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Abstract

Understanding and retrieving related real-world
events based on their temporal dynamics is
a fundamental challenge in time-sensitive ap-
plications such as forecasting, information re-
trieval, and social analysis. Existing methods
often rely on semantic similarity or global time-
series alignment, which overlook the transient
and directional dependencies that frequently un-
derlie real-world correlations. In this work, we
introduce EventConnector, a general frame-
work for constructing a temporal event graph
that captures localized co-fluctuations and lead-
lag relationships between events through their
time-series trajectories. The resulting graph
encodes both synchronous activity and direc-
tional influence, enabling the discovery of non-
obvious, cross-domain associations. To fur-
ther enrich the graph structure, we incorporate
a multi-hop detection mechanism that reveals
transitive temporal dependencies. Experiments
on real-world prediction market data show that
EventConnector uncovers non-trivial temporal
structures and achieves a substantial 18.89%
improvement in event retrieval and time-series
forecasting tasks under limited supervision.
These results highlight the effectiveness of tem-
poral graph modeling in capturing latent event
relationships beyond what semantic similarity
or traditional alignment techniques can offer.

1 Introduction

Real-world events rarely unfold in isolation—they
are embedded within interdependent systems span-
ning political, economic, and cultural domains.
Modeling the temporal dependencies among such
events is crucial not only for forecasting, but
also for understanding how societal processes co-
evolve. For example, a major fiscal policy an-
nouncement can ripple through financial markets,
as evidenced by studies linking President Trump’s
public statements to fluctuations in cryptocurrency
prices (Huynh, 2021). Anticipating these cross-
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Figure 1: Example event relations extracted by Event-
Connector. Despite being semantically unrelated, the
two social events— “Will $ETH reach 3.7k in July?”
(blue) and “Will Elon Musk give a speech at Bitcoin con-
ference?” (orange)—exhibit a strikingly similar tempo-
ral trajectory in their forecast probabilities. This strong
short-term correlation reveals latent coupling in public
sentiment or shared speculative dynamics, which are
not captured by traditional semantic similarity.

domain ripple effects is essential for informing pub-
lic policy, risk assessment, and strategic decision-
making, yet it remains a challenging and underex-
plored problem.

One major obstacle is that correlated events are
often semantically dissimilar. A shift in trade
policy, for instance, may temporally align with
movements in cryptocurrency prices, even though
there is little lexical or ontological similarity to
suggest a connection. As shown in Figure 1, such
non-obvious dependencies may reflect latent soci-
etal dynamics or shared drivers of attention. De-
tecting these connections is difficult, particularly
when confounded by high noise, domain hetero-
geneity, or lack of explicit structure. Traditional
tools—such as Granger causality (Granger, 1969)
or Hawkes processes (Hawkes, 1971)—often as-
sume stationarity or low-noise environments and
struggle to scale to complex, event-driven signals.
Moreover, existing event forecasting datasets (e.g.,



ICEWS (Boschee et al., 2015), GDELT (Leetaru
and Schrodt, 2013)) focus on discrete or single-
domain events, and do not capture the full spec-
trum of continuous, interrelated fluctuations across
domains.

Modern time-series and knowledge graph mod-
els also face limitations when applied to hetero-
geneous events. Deep forecasting models often
assume variables can be fused into a shared la-
tent space or rely on predefined relational struc-
tures—an assumption that holds for homogeneous
systems like traffic networks (Li et al., 2018), but
breaks down for semantically disjoint events. Tem-
poral knowledge graph methods (Goel et al., 2020;
Han et al., 2020) similarly embed all entities into
a unified space, which risks collapsing structurally
distinct signals and missing subtle, cross-domain
interactions. These models often require dense
supervision, assume stable dynamics, or overlook
transient correlations that are critical in volatile en-
vironments like social prediction markets or public
discourse.

In this work, we present EventConnector, a tem-
poral graph framework for discovering and model-
ing dynamic dependencies between social events
based on their evolving time series. Our method
constructs a data-driven event graph in which nodes
represent individual events and edges encode local-
ized, statistically significant relationships derived
from short-term co-fluctuation and lead-lag infer-
ence. This graph captures both synchronous and
directional influence, and supports multi-hop rea-
soning over indirect chains of dependency.

By preserving the individuality of events while
linking them through empirical temporal patterns,
EventConnector enables more accurate forecast-
ing under sparse supervision and facilitates inter-
pretable analyses of how public attention or sen-
timent propagates across domains. Unlike exist-
ing approaches, it does not rely on predefined tax-
onomies, global embeddings, or semantic similar-
ity. Instead, it embraces the heterogeneity of real-
world signals and models structure as it emerges
from data.

Our key contribution is the development of
a temporal graph-based framework that elic-
its non-semantic connections between heteroge-
neous social events by identifying localized, di-
rectional dependencies in time series data. We
further demonstrate that this structure signifi-
cantly improves performance in event forecasting
tasks—especially in inductive or low-supervision

settings—outperforming both semantic and time-
series retrieval baselines across domains and gran-
ularities by 18.89%, and offering a principled foun-
dation for future extensions in social signal analysis
and temporal reasoning.

2 Related Works

Time-Series Event Modeling Classical techniques
like Dynamic Time Warping (DTW) (Berndt and
Clifford, 1994), local correlation tracking (Pa-
padimitriou et al., 2006), and BRAID (Sakurai
et al., 2005) align or group time series based on
transient or lagged patterns. Matrix profile meth-
ods (Yeh et al., 2016) efficiently detect similar
or anomalous subsequences. Directional depen-
dencies are modeled through high-dimensional
Granger causality (Arnold et al., 2007) and lead-
lag networks (Bennett et al., 2022). Point-process
models like multidimensional Hawkes processes
capture self-/cross-exciting dynamics (Zhou et al.,
2013). Deep forecasting models (e.g., LSTNet
(Lai et al., 2018)) leverage convolutional and recur-
rent layers for multiscale temporal dependencies.
These approaches inform EventConnector’s use of
co-fluctuation and causality for graph construction.

Social System Modeling Foundational
models—DeGroot averaging (DeGroot, 1974),
threshold-based diffusion (Granovetter, 1978),
and bounded-confidence dynamics (Hegselmann
and Krause, 2002)—explain macro patterns from
individual behavior. Data-driven systems such as
EMBERS (et al., 2014), spatio-temporal forecast-
ing (Zhao et al., 2015), and nested MIL (Ning et al.,
2016) infer emergent trends from open signals.
Evolving semantic graphs (Deng et al., 2019b)
further capture event interplay. EventConnector
builds on these ideas, defining a temporal event
graph grounded in co-fluctuation and lead-lag
signals for structure-aware forecasting.

Social Event Forecasting Earlier methods used
social media and statistical signals (e.g., scan statis-
tics (Chen and Neill, 2014), cascade models (Ca-
dena et al., 2015)) to forecast unrest. Temporal
event chains (Radinsky and Horvitz, 2012) and
entity-centric graph models (Deng et al., 2019a,
2020; Zhou et al., 2022) incorporate cause-effect
and multimodal dynamics. Our approach continues
this line by modeling localized temporal dependen-
cies via event graphs for enhanced retrieval and
forecasting.

Temporal Graphs Temporal GNNs like TGAT



(Xu et al., 2020), DySAT (Sankar et al., 2020),
Know-Evolve (Trivedi et al., 2017), and DyRep
(Trivedi et al., 2019) embed evolving node rela-
tions via time-aware attention or event-driven dy-
namics. Message-passing models like TeMP (Wu
et al., 2020) propagate over time-stamped knowl-
edge graphs. EventConnector differs by defining
temporal edges from time-series co-fluctuation and
directional influence, enabling both inductive re-
trieval and forecasting.

3 Social Event Prediction

Prediction markets aggregate dispersed informa-
tion and beliefs to form collective forecasts about
uncertain future outcomes (Wolfers and Zitzewitz,
2004). Among them, Polymarket is a promi-
nent cryptocurrency-based platform that hosts real-
money prediction markets on a diverse set of so-
cial questions spanning politics, economics, enter-
tainment, and crypto. Each market tracks beliefs
over time by assigning probabilistic prices to mu-
tually exclusive outcomes. These market-implied
prices are interpretable as consensus probabilities
and have been shown to produce accurate and cal-
ibrated forecasts across domains. For instance, in
the context of U.S. elections, prediction market
probabilities have outperformed traditional polling-
based methods in estimating victory chances (Roth-
schild, 2009).

Let us denote by £ = {ej,ea,...,en} a col-
lection of real-world events, where each event ¢;
corresponds to a temporally evolving question or
proposition about the world (e.g., “Will a political
candidate win the election?” or “Will Bitcoin reach
$40,000 by next month?”). In our setting, an event
is observed indirectly through its time series tra-
Jjectory, which reflects public belief or collective
probability estimation over time. These temporally
evolving belief series allow us to cast event mod-
eling and forecasting as a structured time-series
problem grounded in human expectations and be-
havioral signals.

3.1 Social Events as Time-Series

We define a social event as a tuple

e=(q,0), ey

where q is a future-uncertain question and O =
{01,...,0K} is a set of K mutually exclusive
outcomes. Each outcome o, € O is associated
with a probability time series {py ()}, where

pr(t) € [0,1] denotes the market-implied proba-
bility of o, at time step ¢. The probabilities for all
outcomes are normalized at each timestamp:

K

dopet)=1, Vte{l,....T}. (2

k=1

This structure captures the temporal evolution of
public beliefs over possible futures. For example,
in a binary election event where q is “Will candi-
date A win?” and O = {Yes, No}, the time series
Dyes(t) and po(t) = 1—pyes(t) reflect belief shifts
driven by campaign events, polling results, and me-
dia coverage.

Similarly, for a market-based question such as
“Will coin X exceed $P by date D?”, the associ-
ated probability series evolves in response to price
trends, market sentiment, and macroeconomic sig-
nals. These examples illustrate how time series
trajectories encode real-time belief updates about
evolving social outcomes.

Following this formalization, we treat each so-
cial event as a multi-outcome time series instance
defined by Equation (1), and use its evolving proba-
bility dynamics as the core representation for down-
stream forecasting and graph construction.

3.2 Forecasting Future Social Events

Given the  historical Dbelief trajectories
{pr(1),...,pe(T)}  for  each  outcome
ke {1,..., K}, the forecasting objective is to pre-
dict the next H values {py(T+1),...,pp(T+H)}.
This task can be framed as a multi-horizon time-
series prediction problem, where the goal is to
anticipate the evolution of collective belief under
ongoing information flow.

Forecasting such time series is challenging due
to the non-stationary nature of belief formation,
the influence of exogenous shocks (e.g., break-
ing news), and the heterogeneous domain contexts
across events. Yet, it offers a unique and practical
testbed for advancing the development of robust
and adaptive forecasting models in settings that
mirror real-world decision-making dynamics.

4 Social Temporal Graph

Building on the formulation of social events as
time-evolving probability series introduced in the
previous section, we now describe how such events
can be connected into a structured representa-
tion—a social temporal graph—that captures inter-



event relationships grounded in their temporal dy-
namics.

4.1 Temporal Graphs

A temporal graph is a dynamic extension of a
conventional graph structure in which the nodes,
edges, or their associated attributes evolve over
time and interact through time-dependent relation-
ships. Formally, a temporal graph is defined as
a tuple Gr = (V,Er), where V is a set of nodes,
and &7 C V x V x Ry is a set of time-stamped
edges. Each temporal edge (u,v,t) € &r indi-
cates an interaction or dependency between nodes
u and v that is active at time ¢, or over a continuous
interval [tgear, tend] in cases of extended temporal
influence. Unlike static graphs, Gp supports the
analysis of causality, influence propagation, and dy-
namic neighborhood evolution by encoding when
connections occur, not just whether they exist.

In our setting, we specialize G to the social
domain. Specifically, we define a social temporal
graph as a directed temporal graph Gr = (V, Er)
where:

* Each node v; € V represents a unique so-
cial event e; = (q;, O;), as defined earlier,
together with its associated multivariate time
series that reflects public belief updates over
time.

* Each temporal edge (v;, v;,t) € Er denotes a
time-specific correlation or influence between
two events, inferred from the behavior of their
respective time series.

The key feature of our approach is that edges in
Er are not constructed based on semantic similar-
ity or textual content. Instead, each (u,v,t) € Ep
is derived from observed patterns in belief trajec-
tories—specifically, when two time series exhibit
meaningful, statistically significant co-fluctuations
such as synchronous surges, consistent lead-lag
patterns, or recurring alignment of belief shifts.

This structure captures latent social dependen-
cies that may not be semantically obvious. For
instance, a spike in belief about a major fiscal pol-
icy announcement might be followed by a shift
in sentiment regarding a cryptocurrency threshold
event. While the two events may differ in topic
and phrasing, their co-evolution over time suggests
an implicit connection shaped by external public
discourse or shared information triggers.

Such patterns of temporally aligned fluctuations
between events frequently reveal non-trivial con-
nections that would be overlooked by static or text-
based approaches. By representing events as nodes
and their dynamic interactions as temporal edges,
the social temporal graph Gr provides a princi-
pled framework for reasoning over social event
systems. It enables the study of how public beliefs
shift not just within isolated events, but across an
interconnected landscape of co-evolving signals.
This structured representation lays the foundation
for downstream applications such as event retrieval,
forecasting augmentation, and influence pathway
discovery, which benefit from modeling the rela-
tional context of temporal social data.

4.2 Constructing the Social Temporal Graph

To construct the social temporal graph used in our
framework, we operationalize the modeling princi-
ples described in the previous section by processing
a large collection of time-series-based social events.
Our construction pipeline is designed to capture
non-trivial dependencies between events while sup-
pressing redundancy and noise. The resulting tem-
poral graph Gp = (V, ) is built through three key
stages: node construction via event filtering and
merging, temporal edge construction via dynamic
time-series correlation, and multi-hop enrichment
via transitive similarity.

Node Construction. Each node v € V in G cor-
responds to a unique event drawn from the Polymar-
ket dataset. However, we observe that many events
are syntactically distinct yet semantically equiva-
lent or statistically redundant—such as phrasing
variants or duplicate markets split across tempo-
ral boundaries. These event pairs often exhibit
highly correlated belief trajectories with synchro-
nized fluctuations over time. Including them as
separate nodes would degrade the quality of G,
inflate local neighborhoods, and reduce diversity
in retrieved results. To address this, we perform an
event merging step that consolidates near-duplicate
events into a single representative node. Merging
is triggered when multiple events demonstrate con-
sistently strong temporal alignment across sliding
windows. The resulting node inherits the averaged
trajectory of its constituent events, enhancing sig-
nal robustness while preserving the temporal struc-
ture.

Temporal Edge Construction. Temporal edges
(u,v,t) € Ep are added to capture latent inter-



event relationships that manifest through co-
evolving probability dynamics. Our multi-pronged
approach includes:

* Direct temporal correlation: We identify
statistically significant co-movement between
aligned time series over local windows. When
two nodes exhibit synchronized sharp fluctua-
tions across multiple intervals, we introduce a
temporal edge (u, v, t) based on their lead-lag
pattern.

* Directional influence detection: To capture
asymmetric dependencies, we analyze cross-
correlation structures to determine which node
consistently leads the other. The direction of
(u, v, t) reflects this hypothesized influence.

* Transitive multi-hop enrichment: For node
pairs lacking strong direct correlation, we in-
fer indirect connections by evaluating 2-hop
paths through an intermediate node w where
both (u,w,t) and (w,v,t") exhibit high Dy-
namic Time Warping (DTW) similarity. These
edges are filtered by a similarity threshold to
retain only meaningful second-order depen-
dencies.

This construction ensures that £ remains both
expressive and sparse—highlighting informative
temporal dependencies while suppressing noise.

Statistics of the Social Temporal Graph. To as-
sess the structure of G, we compute graph-level
statistics, including the number of unique nodes | V|
(post-merging), average out-degree per node (cap-
turing neighborhood density), the ratio of directed
versus bidirectional edges in £7, and the proportion
of edges derived from multi-hop enrichment. We
further analyze the distribution of temporal lags
associated with edges (u, v, t) to quantify typical
inter-event response times. These statistics, sum-
marized in Table 1, offer insight into the dynamic
structure of social discourse as encoded by Gr.

This temporal graph construction framework
serves as the backbone of our retrieval system,
enabling structure-aware similarity and influence-
aware reasoning over evolving public belief dynam-
ics.

5 EventConnector

Having established the structure of the social tem-
poral graph, we now describe how it serves as a

Table 1: Statistics of Social Temporal Graph across
Five Domains. These statistics reflect the structural
diversity and temporal dynamics captured by our graph
construction pipeline.

Statistic Politics Sports Crypto Election Other
# Unique Nodes 236 135 105 120 258
# Total Edges 6274 470 1087 1735 2589
Avg. Degree per Node 53.17 696  20.70  28.92  20.07
Graph Density 0.23 0.05 0.20 0.24 0.08
Average Weight 0.80 0.82 0.83 0.80 0.82

retrieval-augmented mechanism for linking unseen
events to historically grounded relational contexts.
We refer to this module as EventConnector, which
enables both inductive event retrieval and structure-
aware forecasting by integrating neighborhood sig-
nals from the graph.

5.1 Retrieving on the Social Temporal Graph

Given a query event e, = (¢, O) with associated
outcome probability time series {pf (¢)};_;, the
goal of retrieval is to locate the most temporally and
structurally relevant region of the graph. Although
the query event is not part of the original graph (i.e.,
it is an inductive, out-of-graph instance), we enable
linkage by first mapping it to the most similar node
in the graph G = (V, €).

Query Mapping. We compute similarity be-
tween the query time series and each in-graph node
using a combination of temporal similarity metrics
(e.g., DTW or Pearson correlation over recent his-
tory windows). The graph node v* € V with the
highest similarity score is selected as the anchor
node for the query event.

Neighborhood Expansion. Once the anchor
node v* is identified, we perform an n-hop neigh-
borhood expansion in G to collect structurally re-
lated events. This neighborhood, denoted N, (v*),
includes both direct and transitive temporal corre-
lates of the query. The flexibility in selecting n
allows us to control the granularity of contextual
information, where n = 1 focuses on strong di-
rect relationships, while n > 1 enables access to
higher-order latent clusters.

By leveraging the graph structure, this retrieval
process enables inductive query events—those un-
seen during graph construction—to benefit from
the relational signal embedded in the temporal
event space. This is particularly valuable in real-
world settings where new events emerge continu-
ously and historical grounding is limited.



5.2 Forecasting with the Social Temporal
Graph

We now describe how the retrieved events are used
to enhance time-series forecasting for the query
event. The key idea is to expose the forecasting
model to temporally aligned supervision derived
from the neighborhood of the anchor node.

Sliding Window Extraction. For each neighbor
e; € N,(v*), we extract non-overlapping sliding
windows from its time series to generate augmented
training samples. This prevents temporal leakage
and ensures that causal signals—such as lead-lag
patterns—are preserved across windows.

Training Set Augmentation. The extracted win-
dows from related events are then added to the
training set of the base forecasting model. This
augmentation allows the model to learn from struc-
turally similar belief trajectories and generalize
patterns that are aligned with the query’s expected
evolution.

In this way, the social temporal graph not only
facilitates retrieval, but also serves as a source of
inductive bias for downstream forecasting. The
model becomes acquainted with the distributional
properties of temporally and socially relevant
events, thereby improving its ability to forecast
the belief trajectory of the query event.

Table 2: Domain-wise statistics for Social WM under
Daily and Hourly forecasting settings. Each value
reflects average statistics over all events in the domain.

Setting Statistic

# Events 98 20 23 36 87
Avg. Length 8443 5945 75.17 8047 54.69
# Windows 1040 142 215 360 558

# Events 135 145 49 56 163
Hourly Avg. Length 1506.81 314.40 930.94 1298.23 780.12
# Windows 8145 1551 1784 2892 4899

Politics Sports Crypto Election Other

Daily

6 Experimental Setting

We conduct experiments on SocialWM, a real-
world benchmark dataset collected from the pre-
diction market platform Polymarket. This dataset
spans five diverse domains—Crypto, Election,
Politics, Sports, and Other—each capturing a
collection of social events represented as probabilis-
tic time series. Each event follows the definition
formalized in Equation 1, where market-implied
outcome probabilities evolve over time in response
to real-world developments.

Data Description. We use time series data col-
lected at both daily and hourly resolutions to evalu-

ate forecasting performance under different tempo-
ral granularities. To create supervised forecasting
samples, we apply a non-overlapping sliding win-
dow strategy with fixed-length history and predic-
tion segments. Specifically, the daily setting uses a
7-day history to predict the next 7 days, while the
hourly setting uses a 48-hour history to forecast the
next 24 hours. This design maximizes the effective
use of each time series while avoiding data leak-
age. Domain-wise statistics, including the number
of events, average sequence lengths, and resulting
window counts, are summarized in Table 2.

Forecasting Models. We evaluate five rep-
resentative forecasting architectures: (1) DLin-
ear (Zeng et al., 2023), a fast, interpretable model
based on seasonal-trend decomposition; (2) Auto-
former (Wu et al., 2021), a Transformer variant us-
ing auto-correlation to capture long-range patterns;
(3) Informer (Zhou et al., 2021), which employs
ProbSparse attention for efficient long-horizon pre-
diction; (4) N-BEATS (Oreshkin et al., 2019), a
deep residual network with backward and forward
blocks; and (5) TimesNet (Wu et al., 2022), which
integrates temporal and frequency-aware represen-
tations.

Retrieval-Based Comparison. To assess the
impact of retrieval strategies, we benchmark our
proposed EventConnector against: (1) Few-Shot
Forecasting, using samples from unrelated events
with minimal context; (2) Semantic Retrieval, re-
trieving events by question similarity in the natural
language space; (3) Time Series Retrieval, identi-
fying nearest neighbors using DTW distance over
full series; and (4) Full-Shot Forecasting, trained
on the entire domain as an oracle upper bound.

Evaluation Metrics. We report standard fore-
casting metrics: (1) Mean Absolute Error (MAE),
which measures the average absolute deviation be-
tween prediction and ground truth; and (2) Root
Mean Squared Error (RMSE), which empha-
sizes larger deviations via squared error aggrega-
tion. These jointly capture average and extreme
predictive discrepancies across domains and time
resolutions.

7 Experimental Results

We evaluate EventConnector against multiple
baselines across five domains—Politics, Sports,
Crypto, Election, and Other. Table 3 reports av-
erage RMSE and MAE scores under both daily
(7-day horizon) and hourly (24-hour horizon) set-



Table 3: Average Forecasting Performance on Out-of-Graph Events across Domains under Daily and Hourly
Settings. Each RMSE and MAE value is averaged over five forecasting models: DLinear (Zeng et al., 2023),
Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021), N-BEATS (Oreshkin et al., 2019), and TimesNet (Wu

et al., 2022).

Politics Sports Crypto Election Other
Model (Daily) RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Few-Shot 0.3604 0.3008 0.3400 0.2772 0.3169 0.2568 0.3710 0.3117 0.3533 0.2946

Semantic Retrieval
Time-Series Retrieval 0.3041

0.3088 0.2546 0.4260 0.3891
0.2526 0.3394 0.2845 0.2941

0.3267 0.2670 0.3598 0.3042 0.3244 0.2709
0.2379 0.3633 0.3038 0.3371 0.2809

EventConnector 0.2655 0.2226 0.2629 0.2160 0.2319 0.1896 0.2833 0.2351 0.2837 0.2321
Full-Shot 0.2181 0.1789 0.2617 0.2090 0.2185 0.1745 0.2523 0.2082 0.2508 0.1949
Model (Hourly) RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Few-Shot 0.4139 0.3569 0.4090 0.3528 0.3712 0.3174 0.4216 0.3643 0.4154 0.3549
Semantic Retrieval ~ 0.2520 0.2059 0.2471 0.2151 0.2653 0.2257 0.2888 0.2370 0.2681 0.2183

Time-Series Retrieval 0.2479 0.2048 0.3207 0.2747 0.3137 0.2696 0.2502 0.2183 0.2718 0.2309

EventConnector
Full-Shot

0.2241 0.1828 0.2125 0.1703 0.2299 0.1898 0.2665 0.2237 0.2465 0.1996
0.1602 0.1238 0.1856 0.1505 0.1748 0.1352 0.1868 0.1457 0.1739 0.1373

tings on five forecasting models: DLinear (Zeng
et al., 2023), Autoformer (Wu et al., 2021), In-
former (Zhou et al., 2021), N-BEATS (Oreshkin
et al., 2019), and TimesNet (Wu et al., 2022), en-
abling model-agnostic comparison.

EventConnector consistently outperforms all
retrieval-based and few-shot baselines. across
both time granularities and all domains. In the
daily setting, it achieves the lowest RMSE and
MAE throughout, e.g., in Politics, EventCon-
nector yields an RMSE of 0.2655, outperforming
time-series retrieval (0.3041) and semantic retrieval
(0.3088). Similarly, in the volatile Crypto domain,
it achieves 0.2319, a significant margin over DTW
(0.2941) and semantic methods (0.3267).

The trend holds in the hourly setting, where
EventConnector leads in four of five domains. For
instance, it records RMSE scores of 0.2241 and
0.2465 in Politics and Other, outperforming
both semantic and time-series retrieval. These re-
sults affirm that graph-based inductive signals en-
hance forecasting regardless of temporal resolution
or domain volatility.

Semantic retrieval, while leveraging textual sim-
ilarity, overlooks directional and temporal dynam-
ics critical for forecasting. Time-series retrieval
improves alignment but lacks structured context.
EventConnector mitigates both limitations by cap-
turing short-term co-fluctuation and directional in-
fluence within a temporal event graph.

EventConnector also approaches full-shot
performance using limited supervision. In the

daily Election domain, it achieves an RMSE of
0.2833, within 12.3

Importantly, EventConnector remains robust
across time granularities and domains. Its con-
sistent gains in both daily and hourly resolutions
confirm the ability of temporal graphs to capture
multi-scale dependencies. Moreover, the method
generalizes well across topics from stable political
questions to dynamic crypto markets, demonstrat-
ing strong inductive bias and generalization.

In summary, EventConnector delivers con-
sistent and substantial improvements across
all evaluated settings. It outperforms retrieval-
based and few-shot baselines across both daily and
hourly time granularities, confirming its ability to
capture fine-grained as well as coarse temporal de-
pendencies. Its performance advantage generalizes
across diverse domains, demonstrating strong in-
ductive bias and robustness to domain variation.
Furthermore, the observed gains hold across five
distinct forecasting architectures, highlighting the
model-agnostic nature of the framework.

8 Discussion

Why do semantic and time-series retrieval base-
lines underperform? While both semantic and
time-series-based retrieval methods provide useful
baselines, they fail to capture the relational richness
exploited by EventConnector. Semantic retrieval
relies solely on textual similarity between event
descriptions and is agnostic to the actual evolution
of belief over time. As a result, it often retrieves



events that are topically similar but temporally un-
correlated. Time-series retrieval based on full DTW
distances considers the entire trajectory, which
may overly emphasize global alignment while ig-
noring localized or transient co-fluctuations. In
contrast, EventConnector focuses on dynamically
co-evolving segments and incorporates lead-lag
relationships into its graph structure, effectively
grounding retrieval in both temporal dynamics and
relational context. Thus, although EventConnector
can be seen as a special form of time-series re-
trieval, its structural awareness and focus on causal
temporal patterns allow it to surpass naive DTW-
based methods.

Does hop number affect downstream perfor-
mance? Animportant design choice in our frame-
work is the neighborhood depth—i.e., the number
of hops used during retrieval. We find that increas-
ing the number of hops generally leads to improved
forecasting performance across domains, as more
relational signals are incorporated into the induc-
tive prediction. Notably, the most significant gains
occur when moving from 1-hop to 2-hop retrieval,
suggesting that immediate and second-order neigh-
bors together capture the majority of useful contex-
tual information. However, as shown in Figure 2,
the performance gains begin to plateau beyond 2-
hop, indicating a clear diminishing return effect.
This trend highlights that while incorporating addi-
tional hops can be beneficial, most of the forecast-
ing signal is concentrated in the first two levels of
the event graph.
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Figure 2: Forecasting performance comparison across
different hop numbers used for retrieval.

Does cross-domain retrieval help with single-
domain prediction? One surprising and
important finding is that cross-domain re-
trieval—retrieving events from different topical
domains—can still improve single-domain fore-
casting performance. For example, a political

event may exhibit strong co-fluctuation with a
cryptocurrency market event, even though the two
are semantically unrelated. This suggests that
social signals often transcend traditional domain
boundaries and that latent belief dynamics may be
driven by shared external shocks or macro-level
sentiment flows. The ability of EventConnector to
uncover and exploit such cross-domain linkages
points toward the promise of scaling up the social
temporal graph across domains to further enhance
generalization and retrieval coverage.

Can this method generalize beyond Social WM-
Bench? Although our experiments are conducted
on Social WM-Bench, the proposed retrieval and
forecasting framework is not limited to prediction
market data. Any domain where entities are as-
sociated with belief-like or attention-driven time
series—such as financial instruments (e.g., stock
prices, currency exchange rates), public opinion
polls, or media engagement metrics—could poten-
tially benefit from a similar temporal graph con-
struction and retrieval approach. This opens the
door to generalizing EventConnector to broader
real-world forecasting tasks where transient and
directional dependencies between time series are
prevalent. In future work, we plan to extend our
framework to these domains and investigate how
relational inductive biases can be adapted to non-
social, high-frequency temporal systems.

9 Conclusion

We tackle the challenge of forecasting public opin-
ion and retrieving real-world events based on their
temporal dynamics—a critical task amid rapidly
evolving social discourse. Traditional models often
falter due to the transient and interdependent na-
ture of social signals. To address this, we propose
EventConnector, a temporal graph framework that
captures localized, directional co-fluctuations be-
tween events. By linking belief-evolving time se-
ries through statistically grounded lead-lag depen-
dencies, our method enables effective retrieval and
forecasting under sparse supervision. Empirical
results across domains and granularities show that
EventConnector consistently outperforms few-shot
and retrieval baselines, rivaling full-shot forecast-
ing while requiring less data. This highlights the
value of graph-structured temporal context in im-
proving generalization and predictive accuracy.



10 Limitations

While EventConnector demonstrates strong per-
formance in capturing temporal dependencies and
improving forecasting accuracy, several limitations
remain. First, the construction of the temporal
graph relies on observed co-fluctuations in time-
series data, which may miss latent but semanti-
cally relevant relationships not reflected in belief
dynamics. Second, the current edge construction
mechanism assumes stationarity of lead-lag pat-
terns over time, which may not hold in rapidly
evolving domains. Third, our method focuses on
pairwise and transitive interactions, but does not
yet model higher-order dependencies such as joint
influence from multiple events. Finally, while the
framework is model-agnostic, its effectiveness can
vary depending on the quality and resolution of
the underlying time-series signals, which may be
sparse or noisy in certain real-world applications.
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Appendix A: Detailed Forecasting Results

This appendix provides full quantitative results un-
der the inductive setting, where models forecast
unseen out-of-graph social events using limited
or retrieved supervision. We report performance
across five domains—Politics, Sports, Crypto,
Election, and Other—under two temporal granu-
larities: daily and hourly.

Table 4 presents the forecasting performance on
the daily setting, where models use 7 days of his-
tory to predict the next 7 days. Table 5 shows the
corresponding results for the hourly setting, using
48 hours of history to forecast the next 24 hours.
Each row corresponds to a forecasting model evalu-
ated with Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE) across all domains
and retrieval strategies.

Appendix B: Experiment Details

This appendix provides detailed information re-
garding the experimental setup, datasets, baseline
implementations, proposed model configurations,
and evaluation metrics used in Section 6.

Model Size and Computational Budget. We
conduct experiments using five representative time-
series forecasting architectures—DLinear (Zeng
et al., 2023), Autoformer (Wu et al., 2021), In-
former (Zhou et al., 2021), N-BEATS (Oreshkin
et al., 2019), and TimesNet (Wu et al., 2022). All
experiments were run on a single NVIDIA A6000
GPU (48GB), totaling approximately 200 GPU
hours. This budget includes time for graph con-
struction, hyperparameter tuning, model training,
retrieval-based augmentation, and result visualiza-
tion.

Experimental Setup and Hyperparameters.
We adopt a consistent forecasting pipeline under
both daily (7-day prediction) and hourly (24-hour
prediction) settings. For each forecasting model,
we perform a grid search over learning rates, batch
sizes, and other related hyperparameters. The best-
performing configuration is selected based on vali-
dation RMSE.

Baseline Models. For each baseline model, we
utilized publicly available implementations where
possible, adhering to the hyperparameter settings
recommended in their original publications or
widely adopted in benchmark studies. These mod-
els include:
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* DLinear (Zeng et al., 2023): A lightweight
and interpretable model based on seasonal-
trend decomposition of time series. It assumes
a linear mapping from decomposed compo-
nents to future values, making it highly effi-
cient and robust on short sequences. We used
the original authors’ open-source PyTorch im-
plementation with default training settings.

e Autoformer (Wu et al., 2021): A Transformer-
based model tailored for long-term time-series
forecasting. It introduces an auto-correlation
mechanism to replace traditional attention, ef-
fectively capturing periodic patterns in high-
resolution sequences. We tuned context length
and dropout based on validation RMSE.

 Informer (Zhou et al., 2021): This model
uses ProbSparse self-attention to improve the
efficiency of long sequence forecasting. It
reduces the quadratic complexity of full atten-
tion and allows fast modeling of long temporal
dependencies. We followed the original hy-
perparameter setup with minor adjustments to
input length and learning rate.

* N-BEATS (Oreshkin et al., 2019): A deep
residual forecasting architecture that uses
backward and forward fully connected blocks
to model temporal signals in a non-recurrent,
interpretable fashion. Its block-based design
allows for learning of trend and seasonal-
ity patterns with minimal assumptions. We
used the official implementation with recom-
mended forecast and backcast lengths.

* TimesNet (Wu et al.,, 2022): A recent
model that integrates frequency-domain and
temporal-domain representations via temporal
2D variation blocks. It achieves strong per-
formance across general forecasting tasks by
capturing multi-scale dependencies. We used
the official implementation with input lengths
set to match our daily and hourly configura-
tions.

All baseline models were retrained on the same
forecasting tasks and time windows as our pro-
posed method to ensure fair comparison. Wherever
applicable, early stopping and validation-based
model selection were applied to avoid overfitting.

Graph Construction and Visualization Tool-
ing. Graph generation, storage, and visualization



are implemented using networkx, plotly, and
torch_geometric. These tools support topologi-
cal processing, interactive visualization, and GPU-
accelerated graph batching. The event graph is
serialized in PyTorch format and serves as a back-
bone for both retrieval and inductive forecasting
tasks.
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Table 4: Inductive Setting: Forecasting Performance on out-of-graph events across Domains on daily time
frequency, 7 history length and 7 prediction length.

Politics Sports Crypto Election Other
Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

few-shot forecasting

DLinear 0.4308 0.3861 0.3826 0.3343 0.2938 0.2469 0.4438 0.4007 0.4002 0.3556
Autoformer 0.2561 0.2226 0.2688 0.2303 0.2530 0.2185 0.2575 0.2253 0.2167 0.1876
Informer 0.8061 0.6265 0.7601 0.5722 0.6865 0.5117 0.8372 0.6552 0.7435 0.5729
N-BEATS 0.1640 0.1385 0.1399 0.1165 0.1447 0.1197 0.1675 0.1422 0.1262 0.1027
TimesNet 0.1450 0.1303 0.1489 0.1329 0.2068 0.1872 0.1494 0.1351 0.2801 0.2545

Semantic Retrieval based forecasting

DLinear 0.4306 0.3859 0.3828 0.3346 0.2939 0.2470 0.4439 0.4008 0.4001 0.3555
Autoformer 0.1081 0.0902 0.4179 0.3731 0.2067 0.1789 0.2058 0.1767 0.1243 0.1041
Informer 0.7531 0.5771 1.0781 1.0228 0.6798 0.5326 0.8418 0.6744 0.6950 0.5416
N-BEATS 0.1080 0.0903 0.1000 0.0803 0.2440 0.1871 0.1593 0.1350 0.1244 0.1008
TimesNet 0.1443 0.1297 0.1510 0.1347 0.2092 0.1896 0.1482 0.1341 0.2782 0.2525

Time-series Retrieval based Forecasting

DLinear 0.4299 0.3850 0.3827 0.3344 0.2938 0.2468 0.4435 0.4004 0.3998 0.3551
Autoformer 0.1161 0.0985 0.2196 0.1888 0.1448 0.1204 0.0884 0.0738 0.1116 0.0956
Informer 0.7191 0.5549 0.8439 0.6843 0.6788 0.5091 0.8169 0.6375 0.7268 0.5559
N-BEATS 0.1113 0.0949 0.1000 0.0803 0.1451 0.1248 0.3191 0.2725 0.1671 0.1431
TimesNet 0.1446 0.1301 0.1510 0.1348 0.2080 0.1884 0.1487 0.1347 0.2803 0.2546

EventConnector-based forecasting

DLinear 0.4235 0.3770 0.3815 0.3328 0.2926 0.2447 0.4402 0.3961 0.3937 0.3470
Autoformer 0.2113 0.1836 0.2057 0.1725 0.2187 0.1817 0.2618 0.2308 0.1857 0.1585
Informer 0.4754 0.3883 0.4963 0.3893 0.3460 0.2759 0.4932 0.3753 0.5051 0.3879
N-BEATS 0.0935 0.0680 0.0999 0.0777 0.1250 0.1019 0.0944 0.0729 0.1115 0.0881
TimesNet 0.1236 0.0960 0.1312 0.1079 0.1773 0.1440 0.1271 0.1005 0.2223 0.1791

Full-shot forecasting

DLinear 0.4083 0.3408 0.3737 0.3208 0.2859 0.2346 0.4242 0.3727 0.3812 0.3196
Autoformer 0.0608 0.0500 0.1219 0.0977 0.0924 0.0764 0.0871 0.0730 0.0710 0.0602
Informer 0.4196 0.3471 0.5777 0.4365 0.4227 0.3279 0.5303 0.4250 0.4993 0.3752
N-BEATS 0.0863 0.0671 0.0969 0.0741 0.1101 0.0856 0.0936 0.0710 0.0988 0.0758
TimesNet 0.1156 0.0896 0.1384 0.1157 0.1814 0.1479 0.1263 0.0991 0.2037 0.1438
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Table 5: Inductive Setting: Forecasting Performance on out-of-graph events across Domains on hourly time
frequency, 48 history length and 24 prediction length.

Politics Sports Crypto Election Other
Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

few-shot forecasting

DLinear 0.3998 0.3478 0.3932 0.3364 0.2767 0.2301 0.4125 0.3597 0.3856 0.3338
Autoformer 0.2359 0.2119 0.2290 0.2086 0.1421 0.1259 0.2686 0.2442 0.1961 0.1761
Informer 0.8958 0.7902 0.9534 0.8362 0.9269 0.8175 0.8760 0.7731 0.8597 0.7518
N-BEATS 0.3963 0.3227 0.3685 0.3029 0.3151 0.2578 0.3954 0.3234 0.3857 0.3161
TimesNet 0.1415 0.1118 0.1008 0.0800 0.1954 0.1557 0.1557 0.1212 0.2498 0.1968

Semantic Retrieval-based Forecasting

DLinear 0.3780 0.3042 0.3842 0.3256 0.2695 0.2210 0.3977 0.3391 0.3648 0.2993
Autoformer 0.0288 0.0255 0.0667 0.0594 0.0442 0.0397 0.0323 0.0286 0.0354 0.0312
Informer 0.5709 0.4833 0.3645 0.2724 0.4937 0.4164 0.7184 0.5858 0.5535 0.4576
N-BEATS 0.1406 0.1075 0.1459 0.1135 0.1478 0.1188 0.1390 0.1081 0.1374 0.1073
TimesNet 0.1417 0.1090 0.1014 0.0806 0.1943 0.1533 0.1565 0.1235 0.2495 0.1963

Time-Series Retrieval-based Forecasting

DLinear 0.3826 0.3219 0.3887 0.3312 0.2729 0.2256 0.4043 0.3495 0.3724 0.3164
Autoformer 0.0365 0.0307 0.0889 0.0731 0.0736 0.0636 0.0583 0.0488 0.0588 0.0508
Informer 0.5505 0.4769 0.8933 0.7819 0.9149 0.8093 0.5127 0.4707 0.5982 0.5175
N-BEATS 0.1383 0.1025 0.1360 0.1063 0.1364 0.1060 0.1349 0.1047 0.1362 0.1038
TimesNet 0.1316 0.1119 0.0968 0.0809 0.1706 0.1437 0.1409 0.1178 0.1933 0.1660

EventConnector-based Forecasting

DLinear 0.3784 0.3069 0.3853 0.3270 0.2710 0.2231 0.3988 0.3410 0.3640 0.2961
Autoformer 0.0575 0.0523 0.0582 0.0521 0.0572 0.0520 0.0478 0.0427 0.0358 0.0319
Informer 0.4308 0.3585 0.5547 0.5036 0.6822 0.5984 0.6035 0.5140 0.4927 0.4038
N-BEATS 0.1357 0.1044 0.1496 0.1223 0.1430 0.1144 0.1423 0.1045 0.1348 0.1046
TimesNet 0.1180 0.0919 0.0879 0.0707 0.1732 0.1406 0.1401 0.1163 0.2052 0.1614

Full-shot forecasting

DLinear 0.3771 0.2990 0.3695 0.2904 0.2610 0.1999 0.3891 0.3093 0.3625 0.2863
Autoformer 0.0276 0.0242 0.0419 0.0372 0.0360 0.0325 0.0233 0.0209 0.0298 0.0262
Informer 0.1363 0.1038 0.2946 0.2493 0.2426 0.1946 0.2114 0.1676 0.1572 0.1289
N-BEATS 0.1364 0.0979 0.1346 0.1053 0.1342 0.1028 0.1398 0.1032 0.1372 0.0988
TimesNet 0.1234 0.0943 0.0873 0.0701 0.2003 0.1462 0.1706 0.1276 0.1829 0.1461
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