimated posteriors obtained
by different methods. We see that SIVI-SM severely underestimates the variance. With T = 5
layers, HSIVI-SM fits the variance better and hence provides more accurate posterior estimates.
For both HSIVI-SM and HSIVI-LB, the estimated covariance matrix becomes more accurate as T
increases (Table 4 in Appendix D.2), demonstrating the effectiveness of hierarchical models for fitting
complicated distributions.

7



Figure 4: Sample trajectories generated from 10-layer HSIVI-SM on four 2D toy examples. The
arrows represent the estimated score function in HSIVI-SM. The sample size is 10,000.

Table 1: JS divergences between the target distribution and the variational approximation on the four
toy datasets. The results of HSIVI-SM are averaged by 5 independent runs with standard deviation in
the subscripts. JS divergences are calculated by the ITE package (Szabó, 2014) with 10,000 samples.

Name T = 5 T = 10 T = 1000

DDPM DDIM HSIVI-SM DDPM DDIM HSIVI-SM DDPM

Checkerboard 0.891 0.591 0.068±0.006 0.521 0.373 0.030±0.005 0.058
Swissroll 1.037 0.332 0.126±0.006 0.334 0.164 0.082±0.003 0.042
Circles 0.907 0.397 0.083±0.015 0.364 0.201 0.073±0.005 0.032
Moons 0.961 0.355 0.096±0.013 0.352 0.137 0.059±0.007 0.036

5.2 Diffusion model acceleration

2D toy examples In this toy model example, we test four synthetic 2D datasets: Checkerboard,
Circles, Moons, and Swissroll (Pedregosa et al., 2011). We first pre-train the score model S∗(x, s)
for s ∈ [0, 1] with quadratic noise schedule 1− α(s) = s2. For constructing the T -layer diffusion
bridge, we select {st}T−1

t=0 so that 1 − α(st) = [0.01 + (
√
0.8 − 0.01)t/T ]2. Figure 4 shows the

sample trajectories (x9, x7, x5 and x0) progressively generated from 10-layer HSIVI-SM. We see
clearly how the semi-implicit distributions are guided towards the target distribution and all modes
are discovered. We also report the Jensen-Shannon (JS) divergence between the target distributions
and the estimated distributions in Table 1. We see that HSIVI-SM significantly improves upon DDIM
and DDPM in both cases with 5 and 10 steps. Also, 10-layer HSIVI-SM is comparable to DDPM
with 1000 full steps. See Figure 10 in Appendix D.3 for visualization of samples from different
methods.

MNIST On MNIST, we use the noise model ϵ∗(x, s) instead of the score model and use ϵ-training
to train HSIVI-SM. The structure of ϵ∗(x, s) follows the UNet in Ho et al. (2020) by reducing the
number of input and output channels to one. With the same noise schedule employed in Song et al.
(2020a), we first pre-train the noise model ϵ∗(x, s) with 1000 discretization steps and then form
the T -layer diffusion bridge for HSIVI-SM by selecting T discrete time steps. Figure 5 shows the
samples from DDPM, DDIM, and HSIVI-SM with T = 5 steps. We see that the samples produced
by HSIVI-SM are much cleaner and more recognizable than those produced by DDPM and DDIM.

CIFAR-10, CelebA & ImageNet On both CIFAR-10 and CelebA, the structure of our pre-trained
noise model ϵ∗(x, s) follows the UNet structure(Ronneberger et al., 2015) employed by Ho et al.
(2020), instead of the huge VP deep continuous-time model (Song et al., 2020b) that has more
channels and layers. We also provide additional results on ImageNet (64×64) with more powerful
pre-trained score nets in (Nichol & Dhariwal, 2021)(bigger models with more parameters). Since this
generative modeling has been formulated as a score-based VI problem, we do not have to use any
training data for training HSIVI-SM.

Following the noise schedule employed in Song et al. (2020a), we first pre-train the noise model
ϵ∗(x, s) with 1000 discretization steps and then form the T -layer diffusion bridge for HSIVI-SM

8



DDPM (T=5) DDIM (T=5) HSIVI-SM (T=5)

Figure 5: Comparison of the quality of uncurated samples generated by DDPM, DDIM, and HSIVI-
SM with 5 discrete time steps on MNIST.

Table 2: Sample quality measured by FID (↓) on CIFAR-10, CelebA and ImageNet with a varying
number of function evaluations (NFE). Results of baselines are calculated by running their official
codes, where the architectures of score model (or noise model) are the UNet employed in Ho et al.
(2020) for CIFAR-10 and CelebA and (Nichol & Dhariwal, 2021) in ImageNet.

Dataset CIFAR-10 (32×32) CelebA (64×64) ImageNet (64×64)

NFE 5 10 15 5 10 15 5 10 15

DDPM (Ho et al., 2020) 320.16 278.65 198.00 366.10 309.95 206.92 402.68 358.80 284.00
DDIM (Song et al., 2020a) 41.53 13.73 8.78 27.38 10.89 7.78 147.03 42.31 24.85
FastDPM (Kong & Ping, 2021) 67.64 9.85 6.16 27.63 15.44 12.05 N/A N/A N/A
Analytic-DDPM (Bao et al., 2022) 93.16 34.54 20.03 50.92 28.93 21.84 N/A 60.65 45.98
Analytic-DDIM (Bao et al., 2022) 51.86 14.08 8.65 29.40 15.74 12.25 N/A 70.62 41.56
DPM-Solver-fast (Lu et al., 2022) 329.13 10.89 4.67 355.96 6.76 2.98 402.43 28.96 20.03
HSIVI-SM (ours) 6.27 4.31 4.17 6.22 3.09 2.23 40.43 17.67 15.49

by selecting T discrete time steps as before. For HSIVI-SM with ϵ-training, the conditional layer
qt(·|xt+1;ϕ) is modeled as a Gaussian distribution with mean µt(xt+1;ϕ

µ) and diagonal variance
matrix Σt(ϕ

σ) where {ϕµ, ϕσ} = ϕ are the variational parameters. In our implementations, both
µt(xt+1;ϕ

µ) and ft(xt;ψ) use the same architecture as ϵ∗(x, s). The number of layers, which is
also the number of function evaluations (NFE), is set to be T = 5, 10, 15 in our experiments. We
train HSIVI-SM with the same setting for T = 10, 15. The 5-layer HSIVI-SM is trained by further
fine-tuning the well-trained 15-layer HSIVI-SM and we find this strategy leads to better results.
During each nested training loop of ft(xt;ψ), we update ψ 20 times before each update of ϕ, since
we find ft(xt;ψ) needs more training empirically to provide reliable guidance.

x 9

seed 1 seed 2 seed 3 seed 4 seed 5

x 6
x 3

x 0

Figure 6: Sample trajectories of 10-layer HSIVI-
SM with the same starting point x10 on CelebA.

For each method, we draw 50,000 samples and
use the Fréchet inception distance (FID) score
(Karras et al., 2022) to evaluate the sample qual-
ity (Table 2). We find that HSIVI-SM performs
on par or better than the other baselines on both
CIFAR-10 and CelebA, and the advantage is
evident when the NFE is small. The sampling
trajectories of 10-layer HSIVI-SM on CelebA
with the same starting point but different ran-
dom seeds are shown in Figure 6. We see that
HSIVI-SM is capable of producing more diverse
samples due to its stochastic nature, which is dif-
ferent from existing ODE based fast diffusion
model samplers.

5.3 Additional Study

Ablation of layers number In Figure 7, We provide a failure case on fitting the checkerboard target
with diffusion bridge, demonstrating that the HSIVI-SM algorithm fails when the layer number T is
small (the distances of auxiliary distributions at successive time steps are large) on a checkerboard
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Figure 7: Failure cases of HSIVI-SM. The quivers show the estimated score by the f function. T is
the layers number of HSIVI-SM. The generated samples in orange show that smaller T may fail on
this example.

Table 3: Comparison of non-isotropic conditional layers and isotropic conditional layers on CIFAR10,
the sample quality is measured by FID (↓).

NFE DDPM DDIM HSIVI-SM (isotropic) HSIVI-SM (non-isotropic)

5 320.16 41.53 7.33 6.27
10 278.65 13.73 4.78 4.31
15 198.00 8.78 4.46 4.17

distribution. In fact, the score function on the checkerboard target is sharp on the boundaries but
vanishes elsewhere. Therefore, fitting this target distribution is somewhat challenging.

Ablation of the variational family To validate the improvement of HSIVI-SM on diffusion
models, we train HSIVI-SM with isotropic conditional layers in consistency with denoising-diffusion
sampling, like DDPM and DDIM. We report the results of FID on the CIFAR-10 dataset in Table 3.
These results provide further evidence for the statement outlined in Section 3.2. HSIVI-SM matches
the marginal distributions qt(xt) and pt(xt) directly via score matching and would ensure a better fit
for p0(x0). The enhancement of HSIVI-SM over DDPM stems not only from its more expressive
variational distribution but also from the direct alignment of the marginal distributions.

6 Conclusions

We introduced HSIVI, a hierarchical semi-implicit variational inference method that enables more
expressive multi-layer construction of semi-implicit distributions. Given appropriate auxiliary distri-
butions that interpolate between a simple base distribution and the target distribution, the conditional
layers in hierarchical semi-implicit distributions can be progressively trained one layer after another.
In experiments, we showed that HSIVI outperforms previous single-layer SIVI methods on several
Bayesian inference tasks with complicated posteriors. HSIVI can also be used to accelerate the
sampling process of diffusion models, where pre-trained score networks serve as a natural sequence
of bridging distributions, which allows for direct acceleration of the stochastic diffusion model and
does not require expensive sampling from the diffusion models during training. We showed that
HSIVI can produce high quality samples comparable to or better than existing fast diffusion model
samplers with few function evaluations on various datasets. Limitations are discussed in Appendix F.
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A Details of diffusion models

Diffusion models work by adding noise to the training data in the forward process and then removing
the noise to recover the data in the backward process, which can be integrated into a general stochastic
differential equation (SDE) framework (Song et al., 2020b). The forward process {us}s∈[0,L] is
usually described by the SDE

dus = f(us, s)ds+ g(s)dws, u0 ∼ p0(·),
where p0(·) is the data distribution, ws is a standard Brownian motion, f(us, s) and g(s) are the
drift and diffusion coefficient respectively. To generate samples from the data distribution, one can
run the following reversed SDE

dus = [f(us, s)− g2(s)∇us
log ps(us)]ds+ g(s)dw̄s, uL ∼ pL(·),

where ps(·) is the probability density function (pdf) of us and w̄s is a standard Brownian motion
when time flows from L to 0. There exists deterministic process shares the same marginal probability
densities {ps(·)}s∈[0,L] described by the following ordinary differential equation (ODE)

dus = [f(us, s)−
1

2
g2(s)∇us

log ps(us)]ds, uL ∼ pL(·),

called probability flow (PF) ODE.

In practice, Song et al. (2020b) and Kingma et al. (2021) designed several examples of the forward
process such that it diffuses the data distribution p0(·) to a fixed unstructured distribution pL(·).
Here we mainly consider the Variance Preserving SDE (VP-SDE) used in DDPM (Ho et al., 2020;
Song et al., 2020b). Let the drift coefficient f(us, s) =

d logα(s)
2ds us and the diffusion coefficient

g2(s) = −d logα(s)
ds , where α(s) ∈ R+ is a decreasing smooth function with α(0) = 1, α(L) ≈ 0.

Then the distribution of us conditioned on u0 is explicit as

us|u0 ∼ N
(√

α(s)x̄0, (1− α(s))I
)
, i.e. us =

√
α(s)u0 +

√
1− α(s)ϵ, (12)

where ϵ is a standard Gaussian noise. In practice, diffusion models use a neural network Sθ(us, s)
to approximate the score function Sθ(us, s) by optimizing the denoising score matching objective
(Vincent, 2011)

Ldsm(θ, ω(s)) :=
1

2

∫ L

0

ω(s)Eu0∼p0(u0),ϵ∼N (0,I)

∥∥∥Sθ(us, s) + ϵ/
√

1− α(s)
∥∥∥2
2
ds, (13)

where ω(s) is a positive weighting function. Instead of modeling the score function, Ho et al. (2020)
proposed to predict the conditional noise ϵ based on ut. This leads to the following DDPM loss

Lddpm(θ, ω̄(s)) :=
1

2

∫ L

0

ω̄(s)Eu0∼p0(u0),ϵ∼N (0,I)∥ϵθ(us, s)− ϵ∥22ds, (14)

where ω̄(s) is a positive weighting function. In fact, we have the relationship

Sθ(us, s) = −ϵθ(us, s)/
√
1− α(s). (15)

We call Ldsm “score-prediction” training and Lddpm “ϵ-prediction” training.

With the pre-trained score model Sθ(us, s) or noise model ϵθ(us, s), Song et al. (2020b) shows that
the samples of p0(·) can be generated by simulating the backward SDE, e.g. the sampling scheme
of DDPM (Ho et al., 2020). Moreover, Bao et al. (2022) proposed Analytic-DPM, the optimal
discretization form responding to the KL divergence of the joint distribution on the discrete time
steps. Also, several high-order ODE solvers (Song et al., 2020a; Zhang & Chen, 2022; Lu et al.,
2022) were proposed to achieve faster sampling.

B More details of UIVI

Unlike optimizing the surrogate ELBO, Titsias & Ruiz (2019) proposed unbiased implicit variational
inference (UIVI) which relies on an unbiased gradient estimator for the exact ELBO. To elaborate
further, reparametrize the conditional qϕ(x|z) such as x = Tϕ(z, ϵ), ϵ ∼ qϵ(ϵ), then

∇ϕELBO = ∇ϕEϵ∼qϵ(ϵ),z∼q(z)

[
log p(D,x)− log qϕ(x)|x=Tϕ(z,ϵ)

]
= Eϵ∼qϵ(ϵ),z∼q(z)

[
gmod
ϕ (z, ϵ) + gent

ϕ (z, ϵ)
]
,
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where

gmod
ϕ (z, ϵ) := ∇x log p(D,x)|x=Tϕ(z,ϵ)

∇ϕTϕ(z, ϵ),

gent
ϕ (z, ϵ) := − Eqϕ(z′|x)∇x log qϕ(x|z′)

∣∣
x=Tϕ(z,ϵ)

∇ϕTϕ(z, ϵ). (16)

The second gradient term gent
ϕ involves an expectation w.r.t. the reverse conditional qϕ(z′|x) which is

estimated by an MCMC sampler in UIVI. However, the inner-loop MCMC runs may require long
iterations for convergence.

C More details of HSIVI

C.1 Score-based training of HSIVI-LB

In the sequential training of HSIVI-LB, although the objective LSIVI-LB (pt(xt)∥qt(xt;ϕ≥t)) is
calculated based on pt(x), the gradient of it w.r.t. ϕt has a closed form containing only the score
function St(x) without knowing the corresponding pdfs. This derivation is important in the tasks
where score functions of the auxiliary distributions are tractable while pdfs (up to a constant) of
them are unavailable (for example, the diffusion bridge in Example 2). Concretely, assume the
t-th conditional layer qt(xt|xt+1;ϕt) is induced by a parametrized transform xt = ht(xt+1, ϵ;ϕt)
where ϵ ∼ pϵ(ϵ) is a random noise, since qt(xt|xt+1;ϕt) is reparametrizable according to Definition
1. The only term in LSIVI-LB (pt(xt)∥qt(xt;ϕ≥t)) containing pt(xt) is Eqt(xt;ϕ≥t) log pt(xt) (see
equation (2)) whose gradient takes the form

∇ϕt
Eqt(xt;ϕ≥t) log pt(xt) = ∇ϕt

Eqt+1(xt+1;ϕ≥t+1)pϵ(ϵ) log pt(ht(xt+1, ϵ;ϕt))

= Eqt+1(xt+1;ϕ≥t+1)pϵ(ϵ)St (ht(xt+1, ϵ;ϕt))∇ϕt
ht(xt+1, ϵ;ϕt)

by the chain rule, where ∇ϕt
ht(xt+1, ϵ;ϕt) is the jacobian matrix of ht(xt+1, ϵ;ϕt).

In our implementation of HSIVI (in both sequential training and joint training), we generally assume
the conditional layer qt(·|xt+1;ϕt) is induced by

ht(xt+1, ϵ;ϕt) = µt(xt+1;ϕt) +Σ
1/2
t (xt+1;ϕt)ϵ (17)

where Σt(xt+1;ϕt) is a positive definite covariance matrix and ϵ ∼ N (0, I) is a standard multivariate
gaussian variable. In equation (17), ϕt should be replaced by ϕ in the joint training case.

C.2 Proof of Proposition 1

Proposition 1. Let qt(xt,xt+1;ϕ≥t) = qt(xt|xt+1;ϕt)qt+1(xt+1;ϕ≥t+1). The minimax optimiza-
tion of LSIVI-SM (pt(xt)∥qt(xt;ϕ≥t)) is equivalent to

min
ϕt

Eqt(xt,xt+1;ϕ≥t) [St(xt)− gt(xt;ψt)]
T
[St(xt) + gt(xt;ψt)− 2∇xt

log qt(xt|xt+1;ϕt)] ,

min
ψt

Eqt(xt,xt+1;ϕ≥t)∥gt(xt;ψt)−∇xt log qt(xt|xt+1;ϕt)∥22.

Proof of Propsition 1 The minimax optimization problem of LSIVI-SM (pt(xt)∥qt(xt;ϕ≥t)) is

min
ϕt

max
ψt

Eqt(xt,xt;ϕ≥t)

[
2ft(xt;ψt)

T [St(xt)−∇xt log qt(xt|xt+1;ϕt)]− ∥ft(x;ψt)∥22
]

according to equation (4). For minimization w.r.t. ϕt, this target is equivalent to

Eqt(xt,xt+1;ϕ≥t)

[
2ft(xt;ψt)

T [St(xt)−∇xt
log qt(xt|xt+1;ϕt)]− ∥ft(x;ψt)∥22

]
=Eqt(xt,xt+1;ϕ≥t)ft(xt;ψt)

T [2St(xt)− ft(xt;ψt)− 2∇xt
log qt(xt|xt+1;ϕt)]

=Eqt(xt,xt+1;ϕ≥t)[St(xt)− gt(xt;ψt)]
T [St(xt) + gt(xt;ψt)− 2∇xt log qt(xt|xt+1;ϕt)].

For maximization w.r.t. ψt, this target is equivalent to

Eqt(xt,xt+1;ϕ≥t)

[
2ft(xt;ψt)

T [St(xt)−∇xt
log qt(xt|xt+1;ϕt)]− ∥ft(x;ψt)∥22

]
=− Eqt(xt,xt+1;ϕ≥t)∥ft(x;ψt)− St(xt) +∇xt log qt(xt|xt+1;ϕt)∥22 + C

=− Eqt(xt,xt+1;ϕ≥t)∥gt(x;ψt)−∇xt
log qt(xt|xt+1;ϕt)∥22 + C,
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whereC is a term that does not contain ψt. Therefore, the minimax optimization problem is equivalent
to

min
ϕt

Eqt(xt,xt+1;ϕ≥t) [St(xt)− gt(xt;ψt)]
T
[St(xt) + gt(xt;ψt)− 2∇xt

log qt(xt|xt+1;ϕt)] ,

min
ψt

Eqt(xt,xt+1;ϕ≥t)∥gt(xt;ψt)−∇xt log qt(xt|xt+1;ϕt)∥22.

C.3 Joint training of HSIVI

As mentioned in Section 4.2, when parameter sharing scheme is used in the conditional layers for
application to diffusion model acceleration, sequential training from t = T −1 to t = 0 is not feasible.
Therefore, we consider the following training objective

LHSIVI-f (ϕ) =

T−1∑
t=0

β(t)LSIVI-f (pt(xt)∥qt(xt;ϕ)) .

An intuitive method is to randomly sample a batch of time steps {tk}Kk=1 and for each tk train
LSIVI-f (ptk(xtk)∥qtk(xtk ;ϕ)) directly. However, sequentially sampling xtk through q(xi|xi+1;ϕ)
from i = T − 1 to i = tk is still necessary in this case, making it memory-consuming to preserve the
computation graphs of the entire sampling process.

In order to reduce the cost of accumulating computation graphs, for each t, we treat qt+1(xt+1;ϕ) as
a fixed mixing layer denoted by q̃t+1(xt+1) and only fit the conditional layer qt(xt|xt+1;ϕ). More
specifically, for HSIVI-SM, we consider the following optimization problem

min
ϕ

T−1∑
t=0

β(t)Eq̃t(xt,xt+1;ϕ) [St(xt)− gt(xt;ψ)]
T [St(xt) + gt(xt;ψ)− 2∇xt log qt(xt|xt+1;ϕ)] , (18)

min
ψ

T−1∑
t=0

β(t)Eq̃t(xt,xt+1;ϕ)∥gt(xt;ψ)−∇xt log qt(xt|xt+1;ϕ)∥22, (19)

where q̃t(xt,xt+1;ϕ) = qt(xt|xt+1;ϕ)q̃t+1(xt+1). In what follows, we demonstrate that the above
problem also ensures an accurate approximation of the target score function.

For equation (19), by the denoising score matching trick (Hyvärinen, 2005), the optimal point of ψ,
denoted by ψ∗(ϕ), satisfies

gt(xt;ψ
∗(ϕ)) = ∇xt

log q̃t(xt;ϕ),

where q̃t(xt;ϕ) =
∫
q(xt|xt+1;ϕ)q̃(xt+1)dxt+1. By plugging in the optimal point ψ∗(ϕ), each

term in equation (18) is equivalent to

Eq̃t(xt,xt+1;ϕ) [St(xt)− gt(xt;ψ
∗(ϕ))]

T
[St(xt) + gt(xt;ψ

∗(ϕ))− 2∇xt log qt(xt|xt+1;ϕ)]

=Eq̃t(xt;ϕ)

[
S2
t (xt)− g2

t (xt;ψ
∗(ϕ))

]
− 2

∫∫
q̃(xt+1) [St(xt)− gt(xt;ψ

∗(ϕ))]
T ∇xtqt(xt|xt+1;ϕ)dxt+1dxt

=Eq̃t(xt;ϕ)[S
2
t (xt)− g2

t (xt;ψ
∗(ϕ))]− 2

∫
[St(xt)− gt(xt;ψ

∗(ϕ))]
T ∇xt q̃t(xt;ϕ)dxt

=Eq̃t(xt;ϕ)

[
S2
t (xt)− 2St(xt)

T∇xt log q̃t(xt;ϕ) + (∇xt log q̃t(xt;ϕ))
2
]

=Eq̃t(xt;ϕ)∥St(xt)−∇xt log q̃t(xt;ϕ)∥
2.

Therefore, the global optimal point ϕ∗ also ensures that the score of the variational distribution fits
the target score function.

Based on the training objectives (18) (19) mentioned above, we propose Algorithm 2 for joint training,
which does not need to store the computation graphs of the sample sequences. Moreover, by assuming
an increasing weighting function β(t), we assign larger weights β(t) for those t close to T −1, which
tends to train the conditional layers that are close to T − 1 first during the training, resembling the
sequential training.
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Algorithm 2 Hierarchical semi-implicit variational inference (joint training)

Input: Auxiliary bridge {pt(x)}T−1
t=0 ; a weighting function β(t); initial value of parameters ϕ(0).

Output: The optimal parameters ϕ∗.
Initialization: ϕ← ϕ(0).
while not converge do

Uniformly sample K time steps {tk}Kk=0 with replacement from {0, . . . , T − 1}.
Sample a minibatch {x(k)

T }
K
k=1 from the base distribution qT (x).

for k = 1, . . . ,K and tk < T − 1 do
Sequentially sample x

(k)
tk+1 through q(xi|xi+1;ϕi) from i = T − 1 to i = tk + 1.

Detach the computation graphs from {x(k)tk+1}Kk=1.
end for
Update ϕ by optimizing the objective

∑K
k=1 β(tk)LSIVI-f (ptk (xtk )∥qtk (xtk ;ϕ)), where the k-th term is

computed based on a single sample x
(k)
tk+1.

end while
ϕ∗ ← ϕ.

C.4 ϵ-training of HSIVI-SM

Another popular formulation of diffusion models is modeling the conditional noise ϵθ(us, s) by
optimizing the DDPM loss in equation (14) where us =

√
α(s)u0 +

√
1− α(s)ϵ, introduced as

“ϵ-prediction” in Appendix A. Now, let us assume the diffusion bridge is constructed with VP-SDE
and we have a pre-trained model of conditional noise ϵ∗(u, s). Similarly, we construct a sequence of
noise models {ϵ∗t (xt)}T−1

t=0 by letting xt = ust and ϵ∗t (x) = ϵ∗t (x, st) which forms a (generalized)
T -layer diffusion bridge. We only discuss how ϵ-training can be applied to joint training and the
derivation for sequential training is similar. In what follows, we consider the transformation of the
joint training objective LHSIVI-SM for diffusion model acceleration.

By letting the weighting function β(t) = 1− α(st) and considering the reparametrization form (17)
where ϕt is replaced by ϕ, the objective of HSIVI-SM takes the form

LHSIVI-SM(ϕ, ψ) =

T−1∑
t=0

Eq̃t(xt,xt+1;ϕ)

[
2
√
β(t)ft(xt;ψ)

T [
√
β(t)S∗

t (xt) +
√
β(t)Σ

−1/2
t (xt+1;ϕ)ϵ)]

−∥
√
β(t)ft(xt;ψ)∥22

]
.

(20)

where S∗
t (xt) is a pre-trained score model. Note that we have

√
β(t)S∗

t (xt) = −ϵ∗t (xt) by equation
(15). Define

f̃t(xt;ψ) =
√
β(t)ft(xt;ψ),

Σ̃t(xt+1;ϕ) = Σt(xt+1;ϕ)/β(t).

The HSIVI-SM objective (20) then takes the form

L̃HSIVI-SM(ϕ, ψ) =

T−1∑
t=0

Eq̃t(xt,xt+1;ϕ)

[
2f̃t(xt;ψ)

T [−ϵ∗t (xt) + Σ̃
−1/2
t (xt+1;ϕ)ϵ)]− ∥f̃t(xt;ψ)∥22

]
(21)

and we call it the objective for ϵ-training. In our implementation of ϵ-training, we directly parametrize
f̃t(xt;ψ) and Σ̃t(xt+1;ϕ) instead of ft(xt;ψ) and Σt(xt+1;ϕ). The objective (21) is more numer-
ically stable since the magnitude of Σ̃t(xt+1;ϕ) is generally larger than Σt(xt+1;ϕ).

C.5 Complexity comparison of HSIVI

For methods that we discussed in SIVI variants, which use a single conditional layer (i.e., T=1) and
hence would be much cheaper to sample from than HSIVI-SM that uses multiple layers T > 1. For
methods that we discussed for diffusion models, the computational complexity would be similar if
they had the same T . That is because we used the same neural network architecture for the conditional
layers in HSIVI and the score nets in diffusion models. We have a comparison of the sampling time
of different methods in Figure 13.
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Figure 8: Upper row: Sample trajectories progressively generated by 5-layer HSIVI-LB guided by
diffusion bridge. Bottom row: Sample trajectories progressively generated by 5-layer HSIVI-SM
guided by diffusion bridge.
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Figure 9: The posterior estimates for conditioned diffusion obtained by SIVI-LB and 5-layer HSIVI-
LB. For each method, we collect 100,000 samples to calculate the sample mean and confidence
interval.

D Additional results of experiments

D.1 Gaussian mixture model

For HSIVI on the Gaussian mixture model, the auxiliary distributions can also be constructed with
diffusion bridge in Example 2. Concretely, the diffusion bridge is constructed by

xt|x0 ∼ N (
√
αtx0, (1− αt)I), x0 ∼ p0(x0).

where αt = α(st) with α(s) defined in equation (12). In this example, the score function St(xt) =
∇xt log pt(xt) has an analytical form

St(xt) = S0

(
xt;

√
αtµ, (αtσ

2 + 1− αt)I
)
, 0 ≤ t ≤ T − 1.

where S0(x;µ, σ
2I) is the score function of the Gaussian mixture model p(x;µ, σ2I) =

∑8
i=1 1/8 ·

N (x;µi, σ
2I). We set the number of layers T = 5 and αt = 1 − t/5 for t = 0, . . . , 4. Figure 8

shows the sample trajectories generated by HSIVI. We see clearly that semi-implicit distributions are
guided toward the target distribution following the diffusion bridge.

D.2 High-dimensional conditioned diffusion

We also test SIVI-LB and HSIVI-LB for fitting the posterior in high-dimensional conditioned
diffusion. The auxiliary bridge is formed using the same geometric interpolation as for HSIVI-SM,
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(a) 5 steps

(b) 10 steps

Figure 10: Comparison of 10,000 samples generated by DDPM, DDIM, and HSIVI-SM.

Table 4: Frobenius distances between the estimated covariance matrices and that of the ground truth.
For each method, we collect 100,000 samples to estimate the covariance matrix.

T = 1 T = 2 T = 3 T = 5

HSIVI-SM 0.0886 0.0813 0.0431 0.0333
HSIVI-LB 0.0883 0.0825 0.0722 0.0433

i.e.

pbase = N (x;y, σ2I), λt = 1− t

T − 1
for 0 ≤ t ≤ T − 1.

From Figure 9, we see that SIVI-LB also underestimates the posterior variance and 5-layer HSIVI-LB
fits the variance better. This phenomenon is also observed in the performances of SIVI-SM and
HSIVI-SM in Figure 3. The quantitative comparison between different numbers of layers is reported
in Table 4, where we see that for both HSIVI-SM and HSIVI-LB, the variational approximation gets
more accurate with more layers. We also find that HSIVI-SM fits better than HSIVI-LB consistently.

D.3 Toy examples of diffusion model acceleration

We compare the samples from DDPM, DDIM, and our proposed HSIVI-SM with 5 and 10 steps in
Figure 10. We find that DDIM and DDPM fail to converge to the target distribution with a small
number of steps, while HSIVI-SM can provide noticeably better samples. Moreover, DDPM tends to
underestimate the variance as evidenced by the narrower region occupied by the samples.

D.4 MNIST

Figure 11 shows the samples from DDPM, DDIM, and HSIVI-SM with T = 10 steps. We see that
the samples produced by HSIVI-SM is much cleaner and more recognizable than those produced by
DDPM and DDIM.
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DDPM (T=10) DDIM (T=10) HSIVI-SM (T=10)

Figure 11: Comparison of the quality of uncurated samples generated by DDPM, DDIM, and HSIVI-
SM with 10 discrete time steps on MNIST.

Table 5: Number of parameters in the score model (or noise model) used by different methods in
Table 2. ‘M’ refers to million.

CIFAR-10 CelebA

other methods 38.72M 78.66M
HSIVI-SM (ours) 38.72M 78.66M

D.5 CIFAR-10 & CelebA

Figure 12 shows the uncurated samples from our proposed HSIVI-SM method with different numbers
of layers on CIFAR-10 (28× 28), CelebA (64× 64) and ImageNet (64× 64). We also compare the
sampling time of different methods when NFE = 5 in Figure 13.

One can observe that HSIVI-SM has almost the same running time as the simplest DDIM algorithm.
Finally, we report the number of parameters in the score model (or noise model) used by different
methods in Table 5, which corresponds to Table 2 and Figure 13. In our implementations of HSIVI-
SM, the number of parameters in the noise model equals that in the conditional layer qt(xt|xt+1;ϕ).
We find that our model with the same parameters reaches better results in Table 2.

E Experimental details

E.1 Target distribution approximation

In this part, we set the conditional layer to be qϕ(x|z) = N (x;µ(z;ϕµ),diag{exp(ϕσ)}) and the
mixing layer to be N (0, I) for SIVI. Here, {ϕµ, ϕσ} = ϕ are the variational parameters. For T -layer
hierarchical semi-implicit variational distribution with T ≥ 2, the variational prior qT (xT ) is set to
be N (0, I). Each conditional layer qt(xt|xt+1;ϕt) for t = 0, . . . , T − 1 is a conditional Gaussian
distribution

qt(xt|xt+1;ϕt) = N (xt;µ(xt+1;ϕ
µ
t ),diag{exp(ϕσt )}).

Note that the ϕσ and {ϕσt }T−1
t=0 above are all vectors with the same dimension as x. We use sequential

training for HSIVI in the two experiments in this part. The parameters {ϕt}T−1
t=0 are independent

across different t. If not otherwise specified, we use the Adam optimizer (Kingma & Ba, 2015) with
β = (0.9, 0.99) for training.

E.1.1 Gaussian mixture model

For the experiment on the Gaussian mixture model, we construct 5-layer hierarchical semi-implicit
variational distributions. The mean of each conditional layer µ(z;ϕµ) in SIVI or µ(xt+1;ϕ

µ
t ) in

HSIVI has a residual form, i.e. µ(z;ϕµ) = z + µ̄(z;ϕµ) and µ(xt+1;ϕ
µ
t ) = xt+1 + µ̄(xt+1;ϕ

µ
t ),

for t = 0, . . . , T − 1. µ̄(z;ϕµ) in SIVI and {µ̄(xt+1;ϕ
µ
t )}4t=0 in HSIVI all have the same structures

of multi-layer perceptrons (MLPs) with layer widths [2, 50, 50, 2] and ReLU activation functions.
For each t, ft(xt;ψt) in HSIVI-SM and f(x;ψ) in SIVI-SM are parameterized by MLPs with layer
widths [2, 128, 128, 2] and ReLU activation functions.
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T = 5 T = 10 T = 15

(a) CIFAR-10 (32×32)

T = 5 T = 10 T = 15

(b) CelebA (64×64)

T = 5 T = 10 T = 15

(c) ImageNet (64×64)

Figure 12: Uncurated samples generated by HSIVI-SM with different numbers of layers on CIFAR-
10, CelebA and ImageNet.

The noise levels in the diffusion bridge are 1 − α(st) = 1− t/5 for t ∈ {0, 1, · · · , 4}. We set the
learning rate of variational parameters ϕt (or ϕ) to 0.001 and the learning rate of ψt (or ψ) to 0.002 in
both SIVI and HSIVI. For HSIVI-LB and HSIVI-SM, we run 80000 variational parameter updates for
every conditional layer; for SIVI-LB and SIVI-SM, we run 5×80000 variational parameter updates.
For HSIVI-SM and SIVI-SM, in each nested training loop of ft(xt;ψt) (or f(x;ψ)), we update ψt
(or ψ) one time after each update of ϕt (or ϕ). All the algorithms are trained with a batch size of 64.

E.1.2 High-dimensional conditioned diffusion

For the experiment on high-dimensional conditioned diffusion, we examine the performances of
SIVI and 5-layer HSIVI. The ground truth is formed by running 100,000 independent stochastic
gradient Langevin dynamics (SGLD) chains with a step size of 0.0001 and collecting the results
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Figure 13: Sampling time (↓) of different methods when NFE = 5 on CIFAR-10 and CelebA. Results
are averaged by 100 independent runs with a batch size of 128 on a single Nvidia 2080Ti GPU.

after 10,000 iterations. For t = 0, . . . , T − 2, the mean of each conditional layer µ(xt+1;ϕ
µ
t ) in

HSIVI has a residual form, i.e. µ(xt+1;ϕ
µ
t ) = xt+1 + µ̄(xt+1;ϕ

µ
t ). For SIVI and t = T − 1 in

HSIVI, we assume µ(z;ϕµ) = µ̄(z;ϕµ) and µ(xt+1;ϕ
µ
t ) = µ̄(xt+1;ϕ

µ
t ). For each t, µ̄t(x;ϕ

µ
t ) in

HSIVI and µ̄(z;ϕµ) in SIVI are MLPs with layer widths [300, 512, 512, 300] and ReLU activation
functions. For each t, ft(xt;ψt) in HSIVI-SM and f(x;ψ) in SIVI-SM are MLPs with layer
widths [300, 512, 512, 300] and ReLU activation functions. For both SIVI and HSIVI, we train each
conditional layer for 100,000 iterations with a batch size of 128. For HSIVI-SM and SIVI-SM, in
each nested training loop of ft(xt;ψt) (or f(x;ψ)), we update ψt (or ψ) one time after each update
of ϕt (or ϕ). We set the learning rate to be 0.0001 for ϕt (or ϕ) and 0.0005 for ψt (or ψ).

E.2 Diffusion model acceleration

In this part, we use the diffusion bridge to construct the auxiliary distributions and joint training as
mentioned in Section 4.2. With a pre-trained score model or noise model, we consider the generative
tasks as score-based variational inference problems. Therefore, we do not use any training data to
train HSIVI-SM.

For HSIVI-SM, the variational prior qT (xT ) is set to be N (0, I). To avoid the large memory consump-
tion, we use the joint training method where the parameters of the conditional layers qt(xt|xt+1;ϕ)
and ft(xt;ψ) are the same across different t. The t-th conditional layer is a conditional Gaussian
distribution

qt(xt|xt+1;ϕ) = N
(
xt;µt(xt+1;ϕ

µ),diag
(
σ2
t exp(ϕ

σ)
))
,

where {ϕµ, ϕσ} = ϕ are the variational parameters, ϕσ is a vector with the same dimension as x, and
σt is a fixed scalar value. We use the generalized inference process in DDIM (Song et al., 2020a)
with the noise level η > 0 to initialize µt(xt+1;ϕ

µ) and determine the value of σt for each t. If
not otherwise specified, we use the Adam optimizer (Kingma & Ba, 2015) with β = (0.9, 0.99) for
training.

For our implementation, we referenced the training code of diffusion model acceleration for our
models in the repository from (Dockhorn et al., 2022).

E.2.1 Toy examples of diffusion model acceleration

For pre-training the score model S∗(x, s), we consider quadratic noise levels 1 − α(s) = s2 for
s ∈ [0, 1]. We then train S∗(x, s) on 1000 fixed noise levels {1 − α(i/1000)}1000i=1 by optimizing
the DDPM loss in equation (13) for 200,000 iterations with a learning rate of 0.0003 and a batch
size of 100. For constructing the diffusion bridge, we choose T discrete time steps {st}T−1

t=0 so that
1− α(st) = [0.01 + (

√
0.8− 0.1)t/T ]2 for t = 0, 1, . . . , T − 1.

Model architecture The model architecture of S∗(x, s) is

S∗(x, s) = MLPdec (MLPembx(x) +MLPembt(1− α(s))
)
,

where MLPdec is a decoder implemented as MLPs with layer widths [128, 128, 128, 2], MLPembx is
a data embedding block implemented as MLPs with layer widths [2, 128], and MLPembt is a time
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embedding block implemented as MLPs with layer widths [256, 128, 128]. We use the sinusoidal
positional embedding (Vaswani et al., 2017) of 1 − α(s) as the input of MLPembt. All these three
MLPs use GELU as activation functions. We use the generalized inference process with noise level
η = 1.0 to initialize the conditional layers. The architecture of ft(xt;ψ) is the same as that of
S∗(x, s). We initialize ft(xt;ψ) with S∗

t (xt) := S∗(xt, st).

Training setting The learning rate is set to be 0.0002 for qt(xt|xt+1;ϕ) and 0.0005 for ft(xt;ψ)
on Swissroll, Circles, and Moons for both T = 5, 10. On Checkerboard, the learning rate is set to be
0.00001 (0.00002) for qt(·|xt+1;ϕ) and 0.00005 (0.0001) for ft(xt;ψ) when T = 5 (T = 10). We
train HSIVI-SM for 25,000 iterations with a batch size of 64 in all cases. In each nested training loop
of ft(xt;ψ), we update ψ 3 times after each update of ϕ.

E.2.2 MNIST

For the experiment on MNIST, we use the pre-trained noise model ϵ∗(x, s) and train HSIVI-SM with
ϵ-training introduced in Section C.4. The following construction of noise schedule comes from Song
et al. (2020a). Let βj = βmin+

βmax−βmin

999 j for j = 0, . . . , 999, where βmin = 0.0001, βmax = 0.02.
We pre-train the noise model on the 1000 fixed noise levels 1− α(s) :=

∏s
j=0 βj for s = 0, . . . , 999

by equation (14). The noise model is trained for 100,000 iterations with a learning rate of 0.0001 and
a batch size of 64. We then choose T discrete time steps st = ⌊800 · t

2

T 2 ⌋ for t = 0, . . . , T − 1 to
construct the T -layer diffusion bridge.

Model architecture The pre-trained noise model ϵ∗(x, s) follows the UNet structure employed
by Ho et al. (2020) where the number of input channels and output channels is reduced to one.
Additionally, we pad the image size to 32 × 32 to fit ϵ∗(x, s). We use the generalized inference
process with noise level η = 0.2 to initialize the conditional layers. The architecture of ft(xt;ψ) is
the same as that of ϵ∗(x, s). We initialize ft(xt;ψ) with −ϵ∗(xt, st)/

√
1− α(st).

Training setting For both T = 5, 10, the learning rate is set to be 1.6× 10−5 for ϕ and 6.4× 10−5

for ψ. We train HSIVI-SM for 10,000 iterations with a batch size of 64 in all cases. In each nested
training loop of ft(xt;ψ), we update ψ 20 times after each update of ϕ.

E.2.3 CIFAR-10, CelebA & ImageNet

For experiments on CIFAR-10 and CelebA, we use the pre-trained noise model ϵ∗(x, s) and
train HSIVI-SM with ϵ-training introduced in Section C.4. We use the same noise sched-
ule as in the experiment on MNIST. Let βj = βmin + βmax−βmin

999 j for j = 0, . . . , 999,
where βmin = 0.0001, βmax = 0.02. We take the pretrained noise model for CIFAR10
and ImageNet seperately from https://github.com/tqch/ddpm-torch/releases/download/
checkpoints/cifar10_2040.pt and https://openaipublic.blob.core.windows.net/
diffusion/march-2021/imagenet64_uncond_100M_1500K.pt. On CelebA, We pre-train the
noise model on the 1000 fixed noise levels 1− α(s) :=

∏s
j=0 βj for s = 0, . . . , 999 by optimizing

equation (14). The noise model is trained for 600 epochs, with a learning rate of 0.00002 and batch
size of 128. We then choose T discrete time steps st = ⌊800 · t

2

T 2 ⌋ for t = 0, . . . , T − 1 to construct
the T -layer diffusion bridge.

Model architecture On CIFAR-10 and CelebA, the structure of ϵ∗(x, s) is exactly the UNet3

employed in Ho et al. (2020) without modification; on ImageNet, the structure of ϵ∗(x, s) is exactly
the UNet in Nichol & Dhariwal (2021). We use the generalized inference process with noise level
η = 0.2 to initialize the conditional layers. The architecture of ft(xt;ψ) is the same as that of
ϵ∗(x, s). We initialize ft(xt;ψ) with −ϵ∗(xt, st)/

√
1− α(st).

Training setting The number of layers, which is also the number of function evaluations (NFE),
is set to be T = 5, 10, 15 in our test cases. On CIFAR-10, the learning rate is set to be 1.6× 10−5

for qt(·|xt+1;ϕ) and 8 × 10−5 for ft(xt;ψ); on CelebA, the learning rate is set to be 1.2 × 10−6

for qt(·|xt+1;ϕ) and 6× 10−6 for ft(xt;ψ); on ImageNet, the learning rate is set to be 1× 10−5

3We use the Pytorch implementation of UNet structure in https://github.com/tqch/ddpm-torch.
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for qt(·|xt+1;ϕ) and 5 × 10−5 for ft(xt;ψ). We trained HSIVI-SM for 10,000 iterations with a
batch size of 128. During each nested training loop of ft(xt;ψ), we update ψ 20 times after each
update of ϕ, since we find ft(xt;ψ) needs more training empirically to provide reliable guidance.
For T = 10, 15, we use the above training settings; for T = 5, we find that further fine-tuning on the
well-trained 15-layer HSIVI-SM for 1,000 iterations yields better results, and we utilize this strategy
to optimize the 5-layer HSIVI-SM with a 0.1× smaller learning rate. Experiments need about 1.5
days on CIFAR-10, need about 3 days on CelebA and 4 days on ImageNet using 8 Nvidia 2080 Ti
GPUs. During the training, we find that HSIVI-SM converges in the first 30% iterations on CIFAR-10
and converges in the first 50% iterations on CelebA.

F Limitations

For the application of accelerating the sampling process of diffusion models, our HSIVI-SM training
involves three models: the score model (or noise model), the conditional layers qt(xt|xt+1;ϕ), and
ft(xt;ψ). As a result, HSIVI-SM requires higher memory consumption due to the involvement of
multiple models. Additionally, since our HSIVI algorithm approximates the target distribution using
the score function, it necessitates a pre-trained score model (or noise model) with high accuracy
and additional training steps. Finally, we recognize that the alternative method HSIVI-LB remains
unexplored for accelerating the diffusion model, and we defer this aspect to future research.
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