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Abstract001

Understanding and retrieving related real-world002
events based on their temporal dynamics is003
a fundamental challenge in time-sensitive ap-004
plications such as forecasting, information re-005
trieval, and social analysis. Existing methods006
often rely on semantic similarity or global time-007
series alignment, which overlook the transient008
and directional dependencies that frequently un-009
derlie real-world correlations. In this work, we010
introduce EventConnector, a general frame-011
work for constructing a temporal event graph012
that captures localized co-fluctuations and lead-013
lag relationships between events through their014
time-series trajectories. The resulting graph015
encodes both synchronous activity and direc-016
tional influence, enabling the discovery of non-017
obvious, cross-domain associations. To fur-018
ther enrich the graph structure, we incorporate019
a multi-hop detection mechanism that reveals020
transitive temporal dependencies. Experiments021
on real-world prediction market data show that022
EventConnector uncovers non-trivial temporal023
structures and achieves a substantial 18.89%024
improvement in event retrieval and time-series025
forecasting tasks under limited supervision.026
These results highlight the effectiveness of tem-027
poral graph modeling in capturing latent event028
relationships beyond what semantic similarity029
or traditional alignment techniques can offer.030

1 Introduction031

Real-world events rarely unfold in isolation—they032

are embedded within interdependent systems span-033

ning political, economic, and cultural domains.034

Modeling the temporal dependencies among such035

events is crucial not only for forecasting, but036

also for understanding how societal processes co-037

evolve. For example, a major fiscal policy an-038

nouncement can ripple through financial markets,039

as evidenced by studies linking President Trump’s040

public statements to fluctuations in cryptocurrency041

prices (Huynh, 2021). Anticipating these cross-042

Figure 1: Example event relations extracted by Event-
Connector. Despite being semantically unrelated, the
two social events—“Will $ETH reach 3.7k in July?”
(blue) and “Will Elon Musk give a speech at Bitcoin con-
ference?” (orange)—exhibit a strikingly similar tempo-
ral trajectory in their forecast probabilities. This strong
short-term correlation reveals latent coupling in public
sentiment or shared speculative dynamics, which are
not captured by traditional semantic similarity.

domain ripple effects is essential for informing pub- 043

lic policy, risk assessment, and strategic decision- 044

making, yet it remains a challenging and underex- 045

plored problem. 046

One major obstacle is that correlated events are 047

often semantically dissimilar. A shift in trade 048

policy, for instance, may temporally align with 049

movements in cryptocurrency prices, even though 050

there is little lexical or ontological similarity to 051

suggest a connection. As shown in Figure 1, such 052

non-obvious dependencies may reflect latent soci- 053

etal dynamics or shared drivers of attention. De- 054

tecting these connections is difficult, particularly 055

when confounded by high noise, domain hetero- 056

geneity, or lack of explicit structure. Traditional 057

tools—such as Granger causality (Granger, 1969) 058

or Hawkes processes (Hawkes, 1971)—often as- 059

sume stationarity or low-noise environments and 060

struggle to scale to complex, event-driven signals. 061

Moreover, existing event forecasting datasets (e.g., 062
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ICEWS (Boschee et al., 2015), GDELT (Leetaru063

and Schrodt, 2013)) focus on discrete or single-064

domain events, and do not capture the full spec-065

trum of continuous, interrelated fluctuations across066

domains.067

Modern time-series and knowledge graph mod-068

els also face limitations when applied to hetero-069

geneous events. Deep forecasting models often070

assume variables can be fused into a shared la-071

tent space or rely on predefined relational struc-072

tures—an assumption that holds for homogeneous073

systems like traffic networks (Li et al., 2018), but074

breaks down for semantically disjoint events. Tem-075

poral knowledge graph methods (Goel et al., 2020;076

Han et al., 2020) similarly embed all entities into077

a unified space, which risks collapsing structurally078

distinct signals and missing subtle, cross-domain079

interactions. These models often require dense080

supervision, assume stable dynamics, or overlook081

transient correlations that are critical in volatile en-082

vironments like social prediction markets or public083

discourse.084

In this work, we present EventConnector, a tem-085

poral graph framework for discovering and model-086

ing dynamic dependencies between social events087

based on their evolving time series. Our method088

constructs a data-driven event graph in which nodes089

represent individual events and edges encode local-090

ized, statistically significant relationships derived091

from short-term co-fluctuation and lead-lag infer-092

ence. This graph captures both synchronous and093

directional influence, and supports multi-hop rea-094

soning over indirect chains of dependency.095

By preserving the individuality of events while096

linking them through empirical temporal patterns,097

EventConnector enables more accurate forecast-098

ing under sparse supervision and facilitates inter-099

pretable analyses of how public attention or sen-100

timent propagates across domains. Unlike exist-101

ing approaches, it does not rely on predefined tax-102

onomies, global embeddings, or semantic similar-103

ity. Instead, it embraces the heterogeneity of real-104

world signals and models structure as it emerges105

from data.106

Our key contribution is the development of107

a temporal graph-based framework that elic-108

its non-semantic connections between heteroge-109

neous social events by identifying localized, di-110

rectional dependencies in time series data. We111

further demonstrate that this structure signifi-112

cantly improves performance in event forecasting113

tasks—especially in inductive or low-supervision114

settings—outperforming both semantic and time- 115

series retrieval baselines across domains and gran- 116

ularities by 18.89%, and offering a principled foun- 117

dation for future extensions in social signal analysis 118

and temporal reasoning. 119

2 Related Works 120

Time-Series Event Modeling Classical techniques 121

like Dynamic Time Warping (DTW) (Berndt and 122

Clifford, 1994), local correlation tracking (Pa- 123

padimitriou et al., 2006), and BRAID (Sakurai 124

et al., 2005) align or group time series based on 125

transient or lagged patterns. Matrix profile meth- 126

ods (Yeh et al., 2016) efficiently detect similar 127

or anomalous subsequences. Directional depen- 128

dencies are modeled through high-dimensional 129

Granger causality (Arnold et al., 2007) and lead- 130

lag networks (Bennett et al., 2022). Point-process 131

models like multidimensional Hawkes processes 132

capture self-/cross-exciting dynamics (Zhou et al., 133

2013). Deep forecasting models (e.g., LSTNet 134

(Lai et al., 2018)) leverage convolutional and recur- 135

rent layers for multiscale temporal dependencies. 136

These approaches inform EventConnector’s use of 137

co-fluctuation and causality for graph construction. 138

Social System Modeling Foundational 139

models—DeGroot averaging (DeGroot, 1974), 140

threshold-based diffusion (Granovetter, 1978), 141

and bounded-confidence dynamics (Hegselmann 142

and Krause, 2002)—explain macro patterns from 143

individual behavior. Data-driven systems such as 144

EMBERS (et al., 2014), spatio-temporal forecast- 145

ing (Zhao et al., 2015), and nested MIL (Ning et al., 146

2016) infer emergent trends from open signals. 147

Evolving semantic graphs (Deng et al., 2019b) 148

further capture event interplay. EventConnector 149

builds on these ideas, defining a temporal event 150

graph grounded in co-fluctuation and lead-lag 151

signals for structure-aware forecasting. 152

Social Event Forecasting Earlier methods used 153

social media and statistical signals (e.g., scan statis- 154

tics (Chen and Neill, 2014), cascade models (Ca- 155

dena et al., 2015)) to forecast unrest. Temporal 156

event chains (Radinsky and Horvitz, 2012) and 157

entity-centric graph models (Deng et al., 2019a, 158

2020; Zhou et al., 2022) incorporate cause-effect 159

and multimodal dynamics. Our approach continues 160

this line by modeling localized temporal dependen- 161

cies via event graphs for enhanced retrieval and 162

forecasting. 163

Temporal Graphs Temporal GNNs like TGAT 164
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(Xu et al., 2020), DySAT (Sankar et al., 2020),165

Know-Evolve (Trivedi et al., 2017), and DyRep166

(Trivedi et al., 2019) embed evolving node rela-167

tions via time-aware attention or event-driven dy-168

namics. Message-passing models like TeMP (Wu169

et al., 2020) propagate over time-stamped knowl-170

edge graphs. EventConnector differs by defining171

temporal edges from time-series co-fluctuation and172

directional influence, enabling both inductive re-173

trieval and forecasting.174

3 Social Event Prediction175

Prediction markets aggregate dispersed informa-176

tion and beliefs to form collective forecasts about177

uncertain future outcomes (Wolfers and Zitzewitz,178

2004). Among them, Polymarket is a promi-179

nent cryptocurrency-based platform that hosts real-180

money prediction markets on a diverse set of so-181

cial questions spanning politics, economics, enter-182

tainment, and crypto. Each market tracks beliefs183

over time by assigning probabilistic prices to mu-184

tually exclusive outcomes. These market-implied185

prices are interpretable as consensus probabilities186

and have been shown to produce accurate and cal-187

ibrated forecasts across domains. For instance, in188

the context of U.S. elections, prediction market189

probabilities have outperformed traditional polling-190

based methods in estimating victory chances (Roth-191

schild, 2009).192

Let us denote by E = {e1, e2, . . . , eN} a col-193

lection of real-world events, where each event ei194

corresponds to a temporally evolving question or195

proposition about the world (e.g., “Will a political196

candidate win the election?” or “Will Bitcoin reach197

$40,000 by next month?”). In our setting, an event198

is observed indirectly through its time series tra-199

jectory, which reflects public belief or collective200

probability estimation over time. These temporally201

evolving belief series allow us to cast event mod-202

eling and forecasting as a structured time-series203

problem grounded in human expectations and be-204

havioral signals.205

3.1 Social Events as Time-Series206

We define a social event as a tuple207

e = (q,O), (1)208

where q is a future-uncertain question and O =209

{o1, . . . , oK} is a set of K mutually exclusive210

outcomes. Each outcome ok ∈ O is associated211

with a probability time series {pk(t)}Tt=1, where212

pk(t) ∈ [0, 1] denotes the market-implied proba- 213

bility of ok at time step t. The probabilities for all 214

outcomes are normalized at each timestamp: 215

K∑
k=1

pk(t) = 1, ∀t ∈ {1, . . . , T}. (2) 216

This structure captures the temporal evolution of 217

public beliefs over possible futures. For example, 218

in a binary election event where q is “Will candi- 219

date A win?” and O = {Yes,No}, the time series 220

pYes(t) and pNo(t) = 1−pYes(t) reflect belief shifts 221

driven by campaign events, polling results, and me- 222

dia coverage. 223

Similarly, for a market-based question such as 224

“Will coin X exceed $P by date D?”, the associ- 225

ated probability series evolves in response to price 226

trends, market sentiment, and macroeconomic sig- 227

nals. These examples illustrate how time series 228

trajectories encode real-time belief updates about 229

evolving social outcomes. 230

Following this formalization, we treat each so- 231

cial event as a multi-outcome time series instance 232

defined by Equation (1), and use its evolving proba- 233

bility dynamics as the core representation for down- 234

stream forecasting and graph construction. 235

3.2 Forecasting Future Social Events 236

Given the historical belief trajectories 237

{pk(1), . . . , pk(T )} for each outcome 238

k ∈ {1, . . . ,K}, the forecasting objective is to pre- 239

dict the next H values {pk(T+1), . . . , pk(T+H)}. 240

This task can be framed as a multi-horizon time- 241

series prediction problem, where the goal is to 242

anticipate the evolution of collective belief under 243

ongoing information flow. 244

Forecasting such time series is challenging due 245

to the non-stationary nature of belief formation, 246

the influence of exogenous shocks (e.g., break- 247

ing news), and the heterogeneous domain contexts 248

across events. Yet, it offers a unique and practical 249

testbed for advancing the development of robust 250

and adaptive forecasting models in settings that 251

mirror real-world decision-making dynamics. 252

4 Social Temporal Graph 253

Building on the formulation of social events as 254

time-evolving probability series introduced in the 255

previous section, we now describe how such events 256

can be connected into a structured representa- 257

tion—a social temporal graph—that captures inter- 258
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event relationships grounded in their temporal dy-259

namics.260

4.1 Temporal Graphs261

A temporal graph is a dynamic extension of a262

conventional graph structure in which the nodes,263

edges, or their associated attributes evolve over264

time and interact through time-dependent relation-265

ships. Formally, a temporal graph is defined as266

a tuple GT = (V, ET ), where V is a set of nodes,267

and ET ⊆ V × V × R+ is a set of time-stamped268

edges. Each temporal edge (u, v, t) ∈ ET indi-269

cates an interaction or dependency between nodes270

u and v that is active at time t, or over a continuous271

interval [tstart, tend] in cases of extended temporal272

influence. Unlike static graphs, GT supports the273

analysis of causality, influence propagation, and dy-274

namic neighborhood evolution by encoding when275

connections occur, not just whether they exist.276

In our setting, we specialize GT to the social277

domain. Specifically, we define a social temporal278

graph as a directed temporal graph GT = (V, ET )279

where:280

• Each node vi ∈ V represents a unique so-281

cial event ei = (qi,Oi), as defined earlier,282

together with its associated multivariate time283

series that reflects public belief updates over284

time.285

• Each temporal edge (vi, vj , t) ∈ ET denotes a286

time-specific correlation or influence between287

two events, inferred from the behavior of their288

respective time series.289

The key feature of our approach is that edges in290

ET are not constructed based on semantic similar-291

ity or textual content. Instead, each (u, v, t) ∈ ET292

is derived from observed patterns in belief trajec-293

tories—specifically, when two time series exhibit294

meaningful, statistically significant co-fluctuations295

such as synchronous surges, consistent lead-lag296

patterns, or recurring alignment of belief shifts.297

This structure captures latent social dependen-298

cies that may not be semantically obvious. For299

instance, a spike in belief about a major fiscal pol-300

icy announcement might be followed by a shift301

in sentiment regarding a cryptocurrency threshold302

event. While the two events may differ in topic303

and phrasing, their co-evolution over time suggests304

an implicit connection shaped by external public305

discourse or shared information triggers.306

Such patterns of temporally aligned fluctuations 307

between events frequently reveal non-trivial con- 308

nections that would be overlooked by static or text- 309

based approaches. By representing events as nodes 310

and their dynamic interactions as temporal edges, 311

the social temporal graph GT provides a princi- 312

pled framework for reasoning over social event 313

systems. It enables the study of how public beliefs 314

shift not just within isolated events, but across an 315

interconnected landscape of co-evolving signals. 316

This structured representation lays the foundation 317

for downstream applications such as event retrieval, 318

forecasting augmentation, and influence pathway 319

discovery, which benefit from modeling the rela- 320

tional context of temporal social data. 321

4.2 Constructing the Social Temporal Graph 322

To construct the social temporal graph used in our 323

framework, we operationalize the modeling princi- 324

ples described in the previous section by processing 325

a large collection of time-series-based social events. 326

Our construction pipeline is designed to capture 327

non-trivial dependencies between events while sup- 328

pressing redundancy and noise. The resulting tem- 329

poral graph GT = (V, ET ) is built through three key 330

stages: node construction via event filtering and 331

merging, temporal edge construction via dynamic 332

time-series correlation, and multi-hop enrichment 333

via transitive similarity. 334

Node Construction. Each node v ∈ V in GT cor- 335

responds to a unique event drawn from the Polymar- 336

ket dataset. However, we observe that many events 337

are syntactically distinct yet semantically equiva- 338

lent or statistically redundant—such as phrasing 339

variants or duplicate markets split across tempo- 340

ral boundaries. These event pairs often exhibit 341

highly correlated belief trajectories with synchro- 342

nized fluctuations over time. Including them as 343

separate nodes would degrade the quality of GT , 344

inflate local neighborhoods, and reduce diversity 345

in retrieved results. To address this, we perform an 346

event merging step that consolidates near-duplicate 347

events into a single representative node. Merging 348

is triggered when multiple events demonstrate con- 349

sistently strong temporal alignment across sliding 350

windows. The resulting node inherits the averaged 351

trajectory of its constituent events, enhancing sig- 352

nal robustness while preserving the temporal struc- 353

ture. 354

Temporal Edge Construction. Temporal edges 355

(u, v, t) ∈ ET are added to capture latent inter- 356
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event relationships that manifest through co-357

evolving probability dynamics. Our multi-pronged358

approach includes:359

• Direct temporal correlation: We identify360

statistically significant co-movement between361

aligned time series over local windows. When362

two nodes exhibit synchronized sharp fluctua-363

tions across multiple intervals, we introduce a364

temporal edge (u, v, t) based on their lead-lag365

pattern.366

• Directional influence detection: To capture367

asymmetric dependencies, we analyze cross-368

correlation structures to determine which node369

consistently leads the other. The direction of370

(u, v, t) reflects this hypothesized influence.371

• Transitive multi-hop enrichment: For node372

pairs lacking strong direct correlation, we in-373

fer indirect connections by evaluating 2-hop374

paths through an intermediate node w where375

both (u,w, t) and (w, v, t′) exhibit high Dy-376

namic Time Warping (DTW) similarity. These377

edges are filtered by a similarity threshold to378

retain only meaningful second-order depen-379

dencies.380

This construction ensures that ET remains both381

expressive and sparse—highlighting informative382

temporal dependencies while suppressing noise.383

Statistics of the Social Temporal Graph. To as-384

sess the structure of GT , we compute graph-level385

statistics, including the number of unique nodes |V|386

(post-merging), average out-degree per node (cap-387

turing neighborhood density), the ratio of directed388

versus bidirectional edges in ET , and the proportion389

of edges derived from multi-hop enrichment. We390

further analyze the distribution of temporal lags391

associated with edges (u, v, t) to quantify typical392

inter-event response times. These statistics, sum-393

marized in Table 1, offer insight into the dynamic394

structure of social discourse as encoded by GT .395

This temporal graph construction framework396

serves as the backbone of our retrieval system,397

enabling structure-aware similarity and influence-398

aware reasoning over evolving public belief dynam-399

ics.400

5 EventConnector401

Having established the structure of the social tem-402

poral graph, we now describe how it serves as a403

Table 1: Statistics of Social Temporal Graph across
Five Domains. These statistics reflect the structural
diversity and temporal dynamics captured by our graph
construction pipeline.

Statistic Politics Sports Crypto Election Other

# Unique Nodes 236 135 105 120 258
# Total Edges 6274 470 1087 1735 2589
Avg. Degree per Node 53.17 6.96 20.70 28.92 20.07
Graph Density 0.23 0.05 0.20 0.24 0.08
Average Weight 0.80 0.82 0.83 0.80 0.82

retrieval-augmented mechanism for linking unseen 404

events to historically grounded relational contexts. 405

We refer to this module as EventConnector, which 406

enables both inductive event retrieval and structure- 407

aware forecasting by integrating neighborhood sig- 408

nals from the graph. 409

5.1 Retrieving on the Social Temporal Graph 410

Given a query event eq = (q,O) with associated 411

outcome probability time series {pqk(t)}
T
t=1, the 412

goal of retrieval is to locate the most temporally and 413

structurally relevant region of the graph. Although 414

the query event is not part of the original graph (i.e., 415

it is an inductive, out-of-graph instance), we enable 416

linkage by first mapping it to the most similar node 417

in the graph G = (V, E). 418

Query Mapping. We compute similarity be- 419

tween the query time series and each in-graph node 420

using a combination of temporal similarity metrics 421

(e.g., DTW or Pearson correlation over recent his- 422

tory windows). The graph node v∗ ∈ V with the 423

highest similarity score is selected as the anchor 424

node for the query event. 425

Neighborhood Expansion. Once the anchor 426

node v∗ is identified, we perform an n-hop neigh- 427

borhood expansion in G to collect structurally re- 428

lated events. This neighborhood, denoted Nn(v
∗), 429

includes both direct and transitive temporal corre- 430

lates of the query. The flexibility in selecting n 431

allows us to control the granularity of contextual 432

information, where n = 1 focuses on strong di- 433

rect relationships, while n > 1 enables access to 434

higher-order latent clusters. 435

By leveraging the graph structure, this retrieval 436

process enables inductive query events—those un- 437

seen during graph construction—to benefit from 438

the relational signal embedded in the temporal 439

event space. This is particularly valuable in real- 440

world settings where new events emerge continu- 441

ously and historical grounding is limited. 442
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5.2 Forecasting with the Social Temporal443

Graph444

We now describe how the retrieved events are used445

to enhance time-series forecasting for the query446

event. The key idea is to expose the forecasting447

model to temporally aligned supervision derived448

from the neighborhood of the anchor node.449

Sliding Window Extraction. For each neighbor450

ei ∈ Nn(v
∗), we extract non-overlapping sliding451

windows from its time series to generate augmented452

training samples. This prevents temporal leakage453

and ensures that causal signals—such as lead-lag454

patterns—are preserved across windows.455

Training Set Augmentation. The extracted win-456

dows from related events are then added to the457

training set of the base forecasting model. This458

augmentation allows the model to learn from struc-459

turally similar belief trajectories and generalize460

patterns that are aligned with the query’s expected461

evolution.462

In this way, the social temporal graph not only463

facilitates retrieval, but also serves as a source of464

inductive bias for downstream forecasting. The465

model becomes acquainted with the distributional466

properties of temporally and socially relevant467

events, thereby improving its ability to forecast468

the belief trajectory of the query event.469

Table 2: Domain-wise statistics for SocialWM under
Daily and Hourly forecasting settings. Each value
reflects average statistics over all events in the domain.

Setting Statistic Politics Sports Crypto Election Other

Daily
# Events 98 20 23 36 87
Avg. Length 84.43 59.45 75.17 80.47 54.69
# Windows 1040 142 215 360 558

Hourly
# Events 135 145 49 56 163
Avg. Length 1506.81 314.40 930.94 1298.23 780.12
# Windows 8145 1551 1784 2892 4899

6 Experimental Setting470

We conduct experiments on SocialWM, a real-471

world benchmark dataset collected from the pre-472

diction market platform Polymarket. This dataset473

spans five diverse domains—Crypto, Election,474

Politics, Sports, and Other—each capturing a475

collection of social events represented as probabilis-476

tic time series. Each event follows the definition477

formalized in Equation 1, where market-implied478

outcome probabilities evolve over time in response479

to real-world developments.480

Data Description. We use time series data col-481

lected at both daily and hourly resolutions to evalu-482

ate forecasting performance under different tempo- 483

ral granularities. To create supervised forecasting 484

samples, we apply a non-overlapping sliding win- 485

dow strategy with fixed-length history and predic- 486

tion segments. Specifically, the daily setting uses a 487

7-day history to predict the next 7 days, while the 488

hourly setting uses a 48-hour history to forecast the 489

next 24 hours. This design maximizes the effective 490

use of each time series while avoiding data leak- 491

age. Domain-wise statistics, including the number 492

of events, average sequence lengths, and resulting 493

window counts, are summarized in Table 2. 494

Forecasting Models. We evaluate five rep- 495

resentative forecasting architectures: (1) DLin- 496

ear (Zeng et al., 2023), a fast, interpretable model 497

based on seasonal-trend decomposition; (2) Auto- 498

former (Wu et al., 2021), a Transformer variant us- 499

ing auto-correlation to capture long-range patterns; 500

(3) Informer (Zhou et al., 2021), which employs 501

ProbSparse attention for efficient long-horizon pre- 502

diction; (4) N-BEATS (Oreshkin et al., 2019), a 503

deep residual network with backward and forward 504

blocks; and (5) TimesNet (Wu et al., 2022), which 505

integrates temporal and frequency-aware represen- 506

tations. 507

Retrieval-Based Comparison. To assess the 508

impact of retrieval strategies, we benchmark our 509

proposed EventConnector against: (1) Few-Shot 510

Forecasting, using samples from unrelated events 511

with minimal context; (2) Semantic Retrieval, re- 512

trieving events by question similarity in the natural 513

language space; (3) Time Series Retrieval, identi- 514

fying nearest neighbors using DTW distance over 515

full series; and (4) Full-Shot Forecasting, trained 516

on the entire domain as an oracle upper bound. 517

Evaluation Metrics. We report standard fore- 518

casting metrics: (1) Mean Absolute Error (MAE), 519

which measures the average absolute deviation be- 520

tween prediction and ground truth; and (2) Root 521

Mean Squared Error (RMSE), which empha- 522

sizes larger deviations via squared error aggrega- 523

tion. These jointly capture average and extreme 524

predictive discrepancies across domains and time 525

resolutions. 526

7 Experimental Results 527

We evaluate EventConnector against multiple 528

baselines across five domains—Politics, Sports, 529

Crypto, Election, and Other. Table 3 reports av- 530

erage RMSE and MAE scores under both daily 531

(7-day horizon) and hourly (24-hour horizon) set- 532
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Table 3: Average Forecasting Performance on Out-of-Graph Events across Domains under Daily and Hourly
Settings. Each RMSE and MAE value is averaged over five forecasting models: DLinear (Zeng et al., 2023),
Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021), N-BEATS (Oreshkin et al., 2019), and TimesNet (Wu
et al., 2022).

Politics Sports Crypto Election Other

Model (Daily) RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Few-Shot 0.3604 0.3008 0.3400 0.2772 0.3169 0.2568 0.3710 0.3117 0.3533 0.2946
Semantic Retrieval 0.3088 0.2546 0.4260 0.3891 0.3267 0.2670 0.3598 0.3042 0.3244 0.2709
Time-Series Retrieval 0.3041 0.2526 0.3394 0.2845 0.2941 0.2379 0.3633 0.3038 0.3371 0.2809
EventConnector 0.2655 0.2226 0.2629 0.2160 0.2319 0.1896 0.2833 0.2351 0.2837 0.2321
Full-Shot 0.2181 0.1789 0.2617 0.2090 0.2185 0.1745 0.2523 0.2082 0.2508 0.1949

Model (Hourly) RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Few-Shot 0.4139 0.3569 0.4090 0.3528 0.3712 0.3174 0.4216 0.3643 0.4154 0.3549
Semantic Retrieval 0.2520 0.2059 0.2471 0.2151 0.2653 0.2257 0.2888 0.2370 0.2681 0.2183
Time-Series Retrieval 0.2479 0.2048 0.3207 0.2747 0.3137 0.2696 0.2502 0.2183 0.2718 0.2309
EventConnector 0.2241 0.1828 0.2125 0.1703 0.2299 0.1898 0.2665 0.2237 0.2465 0.1996
Full-Shot 0.1602 0.1238 0.1856 0.1505 0.1748 0.1352 0.1868 0.1457 0.1739 0.1373

tings on five forecasting models: DLinear (Zeng533

et al., 2023), Autoformer (Wu et al., 2021), In-534

former (Zhou et al., 2021), N-BEATS (Oreshkin535

et al., 2019), and TimesNet (Wu et al., 2022), en-536

abling model-agnostic comparison.537

EventConnector consistently outperforms all538

retrieval-based and few-shot baselines. across539

both time granularities and all domains. In the540

daily setting, it achieves the lowest RMSE and541

MAE throughout, e.g., in Politics, EventCon-542

nector yields an RMSE of 0.2655, outperforming543

time-series retrieval (0.3041) and semantic retrieval544

(0.3088). Similarly, in the volatile Crypto domain,545

it achieves 0.2319, a significant margin over DTW546

(0.2941) and semantic methods (0.3267).547

The trend holds in the hourly setting, where548

EventConnector leads in four of five domains. For549

instance, it records RMSE scores of 0.2241 and550

0.2465 in Politics and Other, outperforming551

both semantic and time-series retrieval. These re-552

sults affirm that graph-based inductive signals en-553

hance forecasting regardless of temporal resolution554

or domain volatility.555

Semantic retrieval, while leveraging textual sim-556

ilarity, overlooks directional and temporal dynam-557

ics critical for forecasting. Time-series retrieval558

improves alignment but lacks structured context.559

EventConnector mitigates both limitations by cap-560

turing short-term co-fluctuation and directional in-561

fluence within a temporal event graph.562

EventConnector also approaches full-shot563

performance using limited supervision. In the564

daily Election domain, it achieves an RMSE of 565

0.2833, within 12.3 566

Importantly, EventConnector remains robust 567

across time granularities and domains. Its con- 568

sistent gains in both daily and hourly resolutions 569

confirm the ability of temporal graphs to capture 570

multi-scale dependencies. Moreover, the method 571

generalizes well across topics from stable political 572

questions to dynamic crypto markets, demonstrat- 573

ing strong inductive bias and generalization. 574

In summary, EventConnector delivers con- 575

sistent and substantial improvements across 576

all evaluated settings. It outperforms retrieval- 577

based and few-shot baselines across both daily and 578

hourly time granularities, confirming its ability to 579

capture fine-grained as well as coarse temporal de- 580

pendencies. Its performance advantage generalizes 581

across diverse domains, demonstrating strong in- 582

ductive bias and robustness to domain variation. 583

Furthermore, the observed gains hold across five 584

distinct forecasting architectures, highlighting the 585

model-agnostic nature of the framework. 586

8 Discussion 587

Why do semantic and time-series retrieval base- 588

lines underperform? While both semantic and 589

time-series-based retrieval methods provide useful 590

baselines, they fail to capture the relational richness 591

exploited by EventConnector. Semantic retrieval 592

relies solely on textual similarity between event 593

descriptions and is agnostic to the actual evolution 594

of belief over time. As a result, it often retrieves 595

7



events that are topically similar but temporally un-596

correlated. Time-series retrieval based on full DTW597

distances considers the entire trajectory, which598

may overly emphasize global alignment while ig-599

noring localized or transient co-fluctuations. In600

contrast, EventConnector focuses on dynamically601

co-evolving segments and incorporates lead-lag602

relationships into its graph structure, effectively603

grounding retrieval in both temporal dynamics and604

relational context. Thus, although EventConnector605

can be seen as a special form of time-series re-606

trieval, its structural awareness and focus on causal607

temporal patterns allow it to surpass naive DTW-608

based methods.609

Does hop number affect downstream perfor-610

mance? An important design choice in our frame-611

work is the neighborhood depth—i.e., the number612

of hops used during retrieval. We find that increas-613

ing the number of hops generally leads to improved614

forecasting performance across domains, as more615

relational signals are incorporated into the induc-616

tive prediction. Notably, the most significant gains617

occur when moving from 1-hop to 2-hop retrieval,618

suggesting that immediate and second-order neigh-619

bors together capture the majority of useful contex-620

tual information. However, as shown in Figure 2,621

the performance gains begin to plateau beyond 2-622

hop, indicating a clear diminishing return effect.623

This trend highlights that while incorporating addi-624

tional hops can be beneficial, most of the forecast-625

ing signal is concentrated in the first two levels of626

the event graph.627

1 2 3 4
Hop Number

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

RM
SE

Politics
Sports
Crypto
Election
Other

Figure 2: Forecasting performance comparison across
different hop numbers used for retrieval.

Does cross-domain retrieval help with single-628

domain prediction? One surprising and629

important finding is that cross-domain re-630

trieval—retrieving events from different topical631

domains—can still improve single-domain fore-632

casting performance. For example, a political633

event may exhibit strong co-fluctuation with a 634

cryptocurrency market event, even though the two 635

are semantically unrelated. This suggests that 636

social signals often transcend traditional domain 637

boundaries and that latent belief dynamics may be 638

driven by shared external shocks or macro-level 639

sentiment flows. The ability of EventConnector to 640

uncover and exploit such cross-domain linkages 641

points toward the promise of scaling up the social 642

temporal graph across domains to further enhance 643

generalization and retrieval coverage. 644

Can this method generalize beyond SocialWM- 645

Bench? Although our experiments are conducted 646

on SocialWM-Bench, the proposed retrieval and 647

forecasting framework is not limited to prediction 648

market data. Any domain where entities are as- 649

sociated with belief-like or attention-driven time 650

series—such as financial instruments (e.g., stock 651

prices, currency exchange rates), public opinion 652

polls, or media engagement metrics—could poten- 653

tially benefit from a similar temporal graph con- 654

struction and retrieval approach. This opens the 655

door to generalizing EventConnector to broader 656

real-world forecasting tasks where transient and 657

directional dependencies between time series are 658

prevalent. In future work, we plan to extend our 659

framework to these domains and investigate how 660

relational inductive biases can be adapted to non- 661

social, high-frequency temporal systems. 662

9 Conclusion 663

We tackle the challenge of forecasting public opin- 664

ion and retrieving real-world events based on their 665

temporal dynamics—a critical task amid rapidly 666

evolving social discourse. Traditional models often 667

falter due to the transient and interdependent na- 668

ture of social signals. To address this, we propose 669

EventConnector, a temporal graph framework that 670

captures localized, directional co-fluctuations be- 671

tween events. By linking belief-evolving time se- 672

ries through statistically grounded lead-lag depen- 673

dencies, our method enables effective retrieval and 674

forecasting under sparse supervision. Empirical 675

results across domains and granularities show that 676

EventConnector consistently outperforms few-shot 677

and retrieval baselines, rivaling full-shot forecast- 678

ing while requiring less data. This highlights the 679

value of graph-structured temporal context in im- 680

proving generalization and predictive accuracy. 681
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10 Limitations682

While EventConnector demonstrates strong per-683

formance in capturing temporal dependencies and684

improving forecasting accuracy, several limitations685

remain. First, the construction of the temporal686

graph relies on observed co-fluctuations in time-687

series data, which may miss latent but semanti-688

cally relevant relationships not reflected in belief689

dynamics. Second, the current edge construction690

mechanism assumes stationarity of lead-lag pat-691

terns over time, which may not hold in rapidly692

evolving domains. Third, our method focuses on693

pairwise and transitive interactions, but does not694

yet model higher-order dependencies such as joint695

influence from multiple events. Finally, while the696

framework is model-agnostic, its effectiveness can697

vary depending on the quality and resolution of698

the underlying time-series signals, which may be699

sparse or noisy in certain real-world applications.700

References701

Andrew Arnold, Yan Liu, and Naoki Abe. 2007. Tem-702
poral causal modeling with graphical granger meth-703
ods. In ACM SIGKDD International Conference on704
Knowledge Discovery and Data Mining, pages 66–705
75.706

Stefanos Bennett, Mihai Cucuringu, and Gesine Rein-707
ert. 2022. Lead–lag detection and network cluster-708
ing for multivariate time series. Machine Learning,709
111(8):4497–4538.710

David J. Berndt and James Clifford. 1994. Using dy-711
namic time warping to find patterns in time series.712
In AAAI-94 Workshop on Knowledge Discovery in713
Databases (KDD), pages 359–370.714

Elizabeth Boschee, Jennifer Lautenschlager, Sean715
O’Brien, Steve Shellman, James Starz, and Michael716
Ward. 2015. ICEWS coded event data. Harvard717
Dataverse, V12.718

Cesar A Cadena and 1 others. 2015. Forecasting social719
unrest using activity cascades. In ICWSM.720

Fanglan Chen and Daniel B. Neill. 2014. Non-721
parametric scan statistics for event detection and fore-722
casting in heterogeneous social media graphs. In723
ACM SIGKDD.724

Morris H. DeGroot. 1974. Reaching a consensus.725
Journal of the American Statistical Association,726
69(345):118–121.727

Han Deng and 1 others. 2019a. A graph-based event728
propagation model for civil unrest forecasting. In729
ICDM.730

Han Deng and 1 others. 2020. Glean: Event forecasting 731
with context graph modeling. In ACL. 732

Songgaojun Deng, Huzefa Rangwala, and Yue Ning. 733
2019b. Learning dynamic context graphs for predict- 734
ing social events. In ACM SIGKDD International 735
Conference on Knowledge Discovery and Data Min- 736
ing, pages 1000–1008. 737

Naren Ramakrishnan et al. 2014. ’beating the news’ 738
with embers: Forecasting civil unrest using open 739
source indicators. In ACM SIGKDD International 740
Conference on Knowledge Discovery and Data Min- 741
ing, pages 1799–1808. 742

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, 743
and Pascal Poupart. 2020. Diachronic embedding for 744
temporal knowledge graph completion. In Proceed- 745
ings of the AAAI Conference on Artificial Intelligence, 746
volume 34, pages 3988–3995. 747

Clive W. J. Granger. 1969. Investigating causal relations 748
by econometric models and cross-spectral methods. 749
Econometrica, 37(3):424–438. 750

Mark Granovetter. 1978. Threshold models of col- 751
lective behavior. American Journal of Sociology, 752
83(6):1420–1443. 753

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. 754
2020. Explainable subgraph reasoning for forecast- 755
ing on temporal knowledge graphs. In International 756
Conference on Learning Representations (ICLR). 757

Alan G. Hawkes. 1971. Spectra of some self-exciting 758
and mutually exciting point processes. Biometrika, 759
58(1):83–90. 760

Rainer Hegselmann and Ulrich Krause. 2002. Opinion 761
dynamics and bounded confidence: Models, analysis 762
and simulation. Journal of Artificial Societies and 763
Social Simulation, 5(3):2. 764

Toan Luu Duc Huynh. 2021. Does bitcoin react to 765
trump’s tweets? Journal of Behavioral and Experi- 766
mental Finance, 31:100546. 767

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and 768
Hanxiao Liu. 2018. Modeling long- and short-term 769
temporal patterns with deep neural networks. In In- 770
ternational ACM SIGIR Conference on Research and 771
Development in Information Retrieval, pages 95–104. 772

Kalev Leetaru and Philip A. Schrodt. 2013. GDELT: 773
Global data on events, location, and tone, 1979–2012. 774
In Proceedings of the International Studies Associa- 775
tion Annual Convention. 776

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 777
2018. Diffusion convolutional recurrent neural net- 778
work: Data-driven traffic forecasting. In Proceedings 779
of the 6th International Conference on Learning Rep- 780
resentations (ICLR). 781

9

https://doi.org/10.1016/j.jbef.2021.100546
https://doi.org/10.1016/j.jbef.2021.100546
https://doi.org/10.1016/j.jbef.2021.100546


Yue Ning, Sathappan Muthiah, Huzefa Rangwala, and782
Naren Ramakrishnan. 2016. Modeling precursors783
for event forecasting via nested multi-instance learn-784
ing. In ACM SIGKDD International Conference on785
Knowledge Discovery and Data Mining, pages 1415–786
1424.787

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados,788
and Yoshua Bengio. 2019. N-beats: Neural basis789
expansion analysis for interpretable time series fore-790
casting. arXiv preprint arXiv:1905.10437.791

Spiros Papadimitriou, Jimeng Sun, and Philip S. Yu.792
2006. Local correlation tracking in time series.793
In IEEE International Conference on Data Mining794
(ICDM), pages 456–465.795

Kira Radinsky and Eric Horvitz. 2012. Modeling796
and predicting behavioral dynamics on the web. In797
WWW.798

David Rothschild. 2009. Forecasting elections: Com-799
paring prediction markets, polls, and their biases.800
Public Opinion Quarterly, 73(5):895–916.801

Yasushi Sakurai, Spiros Papadimitriou, and Christos802
Faloutsos. 2005. Braid: Stream mining through803
group lag correlations. In ACM SIGMOD Interna-804
tional Conference on Management of Data, pages805
599–610.806

Aravind Sankar and 1 others. 2020. Dysat: Deep neural807
representation learning on dynamic graphs via self-808
attention networks. In WSDM.809

Rakshit Trivedi, Mehrdad Farajtabar, and 1 others. 2017.810
Know-evolve: Deep temporal reasoning for dynamic811
knowledge graphs. In ICML.812

Rakshit Trivedi and 1 others. 2019. Dyrep: Learning813
representations over dynamic graphs. In ICLR.814

Justin Wolfers and Eric Zitzewitz. 2004. Prediction mar-815
kets. Journal of Economic Perspectives, 18(2):107–816
126.817

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin818
Wang, and Mingsheng Long. 2022. Timesnet: Tem-819
poral 2d-variation modeling for general time series820
analysis. arXiv preprint arXiv:2210.02186.821

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng822
Long. 2021. Autoformer: Decomposition transform-823
ers with auto-correlation for long-term series fore-824
casting. Advances in neural information processing825
systems, 34:22419–22430.826

Xinyi Wu and 1 others. 2020. Temp: Temporal message827
passing for temporal knowledge graph completion.828
In EMNLP.829

Da Xu and 1 others. 2020. Inductive representation830
learning on temporal graphs. In ICLR.831

Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, 832
Nurjahan Begum, Yifei Ding, Hoang Anh Dau, 833
Diego F. Silva, Abdullah Mueen, and Eamonn Keogh. 834
2016. Matrix profile i: All pairs similarity joins for 835
time series. In IEEE International Conference on 836
Data Mining (ICDM), pages 1317–1322. 837

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 838
2023. Are transformers effective for time series fore- 839
casting? In Proceedings of the AAAI conference 840
on artificial intelligence, volume 37, pages 11121– 841
11128. 842

Liang Zhao, Qiuhong Sun, Jieping Ye, Feng Chen, 843
Chang-Tien Lu, and Naren Ramakrishnan. 2015. 844
Multi-task learning for spatio-temporal event fore- 845
casting. In ACM SIGKDD International Conference 846
on Knowledge Discovery and Data Mining, pages 847
1503–1512. 848

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai 849
Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 850
2021. Informer: Beyond efficient transformer for 851
long sequence time-series forecasting. In Proceed- 852
ings of the AAAI conference on artificial intelligence, 853
volume 35, pages 11106–11115. 854

Kai Zhou and 1 others. 2022. Eventgraph: Forecasting 855
emerging events via temporal knowledge graphs. In 856
EMNLP. 857

Ke Zhou, Hongyuan Zha, and Le Song. 2013. Learn- 858
ing social infectivity in sparse low-rank networks 859
using multi-dimensional hawkes processes. In In- 860
ternational Conference on Artificial Intelligence and 861
Statistics (AISTATS), pages 641–649. 862

10

https://doi.org/10.1093/poq/nfp082
https://doi.org/10.1093/poq/nfp082
https://doi.org/10.1093/poq/nfp082
https://doi.org/10.1257/0895330041371321
https://doi.org/10.1257/0895330041371321
https://doi.org/10.1257/0895330041371321


Appendix A: Detailed Forecasting Results863

This appendix provides full quantitative results un-864

der the inductive setting, where models forecast865

unseen out-of-graph social events using limited866

or retrieved supervision. We report performance867

across five domains—Politics, Sports, Crypto,868

Election, and Other—under two temporal granu-869

larities: daily and hourly.870

Table 4 presents the forecasting performance on871

the daily setting, where models use 7 days of his-872

tory to predict the next 7 days. Table 5 shows the873

corresponding results for the hourly setting, using874

48 hours of history to forecast the next 24 hours.875

Each row corresponds to a forecasting model evalu-876

ated with Root Mean Squared Error (RMSE) and877

Mean Absolute Error (MAE) across all domains878

and retrieval strategies.879

Appendix B: Experiment Details880

This appendix provides detailed information re-881

garding the experimental setup, datasets, baseline882

implementations, proposed model configurations,883

and evaluation metrics used in Section 6.884

Model Size and Computational Budget. We885

conduct experiments using five representative time-886

series forecasting architectures—DLinear (Zeng887

et al., 2023), Autoformer (Wu et al., 2021), In-888

former (Zhou et al., 2021), N-BEATS (Oreshkin889

et al., 2019), and TimesNet (Wu et al., 2022). All890

experiments were run on a single NVIDIA A6000891

GPU (48GB), totaling approximately 200 GPU892

hours. This budget includes time for graph con-893

struction, hyperparameter tuning, model training,894

retrieval-based augmentation, and result visualiza-895

tion.896

Experimental Setup and Hyperparameters.897

We adopt a consistent forecasting pipeline under898

both daily (7-day prediction) and hourly (24-hour899

prediction) settings. For each forecasting model,900

we perform a grid search over learning rates, batch901

sizes, and other related hyperparameters. The best-902

performing configuration is selected based on vali-903

dation RMSE.904

Baseline Models. For each baseline model, we905

utilized publicly available implementations where906

possible, adhering to the hyperparameter settings907

recommended in their original publications or908

widely adopted in benchmark studies. These mod-909

els include:910

• DLinear (Zeng et al., 2023): A lightweight 911

and interpretable model based on seasonal- 912

trend decomposition of time series. It assumes 913

a linear mapping from decomposed compo- 914

nents to future values, making it highly effi- 915

cient and robust on short sequences. We used 916

the original authors’ open-source PyTorch im- 917

plementation with default training settings. 918

• Autoformer (Wu et al., 2021): A Transformer- 919

based model tailored for long-term time-series 920

forecasting. It introduces an auto-correlation 921

mechanism to replace traditional attention, ef- 922

fectively capturing periodic patterns in high- 923

resolution sequences. We tuned context length 924

and dropout based on validation RMSE. 925

• Informer (Zhou et al., 2021): This model 926

uses ProbSparse self-attention to improve the 927

efficiency of long sequence forecasting. It 928

reduces the quadratic complexity of full atten- 929

tion and allows fast modeling of long temporal 930

dependencies. We followed the original hy- 931

perparameter setup with minor adjustments to 932

input length and learning rate. 933

• N-BEATS (Oreshkin et al., 2019): A deep 934

residual forecasting architecture that uses 935

backward and forward fully connected blocks 936

to model temporal signals in a non-recurrent, 937

interpretable fashion. Its block-based design 938

allows for learning of trend and seasonal- 939

ity patterns with minimal assumptions. We 940

used the official implementation with recom- 941

mended forecast and backcast lengths. 942

• TimesNet (Wu et al., 2022): A recent 943

model that integrates frequency-domain and 944

temporal-domain representations via temporal 945

2D variation blocks. It achieves strong per- 946

formance across general forecasting tasks by 947

capturing multi-scale dependencies. We used 948

the official implementation with input lengths 949

set to match our daily and hourly configura- 950

tions. 951

All baseline models were retrained on the same 952

forecasting tasks and time windows as our pro- 953

posed method to ensure fair comparison. Wherever 954

applicable, early stopping and validation-based 955

model selection were applied to avoid overfitting. 956

Graph Construction and Visualization Tool- 957

ing. Graph generation, storage, and visualization 958
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are implemented using networkx, plotly, and959

torch_geometric. These tools support topologi-960

cal processing, interactive visualization, and GPU-961

accelerated graph batching. The event graph is962

serialized in PyTorch format and serves as a back-963

bone for both retrieval and inductive forecasting964

tasks.965
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Table 4: Inductive Setting: Forecasting Performance on out-of-graph events across Domains on daily time
frequency, 7 history length and 7 prediction length.

Politics Sports Crypto Election Other

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

few-shot forecasting

DLinear 0.4308 0.3861 0.3826 0.3343 0.2938 0.2469 0.4438 0.4007 0.4002 0.3556
Autoformer 0.2561 0.2226 0.2688 0.2303 0.2530 0.2185 0.2575 0.2253 0.2167 0.1876

Informer 0.8061 0.6265 0.7601 0.5722 0.6865 0.5117 0.8372 0.6552 0.7435 0.5729
N-BEATS 0.1640 0.1385 0.1399 0.1165 0.1447 0.1197 0.1675 0.1422 0.1262 0.1027
TimesNet 0.1450 0.1303 0.1489 0.1329 0.2068 0.1872 0.1494 0.1351 0.2801 0.2545

Semantic Retrieval based forecasting

DLinear 0.4306 0.3859 0.3828 0.3346 0.2939 0.2470 0.4439 0.4008 0.4001 0.3555
Autoformer 0.1081 0.0902 0.4179 0.3731 0.2067 0.1789 0.2058 0.1767 0.1243 0.1041

Informer 0.7531 0.5771 1.0781 1.0228 0.6798 0.5326 0.8418 0.6744 0.6950 0.5416
N-BEATS 0.1080 0.0903 0.1000 0.0803 0.2440 0.1871 0.1593 0.1350 0.1244 0.1008
TimesNet 0.1443 0.1297 0.1510 0.1347 0.2092 0.1896 0.1482 0.1341 0.2782 0.2525

Time-series Retrieval based Forecasting

DLinear 0.4299 0.3850 0.3827 0.3344 0.2938 0.2468 0.4435 0.4004 0.3998 0.3551
Autoformer 0.1161 0.0985 0.2196 0.1888 0.1448 0.1204 0.0884 0.0738 0.1116 0.0956

Informer 0.7191 0.5549 0.8439 0.6843 0.6788 0.5091 0.8169 0.6375 0.7268 0.5559
N-BEATS 0.1113 0.0949 0.1000 0.0803 0.1451 0.1248 0.3191 0.2725 0.1671 0.1431
TimesNet 0.1446 0.1301 0.1510 0.1348 0.2080 0.1884 0.1487 0.1347 0.2803 0.2546

EventConnector-based forecasting

DLinear 0.4235 0.3770 0.3815 0.3328 0.2926 0.2447 0.4402 0.3961 0.3937 0.3470
Autoformer 0.2113 0.1836 0.2057 0.1725 0.2187 0.1817 0.2618 0.2308 0.1857 0.1585

Informer 0.4754 0.3883 0.4963 0.3893 0.3460 0.2759 0.4932 0.3753 0.5051 0.3879
N-BEATS 0.0935 0.0680 0.0999 0.0777 0.1250 0.1019 0.0944 0.0729 0.1115 0.0881
TimesNet 0.1236 0.0960 0.1312 0.1079 0.1773 0.1440 0.1271 0.1005 0.2223 0.1791

Full-shot forecasting

DLinear 0.4083 0.3408 0.3737 0.3208 0.2859 0.2346 0.4242 0.3727 0.3812 0.3196
Autoformer 0.0608 0.0500 0.1219 0.0977 0.0924 0.0764 0.0871 0.0730 0.0710 0.0602

Informer 0.4196 0.3471 0.5777 0.4365 0.4227 0.3279 0.5303 0.4250 0.4993 0.3752
N-BEATS 0.0863 0.0671 0.0969 0.0741 0.1101 0.0856 0.0936 0.0710 0.0988 0.0758
TimesNet 0.1156 0.0896 0.1384 0.1157 0.1814 0.1479 0.1263 0.0991 0.2037 0.1438
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Table 5: Inductive Setting: Forecasting Performance on out-of-graph events across Domains on hourly time
frequency, 48 history length and 24 prediction length.

Politics Sports Crypto Election Other

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

few-shot forecasting

DLinear 0.3998 0.3478 0.3932 0.3364 0.2767 0.2301 0.4125 0.3597 0.3856 0.3338
Autoformer 0.2359 0.2119 0.2290 0.2086 0.1421 0.1259 0.2686 0.2442 0.1961 0.1761

Informer 0.8958 0.7902 0.9534 0.8362 0.9269 0.8175 0.8760 0.7731 0.8597 0.7518
N-BEATS 0.3963 0.3227 0.3685 0.3029 0.3151 0.2578 0.3954 0.3234 0.3857 0.3161
TimesNet 0.1415 0.1118 0.1008 0.0800 0.1954 0.1557 0.1557 0.1212 0.2498 0.1968

Semantic Retrieval-based Forecasting

DLinear 0.3780 0.3042 0.3842 0.3256 0.2695 0.2210 0.3977 0.3391 0.3648 0.2993
Autoformer 0.0288 0.0255 0.0667 0.0594 0.0442 0.0397 0.0323 0.0286 0.0354 0.0312

Informer 0.5709 0.4833 0.3645 0.2724 0.4937 0.4164 0.7184 0.5858 0.5535 0.4576
N-BEATS 0.1406 0.1075 0.1459 0.1135 0.1478 0.1188 0.1390 0.1081 0.1374 0.1073
TimesNet 0.1417 0.1090 0.1014 0.0806 0.1943 0.1533 0.1565 0.1235 0.2495 0.1963

Time-Series Retrieval-based Forecasting

DLinear 0.3826 0.3219 0.3887 0.3312 0.2729 0.2256 0.4043 0.3495 0.3724 0.3164
Autoformer 0.0365 0.0307 0.0889 0.0731 0.0736 0.0636 0.0583 0.0488 0.0588 0.0508

Informer 0.5505 0.4769 0.8933 0.7819 0.9149 0.8093 0.5127 0.4707 0.5982 0.5175
N-BEATS 0.1383 0.1025 0.1360 0.1063 0.1364 0.1060 0.1349 0.1047 0.1362 0.1038
TimesNet 0.1316 0.1119 0.0968 0.0809 0.1706 0.1437 0.1409 0.1178 0.1933 0.1660

EventConnector-based Forecasting

DLinear 0.3784 0.3069 0.3853 0.3270 0.2710 0.2231 0.3988 0.3410 0.3640 0.2961
Autoformer 0.0575 0.0523 0.0582 0.0521 0.0572 0.0520 0.0478 0.0427 0.0358 0.0319

Informer 0.4308 0.3585 0.5547 0.5036 0.6822 0.5984 0.6035 0.5140 0.4927 0.4038
N-BEATS 0.1357 0.1044 0.1496 0.1223 0.1430 0.1144 0.1423 0.1045 0.1348 0.1046
TimesNet 0.1180 0.0919 0.0879 0.0707 0.1732 0.1406 0.1401 0.1163 0.2052 0.1614

Full-shot forecasting

DLinear 0.3771 0.2990 0.3695 0.2904 0.2610 0.1999 0.3891 0.3093 0.3625 0.2863
Autoformer 0.0276 0.0242 0.0419 0.0372 0.0360 0.0325 0.0233 0.0209 0.0298 0.0262

Informer 0.1363 0.1038 0.2946 0.2493 0.2426 0.1946 0.2114 0.1676 0.1572 0.1289
N-BEATS 0.1364 0.0979 0.1346 0.1053 0.1342 0.1028 0.1398 0.1032 0.1372 0.0988
TimesNet 0.1234 0.0943 0.0873 0.0701 0.2003 0.1462 0.1706 0.1276 0.1829 0.1461
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